Addendum b to BTL Test Package 9.0

[This foreword and the “Overviews” on the following pages are not part of this Test Package. They are merely informative and do not contain requirements necessary for conformance to the Test Package.]

FOREWORD

The purpose of this addendum is to present current changes being made to the BTL Test Package. These modifications are the result of change proposals made pursuant to the continuous maintenance procedures and of deliberations within the BTL-WG Committee. The changes are summarized below.

BTL-9.0b-1 Removing EPICS references from tests, p. 2 [wID0079]
In the following document, language to be added to existing clauses within the BTL Test Package 9.0 is indicated through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain type is used throughout.

In addition, changes to BTL Specified Tests also contain a yellow highlight to indicate the changes made by this addendum.

When this addendum is applied, all highlighting will be removed. Change markings on tests will remain to indicate the difference between the new test and an existing 135.1 test. If a test being modified has never existed in 135.1, the applied result should not contain any change markings. When this is the case, square brackets will be used to describe the changes required for this test.

Each addendum can stand independently unless specifically noted via dependency within the addendum. If multiple addenda change the same test or section, each future released addendum that changes the same test or section will note in square brackets whether or not those changes are reflected.

This addendum contains the changes required to remove references to obtaining values from an EPICS when running tests.

BTL-9.0b-1 Removing EPICS references from tests
Overview:

This document applies changes to the test package to correct the references to EPICS property values. All change notations are shown based on the test referenced by the Test Plan 9.0 document which may be 135.1-2009 or BTL Specified Tests 9.0.final or other 135.1-2009 addenda as specified.

7[In BTL Specified Tests, add section 3.x]

7[In BTL Specified Tests, modify 7.2.2.1]

77.2.2.1 Read-only Property Test

8[In BTL Specified Tests, Add section 9]

89 Application Service Execution Tests

9[In BTL Specified Tests, Add Test 9.17.2.1]

99.17.2.1
Attempting to Delete an Object That is Not Deletable

9[In BTL Specified Tests, Modify Test 9.18.1.X1]

99.18.1.X1 Reading Properties Based on Data Type

10[In BTL Specified Tests, Add Test 9.18.1.2]

109.18.1.2 Reading a Single Element of an Array

10[In BTL Specified Tests, Add Tests 9.20.1.1-9.20.1.5]

109.20.1.1 Reading a Single Property from a Single Object

109.20.1.2 Reading Multiple properties from a Single Object

109.20.1.2 Reading a Single Property from Multiple Objects

119.20.1.4 Reading Multiple Properties from Multiple Objects

119.20.1.5 Reading Multiple Properties with a Single Embedded Access Error

12[In BTL Specified Tests, Modify Tests 9.20.1.6]

129.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

12[In BTL Specified Tests, Add Test 9.20.1.7-9.20.1.9]

129.20.1.7 Reading ALL Properties

139.20.1.8 Reading OPTIONAL Properties

139.20.1.9 Reading REQUIRED Properties

13[In BTL Specified Tests, Add Tests 9.22.1.1 – 9.22.1.3]

139.22.1.1 Writing a Single Element of an Array

149.22.1.2 Writing a Commandable Property Without a Priority

149.22.1.3 Writing a Non-Commandable Property with a Priority

15[In BTL Specified Tests, Modify Test 9.22.1.X1]

159.22.1.X1 Writing an Array Size

15[In BTL Specified Tests, Add Test 9.22.2.1 – 9.22.2.3]

159.22.2.1 Writing Non-Array Properties with an Array Index

169.22.2.2 Writing Array Properties with an Array Index that is Out of Range

169.22.2.3 Writing with a Property Value Having the Wrong Datatype

16[In BTL Specified Tests, Modify Test 9.22.2.4]

179.22.2.4 Writing with a Property Value that is Out of Range

17[In BTL Specified Tests, Add Test 9.23.1.1 – 9.23.1.4]

179.23.1.1 Writing a Single Property to a Single Object

189.23.1.2 Writing Multiple properties to a Single Object

189.23.1.3 Writing a Single Property to Multiple Objects

199.23.1.4 Writing Multiple Properties to Multiple Objects

19[In BTL Specified Tests, Modify Test 9.23.1.X2]

199.23.1.X2 Writing to Properties Based on Data Type

20[In BTL Specified Tests, Add Test 9.23.2.1 – 9.23.2.6]

209.23.2.1 Writing Multiple Properties with a Property Access Error

209.23.2.2 Writing Multiple Properties with an Object Access Error

219.23.2.3 Writing Multiple Properties with a Write Access Error

219.23.2.4 Writing Non-Array Properties with an Array Index

229.23.2.5 Writing Array Properties with an Array Index that is Out of Range

229.23.2.6 Writing with a Property Value Having the Wrong Datatype

23[In BTL Specified Tests, Modify Test 9.23.2.7]

239.23.2.7 Writing with a Property Value that is Out of Range

23[In BTL Specified Tests, Add Test 9.24.1.1]

239.24.1.1 Indefinite Time Duration Restored by DeviceCommunicationControl

24[In BTL Specified Tests, Modify Test 9.24.1.2 – 9.24.1.3]

249.24.1.2 Indefinite Time Duration Restored by ReinitializeDevice

259.24.1.3 Finite Time Duration

25[In BTL Specified Tests, Add Test 9.24.1.5]

259.24.1.5 Finite Time Duration Restored by ReinitializeDevice

25[In BTL Specified Tests, Add Test 9.24.2.2]

269.24.2.2 Missing Password

26[In BTL Specified Tests, Add Test 9.32.1.1 - 9.32.1.5]

269.32.1.1 Object ID Version with No Device Range

269.32.1.2 Object Name Version with no Device Range

279.32.1.3 Object ID Version with IUT Inside of the Device Range

279.32.1.4 Object ID Version with IUT Outside of the Device Range

279.32.1.5 Object Name Version with IUT Inside of the Device Range

28[In BTL Specified Tests, Add Test 9.32.1.7 - 9.32.1.11]

289.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range

289.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range

299.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range

299.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range

299.32.1.11 Object Name Version, Directed to a Specific MAC Address

30[In BTL Specified Tests, Add Test 9.32.2.1 - 9.32.2.2]

309.32.2.1 Object ID Version, Global Broadcast from a Remote Network

309.32.2.2 Object ID Version, Remote Broadcast

31[In BTL Specified Tests, Modify Test 10.1]

3110.1 Processing Application Layer Messages Originating from Remote Networks

Tests not changed and why:

	Tests
	Usage
	Note

	7.1 Read Support for Properties in the Test Database
	Compare value with EPICS
	Has note in Notes to Tester to compare data type if value is ?.

