Addendum c to BTL Test Package 9.0

[This foreword and the “Overviews” on the following pages are not part of this Test Package. They are merely informative and do not contain requirements necessary for conformance to the Test Package.]

FOREWORD

The purpose of this addendum is to present current changes being made to the BTL Test Package. These modifications are the result of change proposals made pursuant to the continuous maintenance procedures and of deliberations within the BTL-WG Committee. The changes are summarized below.

BTL-TP9.0c-1. Add Support for UTF-8, pg 2. [wID0009]
BTL-TP9.0c-2. Clarify the use of Reject PDUs, pg 3. [wID0013]
BTL-TP9.0c-3. Clarify Results of Using Special Property Identifiers, pg 4. [wID0044]
BTL-TP9.0c-4. Add Data Not for Us Test, pg 6. [wID0050]
BTL-TP9.0c-5: Define COV Notification Service Error Returns, pg 7. [wID0005]
BTL-TP9.0c-6: Adds Odd and Even Day Support and Clarifies when wildcards are allowed in Dates and Times, pg 13. [wID0008]
BTL-TP9.0c-7: Add more primitive value objects, pg 20. [wID0024]
BTL-TP9.0c-8: Clarify Trend Log Time Stamp, pg 31. [wID0042]
BTL-TP9.0c-9: Add error code UNSUPPORTED_OBJECT_TYPE for CreateObject service, pg 32. [wID0014]
BTL-TP9.0c-10: Add new Primitive Value Objects to View BIBBs, pg 34. [wID0118]

BTL-TP9.0c-11: Change to update External Document References, pg 37. [wID0213]
BTL-TP9.0c-12: Add support for long Backup and Restore times, pg 39. [wID0011]
BTL-TP9.0c-13: ReadRange Error Situations, pg 40. [wID0018]
BTL-TP9.0c-14: Add Event_Message_Texts, pg 45. [wID0048]
In the following document, language to be added to existing clauses within the BTL Test Package 9.0 is indicated through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain type is used throughout.

In addition, changes to BTL Specified Tests might also contain a yellow highlight to indicate the changes made by this addendum.

When this addendum is applied, all highlighting will be removed. Change markings on tests will remain to indicate the difference between the new test and an existing 135.1 test. If a test being modified has never existed in 135.1, the applied result should not contain any change markings. When this is the case, square brackets will be used to describe the changes required for this test.

Each addendum can stand independently unless specifically noted via dependency within the addendum. If multiple addenda change the same test or section, each future released addendum that changes the same test or section will note in square brackets whether or not those changes are reflected.

This addendum contains all changes required to move the BTL Test Package up from Protocol_Revision 9 to Protocol_Revision 12.
This addendum does not include any changes that may have been included in previous addenda documents.

BTL-TP9.0c-1 Add Support for UTF-8

Overview

This document applies changes to the test package for:

· Addendum 135-2008k.1 Add Support for UTF-8.

Changes:

[In BTL Specified Tests, modify section 7.2.1.3]
7.2.1.3
Octetstrings and Characterstrings

Properties with an octetstring or characterstring datatype shall be tested with a string of length zerothe minimum supported length, a string with the maximum supported length, and a string with some length between the two. The vendor shall provide the actual value of the maximum length string in the EPICS. See 4.4.2.

When testing character string properties in a device that supports UTF-8 (Protocol_Revision >= 10), at least one of the data values shall contain multi-byte characters.
BTL-TP9.0c-2 Clarify the use of Reject PDUs

Overview:

This document applies changes to the test package for:

· Addendum 135-2008u.1 Clarify the use of RejectPDUs.

Changes:

[In BTL Test Plan, Add into 4.8.1 WPM-B Base Requirements]

	BTL - 9.23.2.X1 WritePropertyMultiple Reject Test

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed if the IUT claims Protocol_Revision 10 or greater.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, add new test]

9.23.2.X1 WritePropertyMultiple Reject Test

Reason for Change: Addendum 135-2008u section 1.

Purpose: This test case verifies that the IUT does not send a Reject-PDU after applying part of a WritePropertyMultiple.

Test Concept: Two writable properties, P1 and P2 are written to the IUT but the portion of the WritePropertyMultiple specifying P2 is invalid. If the IUT returns a Reject, then the value of the first property is checked to ensure it has not changed.

Test Steps:

1.
READ OldValue = O1, P1

2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(NewValue: any value other than OldValue that would be accepted by

the IUT for P1)

'Object Identifier' =
O2,

'Property Identifier' =
P2

3.
RECEIVEWritePropertyMultiple-Error,

'Error Class' =
SERVICES,

'Error Code' =
INVALID_TAG

'Object Identifier' = O2

'Property Identifier' = P2) |

 (RECEIVE BACnet-Reject-PDU,

'Reject Reason' =
INVALID_TAG | MISSING_REQUIRED_PARAMETER)

4.
IF (an Error-PDU was received in step 3) THEN

VERIFY (O1), P1 = NewValue

ELSE -- a Reject-PDU was received

VERIFY (O1), P1 = OldValue

 BTL-TP9.0c-3. Clarify Results of Using Special Property Identifiers

Overview:

This document applies changes to the test package for:

· Addendum 135-2008x.4 Clarify Results of Using Special Property Identifiers.

Changes:

[BTL Test Plan, modify the following referencesin 4.4.1 Data Sharing - ReadPropertyMultiple-B Base Requirements]
135.1-2009 - 9.20.1.7 to BTL - 9.20.1.7

135.1-2009 - 9.20.1.8 to BTL - 9.20.1.8

135.1-2009 - 9.20.1.9 to BTL - 9.20.1.9

[BTL Specified Tests, add tests 9.20.1.7, 9.20.1.8, 9.20.1.9]
[The tests below were also modified by Add-BTL Test Package 9.0-b-v2, those changes are not reflected here]
9.20.1.7 Reading ALL Properties

Reason for Change: Addendum 135-2008x.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier ALL. One instance of each object-type supported is tested.

Test Steps:

1.
REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
ObjectX,

'Property Identifier' =
ALL

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1ObjectX,

REPEAT P = (each property supported by Object1ObjectX) DO {

'Property Identifier' =
P,

'Property Value' =
(the value of P specified in the EPICS)

}

}

Notes to Tester: Any proprietary properties that are supported for the object-type shall also be returned (see BACnet 15.7.3.1.2). If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
9.20.1.8 Reading OPTIONAL Properties

Reason for Change: Addendum 135-2008x.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier OPTIONAL. One instance of each object-type supported is tested. The property identifier OPTIONAL means that only those standard properties present in the object that have a conformance code "O" shall be returned.
Test Steps:

1.
REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
Object1ObjectX,

'Property Identifier' =
OPTIONAL

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1ObjectX,

REPEAT P = (each optional property supported by Object1ObjectX) DO {

'Property Identifier' =
P,

'Property Value' =
(the value of P specified in the EPICS)

}

}

Notes to Tester: If no optional properties are supported then an empty 'List of Results' shall be returned for the specified property. If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
9.20.1.9
Reading REQUIRED Properties

Reason for Change: Addendum 135-2008x.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier REQUIRED. One instance of each object-type supported is tested. The property identifier REQUIRED means that only those standard properties having a conformance code of "R" or "W" shall be returned.
Test Steps:

1.
REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =

Object1ObjectX,

'Property Identifier' =

REQUIRED

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =

Object1ObjectX,

REPEAT P = (each required property defined for Object1ObjectX) DO {

'Property Identifier' =
P,

'Property Value' =
(the value of P specified in the EPICS)

}

}

Notes to Tester: If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
BTL 9.0c-4 Add Data Not for Us Test

Overview:

This applies changes to the test package for:

· Addendum 135-2008z.3 Modify MS/TP State Machine to Ignore Data Not For Us.

Add a test that checks whether the complete message is properly skipped when it is not aimed at the IUT

Changes:

[In BTL Test Plan, add to Data link Layer - MS/TP Master Node and Data link Layer - MS/TP Slave Node]

	BTL - 2.2.X1 - Data Not For Us Test

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, add a new test]

2.2.X1 Data Not For Us Test

Purpose: Verify that the IUT properly skips the complete data portion of frames not intended for the IUT.

Test Concept: Send a BACnet Data Not Expecting Reply frame that contains the frame pre-amble octet sequence to an address other that the IUT. Follow it immediately with a ReadProperty request for the IUT’s device object to ensure that the IUT will correctly receive and process the ReadProperty request.

