[image: image3.wmf]IUT

(

R

1

-

2

)

Virtual Network

1

R

2

-

3

VD

1

B

VD

1

A

D

2

C

D

3

D

Network

2

TD

N

e

t

w

o

r

k

3

BACnet TESTING LABORATORIES

Revision 12.0.Final
SPECIFIED TESTS

Revised August 2, 2012
Table of Contents
101 Purpose

112 Interim Data Link Layer Tests

112.2 MS/TP Data Link Layer Tests

122.2.1 Verify Tpostdrive w/ Oscilloscope

122.2.2 Verify Tframe_gap w/ Oscilloscope

132.2.3 Verify Tturnaround w/ Oscilloscope

132.2.4 Verify Treply_delay w/ Serial Analyzer

132.2.5 Verify Tusage_delay w/ Serial Analyzer

142.2.6 Verify Npoll w/ Serial Analyzer

142.2.7 Verify Tusage_timeout w/ Serial Analyzer

152.2.8 Max_Master test

152.2.9 Max_Info_Frames Test

152.2.10 Master Node Data Frame Test

152.2.11 Poll For Master w/ Serial Analyzer

162.2.12 Slave Node Data Frame Test

162.2.13 Sole Master Test

162.2.14 MS/TP Network Startup Tests (IUT power on Variation)

172.2.15 MS/TP Network Startup Tests (IUTs wire plugged in)

172.2.16 MS/TP Network Startup Tests (IUTs wire unplugged)

182.2.17 MS/TP Network Startup Tests (Reference device joins the MS/TP network)

192.2.18 Verify Tno_token w/ Serial Analyzer

192.2.X1 Data Not For Us Test

202.3 ARCNET (twisted pair bus) Data Link Layer Tests

212.3.1 Verify the Failsafe Biasing with an Oscilloscope

212.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope

223.x Common language used in tests

227 Object Support Tests

227.1 Read Support for Properties in the Test Database

237.1.2 Non-documented Property Test

237.2 Write Support for Properties in Test Database

237.2.1.3 Octetstrings and Characterstrings

237.2.2 Write Support Test Procedure

247.2.X Read-only Property Test

267.2.X1 Date Pattern Properties Test

267.2.X2 Time Pattern Properties Test

277.2.X3 DateTime Pattern Properties Test

277.2.X4 Date Non-Pattern Properties Test

287.2.X5 Time Non-Pattern Properties Test

287.2.X6 DateTime Non-Pattern Properties Test

287.3 Object Functionality Tests

287.3.1 Property Tests

287.3.1.3 Command Prioritization Test

297.3.1.6 Override of Minimum Time

307.3.1.9 Binary Object Elapsed Active Time Tests

327.3.1.10 Event_Enable Tests

337.3.1.10.X1 Event_Enable Tests for Logging Objects

357.3.1.12 Notify_Type Test

377.3.1.13 Limit_Enable Test

417.3.1.X3 Array Resizing Test

427.3.1.X4 Event_Message_Texts Tests

447.3.2 Object Specific Tests

447.3.2.8 Calendar Test

447.3.2.8.1 Single Date Rollover Test

457.3.2.8.2 Date Range Test

457.3.2.8.3 WeekNDay Test

477.3.2.10 Device Object Tests

477.3.2.10.X4 Successful Increment of the Database_Revision Property after Changing the Object_Identifier Property of an Object