	7.2.2.X2 Non-documented Property Test
	References properties only
	

	9.17.1.1 Successful Deletion of an Object
	
	Fixed in 135.1-2009f

	9.18.1.1 Reading the Size of an Array
	1. VERIFY (Device, X), Object_List = (the size of the Object_List specified in the EPICS), ARRAY INDEX = 0
	Size of the Object-List should match what is in the EPICS so no change necessary.

	9.22.1.X2 Writing to Properties Based on Data Type
	Property restrictions from EPICS
	Expect to get property restrictions from the EPICS

	9.24.2.1 Invalid Password
	
	Fixed in 135.1-2009l

	9.30.1.1 Local Broadcast
	Notes to Tester: The time value returned by the IUT in step 13 shall agree with the time specified in step 9 within the
resolution for time specified in the EPICS.
	Resolution should be specified in an EPICS and therefore no change made to the test.

	9.32.1.1 Object ID Version with No Device Range
	1. TRANSMIT
DA = LOCAL BROADCAST,
SA = TD,
Who-Has-Request,
'Object Identifier' = (any object identifier specified in the EPICS)
2. WAIT Internal Processing Fail Time
3. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,
SA = IUT,
I-Have-Request,
'Device Identifier' = (the IUT's Device object),
'Object Identifier' = (the object identifier specified in step 1),
'Object Name' = (the object name specified in the EPICS for this object)
	Object-Name is expected to be valid in the EPICS so no change necessary.

	9.32.1.X1 Who-Has After Object_Name Changed
	
	Fixed in 135.1-2009l

	9.32.1.X2 Who-Has After Object_Identifier Changed
	
	Fixed in 135.1-2009l

	9.33.1.1 Local Broadcast, General Inquiry
	1. TRANSMIT
DESTINATION = LOCAL BROADCAST,
Who-Is-Request
2. WAIT Internal Processing Fail Time
3. RECEIVE
DESTINATION = GLOBAL BROADCAST | LOCAL BROADCAST
I-Am-Request,
'I Am Device Identifier' = (the IUT's Device object),
'Max APDU Length Accepted' = (the value specified in the EPICS),
'Segmentation Supported' = (the value specified in the EPICS),
'Vendor Identifier' = (the identifier registered for this vendor)
	Max APDU and Seg Supported are expected to be correct in the EPICS so no change needed.

	13.X1.1 Execution of Full Backup and Restore Procedure
	23. VERIFY (the IUT’s Device object), Object_List = (the value defined for this property in the EPICS)
24. REPEAT X = (all objects in the IUT’s database) DO {
 VERIFY (X), Object_Name = (the value defined for this property in the EPICS)
	We need to require valid values for Object_List and the Object_Name are required in the EPICS so no change necessary.

The following tests in 135.1-2009 refer to the EPICS however they are not referenced in our BTL Test Package 9.0 and therefore were not modified.

	7.2.1.2 Unsigned Integer, Signed Integer, Real, and Double Values
	

	7.2.1.3 Octetstrings and Characterstrings,
	Refers to maximum length string which should be specified in the EPICS. No change required.

	8.40.3.2 Message Initiation Authentication, Peer-to-Peer
	

	9.18.1.3 Reading a Property From the Device Object using the Unknown Instance
	

	9.18.1.4 Reading Entire Arrays
	

	9.20.1.11 Reading a Property From the Device Object using the Unknown Instance
	

	9.23.2.4 Writing Non-Array Properties with an Array Index
	

	9.23.2.5 Writing Array Properties with an Array Index that is Out of Range
	

	9.23.2.6 Writing with a Property Value Having the Wrong Datatype
	

	9.23.2.7 Writing with a Property Value that is Out of Range
	

	9.23.2.8 Writing To Non-Existent Objects
	

	9.25 ConfirmedPrivateTransfer Service Execution Tests
	

	9.38.3 Message Execution Authentication
	

	12.2.2.1.3 Inbound Connection with Retry to Success Test
	

	12.2.2.2.1 Outbound Connection Normal Test
	

	12.2.2.2.2 On-Demand Connection with Retry to Success Test
	

	13.3 Character Sets
	

Changes:
[In BTL Test Plan, modify all references to the following tests below]