Test Steps:

1.
TRANSMIT

Frame Type = BACnet Data Not Expecting Reply

Destination Address = (any Unicast address other than IUT),

Length = 7,

Data = (55 FF 05 FF 00 01 F5)

2.
TRANSMIT ReadProperty-Request

‘Object Identifier’
= (device, 4194303),

‘Property Identifier’
= Object_Name

3.
RECEIVE ReadProperty-Response

‘Object Identifier’
= (device, IUT),

‘Property Identifier’
= Object_Name,

‘Value’

= (any valid value)

BTL-TP9.0c-5: Define COV Notification Service Error Returns
Overview:

This document applies changes to the test package for:

· Addendum 135-2008h.5 Define COV Notification Service Error Returns.

4 existing tests are modified and 3 new tests are added to provide negative testing for both A and B side COV.

Changes:

[In BTL Test Plan, modify DS-COV-A Base Requirements section]

4.9.1 Base Requirements

Base requirements must be met by any IUT claiming conformance to this BIBB. There are no base requirements tests for this section.

[In BTL Test Plan, add the following entries to DS-COV-A Base Requirements section]
	BTL - 9.2.2.1 - Change of Value Notification Arrives after Subscription has Expired

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.2.2.2 - Change of Value Notifications with Invalid Process Identifier

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.2.2.3 - Change of Value Notifications with Invalid Initiating Device Identifier

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.2.2.4 - Change of Value Notifications with Invalid Monitored Object Identifier

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add the following entries to DS-COV-B Base Requirements section]
	BTL - 9.2.10.X1 - The Monitored Object Does Not Exist

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.2.10.X2 - There Is No Space For A Subscription

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.2.10.X3 - The LifeTime Parameter is Out of Range

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, Add 9.2.2.1]

9.2.2.1 Change of Value Notification Arrives after Subscription has Expired

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has expired.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
WAIT (a value two times Lifetime)

4.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 21),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object X)

5.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)
[In BTL Specified Tests, Add 9.2.2.2]

9.2.2.2 Change of Value Notifications with Invalid Process Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that does not match any current subscriptions.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(a process identifier different from the one used in step 21),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object X)

4.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)
[In BTL Specified Tests, Add 9.2.2.3]

9.2.2.3
Change of Value Notifications with Invalid Initiating Device Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains an initiating device identifier that does not match any current subscriptions.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier different used in step 21),

'Initiating Device Identifier' =
(any valid Device object except TD),

'Monitored Object Identifier' =
X,

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object X)

4.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)
[In BTL Specified Tests, Add 9.2.2.4]

9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier that does not match any current subscriptions.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 21),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
(any object Y supporting COV notification except X),

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object Y)

4.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)
[In BTL Specified Tests, Modify 9.10.2.1]

9.10.2.1
The Monitored Object Does Not Support COV Notification

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored object does not support COV notifications.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object that exists in the IUT and does not support COV notifications),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

60
[The following step 2 displayed from BTL Specified Tests 9.0 should be deleted]
2.
IF (Protocol_Revision < 10) THEN

RECEIVE (BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
SERVICE_REQUEST_DENIED | OTHER |

COV_SUBSCRIPTION_FAILED) |

(BACnet-Error PDU,

Error Class =
PROPERTY,

Error Code =
NOT_COV_PROPERTY) |

(BACnet-Error PDU,

Error Class =

OBJECT,

Error Code =

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED)

ELSE

BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
[The following shows the new step 2 to be added to BTL Specified Tests 12.0]

2.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
ELSE

RECEIVE (BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
SERVICE_REQUEST_DENIED | OTHER)

| (BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED)
[In BTL Specified Tests, add 9.10.2.X1]

9.10.2.X1
The Monitored Object Does Not Exist

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored object does not exist.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object of a type that supports COV and an instance which does not exist

in the IUT),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

60

2.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT

ELSE

RECEIVE BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
SERVICE_REQUEST_DENIED | OTHER

| (BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT)

Note to tester: If the IUT is able to support objects other than those that currently exist, and none of those objects that currently do not exist would support COV notification if they did, then the IUT may return an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED instead of UNKNOWN_OBJECT.

[In BTL Specified Tests, add 9.10.2.X2]

9.10.2.X2
There Is No Space For A Subscription

Reason for Change: 135-2008h.5.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when there is no space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out of resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol_Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept is less than 10000, then this test may be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1, or until the IUT returns an

Error-PDU) {

1.

TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
PID,

'Monitored Object Identifier' =

(any object of that supports COV),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

6000

2.

RECEIVE BACnet-SimpleACK-PDU |

(BACnet-Error-PDU,

Error Class =
RESOURCES,

Error Code =
NO_SPACE_TO_ADD_LIST_ELEMENT)

3.

READ ACS = (Active_COV_Subscriptions)

4.

IF (a BACnet-Simple-Ack was received in step 2) THEN

CHECK (that the subscription is in ACS)

ELSE

CHECK (that the subscription is not in ACS)

}

[In BTL Specified Tests, add 9.10.2.X3]

9.10.2.X3
The Lifetime Parameter is Out of Range

Reason for Change: 135-2008h.5.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the Lifetime parameter is out of range.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object in the IUT that supports COV),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

(a value larger than that supported by the IUT)

2.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
VALUE_OUT_OF_RANGE

ELSE

RECEIVE BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
VALUE_OUT_OF_RANGE | SERVICE_REQUEST_DENIED | OTHER

BTL-TP9.0c-6: Adds Odd and Even Day Support and Clarifies when wildcards are allowed in Dates and Times
Overview:

This document applies changes to the test package for:

· Addendum 135-2008h.8 adds odd and even day support.

· Addendum 135-2008ac-1 clarifies when wildcards are allowed in dates and times.

The properties that are allowed to support Date and/or Time patterns are:

CAL.Date_List
DatePatternValue.PresentValue, .RelinquishDefault
TimePatternValue.PresentValue, .RelinquishDefault
DateTimePatternValue.PresentValue, .RelinquishDefault
SCH.ExceptionSchedule (date patterns only)

All other properties shall not contain special date field values.

This approach adds to each object type which contains a property which contains a time and/or date a specific test that checks that the property correctly accepts or rejects the special character.

The downside to this approach is that whenever a new property is added to the standard that contains a time or date, we must remember to update the list.

In CAL & SCH TP Base Requirements, add in this test for the above noted properties.

[In BTL Test Plan, add into Calendar Base Requirements section]

	BTL - 7.2.X1 - Date Pattern Properties Test

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests..

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Date_List property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add into Schedule Base Requirements section]

	BTL - 7.2.X1 - Date Pattern Properties Test

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests..

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Exception_Schedule property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Checklist, modify Time Pattern, Date Pattern and DateTime Pattern sections]

	Time Pattern Value Object

	
	R
	Base Requirements

	
	O
	Contains a writable Present_Value property, or can be placed Out_Of_Service.

	
	O
	Contains a writable Relinquish_Default.

	

	Date Pattern Value Object

	
	R
	Base Requirements

	
	O
	Contains a writable Present_Value property, or can be placed Out_Of_Service.

	
	O
	Contains a writable Relinquish_Default.

	

	DateTime Pattern Value Object

	
	R
	Base Requirements

	
	O
	Contains a writable Present_Value property, or can be placed Out_Of_Service.

	
	O
	Contains a writable Relinquish_Default.

	

[In BTL Test Plan, add new sections for Date Pattern]

X.Y.Z1 Contains a writable Present_Value property, or can be placed Out_Of_Service.

The IUT contains, or can be made to contain, a Date Pattern Value Object that contains a writable Present_Value property, or can have its Out_Of_Service property set to TRUE.

	BTL - 7.2.X1 - Date Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	If Present_Value is not writable, then Out_Of_Service shall be set to TRUE.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Present_Value property.

	
	Testing Hints
	

	
	Notes & Results
	

X.Y.Z2 Contains a writable Relinquish_Default.

The IUT contains, or can be made to contain, a Date Pattern Value Object that contains a writable Relinquish_Default property.

	BTL - 7.2.X1 - Date Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Relinquish_Default property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add new sections for Time Pattern]

X.Y.Z1 Contains a writable Present_Value property, or can be placed Out_Of_Service.

The IUT contains, or can be made to contain, a Time Pattern Value Object that contains a writable Present_Value property, or can have its Out_Of_Service property set to TRUE.

	BTL - 7.2.X2 - Time Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	If Present_Value is not writable, then Out_Of_Service shall be set to TRUE.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Present_Value property.

	
	Testing Hints
	

	
	Notes & Results
	

X.Y.Z2 Contains a writable Relinquish_Default.