477.3.2.21 Notification Class Object Tests

487.3.2.21.1 Priority Tests

507.3.2.21.3 Recipient_List Tests

507.3.2.21.3.1 ValidDays Test

517.3.2.21.3.2 FromTime and ToTime Test

527.3.2.21.3.4 Transitions Test

547.3.2.23 Schedule Object Tests

547.3.2.23.1 Effective_Period Test

547.3.2.23.2
Weekly_Schedule Property Test

567.3.2.23.3 Exception_Schedule Property Tests

567.3.2.23.3.2
Calendar Entry Date Test

577.3.2.23.3.3
Calendar Entry DateRange Test

587.3.2.23.3.4
Calendar Entry WeekNDay Month Test

597.3.2.23.3.5
Calendar Entry WeekNDay Week Of Month Test

607.3.2.23.3.6
Calendar Entry WeekNDay Last Week Of Month Test

617.3.2.23.3.7
Calendar Entry WeekNDay Day Of Week Test

627.3.2.23.3.8
Event Priority Test

627.3.2.23.3.9
List of BACnetTimeValue Test

637.3.2.23.4
Weekly_Schedule and Exception_Schedule Interaction Test

647.3.2.23.5
Exception_Schedule Restoration Test

657.3.2.23.6
Weekly_Schedule Restoration Test

657.3.2.23.7
List_Of_Object_Property_Reference Internal Test

667.3.2.23.8
List_Of_Object_Property_Reference External Test

677.3.2.23.X Schedule Object Protocol_Revision 4 Tests

687.3.2.23.X.1 Revision 4 Effective_Period Test

687.3.2.23.X.2 Revision 4 Weekly_Schedule Property Test

707.3.2.23.X.3 Revision 4 Exception_Schedule Property Tests

707.3.2.23.X.3.7 Revision 4 Calendar Entry WeekNDay Day Of Week Test

717.3.2.23.X.3.8 Revision 4Event Priority Test

727.3.2.23.X.3.9 Revision 4 List of BACnetTimeValue Test

727.3.2.23.X.3.10 Revision 4 Calendar Entry WeekNDay Odd-Numbered Month Test

737.3.2.23.X.3.11 Revision 4 Calendar Entry WeekNDay Even-Numbered Month Test

737.3.2.23.X.3.12 Revision 4 Lower Event Priority Change Test

747.3.2.23.X.3.13 Revision 4 Schedule_Default Test

757.3.2.23.X.4 Revision 4 Weekly_Schedule and Exception_Schedule Interaction Test

767.3.2.23.X.5 Revision 4 Exception_Schedule Restoration Test

767.3.2.23.X.6 Revision 4 Weekly_Schedule Restoration Test

767.3.2.23.X.7 Revision 4 List_Of_Object_Property_Reference Internal Test

777.3.2.23.X.8 Revision 4 List_Of_Object_Property_Reference External Test

787.3.2.23.Y Revision 4 Midnight Evaluation Test

797.3.2.24 Log Object Tests

797.3.2.24.1 Enable Test

797.3.2.24.2 Start_Time Test

807.3.2.24.3 Stop_Time Test

817.3.2.24.4 Log_Interval Test

827.3.2.24.5 COV_Resubscription_Interval Test

847.3.2.24.6 Stop_When_Full Tests

847.3.2.24.6.1 Stop_When_Full TRUE Test

847.3.2.24.6.2
Stop_When_Full FALSE Test

857.3.2.24.7 Buffer_Size Test

867.3.2.24.8 Record_Count Test

867.3.2.24.10 Notification_Threshold Test

887.3.2.24.12 COV Subscription Failure Test

897.3.2.24.X1 Log-Status Test

897.3.2.24.X2 Time_Change Test

907.3.2.24.X3 COV-Sampling Verification Test

907.3.2.24.X4 Interval Gathering of External Trends Test

917.3.2.24.X5 Last_Notify_Record Test

917.3.2.24.X6 Records_Since_Notification Test

927.3.2.24.X7 Trigger Verification Test

937.3.2.24.X8 Clock-Aligned Logging

937.3.2.24.X9 Logging Interval_Offset

937.3.2.26 Event Log Object Tests

937.3.2.26.X1 Internal Logging of Notifications

947.3.2.26.X2 Remote Logging of Notifications

967.3.2.26.X3 Internal Logging of ACK_NOTIFICATION

977.3.2.26.X4 Remote Logging of ACK_NOTIFICATION

977.3.2.29 Structured View Object Tests

977.3.2.29.X1 Subordinate_List Size Changes Subordinate_Annotations

987.3.2.29.X2 Subordinate_Annotations Size Changes Subordinate_List

998 Application Service Initiation Tests

998.2 ConfirmedCOVNotification Service Initiation Tests

998.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

1018.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property

1028.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Present_Value Property

1038.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags Property

1048.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, or Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