	From
	To

	135.1-2009 - 9.17.2.1
	BTL - 9.17.2.1

	135.1-2009 - 9.18.1.2
	BTL - 9.18.1.2

	135.1-2009 - 9.20.1.1
	BTL - 9.20.1.1

	135.1-2009 - 9.20.1.2
	BTL - 9.20.1.2

	135.1-2009 - 9.20.1.4
	BTL - 9.20.1.4

	135.1-2009 - 9.20.1.5
	BTL - 9.20.1.5

	135.1-2009 - 9.20.1.7
	BTL - 9.20.1.7

	135.1-2009 - 9.20.1.8
	BTL - 9.20.1.8

	135.1-2009 - 9.20.1.9
	BTL - 9.20.1.9

	135.1-2009 - 9.22.1.1
	BTL - 9.22.1.1

	135.1-2009 - 9.22.1.2
	BTL - 9.22.1.2

	135.1-2009 - 9.22.1.3
	BTL - 9.22.1.3

	135.1-2009 - 9.22.2.1
	BTL - 9.22.2.1

	135.1-2009 - 9.22.2.2
	BTL - 9.22.2.2

	135.1-2009 - 9.22.2.3
	BTL - 9.22.2.3

	135.1-2009 - 9.23.1.1
	BTL - 9.23.1.1

	135.1-2009 - 9.23.1.2
	BTL - 9.23.1.2

	135.1-2009 - 9.23.1.3
	BTL - 9.23.1.3

	135.1-2009 - 9.23.1.4
	BTL - 9.23.1.4

	135.1-2009 - 9.23.2.1
	BTL - 9.23.2.1

	135.1-2009 - 9.23.2.2
	BTL - 9.23.2.2

	135.1-2009 - 9.23.2.3
	BTL - 9.23.2.3

	135.1-2009 - 9.23.2.4
	BTL - 9.23.2.4

	135.1-2009 - 9.23.2.5
	BTL - 9.23.2.5

	135.1-2009 - 9.23.2.6
	BTL - 9.23.2.6

	135.1-2009 - 9.24.1.1
	BTL - 9.24.1.1

	135.1-2009 - 9.24.1.5
	BTL - 9.24.1.5

	135.1-2009 - 9.24.2.2
	BTL - 9.24.2.2

	135.1-2009 - 9.32.1.1
	BTL - 9.32.1.1

	135.1-2009 - 9.32.1.2
	BTL - 9.32.1.2

	135.1-2009 - 9.32.1.3
	BTL - 9.32.1.3

	135.1-2009 - 9.32.1.4
	BTL - 9.32.1.4

	135.1-2009 - 9.32.1.5
	BTL - 9.32.1.5

	135.1-2009 - 9.32.1.7
	BTL - 9.32.1.7

	135.1-2009 - 9.32.1.8
	BTL - 9.32.1.8

	135.1-2009 - 9.32.1.9
	BTL - 9.32.1.9

	135.1-2009 - 9.32.1.10
	BTL - 9.32.1.10

	135.1-2009 - 9.32.1.11
	BTL - 9.32.1.11

	135.1-2009 - 9.32.2.1
	BTL - 9.32.2.1

	135.1-2009 - 9.32.2.2
	BTL - 9.32.2.2

	BTL - 7.2.2.1
	BTL - 7.2.X

[In BTL Specified Tests, add section 3.x]

3.x Common language used in tests

‘any valid value’
- Any valid value refers to any value of the correct data type and within the vendor’s range specified for the property this is applied to.

‘any appropriate password’ – Any password that meets the Configuration Requirements specified in the test or test section. Passwords when required by the vendor are required to be no more than 20 characters.

[In BTL Specified Tests, delete test 7.2.2.1]
[In BTL Specified Tests, Add test 7.2.X (based on 135.1-2009i)]
[Reason: Modified test to remove dependency on EPICS values]

7.2.X Read-only Property Test

Purpose: To verify that properties marked as read-only in the EPICS are in fact read-only.

Test Concept: To each read-only (not writable and not conditionally writable) property in the EPICS, write the value of the property as read from the device and verify that an error is returned. Write another value that is within the acceptable range for the datatype and verify that an error is returned. If the property is a list and the IUT supports AddListElement, attempt to modify the property with AddListElement and verify that an error is returned. If the IUT does not support the WriteProperty service, then this test shall be skipped.

Test Steps:

1.
REPEAT X = (a tester selected set of objects) DO {

REPEAT Y = (all read-only properties in object X) DO {

 IF (the property is not an array) THEN

READ Z = X

READ Z = (X), property Y

TRANSMIT WriteProperty-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

'Property Value' =
Z

RECEIVE BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,

'Object Identifier' =

X,

'Property Identifier' =

Y,

'Property Value' =

(any value meeting the range requirements

of 7.2.1 except Z)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

IF (the IUT supports AddListElement and the property is a list) THEN

TRANSMIT AddListElement-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

List of Elements' =
(any elements value meeting the range requirements of 7.2.1 excluding those in Z)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

 ELSE

READ LEN = X, Array_Index = 0

READ LEN = (X), Y, Array_Index =0

IF (LEN > 0)

READ Z = X, Array Index = 1

READ Z = (X), Y, Array_Index=1

TRANSMIT WriteProperty-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

'Property Value' =
Z,

‘Array Index’ =
1

RECEIVE BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,

'Object Identifier' =

X,

'Property Identifier' =

Y,

'Property Value' =

(any value meeting the range requirements

of 7.2.1 except Z)

‘Array Index’ =
1

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

IF (the IUT supports AddListElement and the property is an array of lists) THEN

TRANSMIT AddListElement-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

 'Array Index' =

1

 'List of Elements' =
(any elements value meeting the range requirements of 7.2.1 excluding those in Z)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

ELSE

TRANSMIT WriteProperty-Request,

'Object Identifier' =

X,

'Property Identifier' =

Y,

'Property Value' =

(any value meeting the range requirements

of 7.2.1)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

}

}

Notes to tester: When modifying a property, it is expected that an error class of PROPERTY with an error code of WRITE_ACCESS_DENIED is returned but the IUT may instead return an error_class of PROPERTY with an error_code of VALUE_OUT_OF_RANGE, or an error_class of RESOURCES with an error_code of NO_SPACE_TO_WRITE_PROPERTY. In the case that the property is an array, and it has no elements, then the IUT may return and error class of PROPERTY and an error code of INVALID_ARRAY_INDEX. The objects selected by the tester should include one instance of each supported object type. Where some instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the writability of a property, then one instance of each “flavor” of that object type should be selected.

[In BTL Specified Tests, Add section 9]

[Reason: Modified description to remove dependency on EPICS values]

9 Application Service Execution Tests

The test cases defined in this clause shall be used to verify that a BACnet device correctly implements the service procedure for the specified application service. BACnet devices shall be tested for the proper execution of each application service for which the PICS indicates execution is supported.

For each application service included in this clause several test cases are defined that collectively test the various options and features defined for the service in the BACnet standard. A test case is a sequence of one or more messages that are exchanged between the implementation under test (IUT) and the testing device (TD) in order to determine if a particular option or feature is correctly implemented. Multiple test cases that have a similar or related purpose are collected into test groups.

Under some circumstances an IUT may be unable to demonstrate conformance to a particular test case because the test applies to a feature that requires a particular BACnet object or optional property that is not supported in the IUT. For example, a device may support the File Access services but restrict files to stream access only. Such a device would have no way to demonstrate that it could implement the record access features of the File Access services. When this type of situation occurs the IUT shall be considered to be in conformance with BACnet provided the PICS documentation clearly indicates the restriction. Failure to document the restriction shall constitute nonconformance to the BACnet standard. All features and optional parameters for BACnet application services shall be supported unless a conflict arises because of unsupported objects or unsupported optional properties.

For each application service the tests are divided into two types, positive tests and negative tests. The positive tests verify that the IUT can correctly handle cases where the service is expected to be successfully completed. The negative tests verify correct handling for various error cases that may occur. Negative tests include inappropriate service parameters but they do not include cases with encoding errors or otherwise malformed PDUs. Tests to ensure that the IUT can handle malformed PDUs are defined in 13.4.