The IUT contains, or can be made to contain, a Time Pattern Value Object that contains a writable Relinquish_Default property.

	BTL - 7.2.X2 - Time Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Relinquish_Default property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add new sections for DateTime Pattern]

X.Y.Z1 Contains a writable Present_Value property, or can be placed Out_Of_Service.

The IUT contains, or can be made to contain, a DateTime Pattern Value Object that contains a writable Present_Value property, or can have its Out_Of_Service property set to TRUE.

	BTL - 7.2.X3 - DateTime Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	If Present_Value is not writable, then Out_Of_Service shall be set to TRUE.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Present_Value property.

	
	Testing Hints
	

	
	Notes & Results
	

X.Y.Z2 Contains a writable Relinquish_Default.

The IUT contains, or can be made to contain, a DateTime Pattern Value Object that contains a writable Relinquish_Default property.

	BTL - 7.2.X3 - DateTime Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the Relinquish_Default property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, add new tests, 7.2.X1]
7.2.X1 Date Pattern Properties Test
Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. The value, written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT. The list of Specials comes from the Chapter 21 Application Types section on Date.
Test Steps:

1.
IF (Protocol_Revision is not present or Protocol_Revision < 4)

Specials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified)

ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)

Specials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month)

ELSE

Specials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month,

even days, odd days)

2.
REPEAT SV = (each value in Specials) DO {

WRITE P1 = (D1 updated with the value SV)

VERIFY P1 = (D1 updated with the value SV)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY portions of step 1.

[In BTL Specified Tests, add new tests, 7.2.X2]

7.2.X2 Time Pattern Properties Test

Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being test, P1, is written with each of the special date field values to ensure that the property accepts them. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT.

Test Steps:

1.
REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {

WRITE P1 = (T1 updated with the value SV)

VERIFY P1 = (T1 updated with the value SV)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY portions of step 1.

[In BTL Specified Tests, add new tests, 7.2.X3]

7.2.X3 DateTime Pattern Properties Test

Purpose: To verify that the property being tested accepts special date and time field values.

Test Concept: The property being tested, P1, is written with each of the special date and time field values to ensure that the property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value, written to the property is the date D1 and time T1 with one of its fields replaced with one of the date or time special values. If the property is a complex datatype which contains the BACnetDateTime the other fields in the value shall be set within the range accepted by the IUT. The list of DateSpecials comes from the Chapter 21 Application Types section on Date and the list of TimeSpecials comes from the Chapter 21 Application Types section on Time.
Test Steps:

1.
IF (Protocol_Revision is not present or Protocol_Revision < 4)

DateSpecials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified)

TimeSpecials = ()

ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)

DateSpecials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month)

ELSE

DateSpecials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month,

even days, odd days)

2.
TimeSpecials = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)

3.
REPEAT SV = (each value in DateSpecials +TimeSpecials) DO {

WRITE P1 = (D1+T1 updated with the value SV)

VERIFY P1 = (D1+T1 updated with the value SV)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY portions of step 1.

[In BTL Checklist, add for each property listed below:

Device.Local_Date

Date Value.Present_Value

Date Value.Relinquish_Default

]

	
	O
	Contains a writable <property name> property.

 [In BTL Checklist, add for each property listed below:

Device.Local_Time

Notification_Class.Recipient_List.From_Time

Notification_Class.Recipient_List.To_Time

Time Value.Present_Value

Time Value.Relinquish_Default

]

	
	O
	Contains a writable <property name> property.

[In BTL Checklist, add for each property listed below:

Trend Log.Start_Time

Trend Log.Stop_Time

Event Log.Start_Time

Event Log.Stop_Time

Trend Log Multiple.Start_Time

Trend Log Multiple.Stop_Time

Date Time Value.Present_Value

Date Time Value. Relinquish_Default

]

	
	O
	Contains a writable <property name> property.

 [In BTL Test Plan, add for each property listed below:

Device.Local_Date

Date Value.Present_Value

Date Value.Relinquish_Default

]

X.Y.Z Contains a writable <property name>.

The IUT contains, or can be made to contain, a <type> object that contains a writable <property name> property.

	BTL - 7.2.X3 - Date Non-Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the <property name> property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add for each property listed below:

Device.Local_Time

Notification_Class.Recipient_List.From_Time

Notification_Class.Recipient_List.To_Time

Time Value.Present_Value

Time Value.Relinquish_Default

]

X.Y.Z Contains a writable <property name>.

The IUT contains, or can be made to contain, a <type> object that contains a writable <property name> property.

	BTL - 7.2.X4 - Time Non-Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the <property name> property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add for each property listed below:

Trend Log.Start_Time

Trend Log.Stop_Time

Event Log.Start_Time

Event Log.Stop_Time

Trend Log Multiple.Start_Time

Trend Log Multiple.Stop_Time

Date Time Value.Present_Value

Date Time Value. Relinquish_Default

]

X.Y.Z Contains a writable <property name>.

The IUT contains, or can be made to contain, a <type> object that contains a writable <property name> property.

	BTL - 7.2.X4 - DateTime Non-Pattern Properties Test

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Apply to the <property name> property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, add new tests, 7.2.X4 and 7.2.X5]

7.2.X4 Date Non-Pattern Properties Test

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property does not accept them. A date is selected which is within the date range that the IUT will accept for the property. The value, V1, written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

1.
REPEAT SV = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month,

even days, odd days) DO {

TRANSMIT WriteProperty-Request

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(V1 updated with the special value SV)

RECEIVE BACnet-Error-PDU

‘Error Class’ =

PROPERTY,

‘Error Code’ =

VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X5 Time Non-Pattern Properties Test

Purpose: To verify that the property being tested does not accept special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property does not accept them. A time is selected which is within the time range that the IUT will accept for the property. The value, V1, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

1.
REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)

TRANSMIT WriteProperty-Request

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(V1 updated with the special value SV)

RECEIVE BACnet-Error-PDU

‘Error Class’ =

PROPERTY,

‘Error Code’ =

VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

BTL-TP9.0c-7: Add more primitive value objects
Overview:

This document applies changes to the test package for:

· Addendum 135-2008w-1 Add more primitive value objects

Changes:

[[[BASIC OBJECT FUNCTIONALITY]]]

[In BTL Checklist, in the Basic Object Functionality section, add sections for new primitive value object types]

	Bitstring Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	CharacterString Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	Date Pattern Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	Date Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	DateTime Pattern Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	DateTime Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	Integer Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	Large Analog Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	OctetString Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	Positive Integer Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	Time Pattern Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

	Time Value Object

	
	R
	Base Requirements

	
	S
	Supports writable Out_Of_Service properties

	
	O
	Supports command prioritization

	

 [In BTL Test Plan, add a new section for each new object type]

3.X1 <type> Object

3.X1.1 Base Requirements

Base requirements must be met by any IUT that can contain <type>Value objects. There are no base requirements tests for this section.

3.X1.2
Supports Writable Out_Of_Service Properties

The Out_Of_Service property in <type> Value objects contained in the IUT are writable.

	BTL - 7.3.1.1 - Out_Of_Service, Status_Flags, and Reliability Tests

	
	Test Method
	Manual

	
	Configuration
	The test shall be executed using an <type> Value object

	
	Test Conditionality
	If this property is writable, this test must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

3.X1.3
Supports Command Prioritization

The objects contain a priority array and support command prioritization.

	135.1-2009 - 7.3.1.2 - Relinquish Default Test

	
	Test Method
	Manual

	
	Configuration
	As per ASHRAE 135.1-2009.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 7.3.1.3 - Command Prioritization Test

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[Out_Of_Service, Status_Flags test]

No change necessary

[Command Prioritization]

[In BTL Specified Tests, modify BTL - 7.3.1.3 Command Prioritization Test]

Purpose: To verify that the command prioritization algorithm is properly implemented. This test applies to Analog Output, Analog Value, Binary Output, Binary Value, Multi-state Output, and Multi-state Value output and value objects that are commandable.

[[[COV FUNCTIONALITY]]]

[In BTL Checklist, add in COV-A options for each new primitive value object for which COV applies. This list is by datatype, not object type. Therefore pattern and non-pattern value objects are collapsed into one line.]

	
	C2
	Can subscribe for COV from CharacterString objects

	
	C2
	Can subscribe for COV from Date objects

	
	C2
	Can subscribe for COV from DateTime objects

	
	C2
	Can subscribe for COV from Integer objects

	
	C2
	Can subscribe for COV from Large Analog objects

	
	C2
	Can subscribe for COV from OctetString objects

	
	C2
	Can subscribe for COV from Positive Integer objects

	
	C2
	Can subscribe for COV from Time objects

[In BTL Test Plan, Add the new options for COV-A]

4.9.X1
Supports COV for <type> Objects

The IUT supports change of value notifications for at least one object of type <type> Value.