1058.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

1068.2.7 Change of Value Notification from Loop Object Present_Value Property

1088.2.8 Change of Value Notification from a Loop Object Status_Flags Property

1098.2.x1 Missing Lifetime Test

1098.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

1108.3.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property

1108.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

1108.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

1108.4 ConfirmedEventNotification Service Initiation Tests

1118.4.1 CHANGE_OF_BITSTRING Tests

1128.4.2 CHANGE_OF_STATE Tests

1158.4.3 CHANGE_OF_VALUE Tests

1158.4.3.1 Numerical Algorithm

1168.4.3.2 Bitstring Algorithm

1178.4.4 COMMAND_FAILURE Tests

1198.4.5 FLOATING_LIMIT Tests

1228.4.6 OUT_OF_RANGE Tests

1258.4.7 BUFFER_READY Tests

1268.4.8.14 TO-FAULT Transition Tests

1278.4.X1 DOUBLE_OUT_OF_RANGE Tests (ConfirmedEventNotification)

1288.4.X2 SIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)

1288.4.X3 UNSIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)

1288.4.X4 CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification)

1318.4.X5 Proprietary Algorithm Tests (ConfirmedEventNotifications)

1318.4.X6 Extended Algorithm Tests (ConfirmedEventNotifications)

1318.5 UnconfirmedEventNotification Service Initiation Tests

1318.5.7 BUFFER_READY Tests

1328.5.X1 DOUBLE_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

1328.5.X2 SIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

1328.5.X3 UNSIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

1328.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification)

1338.5.X5 Proprietary Algorithm Tests (UnconfirmedEventNotifications)

1338.5.X6 Extended Algorithm Tests (UnconfirmedEventNotifications)

1338.6 GetAlarmSummary Service Initiation Tests

1338.6.X1 Updating Alarm Summary Information with GetAlarmSummary

1348.8 GetEventInformation Service Initiation Tests

1348.8.X1 Updating Alarm Summary Information with GetEventInformation Without Chaining

1358.8.X2 Updating Alarm Summary Information with GetEventInformation With Chaining

1358.10
 SubscribeCOV Service Initiation Tests

1358.10.X1
Generates 8 Hour Lifetimes

1368.14 Add List Element Service Initiation Tests

1368.14.1 Non-Array Properties

1368.14.2 Array Properties

1368.15 RemoveListElement Service Initiation Tests

1368.15.1 Non-Array Properties

1378.15.2 Array Properties

1378.21.1 Reading Values with no Specified Range

1378.21.3 Reading a Range of Values by Position

1388.22 WriteProperty Service Initiation Tests

1388.22.4 Accepting Input and Modifying Properties

1398.22.5 Accepting Input and Commanding/Relinquishing Properties

1408.22.X4 Writing Array Properties as a Whole Array

1408.24
DeviceCommunicationControl Service Initiation Tests

1408.24.1
Indefinite Duration, Disable, No Password

1408.24.2
Indefinite Duration, Disable, Password

1408.24.3
Time Duration, Disable, Password

1418.24.4
Enable, Password

1418.24.5
Enable, No Password

1418.24.6
Time Duration, Disable, No Password

1418.24.7 Time Duration, Disable-Initiation, Password

1428.27
ReinitializeDevice Service Initiation Tests

1428.27.2
COLDSTART with a Password

1428.27.4
WARMSTART with a Password

1429 Application Service Execution Tests

1439.1 AcknowledgeAlarm Service Execution Tests

1439.1.1 Positive AcknowledgeAlarm Service Execution Tests

1439.1.1.Y1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter

1449.1.1.Y2 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter

1459.1.1.X3 Successful Alarm Acknowledgment of Confirmed Event Notifications when 'To State' is either High-Limit or Low-Limit, Revision 5 and higher only

1469.1.2 Negative AcknowledgeAlarm Service Execution Tests

1469.1.2.3 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Event Object Identifier' is Invalid

1469.1.2.4 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Event State Acknowledged' is Invalid

1479.1.2.6 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the Referenced Object Does Not Exist

1479.1.2.7 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the 'Event State Acknowledged' is Invalid