Many test cases allow flexibility in the value to be used in a service parameter. The tester is free to choose any value within the constraints defined in the test case. The IUT shall be able to respond correctly to any valid selection the tester might make. The EPICS is considered to be a definitive reference indicating the BACnet functionality supported and the configuration of the object database. Any discrepancies between the BACnet functionality or the value of properties in the object database as defined in the EPICS, and the values returned in messages defined for a test case constitutes a failure of the test. For example, if a test step involved reading a property of an object in the database the returned value must match the value provided in the EPICS. defined in the EPICS and the functionality demonstrated by the device during testing shall constitute a failure. For example, it is considered a failure if a test step involves writing to a property and the EPICS indicates the property is writable but the device returns an error indicating 'write access denied'.
[In BTL Specified Tests, Add Test 9.17.2.1]

[Reason: Modified test to remove dependency on EPICS values]

9.17.2.1
Attempting to Delete an Object That is Not Deletable

Purpose: To verify the correct response to an attempt to delete an object that is not deletable.

Configuration Requirements: The IUT shall be configured with an object X that cannot be deleted.

Test Steps:

1. READ V1 = Object_Name

2. TRANSMIT DeleteObject-Request,

'Object Identifier' = X

3. RECEIVE BACnet-Error-PDU,

Error Class = OBJECT,

Error Code = OBJECT_DELETION_NOT_PERMITTED

4. VERIFY (X), Object_Name = V1 (the Object_Name specified in the EPICS)
5. VERIFY (X), Object_List = (any object list that contains X)

[In BTL Specified Tests, Modify Test 9.18.1.X1]

[Reason: Modified test to remove dependency on EPICS values]

9.18.1.X1 Reading Properties Based on Data Type

Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of the supported base data types.

Test Concept: This test is repeated once for each base data type that the IUT supports. For each execution of the test a property, P1, shall be selected that is of the data type being tested and the object containing P1 is designated Object1 in the test description.

Test Steps:
[BTL Specified Test Version in 9.0, delete the test steps and the Passing Result]
1.
VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

Passing Result: The IUT shall respond as indicated conveying the value of the correct data type.specified in the EPICS.

[BTL Specified Test Version in 12.0, add the following test steps]
1. READ V = (Object1), P1

2. CHECK (V returns any valid value of the correct data type for property P1)

[In BTL Specified Tests, Add Test 9.18.1.2]

[Reason: Modified test to remove dependency on EPICS values]

9.18.1.2 Reading a Single Element of an Array
Purpose: To verify that the IUT can execute ReadProperty service requests when the requested property is an array and a single element of the array is requested.

Test Steps:

1. READ V = (Device, X), Object_List ARRAY_INDEX=1

2. CHECK (V is of type object-identifier)

1. VERIFY (Device, X),

Object_List = (the first element of the Object_List array as specified in the EPICS),

ARRAY INDEX = 1

Passing Result: The returned value should be of type object-identifier.
[In BTL Specified Tests, Add Tests 9.20.1.1-9.20.1.5]

[Reason: Modified tests to remove dependency on EPICS values]

9.20.1.1 Reading a Single Property from a Single Object

Purpose: To verify the ability to read a single property from a single object.

Test Concept: A single supported property is read from the Device object. The property is selected by the TD and is designated as P1 in the test description.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1 | Object2,

'Property Identifier' = P1

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = (the object selected in step 1),

'Property Identifier' = P1,

'Property Value' = (any valid valuethe value of P1 specified in the EPICS)
9.20.1.2 Reading Multiple properties from a Single Object

Purpose: To verify the ability to read multiple properties from a single object.
Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1 | Object 2,

'Property Identifier' = P1,

'Property Identifier' = P2

-- … (Two properties are required but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = (the object selected in step 1),

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS)
-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.2 Reading a Single Property from Multiple Objects

Purpose: To verify the ability to read a single property from multiple objects.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Object Identifier' = Object2,

'Property Identifier' = P2

-- … (Two properties are required but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
'Object Identifier' = Object2,

'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS)
-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.4 Reading Multiple Properties from Multiple Objects

Purpose: To verify the ability to read multiple properties from multiple objects.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Identifier' = P2,

'Property Identifier' = P3,

'Object Identifier' = Object2,

'Property Identifier' = P4,

'Property Identifier' = P5,

'Property Identifier' = P6

-- … (Two objects must be included but but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS),
'Property Identifier' = P3,

'Property Value' = (any valid value for P3the value of P3 specified in the EPICS),
'Object Identifier' = Object2,

'Property Identifier' = P4,

'Property Value' = (any valid value for P4the value of P4 specified in the EPICS)
'Property Identifier' = P5,

'Property Value' = (any valid value for P5the value of P5 specified in the EPICS),
'Property Identifier' = P6

'Property Value' = (any valid value for P6the value of P6 specified in the EPICS)
-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read

Access Specifications' contains a specification for an unsupported property.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Identifier' = P2,

'Property Identifier' = (any property, P3, not supported in this object),

'Property Identifier' = P4

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),
'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS),
'Property Identifier' = P3,

'Error Class' = PROPERTY,

'Error Code' = UNKNOWN_PROPERTY,

'Property Identifier' = P4,

'Property Value' = (any valid value for P4the value of P4 specified in the EPICS)
[In BTL Specified Tests, Modify Tests 9.20.1.6]

[Reason: Modified test to remove dependency on EPICS values]
[This test was also modified in Add-BTL Test Package 9.0-a-v2, those changes have not been applied here]
9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read Access Specifications' contains specifications for multiple unsupported properties.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Identifier' =
P2,

'Property Identifier' =
(any property, P3, not supported in this object),

'Property Identifier' =
(any property, P4, not supported in this object),

'Object Identifier' =
(any object, O2, not supported in the IUT)

'Property Identifier' =
P5,

'Property Identifier' =
P6

2.
RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value for P1the value of P1 specified in the EPICS),

'Property Identifier' =
P2,

'Property Value' =
(any valid value for P2the value of P2 specified in the EPICS),

'Property Identifier' =
P3,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Property Identifier' =
P4,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Object Identifier' =
O2,

'Property Identifier' =
P5,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT),

'Property Identifier' =
P6,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT)
[In BTL Specified Tests, Add Test 9.20.1.7-9.20.1.9]

[Reason: Modified test to remove dependency on EPICS values]

9.20.1.7 Reading ALL Properties

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier ALL. One instance of each object-type supported is tested.

Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = ObjectX,

'Property Identifier' = ALL

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

REPEAT P = (each property supported by Object1) DO {

'Property Identifier' = P,

'Property Value' = (any valid value for Pthe value of P specified in the EPICS)
}

}

Notes to Tester: Any proprietary properties that are supported for the object-type shall also be returned (see BACnet 15.7.3.1.2).

9.20.1.8 Reading OPTIONAL Properties

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier OPTIONAL. One instance of each object-type supported is tested.

Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = OPTIONAL

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

REPEAT P = (each optional property supported by Object1) DO {

'Property Identifier' = P,

'Property Value' = (any valid value for Pthe value of P specified in the EPICS)
}

}

Notes to Tester: If no optional properties are supported then an empty 'List of Results' shall be returned for the specified property.

9.20.1.9 Reading REQUIRED Properties

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier REQUIRED. One instance of each object-type supported is tested.

Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = REQUIRED

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

REPEAT P = (each required property defined for Object1) DO {

'Property Identifier' = P,

'Property Value' = (any valid value for Pthe value of P specified in the EPICS)
}

}

[In BTL Specified Tests, Add Tests 9.22.1.1 – 9.22.1.3]

[Reason: Modified test to remove dependency on EPICS values]

9.22.1.1 Writing a Single Element of an Array

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is an array and a single array element is written.

Test Concept: The TD shall select an object in the IUT that contains a writable array property. This property is designated

P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writing array values it shall be configured with at least one writable property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = (any value N: 1  N  the size of the array)

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Array Index' = N(any value N: 1  N  the size of the array)
'Property Value' = (any valid value of the correct datatype subject to the restrictions specified

 in the EPICS as defined in 4.4.2 for this array, except the value X read

for this element in step 1)

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), P1 = (the value used in step 2), ARRAY INDEX = N

9.22.1.2 Writing a Commandable Property Without a Priority

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is commandable but a priority is not specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is commandable and has no internal algorithm writing to it at priority 16. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports commandable properties that have no internal algorithm writing at

priority 16, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), Priority_Array, ARRAY INDEX = 16

1. VERIFY (Object1), Priority_Array =(the value defined for this property in the EPICS), ARRAY INDEX = 16
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = Present_Value,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1)

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), Priority_Array = (the value used in step 2), ARRAY INDEX = 16

9.22.1.3 Writing a Non-Commandable Property with a Priority

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is not commandable but a priority is specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is not commandable and has no internal algorithm writing to it. If no suitable property can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports non-commandable properties that have no internal algorithm writing to them, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Priority' = (any valid priority)

'Property Value' = (any valid value defined for this property subject to the restrictions specified in the EPICS

as defined in 4.4.2, except the value X read in step 1)

3. RECEIVE BACnet-BACnet-SimpleACK-PDU

4. VERIFY (Object1), P1 = (the value used in step 2)

[In BTL Specified Tests, Modify Test 9.22.1.X1]

[Reason: Modified test to remove dependency on EPICS values]

9.22.1.X1 Writing an Array Size

Purpose: This test case verifies that the IUT can execute WriteProperty service requests to the array size of a writable, non-fixed size array property.

Test Concept: The TD shall select an object in the IUT that contains a writable array property of a non-fixed size. This property is designated P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writable non-fixed size array properties it shall be configured with at least one writable non-fixed size array property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = 0

1.
VERIFY (Object1), P1[0] = (the array size defined for this array property in the EPICS)
2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

‘Array Index’ = 0

'Property Value' =
(any valid array size defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,

except the value X read in step 1)

3.
RECEIVE Simple-ACK-PDU

4.
VERIFY (Object1), P1[0] = (the value used in step 2)

 [In BTL Specified Tests, Add Test 9.22.2.1 – 9.22.2.3]

[Reason: Modified test to remove dependency on EPICS values]

9.22.2.1 Writing Non-Array Properties with an Array Index

Purpose: To verify that the IUT can execute WriteProperty service requests when the property value is not an array but an array index is included in the service request.

Test Concept: The TD shall select an object in the IUT that contains a writable scalar property designated P1. An attempt will be made to write to this property using an array index. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

'Property Array Index' = (any positive integer)

3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN

RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = PROPERTY_IS_NOT_AN_ARRAY

ELSE

RECEIVE BACnet-Error PDU,

Error Class = SERVICES,

Error Code = INCONSISTENT_PARAMETERS

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
9.22.2.2 Writing Array Properties with an Array Index that is Out of Range

Purpose: To verify that the IUT can execute WriteProperty service requests when the requested property value is an array but the array index is out of range.

Test Concept: The TD shall select an object in the IUT that contains a writable array property designated P1. An attempt will be made to write to this property using an array index that is out of range. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

'Property Array Index' = (any positive integer that is larger that the supported size if the array)

3. RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_ARRAY_INDEX

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
[Test 9.22.2.3 was also modified in Add-BTL Test Package 9.0-a. Those changes are not reflected here]

9.22.2.3 Writing with a Property Value Having the Wrong Datatype
Purpose: To verify that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be made to write to this property using an invalid datatype. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value with an invalid datatype)

3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN

RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE

ELSE

RECEIVE (BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason = INVALID_TAG)

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
[In BTL Specified Tests, Modify Test 9.22.2.4]
[Reason: Modified test to remove dependency on EPICS values]
9.22.2.4 Writing with a Property Value that is Out of Range

Purpose: To verify that the IUT can execute WriteProperty service requests when an attempt is made to write a value that is outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range.

Test Steps:

1. READ X = (Object1), P1

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS),

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
(Object1, any object with writable properties),

'Property Identifier' =
(P1, any property with a restricted range of values),

'Property Value' =
(any value that is outside the supported range)
[Step 3 as it appears in BTL Specified Tests 9.0 and to be removed.]
3.
IF (Protocol_Revision < 4)

RECEIVE

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
VALUE_OUT_OF_RANGE) |

(BACnet-Reject-PDU,

Reject Reason =
PARAMETER_OUT_OF_RANGE),

ELSE

RECEIVE

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
VALUE_OUT_OF_RANGE) |

[Step 3 as it should appear in BTL Specified Tests 12.0]

3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN

RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE

ELSE

RECEIVE (BACnet-Error-PDU,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE) |

(BACnet-Reject-PDU,

Reject Reason = PARAMETER_OUT_OF_RANGE)
4.
VERIFY (Object1), P1 =
X(the value defined for this property in the EPICS)
Notes to tester: The value used in step 2 shall be of the correct datatype. For bit string types, the bit count shall be correct, for Date and Time values, the value shall be within the range defined by the standard for the datatype, for constructed values, the constructed value shall match the structure defined by the ASN.1 and all field values shall be within the ranges defined by the standard for those field values.