	 BTL - 9.2.1.1- Change of Value Notifications

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Test one instance of a <type> Value object.

	
	Testing Hints
	

	
	Notes & Results
	

	 BTL - 9.3.X1 - Change of Value Notifications

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Test one instance of a <type> Value object.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, Add new tests 9.2.1.1 and 9.3.X1 and 9.3.X2 from 135.1-2009j]

9.2.1.1 Change of Value Notifications from Analog, Binary, Multi-state, and Life Safety Objects

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Multi-state Input, Multi-state Output, Multistate Value, Life Safety Point, and Life Safety Zone objects. Since the ability to subscribe to COV notifications is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this clause shall be applied once for each object type.
Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from analog, binary and multi-state objectsobject types that provide the Present_Value and Status_Flags properties in COV notifications.

Test Steps:

REPEAT X = (one object of each type in the set {Analog Input, Analog Output, Analog Value, Binary Input, Binary

Output, Binary Value, Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, Life Safety Zone})

DO {
1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
TRUE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags

appropriate to object type X)

4.

RECEIVE BACnet-SimpleACK-PDU

5.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as

 displaying information on a workstation screen are carried out)

}
9.3.X1 Change of Value Notifications

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from objects that provide the Present_Value and Status_Flags properties in COV notifications.

Test Steps:

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
FALSE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags appropriate to object type X)

4.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying

information on a workstation screen are carried out)

9.3.X2 Change of Value Notification from Loop Objects

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from loop objects.

Test Steps:

1. RECEIVE SubscribeCOV,

'Subscriber Process Identifier' = (any valid process identifier),

'Monitored Object Identifier' = (any Loop object, X),

'Issue Confirmed Notifications ' = FALSE,

'Lifetime' = (a value greater than one minute)

2. TRANSMIT BACnet-SimpleACK-PDU

3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 2),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X,

'Time Remaining' = (the time remaining for the subscription),

'List of Values' = (Present_Value, Status_Flags, Setpoint, and

Controlled_Variable_Value appropriate to object X)

4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying information on a

workstation screen are carried out)
[In BTL Specified Tests, delete tests 9.2.1.X1, 9.2.1.X2, 9.2.1.X3, and 9.2.1.X4]

[In BTL Specified Tests, delete tests 9.3.X4, 9.3.X5, 9.3.X6, 9.3.X7 and 9.3.X9]

[In BTL Test Plan, update references to tests as table below describes]

	BTL-9.2.1.X1
	BTL-9.2.1.1

	BTL-9.2.1.X2
	BTL-9.2.1.1

	BTL-9.2.1.X3
	BTL-9.2.1.1

	BTL-9.2.1.X4
	BTL-9.2.1.1

	BTL-9.3.X4
	BTL-9.3.X1

	BTL-9.3.X5
	BTL-9.3.X1

	BTL-9.3.X6
	BTL-9.3.X1

	BTL-9.3.X7
	BTL-9.3.X2

	BTL-9.3.X9
	BTL.9.3.X1

[In BTL Checklist, add in COV-B options for each new primitive value object.]

	
	C1
	Supports COV for CharacterString Value objects

	
	C1
	Supports COV for Date Value objects

	
	C1
	Supports COV for Date Pattern Value objects

	
	C1
	Supports COV for DateTime Value objects

	
	C1
	Supports COV for DateTime Pattern Value objects

	
	C1
	Supports COV for Integer Value objects

	
	C1
	Supports COV for Large Analog Value objects

	
	C1
	Supports COV for Positive Integer Value objects

	
	C1
	Supports COV for Time Value objects

	
	C1
	Supports COV for Time Pattern Value objects

	
	C1
	Supports COV for OctetString Value objects

[In BTL Test Plan, in section COV-B, add Large Analog Value, Integer Value and Positive Integer Value object types]

4.10.X1
Supports COV for <type> Value Objects

The IUT supports change of value notifications for at least one object of type <type> Value.

	BTL - 8.2.1 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests. The selected object must be an <type> Value.

	
	Test Conditionality
	This may be skipped if 8.3.1 is executed against an <type> Value object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.2.2 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests. The selected object must be an <type> Value.

	
	Test Conditionality
	This may be skipped if 8.3.2 is executed against an <type> Value object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.3.1 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests. The selected object must be an <type> Value.

	
	Test Conditionality
	This may be skipped if 8.2.1 is executed against an <type> Value object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.3.2 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests. The selected object must be an <type> Value.

	
	Test Conditionality
	This may be skipped if 8.2.2 is executed against an <type> Value object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, in section COV-B, add CharacterString, Date Pattern, Date,DateTime Pattern, DateTime, OctetString, Time Pattern, Time Value objects add]

4.10.X2
Supports COV for <type> Value Objects

The IUT supports change of value notifications for at least one object of type <type> Value.

	BTL - 8.2.5 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests. The selected object must be a <type> Value.

	
	Test Conditionality
	This may be skipped if 8.3.5 is executed against a <type> Value object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.2.6 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests. The selected object must be a <type> Value.

	
	Test Conditionality
	This may be skipped if 8.3.6 is executed against a <type> Value object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.3.5 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

	
	Test Method
	Manual

	
	Configuration
	As pe BTL Specified Tests. The selected object must be a <type> Value.

	
	Test Conditionality
	This may be skipped if 8.2.5 is executed against a <type> Output object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.3.6 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests. The selected object must be a <type> Value.

	
	Test Conditionality
	This may be skipped if 8.2.6 is executed against a <type> Value object.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, change all references to test 8.2.* tests]

BTL - 8.2.1 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

BTL - 8.2.2 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property

BTL - 8.2.5 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

BTL - 8.2.6 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

BTL - 8.3.1 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

BTL - 8.3.2 - Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property
BTL - 8.3.5 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

BTL - 8.3.6 - Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

[In BTL Specified Tests, modify BTL - 8.2.1, 8.2.2, and 135.1 - 8.3.1, 8.3.3 all in the same manner as below]
8.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, and Large Analog Value Object Present_Value Property

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Present_Value property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value objects.

...

REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value) DO {

...

[In BTL Specified Tests, modify BTL - 8.2.5, 8.2.6, and 135.1 - 8.3.5, 8.3.6 all in the same manner as below]
8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, or Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or TimePattern Value Object Present_Value Property

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value objects.

...

REPEAT X = (one supported object of each type from the set Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value) DO {

...

[[[ALARMING FUNCTIONALITY]]]

[In BTL CheckList, in AE-N-A, add for each of DOUBLE_OUT_OF_RANGE, SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE, CHANGE_OF_CHARACTERSTRING]

	
	R
	Processes <algorithm> notifications

[In BTL Test Plan, in AE-N-A, add for each of: DOUBLE_OUT_OF_RANGE, SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE, CHANGE_OF_CHARACTERSTRING]

5.1.X
Processes <algorithm> Notifications

The IUT is capable of executing event notifications that convey a <algorithm> event transition.

	135.1-2009 - 9.4.1 - ConfirmedEventNotification Using the Time Form of the 'Timestamp' Parameter and Conveying a Text Message,

135.1-2009 - 9.4.2 - ConfirmedEventNotification Using the DateTime Form of the 'Timestamp' Parameter and no Text Message, or
135.1-2009 - 9.4.3 - ConfirmedEventNotification Using the Sequence Number Form of the 'Timestamp' Parameter and no Text Message

	
	Test Method
	Manual

	
	Configuration
	As per ASHRAE 135.1-2009.

	
	Test Conditionality
	At least one of the tests must be executed with the Event Type set to <algorithm>.

	
	Test Directives
	

	
	Testing Hints
	This test should be repeated for To-Normal, To-OffNormal and To-Fault transitions.

	
	Notes & Results
	

[In BTL CheckList, in AE-N-I-B, add for each of DOUBLE_OUT_OF_RANGE, SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE, CHANGE_OF_CHARACTERSTRING]

	
	O
	Implements the <algorithm> Algorithm

[In BTL Test Plan, in AE-N-I-B, add for each of: DOUBLE_OUT_OF_RANGE, SIGNED_OUT_OF_RANGE, UNSIGNED_OUT_OF_RANGE]

5.2.X1-3 Implements the <type>_OUT_OF_RANGE Algorithm

The IUT contains, or can be made to contain, an object that can generate ConfirmedEventNotifications and UnconfirmedEventNotifications with an Event_Type of <type>_OUT_OF_RANGE.