1489.2 ConfirmedCOVNotification Service Execution Tests

1489.2.1.1 Change of Value Notifications from Analog, Binary, Multi-state, and Life Safety Objects

1499.2.1.X4 Change of Value Notification from Proprietary Objects

1499.2.2.1 Change of Value Notification Arrives after Subscription has Expired

1499.2.2.2 Change of Value Notifications with Invalid Process Identifier

1509.2.2.3 Change of Value Notifications with Invalid Initiating Device Identifier

1509.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier

1519.3 UnconfirmedCOVNotification Service Execution Tests

1519.3.X1 Change of Value Notifications

1519.3.X2 Change of Value Notification from Loop Objects

1529.3.X9 Change of Value Notification from Proprietary Objects

1529.7 GetEnrollmentSummary Service Execution Tests

1529.7.1.1 Enrollment Summary with Zero Summaries

1529.7.2.3 Event Type Filter

1539.8 GetEventInformation Service Execution Tests

1539.8.6 Chaining Test

1549.10 SubscribeCOV Service Execution Tests

1549.10.1 Positive SubscribeCOV Service Execution Tests

1549.10.1.1
Confirmed COV Notifications

1559.10.1.2
Unconfirmed COV Notifications

1559.10.1.3
Explicit Indefinite Lifetime COV Subscriptions

1569.10.1.7
Finite Lifetime Subscriptions

1579.10.1.X1 Ensuring 5 Concurrent COV Subscribers

1589.10.1.X3
Accepts 8 Hour Lifetimes

1599.10.2.1 The Monitored Object Does Not Support COV Notification

1599.10.2.X1
The Monitored Object Does Not Exist

1609.10.2.X2
There Is No Space For A Subscription

1609.10.2.X3
The Lifetime Parameter is Out of Range

1619.14 AddListElement Service Execution Tests

1619.14.2 Negative AddListElement Service Execution Tests

1619.14.2.2 Adding a List Element With an Invalid Datatype

1619.14.2.3 An AddListElement Failure Part Way Through a List

1629.15 RemoveListElement Service Execution Tests

1629.15.2 Negative RemoveListElement Service Execution Tests

1629.15.2.2 A RemoveListElement Failure Part Way Through a List

1639.16 CreateObject Service Execution Tests

1639.16.1 Positive CreateObject Service Execution Tests

1639.16.1.2
Creating Objects by Specifying the Object Identifier with No Initial Values

1639.16.1.4
Creating Objects by Specifying the Object Identifier and Providing Initial Values

1649.16.2 Negative CreateObject Service Execution Tests

1649.16.2.1
Attempting to Create an Object That Does Not Have a Unique Object Identifier

1649.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values

1659.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial Values

1669.16.2.6
Attempting to Create an Object with an instance of 4194303

1669.16.2.X1
Attempting to Create a non-Supported Object Type (by Object Type)

1679.16.2.X2
Attempting to Create a non-Supported Object Type (by Object Identifier)