If the IUT does not contain any properties that have restricted ranges, this test shall be skipped.
[In BTL Specified Tests, Add Test 9.23.1.1 – 9.23.1.4]

[Reason: Modified test to remove dependency on EPICS values]

9.23.1.1 Writing a Single Property to a Single Object

Purpose: To verify the ability to write a single property to a single object.

Test Concept: This test case attempts to write to a single scalar property, P1, that is not commandable. If no such writable property exists the test can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1)

3. RECEIVE BACnet-Simple-ACK-PDU

4. VERIFY (Object1), P1 = (the value specified in step 2)

9.23.1.2 Writing Multiple properties to a Single Object

Purpose: To verify the ability to write multiple properties to a single object.

Test Concept: This test case attempts to write to multiple scalar properties, P1 and P2, that are not commandable. If two such writable properties don't exist the test can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any object that has two writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured, if possible, with writable array or commandable properties and the test steps modified to account for this variation. If no object type is supported that has two or more writable properties this test may be omitted. The IUT must support either the configuration required for this test or a configuration required for test 9.23.1.3

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)
3. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)

4. RECEIVE BACnet-Simple-ACK-PDU

5. VERIFY (Object1), P1 = (the value specified for P1 in step 23)

6. VERIFY (Object1), P2 = (the value specified for P2 in step 23)

9.23.1.3 Writing a Single Property to Multiple Objects

Purpose: To verify the ability to write a single property from multiple objects.

Test Concept: This test case attempts to write to single scalar properties, P1 and P2, that reside in different objects but are not commandable. If two such writable properties don't exist the test can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that the commandable property's value will change.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object2), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object2), P2 = (the value specified for this property in the EPICS)
3. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Object Identifier' = Object2,

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)

4. RECEIVE BACnet-Simple-ACK-PDU

5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)

6. VERIFY (Object2), P2 = (the value specified for P2 in step 3)

9.23.1.4 Writing Multiple Properties to Multiple Objects

Purpose: To verify the ability to write multiple properties to multiple objects.

Test Concept: This test case attempts to write properties, P1 and P2, that reside in Object1, and properties P3 and P4 that

reside in Object2. P1, P2, P3 and P4 are not commandable properties. If four such writable properties do not exist the test

can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that

the commandable property's value will change.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

3. READ Z = (Object2), P3

4. READ A = (Object2), P4

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)

3. VERIFY (Object2), P3 = (the value specified for this property in the EPICS)

4. VERIFY (Object2), P4 = (the value specified for this property in the EPICS)
5. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2),

'Object Identifier' = Object2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Z except for the one read in step 3),

'Object Identifier' = Object2,

'Property Identifier' = P4,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value A except for the one read in step 4)

6. RECEIVE BACnet-BACnet-SimpleACK-PDU

7. VERIFY (Object1), P1 = (the value specified for P1 in step 5)

8. VERIFY (Object1), P2 = (the value specified for P2 in step 5)

9. VERIFY (Object2), P3 = (the value specified for P3 in step 5)

10. VERIFY (Object2), P4 = (the value specified for P4 in step 5)
[In BTL Specified Tests, Modify Test 9.23.1.X2]
 [Reason: Modified test to remove dependency on EPICS values]

9.23.1.X2 Writing to Properties Based on Data Type

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests to each writable base data type supported by the IUT.

Test Concept: For the specified base data type, the TD shall select an object in the IUT that contains a writable property of that data type. This property is designated P1. If no suitable object can be found, then this test shall be omitted. Repeat the test for all supported writable data types.

Configuration Requirements: For each writable data type that the IUT supports it shall be configured with at least one writable property of the data type that can be used for this test. If the IUT cannot be configured in such a manner, then multiple versions of the IUT, or multiple versions of the IUTs configuration, shall be provided so as to provide a property of each writable data type.

Test Steps:
[The following step 1 from the BTL Specified Tests 9.0 should be deleted]
1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)
[The following is the new step 1 that should be added to the BTL Specified Tests 12.0]

1. READ X = (Object1), P1
2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,

except the value X read in step 1)

3.
RECEIVE Simple-ACK-PDU

4.
VERIFY (Object1), P1 =
(the value used in step 2)

[In BTL Specified Tests, Add Test 9.23.2.1 – 9.23.2.6]

[Reason: Modified test to remove dependency on EPICS values]

9.23.2.1 Writing Multiple Properties with a Property Access Error

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write

Access Specifications' contains a specification for an unsupported property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable. The second property is not supported for this object. The objective is to verify that an appropriate error response is returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation. In the test description Object1 will be used to designate the object, P1 the writable property, and P2 the unsupported property used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = UNKNOWN_PROPERTY,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P2

4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

9.23.2.2 Writing Multiple Properties with an Object Access Error

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write

Access Specifications' contains a specification for an unsupported object.

Test Concept: An attempt is made to write to a single property in two different objects. The first object is supported and the property is writable. The second object is not supported. The objective is to verify that an appropriate error response is returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation. In the test description Object1 and P1 will be used to designate the writable object and property used for this test. The designation BadObject will be used to indicate an object that is not supported.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Object Identifier' = BadObject,

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = OBJECT,

‘Error Code’ = UNKNOWN_OBJECT,

‘Object Identifier’ = BadObject,

‘Property Identifier’ = P2

4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

9.23.2.3 Writing Multiple Properties with a Write Access Error

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write

Access Specifications' contains a specification for a read only property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable.

The second property is supported but read only. The objective is to verify that an appropriate error response is returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation. In the test description Object1 will be used to designate the object, P1 the writable property, and P2 the read only property used for this test.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)
3. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 1)

4. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = WRITE_ACCESS_DENIED,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P2

5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)

6. VERIFY (Object1), P2 = Y(the value specified for this property in the EPICS)
9.23.2.4 Writing Non-Array Properties with an Array Index

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the property value is not an array but an array index is included in the service request. This test shall only be performed if Protocol_Revision is present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable scalar property designated P1. An attempt will be made to write to this property using an array index. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

`Property Array Index' = (any positive integer)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = PROPERTY_IS_NOT_AN_ARRAY,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
9.23.2.5 Writing Array Properties with an Array Index that is Out of Range

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the requested property value is an array but the array index is out of range. This test shall only be performed if Protocol_Revision is present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable array property designated P1. An attempt will be made to write to this property using an array index that is out of range. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

`Property Array Index' = (any positive integer that is larger that the supported size of the array)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = INVALID_ARRAY_INDEX,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
9.23.2.6 Writing with a Property Value Having the Wrong Datatype

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that has an invalid datatype. This test shall only be performed if Protocol_Revision is present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable property designated P1.