	BTL - 8.4.X1-3 - <type>_OUT_OF_RANGE Tests (ConfirmedEventNotification)

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	This test must be repeated once for each object type that is capable of generating event notifications with an Event_Type of <type>_OUT_OF_RANGE.

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.5.X1-3 - <type>_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	This test must be repeated once for each object type that is capable of generating event notifications with an Event_Type of <type>_OUT_OF_RANGE.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, in AE-N-I-B, add for CHANGE_OF_CHARACTERSTRING]

5.2.X4 Implements the CHANGE_OF_CHARACTERSTRING Algorithm

The IUT contains, or can be made to contain, an object that can generate ConfirmedEventNotifications and UnconfirmedEventNotifications with an Event_Type of CHANGE_OF_CHARACTERSTRING.

	BTL - 8.4.X4 - CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification)

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	This test must be repeated once for each object type that is capable of generating event notifications with an Event_Type of CHANGE_OF_CHARACTERSTRING.

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 8.5.X4 - CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification)

	
	Test Method
	Manual

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	This test must be repeated once for each object type that is capable of generating event notifications with an Event_Type of CHANGE_OF_CHARACTERSTRING.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, add for each new OUT_OF_RANGE algorithm, DOUBLE, SIGNED, and UNSIGNED]

8.4.X1-3 <type>_OUT_OF_RANGE Tests (ConfirmedEventNotification)
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the <type>_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of <type>_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is <type>_OUT_OF_RANGE instead of OUT_OF_RANGE.

8.5.X1-3 <type>_OUT_OF_RANGE Tests (UnconfirmedEventNotification)
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the <type>_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of <type>_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event_Type is <type>_OUT_OF_RANGE instead of OUT_OF_RANGE.

[In BTL Specified Tests, add a new test for CHANGE_OF_CHARACTERSTRING which is a modified version of the CHANGE_OF_STATE test with the added transition for OFFNORMAL to OFFNORMAL]

8.4.X4 CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_CHARACTERSTRING event algorithm. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a value that is one of the values designated in List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a different value in the List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification message. The transition to and from FAULT is also tested.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested Present_Value should be replaced by the appropriate property reference.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the object, or referenced object, if using Event Enrollment, has a non-empty Alarm_Values property) THEN

3.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Alarm_Values)

ELSE

MAKE (Present_Value have a value x: x = one of the Alarm_Values)

4.

WAIT (Time_Delay)

5.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

CHANGE_OF_CHARACTERSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =

Present_Value, Status_Flags

6.

TRANSMIT BACnet-SimpleACK-PDU

7.

IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?)

8.

VERIFY Event_State = OFFNORMAL

9.

VERIFY Event_Time_Stamps = (the timestamp in step 5, *, *)

10.
IF (the object, or referenced object, if using Event Enrollment, has a Alarm_Values property with more than 1 entry) THEN

11.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Alarm_Values not used in prior steps)

ELSE

MAKE (Present_Value have a value x: x = one of the Alarm_Values not used in prior steps)

12.

WAIT (Time_Delay)

13.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

CHANGE_OF_CHARACTERSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =

Present_Value, Status_Flags

14.

TRANSMIT BACnet-SimpleACK-PDU

15.

IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?)

16.

VERIFY Event_State = OFFNORMAL

17.

VERIFY Event_Time_Stamps = (the timestamp in step 13, *, *)

18.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

19.

WAIT (Time_Delay)

20.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

CHANGE_OF_CHARACTERSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

OFFNORMAL,

'To State' =

NORMAL,

'Event Values' =

Present_Value, Status_Flags

21.

TRANSMIT BACnet-SimpleACK-PDU

22.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

23.

VERIFY Event_State = NORMAL

24.

VERIFY Event_Time_Stamps = (the timestamp in step 13, *, the timestamp in step 20)

25.
IF (the object, or referenced object, if testing Event Enrollment, is configured with a non-empty Fault_Values property) THEN

26.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Fault_Values)

ELSE

MAKE (Present_Value have a value x: x = one of the Fault_Values)

27.

WAIT (Time_Delay)

28.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
CHANGE_OF_CHARACTERSTRING,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
FAULT,

'Event Values' =
Present_Value, Status_Flags

29.

TRANSMIT BACnet-SimpleACK-PDU

30.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, TRUE, ?, ?)

31.

VERIFY Event_State = FAULT

32.

VERIFY Event_Time_Stamps = (the timestamp in step 13, the timestamp in step 28, the timestamp in step 20)

33.

VERIFY Reliability = MULTI_STATE_FAULT

34.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

35.

WAIT (Time_Delay)

36.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
CHANGE_OF_CHARACTERSTRING,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
FAULT,

'To State' =
NORMAL,

'Event Values' =
Present_Value, Status_Flags

37.

TRANSMIT BACnet-SimpleACK-PDU

38.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

39.
VERIFY Event_State = NORMAL

40.
VERIFY Event_Time_Stamps = (the timestamp in step 13, the timestamp in step 28, the timestamp in step 36)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in steps 9 and 17 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 5.

8.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification)
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>.

Purpose: To verify the correct operation of the CHANGE_OF_CHARACTERSTRING event algorithm. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a value that is one of the values designated in List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a different value in the List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification message. The transition to and from FAULT is also tested.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested Present_Value should be replaced by the appropriate property reference.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X4 except that the event notification requests are UnconfirmedEventNotification requests and the TD does not acknowledge receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X4 except that the event notifications shall be conveyed using an UnconfirmedEventNotification service request.
BTL-TP9.0c-8: Clarify Trend Log Time Stamp.
Overview:

This document applies changes to the test package for:

· Addendum 135-2008x.2 Clarify Trend Log Time Stamp.

Adjust the test to checks that the timestamp is after the time change is engendered at the IUT.

Addendum 135-2008x.2 clarified in choices available for the LogDatum - time-change

This record shall be recorded after changing the local time of the device and the timestamp shall reflect the new local time of the device.

Changes:

[In BTL Specified Test, modify 7.3.2.24.X2, change tracking is based on the BTL Specified Test 9.0 NOT 135.1-2009i]

7.3.2.24.X2 Time_Change Test

Reason for Change: To make this test generic for all logging objects. The test here supercedes the version in 135.1-2009i-14, with a completely different, less prescriptive approach.

Purpose: To verify proper logging of time-change events in the log buffer

Test Concept: Change the clock in the device and verify that a record is logged indicating the number of seconds that the clock changed by or indicating zero if unknown. This test shall be skipped if the device does not support the Local_Time property in the device object or there is no way to change the time in the device.

Configuration Requirements: The log object is configured to acquire data by whatever means available. Configure the logging such that the entire test may be run without the trend buffer overflowing.

Test Steps:

1.
WRITE Enable = FALSE

2.
WRITE Record_Count = 0

3.
VERIFY (Log_Buffer contains 1 entry, and it is the buffer-purged event)

4.
TRANSMIT ReadProperty-Request,

‘Object Identifier’ = (device that contains log object)

‘Property Identifier’ = Local_Time

5.
RECEIVE ReadProperty-Ack,

‘Object Identifier’ = (device that contains log object)

‘Property Identifier’ = Local_Time

‘Property Value’ = (currentTime)

6.
WRITE Enable = TRUE

7.
MAKE (the time change on the device by a reasonable amount (deltaTime); change by one hour or

more)

8.
WRITE Enable = FALSE

9.
VERIFY Record_Count => 4

10.
CHECK (Log_Buffer contains a log-status entry of time-change)

11.
IF time-change amount is not zero, THEN

VERIFY (time-change value ~= deltaTime)

12.
VERIFY TimeStamp on the time-change entry ~= (currentTime + deltaTime)

BTL-TP9.0c-9: Add error code UNSUPPORTED_OBJECT_TYPE for CreateObject service.
Overview:
This document applies changes to the test package for:

· Addendum 135-2008u.2 Add error code UNSUPPORTED_OBJECT_TYPE for CreateObject service.

Add a test that checks whether the correct error code is returned when the specific situations are engendered at the IUT.