1679.17.2.1
Attempting to Delete an Object That is Not Deletable

1679.18 ReadProperty Service Execution Tests

1679.18.1.2 Reading a Single Element of an Array

1689.18.1.X1 Reading Properties Based on Data Type

1689.20 ReadPropertyMultiple Service Execution Tests

1689.20.1.1 Reading a Single Property from a Single Object

1689.20.1.2 Reading Multiple properties from a Single Object

1699.20.1.3 Reading a Single Property from Multiple Objects

1699.20.1.4 Reading Multiple Properties from Multiple Objects

1709.20.1.5 Reading Multiple Properties with a Single Embedded Access Error

1709.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

1719.20.1.7 Reading ALL Properties

1719.20.1.8 Reading OPTIONAL Properties

1729.20.1.9 Reading REQUIRED Properties

1729.20.1.X1 Reading Properties Based on Data Type

1729.20.2.3 Reading Single Non-Array Properties with an Array Index

1739.21 ReadRange Service Execution Tests

1739.21.1.X1 ReadRange Support for All List Properties

1749.21.1.X3 Data Type verification Test

1759.21.1.X5 Reading Items with Negative Count and MOREITEMS

1769.21.2
Negative ReadRange Service Execution Tests

1769.21.2.1
Attempting to Read a Property That Does not Exist

1769.21.2.2
Attempting to Read a Property That is not a List

1769.21.2.3
Attempting to Read a non-Array Property with an Array Index

1769.22 WriteProperty Service Execution Tests

1769.22.1.1 Writing a Single Element of an Array

1779.22.1.2 Writing a Commandable Property Without a Priority

1779.22.1.3 Writing a Non-Commandable Property with a Priority

1789.22.1.X1 Writing an Array Size

1789.22.1.X2 Writing to Properties Based on Data Type

1799.22.2.1 Writing Non-Array Properties with an Array Index

1799.22.2.2 Writing Array Properties with an Array Index that is Out of Range

1809.22.2.3 Writing with a Property Value Having the Wrong Datatype

1809.22.2.4 Writing with a Property Value that is Out of Range

1819.23 WritePropertyMultiple Service Execution Tests

1819.23.1.1 Writing a Single Property to a Single Object

1829.23.1.2 Writing Multiple properties to a Single Object

1829.23.1.3 Writing a Single Property to Multiple Objects

1839.23.1.4 Writing Multiple Properties to Multiple Objects

1839.23.1.X4 Writing an Array Size

1849.23.2.1 Writing Multiple Properties with a Property Access Error

1849.23.2.2 Writing Multiple Properties with an Object Access Error

1859.23.2.3 Writing Multiple Properties with a Write Access Error

1869.23.2.4 Writing Non-Array Properties with an Array Index

1869.23.2.5 Writing Array Properties with an Array Index that is Out of Range

1879.23.2.6 Writing with a Property Value Having the Wrong Datatype

1879.23.2.7 Writing with a Property Value that is Out of Range

1889.23.2.X1 WritePropertyMultiple Reject Test

1889.24 DeviceCommunicationControl Service Execution Test

1889.24.1 Positive DeviceCommunicationControl Service Execution Tests

1889.24.1.1 Indefinite Time Duration Restored by DeviceCommunicationControl

1899.24.1.2 Indefinite Time Duration Restored by ReinitializeDevice

1909.24.1.3 Finite Time Duration

1909.24.1.5 Finite Time Duration Restored by ReinitializeDevice

1919.24.2.2 Missing Password

1919.30 TimeSynchronization Service Execution Tests

1919.30.1 Positive TimeSynchronization Service Execution Tests

1919.30.1.1 TimeSynchronization Local Broadcast

1929.30.1.2 TimeSynchronization Directed to the IUT

1929.31 UTCTimeSynchronization Service Execution Tests

1929.31.1 Positive UTCTimeSynchronization Service Execution Tests

1939.31.1.1 UTCTimeSynchronization Local Broadcast

1949.31.1.2 UTCTimeSynchronization Directed to the IUT

1949.32 Who-Has Service Execution Tests

1949.32.1 Execution of Who-Has Service Requests Originating from the Local Network

1949.32.1.1 Object ID Version with No Device Range

1959.32.1.2 Object Name Version with no Device Range

1959.32.1.3 Object ID Version with IUT Inside of the Device Range

1959.32.1.4 Object ID Version with IUT Outside of the Device Range

1969.32.1.5 Object Name Version with IUT Inside of the Device Range

1969.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range

1979.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range

1979.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range

1989.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range

1989.32.1.11 Object Name Version, Directed to a Specific MAC Address

1999.32.1.X1 Who-Has After Object_Name Changed

1999.32.1.X2 Who-Has After Object_Identifier Changed

2009.32.2.1 Object ID Version, Global Broadcast from a Remote Network

2019.32.2.2 Object ID Version, Remote Broadcast

20110 Network Layer Protocol Tests

20110.1 Processing Application Layer Messages Originating from Remote Networks

20210.2 Router Functionality Tests

20210.2.2 Processing Network Layer Messages

20210.2.2.7.1 Unknown Network

20210.2.2.7.2 Unknown Network Layer Message Type

20310.2.2.7.3 Unknown Network Layer Message Type For Someone Else

20410.6
Virtual Routing Functionality Tests

20510.6.1 Startup

20610.6.2 Processing Network Layer Messages

20610.6.2.1 Execution of Who-Is-Router-To-Network

20610.6.2.1.1 No Specified Network Number

20610.6.2.1.2 A Known Remote Network Number is Specified

20610.6.2.1.3 A Network Number is Specified and the Router Does Not Respond

20710.6.2.1.4 An Unknown and Unreachable Network Number is Specified

20710.6.2.2
Reject-Message-To-Network

20710.6.2.2.1 Unknown Network

20810.6.2.2.2 Unknown Network Layer Message Type

20810.6.3 Routing of Unicast APDUs

20810.6.3.1
Route Request Message from a Local Device to a Virtual Device and Route Response Message from the Virtual Device to the Local Device