An attempt will be made to write to this property using an invalid datatype. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value with an invalid datatype)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = INVALID_DATATYPE,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
[In BTL Specified Tests, Modify Test 9.23.2.7]
 [Reason: Modified test to remove dependency on EPICS values]

9.23.2.7 Writing with a Property Value that is Out of Range

Purpose: To verify that the IUT can execute WritePropertyMultiple service requests when an attempt is made to write a value that is outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range.

Test Steps:

1. READ X = (Object1), P1

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS),

2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
(Object1, any object with writable properties),

'Property Identifier' =
(P1, any property with a restricted range of values),

'Property Value' =
(any value that is outside the supported range)

3.
IF (Protocol_Revision < 4)

RECEIVE

(WritePropertyMultiple-Error,

'Error Class' =

PROPERTY,

'Error Code' =

VALUE_OUT_OF_RANGE,

'Object Identifier' =
Object1,

'Property Identifier' =
P1) |

(BACnet-Reject-PDU,

'Reject Reason' =
PARAMETER_OUT_OF_RANGE)

ELSE

RECEIVE

WritePropertyMultiple-Error,

'Error Class' =

PROPERTY,

'Error Code' =

VALUE_OUT_OF_RANGE,

'Object Identifier' =
Object1,

'Property Identifier' =
P1
4. VERIFY (OBJECT1), P1 = (the value defined for this property in the EPICS)
 [In BTL Specified Tests, Modify Test 9.24.1.1]
 [Reason: Modified test to remove dependency on EPICS values]

9.24.1.1 Indefinite Time Duration Restored by DeviceCommunicationControl

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when indefinite time duration is specified and communication is restored using the DeviceCommunicationControl service.

Test Steps:

1. READ Y = (Device, X), Object_Name
2.
TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' =
DISABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

3.
RECEIVE BACnet-Simple-ACK-PDU

4.
WAIT Internal Processing Fail Time

5.
WHILE (an arbitrary time > Internal Processing Fail Time selected by the tester has not expired) DO {

TRANSMIT ReadProperty-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
(any required non-array property of the Device object)

TRANSMIT

DESTINATION = LOCAL BROADCAST,

Who-Is-Request

WAIT (1 second)

-- poll delay

}
6.
WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester)
6.
CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2)

7.
TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' =
ENABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

8.
RECEIVE BACnet-Simple-ACK-PDU

9.
VERIFY (Device, X), Object_Name = Y(any required non-array property) = (the value for this property specified in the EPICS)
[In BTL Specified Tests, Modify Test 9.24.1.2 – 9.24.1.3]
 [Reason: Modified test to remove dependency on EPICS values]

9.24.1.2 Indefinite Time Duration Restored by ReinitializeDevice

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when indefinite time duration is specified and communication is restored using the ReinitializeDevice service.

Dependencies: ReinitializeDevice Service Execution Tests, 9.27.

Test Steps:

1. READ Y = (Device, X), Object_Name
2.
TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' =
DISABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

3.
RECEIVE BACnet-Simple-ACK-PDU

4.
WAIT Internal Processing Fail Time
5.
WHILE (an arbitrary time > Internal Processing Fail Time selected by the tester has not expired) DO {

TRANSMIT ReadProperty-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
(any required non-array property of the Device object)

TRANSMIT

DESTINATION = LOCAL BROADCAST,

Who-Is-Request

WAIT (1 second)

-- poll delay

}

6.
WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester)
6.
CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2)

7.
TRANSMIT ReinitializeDevice-Request,

Reinitialized State of Device' =
WARMSTART,

'Password' =

(any appropriate password as described in the Configuration Requirements)

8.
RECEIVE BACnet-Simple-ACK-PDU

9.
CHECK (Did the IUT perform a WARMSTART reboot?)

10.
VERIFY (Device, X), Object_Name = Y

(any required non-array property) = (the value for this property specified in the EPICS)
9.24.1.3 Finite Time Duration

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when finite time duration is specified.

Test Steps:

1. READ Y = (Device, X), Object_Name
2.
TRANSMIT DeviceCommunicationControl-Request,

'Time Duration' =
(a value T > 1, in minutes, selected by the tester),

'Enable/Disable' =
DISABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

3.
RECEIVE BACnet-Simple-ACK-PDU

4.
WAIT Internal Processing Fail Time
5.
WHILE (Time Duration T since step 1 has not expired) DO {

TRANSMIT ReadProperty-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
(any required non-array property of the Device object)

TRANSMIT

DESTINATION = LOCAL BROADCAST,

Who-Is-Request

WAIT (1 second)

-- poll delay

}

6.
WAIT(T)
6.
CHECK (Verify that the IUT did not transmit any messages between the acknowledgment

in step 2 and expiration of timer T)

7.
VERIFY (Device, X), Object_Name = Y

(any required non-array property) = (the value for this property specified in the EPICS)
[In BTL Specified Tests, Add Test 9.24.1.5]

[Reason: Modified test to remove dependency on EPICS values]

9.24.1.5 Finite Time Duration Restored by ReinitializeDevice

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when a finite time duration is specified and communication is restored using the ReinitializeDevice service.

Test Steps:

1. READ Y = (Device, X), Object_Name
2. TRANSMIT DeviceCommunicationControl-Request,

'Time Duration' = (a value T > 1, in minutes, selected by the tester)

'Enable/Disable' = DISABLE,

'Password' = (any appropriate password as described in the Configuration Requirements)

3. RECEIVE BACnet-SimpleACK-PDU

4. WAIT Internal Processing Fail Time
5. TRANSMIT ReadProperty-Request,

'Object Identifier' = (Device, X),

'Property Identifier' = (any required non-array property of the Device object)

6. WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester, and < T as specified in the

DeviceCommunicationControl-Request)

7. CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2.)

8. TRANSMIT ReinitializeDevice-Request,

'Reinitialize State of Device' = WARMSTART,

'Password' = (any appropriate password as described in the Configuration Requirements)

9. RECEIVE BACnet-Simple-ACK-PDU

10. CHECK (Did the IUT perform a WARMSTART reboot?)

11. VERIFY (Device, X), Object_Name = Y(any required non-array property) = (the value for this property as described in the EPICS)
[In BTL Specified Tests, Add Test 9.24.2.2]

[Reason: Modified test to remove dependency on EPICS values]

9.24.2.2 Missing Password

Purpose: To verify the correct execution of DeviceCommunicationControl service procedure when a password is required but not provided. If the IUT does not provide password protection this test case shall be omitted.