Addendum 135-2008u.2 revised the distinction between two similar error codes as follows:

	Situation
	Error Class
	Error Code

	The device supports the object type and may have sufficient space, but does not support the creation of the object for some other reason.
	OBJECT
	DYNAMIC_CREATION_NOT_SUPPORTED

	The device does not support the specified object type.
	OBJECT

	UNSUPPORTED_OBJECT_TYPE

Changes:

[In BTL Test Plan, add a reference to new test in Device Management - Object Creation and Deletion - B - Supports Object Creation Using Object_Type]

	BTL - 9.16.2.X1 - Attempting to Create a non-Supported Object Type (by Object Identifier)

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

 [In BTL Test Plan, add a reference to new test in Device Management - Object Creation and Deletion - B - Supports Object Creation Using Object_Identifier]

	BTL - 9.16.2.X2 - Attempting to Create a non-Supported Object Type (by Object Identifier)

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

 [In BTL Specified Tests, add tests 9.16.2.X1 and 9.16.2.X2 (derive from similar tests 9.16.2.2 and 9.16.2.3 in 135.1-2009f-3)]

9.16.2.X1
Attempting to Create a non-Supported Object Type (by Object Type)

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an object type that is not supported in the IUT.

Test Conditionality: If Protocol_Revision < 10, then this test may be skipped.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any unsupported object type)

2.
RECEIVE CreateObject-Error,

Error Class =

OBJECT,

Error Code =

UNSUPPORTED_OBJECT_TYPE

'First Failed Element Number' =
0

9.16.2.X2
Attempting to Create a non-Supported Object Type (by Object Identifier)

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an object identifier for an object type that is not supported in the IUT.

Test Conditionality: If Protocol_Revision < 10, then this test may be skipped.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any object identifier having an unsupported object type)

2.
RECEIVE CreateObject-Error,

Error Class =

OBJECT,

Error Code =

UNSUPPORTED_OBJECT_TYPE

'First Failed Element Number' =
0
5.
VERIFY (the IUT's Device object),

Object_List =

(any object list that does not contain the object specified in step 1)

Notes to tester: If the IUT limits the instances that can be created, this shall be taken into account when selecting an object identifier in step 1.
BTL-TP9.0c-10: Add new Primitive Value Objects to View BIBBs

Overview:

This document applies changes to the test package for:

· Addendum 135-2008w adds 12 additional Primitive Value object types.

The downside to this approach is that whenever a new object type is added to the standard that contains a property that should be presented or modified, we must remember to update the list.

Reason for Change:

The K-X1 and K-X5 tables in Addendum 135-2008l list properties only in objects that were defined in the standard up through Protocol_Revision 9.

Changes:

[In BTL Checklist, in the Data Sharing - View - A section, add lineitem for new primitive value object types]

	Data Sharing - View – A

	
	R
	Base Requirements

	
	BTL-R1
	Supports Primitive Value Objects

	1Required if the device implements protocol revision 10 or higher

[In BTL Checklist, in the Data Sharing - Modify - A section, add lineitem for new primitive value object types]

	Data Sharing - Modify – A

	
	R
	Base Requirements

	
	BTL-R1
	Supports Primitive Value Objects

	1Required if the device implements protocol revision 10 or higher

 [In BTL Test Plan, add a new section for each]

[DS-V-A, and DS-M-A, and the Tables K-X1 and K-X5 from 135-2010 Errata are presented here for clarity and in order to present correct requirements all in one place.]
4.11 Data Sharing - View - A

4.11.3 Supports Primitive Value Objects

Presentation supports all Object Types defined at Protocol_Revision less than or equal to itself.

The BIBB below is reprinted here from the ASHRAE 135-2010 Errata for clarity.

K.1.X1 BIBB - Data Sharing - View - A (DS-V-A)
The A device retrieves values from a minimum set of objects and properties and presents them to the user. Devices claiming conformance to DS-V-A shall support DS-RP-A. Device A shall be capable of using ReadProperty to retrieve any of the properties listed below. Device A may use alternate services where support for execution of the alternate service is supported by Device B.

	BACnet Service
	Initiate
	Execute

	ReadProperty
	x
	

Devices claiming conformance to DS-V-A shall be capable of reading and displaying the object properties listed in Table K-X1.

Table K-X1. Properties for which Presentation Is Required

	Analog Objects,

Integer Value,

Large Analog Value,

OctetString Value,

Positive Integer Value

	Binary Objects, BitString Value,

CharacterString Value,

Date Pattern Value,

Date Value,

Multi-state objects,

OctetString Value,

Time Pattern Value,

Time Value

	Accumulator
	Averaging

	Object_Name

Present_Value

Status_Flags

Units

	Object_Name

Present_Value

Status_Flags
	Object_Name

Present_Value

Status_Flags

Value_Before_Change

Value_Set

Pulse_Rate
	Object_Name

Minimum_Value

Average_Value

Maximum_Value

	Command

	Device
	Event Enrollment
	Load Control

	Object_Name

Present_Value

In_Process

All_Writes_Successful

	Object_Name

System_Status
	Object_Name

Event_State

Object_Property_Reference
	Object_Name

Present_Value

Status_Flags

State_Description

	Loop

	Multi-state Objects DateTime Pattern Value,

DateTime Value
	Program
	Pulse Converter

	Object_Name

Present_Value

Status_Flags

Setpoint
	Object_Name
Present_Value

Status_Flags

Is_UTC
	Object_Name
Program_State
	Object_Name

Present_Value

Status_Flags

Adjust_Value

Devices claiming conformance to this BIBB are not required to support presentation of objects and properties that are introduced in a Protocol_Revision newer than that claimed by the A device.

4.13 Data Sharing - Modify - A

4.13.3 Supports Primitive Value Objects

Modification is supported for all Object Types defined at Protocol_Revision less than or equal to itself.

The BIBB below is reprinted here from the ASHRAE 135-2010 Errata for clarity.

K.1.X3 BIBB - Data Sharing – Modify - A (DS-M-A)

The A device writes properties that are generally expected to be adjusted during normal operation of the system. Devices claiming support for this BIBB are not expected to be capable of fully configuring BACnet devices, although they are not inherently restricted from doing so.

	BACnet Service
	Initiate
	Execute

	WriteProperty
	x
	

Devices claiming conformance to DS-M-A shall be capable of commanding and relinquishing standard commandable properties at priority 8 (other priorities may also be supported), and writing the properties listed in Table K-X5.

Table K-X5. Standard Properties That DS-M-A Devices Shall Be Capable of Writing

	Analog Objects,

Binary Objects,

Accumulator

Averaging, Loop,

Multi-state Objects, Pulse
Converter,
BitString Value,

CharacterString Value,

Date Pattern Value,

Date Value,

DateTime Pattern Value,

DateTime Value,

Integer Value,

Large Analog Value,

Positive Integer Value,

Time Pattern Value,

Time Value

	Command,

Event Enrollment,

Program
	Loop
	Program

	Present_Value,

Out_of_Service
	Present_Value
	Present_Value,

Out_of_Service,

Setpoint
	Program_Change

	Accumulator
	Pulse Converter
	
	

	Present_Value,

Out_of_Service, Pulse_Rate, Value_Before_Change, Value_Set
	Present_Value,

Out_of_Service,

Adjust_Value
	
	

Devices claiming conformance to this BIBB are not required to support presentation and modification of objects and properties that are introduced in a Protocol_Revision newer than that claimed by the A device.

BTL-TP9.0c-11: Change to update External Document References
Overview:

The current section for External Document References in the BTL Test Plan 9.0.final document includes statements that indicate the test plan only supports up to protocol revision 9. This is correct for TP 9.0 but will change when we release 12.0. We need to update the text.

Changes:

[Note changes are shown highlighted in yellow instead of using the italic markings due to the need to show italics for addenda lettering]
[In BTL Test Plan, update section 1.1]
1.1 External Document References

This version of the BTL Test Plan contains references to the following external documents.

	Document name
	Description

	135.1-2009
	SSPC Test standard

This document is the same as 135.1-2007 with addendum 135.1-2007b. 135.1-2007 is the same as 135.1-2003 with addenda 135.1-2003a and 135.1-2003c.

	135.1-2009d
	SSPC Test standard Addendum 135.1-2009d (This addendum is final and was approved by the ASHRAE Standards Committee on June 26, 2010; by the ASHRAE Board of Directors on June 30, 2010; and by the American National Standards Institute on July 1, 2010).

	135.1-2009e
	SSPC Test standard Addendum 135.1-2009e (This addendum is final and was approved by the ASHRAE Standards Committee on January 29, 2011; by the ASHRAE Board of Directors on February 2, 2011; and by the American National Standards Institute on February 3, 2011.).

	135.1-2009f
	SSPC Test standard Addendum 135.1-2009f (This addendum is final and was approved by the ASHRAE Standards Committee on January 29, 2011; by the ASHRAE Board of Directors on February 2, 2011; and by the American National Standards Institute on February 3, 2011.).

	135.1-2009g
	SSPC Test standard Addendum 135.1-2009g (This addendum is final and was approved by the ASHRAE Standards Committee on January 29, 2011; by the ASHRAE Board of Directors on February 2, 2011; and by the American National Standards Institute on February 3, 2011.).

	135.1-2009h
	SSPC Test standard Addendum 135.1-2009h (This addendum is final and was approved by the ASHRAE Standards Committee on January 29, 2011; by the ASHRAE Board of Directors on February 2, 2011; and by the American National Standards Institute on February 3, 2011.).

	135.1-2009i
	SSPC Test standard Addendum 135.1-2009i (This addendum is final and was approved by the ASHRAE Standards Committee on January 29, 2011; by the ASHRAE Board of Directors on February 2, 2011; and by the American National Standards Institute on February 3, 2011.).

	135-2008
	BACnet standard Protocol_Revision 7

This document is the same as 135-2004 with addenda a-f and m.

	135-2010
	BACnet standard revision number 12

This document is the same as 135-2008 with addenda q, j, l, o, r, s, v, h, k, n, t, u, w, x, y, g, p, z, ab, ac, ag, ah
135-2010 includes some material beyond the extent of this test plan. This test plan is limited to Protocol_Revision 9 and lower.

	135-2008 plus addenda 135-2008j, 135-2008o, 135-2008q, 135-2008r, 135-2008s, and 135-2008v.
	BACnet standard revision number 9. The extent of this test plan.is Protocol_Revision 9 and lower.

	135-2008l
	Addendum to 135-2004 and 135-2008 which adds definitions for workstation profiles.

	135-2008v-3
	Addendum to 135-2004 and 135-2008 which removes NM-CE-A from Device Profiles.

	135-2008z-2
	Addendum to 135-2004 and 135-2008 which adds UnconfirmedEventNotification to Automated Trend Retrieval BIBBs.

	135-2010ag-2
	Addendum to 135-2008 and 135-2010 which aligns BIBBs for Automated Trend Retrieval.

	135-2010af-32
	Addendum which adds additional requirement in BIBB AE-N-I-B for support of AE-INFO-B.

BTL Specified Tests are assumed to be referenced to the "BTL Specified Tests" document which filename contains the same version number as the BTL Test Plan document.

BTL-TP9.0c-12: Add support for long Backup and Restore times
Overview:

This document applies changes to the test package for:

· Addendum 135-2008n.1 Add support for long Backup and Restore times.

The tests in 135.1-2009m-4 include updates for Protocol_Revision 10 changes to B&R.

Changes:

 [In BTL Test Plan, modify references in B&R tests to 135.1-2009m-4 and use names as in the table below.]

	BTL Specified Tests
	135.1-2009m

	BTL - 13.X1.1 - Execution of Full Backup and Restore Procedure
	135.1-2009m-4 - 13.X.1.1 Execution of Full Backup and Restore Procedure

	BTL - 13.X1.2 - Initiating a Backup Procedure When Already Performing a Backup Procedure
	135.1-2009m-4 - 13.X.1.2 Attempting Backup While Already Performing a Backup Procedure

	BTL - 13.X1.3 - Initiating a Backup Procedure When Already Performing a Restore Procedure
	135.1-2009m-4 - 13.X.1.3 Attempting Backup While Already Performing a Restore Procedure

	BTL - 13.X1.4 - Initiating a Restore Procedure When Already Performing a Backup Procedure
	135.1-2009m-4 - 13.X.1.4 Attempting Restore While Already Performing a Backup Procedure

	BTL - 13.X1.5 - Initiating a Restore Procedure When Already Performing a Restore Procedure
	135.1-2009m-4 - 13.X.1.5 Attempting Restore While Already Performing a Restore Procedure

	BTL - 13.X1.6 - Ending Backup and Restore Procedures via Timeout
	135.1-2009m-4 - 13.X.1.6 Ending Backup and Restore Procedures via Timeout

	BTL - 13.X1.7 - Ending Backup and Restore Procedures via an Abort
	135.1-2009m-4 - 13.X.1.7 Ending Backup and Restore Procedures via Abort

	BTL - 13.X1.8 - Initiating a Backup Procedure with an Invalid Password
	135.1-2009m-4 - 13.X.1.8 Attempting Backup with an Invalid Password

	BTL - 13.X1.9 - Initiating a Restore Procedure with an Invalid Password
	135.1-2009m-4 - 13.X.1.9 Attempting Restore with an Invalid Password

	BTL - 13.X1.10 - Initiating and ending a Backup Procedure when a password is not required
	135.1-2009m-4 - 13.X.1.10 Executing and Ending a Backup Procedure when a Password is not Required

	BTL - 13.X1.11 - Initiating and ending a Restore Procedure when a password is not required
	135.1-2009m-4 - 13.X.1.11 Executing and Ending a Restore Procedure when a Password is not Required

	BTL - 13.X1.12 - System_Status during a Backup Procedure
	135.1-2009m-4 - 13.X.1.12 System_Status during a Backup Procedure

	BTL - 13.X1.13 - System_Status during a Restore Procedure
	135.1-2009m-4 - 13.X.1.13 System_Status during a Restore Procedure

[In BTL Specified Tests, remove all the B&R Tests: 13.X1.1 through 13.X1.13]

BTL-TP9.0c-13: ReadRange Error Situations
Overview:

5 new tests are added for the ReadRange service. Since these are generic ReadRange tests it seems inappropriate to copy them to all of the BIBB sections that rely on ReadRange so new BIBBs are created to indicate support for ReadRange. A new TP section is added and the tests are placed in this section.

Changes:

[In BTL Specified Tests, add new BIBBs]

Reason for change: ReadRange applies to all list properties but the existing BIBBs are limited to object types that contain the Log_Buffer property.

K.1.X1 BIBB - Data Sharing - ReadRange-A (DS-RR-A)

The A device is a user of list data from device B.

	BACnet Service
	Initiate
	Execute

	ReadRange
	x
	

K.1.X2 BIBB - Data Sharing-ReadRange-B (DS-RR-B)

The B device is a provider of list data to device A.

	BACnet Service
	Initiate
	Execute

	ReadRange
	
	x

[In BTL CheckList, add a new section for DS-RR-A and DS-RR-B]

	Data Sharing - ReadRange - A

	
	R
	Base Requirements

	Data Sharing - ReadRange - B

	
	R
	Base Requirements

[In BTL CheckList, add into AE-ELV-A, T-V-A, T-ATR-A, T-AMVR-A]

	
	R
	Supports DS-RR-A

[In BTL CheckList, add into T-VMT-I-B, T-VMMV-I-B, AE-EL-I-B]

	
	R
	Supports DS-RR-B

[In BTL Test Plan, add a new section: DS-RR-A Base Requirements]

4.X1 Data Sharing - ReadRange - A

4.X1.1 Base Requirements

Base requirements must be met by any IUT claiming conformance to this BIBB.

	BTL - 8.21.1 - Reading Values with no Specified Range, or
BTL - 8.21.3 - Reading a Range of Values by Position

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	May be skipped if the IUT supports a non-ReadRange A-side BIBB that uses ReadRange (eg T-ATR-A).

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add a new section: DS-RR-B Base Requirements]

4.X2 Data Sharing - ReadRange - B

4.X2.1 Base Requirements

Base requirements must be met by any IUT claiming conformance to this BIBB.

	BTL - 9.21.1.X1 - ReadRange Support for All List Properties

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.21.2.1 - Attempting to Read a Property That Does not Exist

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.21.2.2 - Attempting Read a Property That is not a List or Array of Lists

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

	BTL - 9.21.2.3 - Attempting Read a non-Array Property with an Array Index

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add into AE-ELV-A, T-V-A, T-ATR-A, T-AMVR-A]

X.Y.Z Supports DS-RR-A

The IUT is able to initiate the ReadRange service.

	Verify Checklist

	
	Test Method
	

	
	Configuration
	

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Verify that the IUT claims support for DS-RR-A in the Checklist.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add into T-VMT-I-B, T-VMMV-I-B, AE-EL-I-B,]

X.Y.Z Supports DS-RR-B

The IUT is able to execute the ReadRange service.

	Verify Checklist

	
	Test Method
	

	
	Configuration
	

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Verify that the IUT claims support for DS-RR-B in the Checklist.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, add a new ReadRange test]

9.21.1.X1 ReadRange Support for All List Properties

Reason for change: Need a ReadRange test for non-Log_Buffer list properties.