Test Steps:

1. TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' = DISABLE,

2. (RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,

Error Code = PASSWORD_FAILURE) |

(RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,

Error Code = MISSING_REQUIRED_PARAMETER)

3. VERIFY (any valid property) = (any valid value)(Device, X), (any required non-array property) = (the value for this property specified in the EPICS)
[In BTL Specified Tests, Add Test 9.32.1.1 - 9.32.1.5]

[Reason: Modified test to remove dependency on EPICS values]

9.32.1.1 Object ID Version with No Device Range

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object identifier form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 = (Object1), Object_Name
2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),
'Object Name' = V1(the object name specified in the EPICS for this object)
9.32.1.2 Object Name Version with no Device Range

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object name form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Object Name' = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
'Object Name' = V1(the object name specified in step 1)
9.32.1.3 Object ID Version with IUT Inside of the Device Range

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object identifier form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0  L < the Device object instance number of the IUT),

'Device Instance High Limit' = (any value H,: H > the Device object instance number of the IUT),

'Object Identifier' = Object1(any object identifier specified in the EPICS),
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),
'Object Name' = V1(the object name specified in the EPICS for this object)
9.32.1.4 Object ID Version with IUT Outside of the Device Range

Purpose: To verify that the IUT ignores a local broadcast Who-Has service request that utilizes the object identifier form and specifies a device range restriction that does not include the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value > 0: the Device object instance number does not fall

in the range between Device Instance Low Limit and Device Instance

High Limit),

'Device Instance High Limit' = (any value > Device Instance Low Limit: the Device object

instance number does not fall in the range between Device Instance Low

Limit and Device Instance High Limit),

'Object Identifier' = Object1(any object identifier specified in the EPICS)
2. WAIT Internal Processing Fail Time

3. CHECK (verify that the IUT does not respond)

9.32.1.5 Object Name Version with IUT Inside of the Device Range

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object name form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0 L < the Device object instance number of the IUT),

'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),

'Object Name = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
'Object Name' = V1(the object name specified in step 1)
[In BTL Specified Tests, Add Test 9.32.1.7 - 9.32.1.11]

[Reason: Modified test to remove dependency on EPICS values]

9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0  L < the Device object instance number of the IUT),

'Device Instance High Limit' = (The Device object instance number of the IUT),

'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),
'Object Name' = V1(the object name specified in the EPICS for this object)
9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (The Device object instance number of the IUT),

'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),

'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),
'Object Name' = V1(the object name specified in the EPICS for this object)
9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service requests that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0  L < the Device object instance number of the IUT),

'Device Instance High Limit' = (The Device object instance number of the IUT),

'Object Name = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
'Object Name' = V1(the object name specified in step 1)
9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service requests that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (The Device object instance number of the IUT),

'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),

'Object Name = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),
'Object Name' = V1(the object name specified in the EPICS for this object)
9.32.1.11 Object Name Version, Directed to a Specific MAC Address

Purpose: To verify that the IUT responds with a broadcast I-Have service request even if the Who-Has service requests was not transmitted with a broadcast address.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT Who-Has-Request,

'Object Name' = V1(any object name specified in the EPICS),
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),
'Object Name' = V1(the object name specified in step 1)
[In BTL Specified Tests, Add Test 9.32.2.1 - 9.32.2.2]

[Reason: Modified test to remove dependency on EPICS values]

9.32.2.1 Object ID Version, Global Broadcast from a Remote Network

Purpose: To verify the ability of the IUT to recognize the origin of a globally broadcast Who-Has service request and to respond such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DESTINATION = LOCAL BROADCAST,

SA = TD,

DNET = GLOBAL BROADCAST,

SNET = (any remote network number),

SADR = (any MAC address valid for the specified network),

Who-Has-Request,

'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network specified in step 1),

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),
'Object Name' = V1(the object name specified in the EPICS for this object)
9.32.2.2 Object ID Version, Remote Broadcast

Purpose: To verify the ability of the IUT to recognize the origin of a remotely broadcast Who-Has service request and to respond such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.
Test Steps:

1. READ V1 =(Object1), Object_Name
2. TRANSMIT

DESTINATION = LOCAL BROADCAST,

SA = TD,

SNET = (any remote network number),

SADR = (any MAC address valid for the specified network),

Who-Has-Request,

'Object Identifier' = Object1(any object identifier specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network specified in step 1),

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),
'Object Name' = V1(the object name specified in the EPICS for this object)
[In BTL Specified Tests, Modify Test 10.1]
 [Reason: Modified test to remove dependency on EPICS values]

10.1 Processing Application Layer Messages Originating from Remote Networks

Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 6.5.4.

Purpose: To verify that the IUT can respond to requests that originated from a remote network.

Test Concept: The TD transmits a ReadProperty-Request message that contains network layer information indicating that it originated from a remote network. The response from the IUT shall include correct DNET and DADR information so that the message can reach the original requester. The MAC layer destination address in the response can be either a local broadcast, indicating that the IUT does not know the address of the router, or the MAC address of the appropriate routerTD.

Test Steps:

1.
TRANSMIT

DESTINATION =
IUT,

SOURCE =
TD,

SNET =

(any network number that is not the local network),

SADR =
(any valid MAC address consistent with the source network),

ReadProperty-Request,

'Object Identifier' =
(any supported object),

'Property Identifier' =
(any required property of the specified object)

2.
RECEIVE

DESTINATION = LOCAL BROADCAST | (an appropriate router address)TD,

SOURCE =
IUT,

DNET =
(the SNET specified in step 1),

DADR =
(the SADR specified in step 1),

Hop Count =
255,

ReadProperty-ACK,

'Object Identifier' =
(the object specified in step 1),

'Property Identifier' =
(the property specified in step 1),

'Property Value' =
(any valid value for this propertythe value of the specified property as defined in the EPICS)

33