Purpose: To verify that all list properties of all objects can be read using the 3 by position forms of the ReadRange service.

Test Steps:

1.
REPEAT X = (all objects in the IUT's database) DO {

REPEAT Y = (all list properties in object X) DO {

TRANSMIT ReadRange-Request

'Object Identifier' =
X,

'Property Identifier' =
Y,

RECEIVE ReadRange-ACK

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Result Flags’ =
(?, ?, ?),

‘Item Count’ =
(C: up to number of items in Y)

‘Item Data’ =
(the first C elements of Y)

TRANSMIT ReadRange-Request

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Reference Index’ =
1,

‘Count’ =

(C: any valid positive value)

RECEIVE ReadRange-ACK

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Result Flags’ =
(TRUE, ?, ?),

‘Item Count’ =
(C2: up to C)

‘Item Data’ =
(the first C2 elements of Y)

TRANSMIT ReadRange-Request

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Reference Index’ =
(the number of elements in Y),

‘Count’ =

(C: any valid negative value)

RECEIVE ReadRange-ACK

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Result Flags’ =
(?, TRUE, ?),

‘Item Count’ =
(C2: up to abs(C))

‘Item Data’ =
(the last C2 elements of Y)

}

}

[In BTL Specified Tests, Add test 8.21.1 and 8.21.3]

8.21.1 Reading Values with no Specified Range

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that does not specify any range of values to be returned.

Test Steps:

1.
RECEIVE ReadRange-Request,

'Object Identifier' =
(O, any Trend Log object),

'Property Identifier' =
Log_Buffer(P, any list property the IUT can read)

2.
TRANSMIT ReadRange-ACK

'Object Identifier' =
O,

'Property Identifier' =
P,

‘Result Flags’ =

(TRUE, (bLast), (NOT bLast)),

‘Item Count’ =

(C: any valid value)

‘Item Data’ =

(C valid records for the requested property)

3.
CHECK(that the IUT performs the vendor specified action)
8.21.3 Reading a Range of Values by Position

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that specifies the range of values to be returned by position.

Test Steps:

1.
RECEIVE ReadRange-Request,

'Object Identifier' =
(O, any Trend Log object),

'Property Identifier' =
Log_Buffer(P, any list property),

'Reference Index' =
(any Unsigned value),

'Count' =

(C1, any INTEGER value)

2.
TRANSMIT ReadRange-ACK

'Object Identifier' =
O,

'Property Identifier' =
P,

‘Result Flags’ =

((TRUE if the first was requested, FALSE otherwise), ?, ?),

‘Item Count’ =

(C2: any valid value <= |C|)

‘Item Data’ =
(C2 valid records for the requested property)

3.
CHECK(that the IUT performs the vendor specified action)
[In BTL Specified Tests, add new test section 9.21.2]

9.21.2
Negative ReadRange Service Execution Tests`

9.21.2.1
Attempting to Read a Property That Does not Exist

Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property does not exist. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier' =
(any object that exists in the IUT),

'Property Identifier' =
(any list property not supported by the IUT),

2.
RECEIVE BACnet-Error-PDU,

'Error Class' =
PROPERTY,

'Error Code’ =
UNKNOWN_PROPERTY

9.21.2.2
Attempting to Read a Property That is not a List

Reason For Change: 135-2008u-3. .

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not a list. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier' =
(any object that exists in the IUT),

'Property Identifier' =
(any non-list property supported by and present in the IUT),

2.
RECEIVE BACnet-Error-PDU,

'Error Class' =
PROPERTY,

'Error Code’ =
PROPERTY_IS_NOT_A_LIST

9.21.2.3
Attempting to Read a non-Array Property with an Array Index

Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not an array of lists. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier' =
(any object that exists in the IUT),

'Property Identifier' =
(any non-array list property supported by and present in the IUT),

‘Array Index’ =
(any valid value)

2.
RECEIVE BACnet-Error-PDU,

'Error Class' =
PROPERTY,

'Error Code’ =
PROPERTY_IS_NOT_AN_ARRAY

BTL-TP9.0c-14: Add Event_Message_Texts

Overview:

This document applies changes to the test package for:

· Addendum 135-2008z.1 Add Event_Message_Texts.

Changes:

[In BTL Checklist, add into Alarm and Event - Notification Internal - B, and Alarm and Event - Notification External - B]

	
	O
	Supports Event_Message_Texts property.

[In BTL Test Plan, add in AE-N-I-B]

5.2 Alarm and Event - Notification - Internal - B

5.2.X Supports Event_Message_Texts Property
The IUT contains one or more objects that support the Event_Message_Texts property.

	BTL - 7.3.1.X4 - Event_Message_Texts Tests

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Repeat test once for each object type in the IUT that contains an Event_Message_Texts property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Test Plan, add in AE-N-E-B]

5.3 Alarm and Event - Notification - External - B

5.3.X Supports Event_Message_Texts Property
The IUT contains one or more objects that support the Event_Message_Texts property.

	BTL - 7.3.1.X4 - Event_Message_Texts Tests

	
	Test Method
	

	
	Configuration
	As per BTL Specified Tests.

	
	Test Conditionality
	Must be executed.

	
	Test Directives
	Repeat test once for each object type in the IUT that contains an Event_Message_Texts property.

	
	Testing Hints
	

	
	Notes & Results
	

[In BTL Specified Tests, add test 7.3.1.X4]

7.3.1.X4 - Event_Message_Texts Tests
Reason For Change: 135-2008z-1.

Purpose: To verify that the value of the Event_Message_Texts property is updated when an object generates an event notification.

Test Concept: Read the Event_Message_Texts from the object. Transition the object through each event state which is enabled in the object saving the Message Text parameter from the received notification. Verify that the Event_Message_Texts updates with the Event_Message_Texts value received from the notification.

Configuration Requirements: The IUT shall be configured with an event-generation object, O1 which shall be in a NORMAL Event_State at the beginning of the test. If the algorithm of the object does not support NORMAL to NORMAL transitions, then the TO-OFFNORMAL bit of the Event_Enable shall be TRUE.

In the test description below X1 is used to designate the event-triggering property linked to O1.

Test Steps:

1.
READ EMT = Event_Message_Texts

2.
IF (Event_Enable is (TRUE, ?, ?)) THEN

3.

IF (X1 is writable) THEN

WRITE X1 = (a value that is OFFNORMAL)

ELSE

MAKE (X1 a value that is OFFNORMAL)

4.

WAIT (Time_Delay)

5.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(O1),

'Time Stamp' =

(the IUT’s local time),

'Notification Class' =

(the class corresponding to the object being tested),

'Priority' =

(the configured TO-OFFNORMAL priority),

'Event Type' =

(any valid event type),

'Notify Type' =

Notify_Type,

'AckRequired' =

(the configured value for the TO-OFFNORMAL transition),

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

‘Message Text’ =

(M: any valid value placed into EMT[1]),

'Event Values' =

(values appropriate to the event type)

6.

VERIFY Event_Message_Texts = EMT

7.
IF (Event_Enable is (?, ?, TRUE)) THEN

8.

IF (X1 is writable) THEN

WRITE X1 = (a value that will result in a TO-NORMAL transition)

ELSE

MAKE (X1 a value that will result in a TO-NORMAL transition)

9.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(O1),

'Time Stamp' =

(the IUT’s local time),

'Notification Class' =

(the class corresponding to the object being tested),

'Priority' =

(the configured TO-NORMAL priority),

'Event Type' =

(any valid event type),

'Notify Type' =

Notify_Type,

'AckRequired' =

(the configured value for the TO-NORMAL transition),

'From State' =

(any valid value),

'To State' =

NORMAL,

‘Message Text’ =

(M: any valid value placed into EMT[3]),

'Event Values' =

(values appropriate to the event type)

10.

VERIFY Event_Message_Texts = EMT

11.
IF (Event_Enable is (?, TRUE, ?)) THEN

12.

MAKE (O1 transition to a FAULT state)

13.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(O1),

'Time Stamp' =

(the IUT’s local time),

'Notification Class' =

(the class corresponding to the object being tested),

'Priority' =

(the configured TO-FAULT priority),

'Event Type' =

(any valid event type),

'Notify Type' =

Notify_Type,

'AckRequired' =

(the configured value for the TO-FAULT transition),

'From State' =

(any valid value),

'To State' =

FAULT,

‘Message Text’ =

(M: any valid value placed into EMT[2]),

'Event Values' =

(values appropriate to the event type)

14.

VERIFY Event_Message_Texts = EMT

35