20910.6.3.2
Route Request Message from a Virtual Device to a Local Device

21010.6.3.3
Route Request Message from a Remote Device to a Virtual Device and Route Response Message from the Virtual Device to the Remote Device

21010.6.3.4
Route Request Message from a Virtual Device to a Remote Device

21110.6.3.5
Unicast Messages That Should Not Be Routed

21110.6.3.5.1
Unknown Network

21210.6.3.5.2 Network Reachable Through the Same Port

21210.6.4
Routing of Broadcast APDUs to Virtual Devices

21210.6.4.1
Broadcasts that Should Be Ignored

21510.6.4.2
Route Global Broadcast from a Local Device to Virtual Devices

21710.6.4.3
Route Global Broadcast from a Remote Device to Virtual Devices

21910.6.4.4
Route Remote Broadcast from a Local Device to Virtual Devices

21910.6.4.5
Route Remote Broadcast from a Remote Device to Virtual Devices

22010.6.4.6
Route Global Broadcast Message from a Virtual Device

22010.6.4.7
Route Remote Broadcast Message from a Virtual Device to a Local Network

22010.6.4.8
Route Remote Broadcast Message from a Virtual Device to a Remote Network

22110.6.5
Hop Count Protection

22110.6.6
Network Layer Priority

22310.6.7 Multiple Devices on a Single Virtual Network

22310.6.7.1
Who-Is Specifying Different Device ID

22410.6.7.2
Who-Has Specifying Different Device ID

22410.6.7.3
Read of Object Not Contained by Virtual Device

22510.6.7.4
Who-Is Specifying Unknown Device Ids

22510.6.7.5
Who-Has Specifying Unknown Device Ids

22613 Special Functionality Tests

22613.1
Segmentation

22613.1.12.1 IUT Does Not Support Segmented Response

22613.2 Time Master

22613.2.1 TimeSynchronization Recipients Test, Protocol_Revision < 7

22713.2.2 TimeSynchronization Recipients Test, Protocol_Revision ≥= 7

22813.2.3 UTCTimeSynchronization Recipients Test

22913.2.4 Time_Synchronization_Interval Test

22913.2.5 UTC Time_Synchronization_Interval Test

23013.2.6 Align_Intervals and Interval_Offset TimeSynchronization Test

23113.2.7 Align_Intervals and Interval_Offset UTCTimeSynchronization Test

23313.X2 Application State Machine Tests

23313.X2.1 APDU Retry and Timeout Test

23313.X6 Workstation Scheduling Tests

24513.X6.1 Read and Present a Weekly_Schedule

24613.X6.2 Modify a Weekly_Schedule

24613.X6.2.1 Modify a Weekly_Schedule by Changing the Time of a BACnetTimeValue

24613.X6.2.2 Modify a Weekly_Schedule by Changing the Value of a BACnetTimeValue

24613.X6.2.3 Modify a Weekly_Schedule by Deleting a BACnetTimeValue

24613.X6.2.4 Modify a Weekly_Schedule by Adding a BACnetTimeValue

24713.X6.3 Read and Present a Complex Schedule

24713.X6.4 Modify an Exception_Schedule

24713.X6.4.1 Modify an Exception_Schedule by changing the time of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarEntry

24813.X6.4.2 Modify an Exception_Schedule by changing the value of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarEntry

24813.X6.4.3 Modify an Exception_Schedule by deleting a BACnetTimeValue from the listofTimeValues of a BACnetSpecialEvent with period of choice calendarEntry

24813.X6.4.4 Modify an Exception_Schedule by adding a BACnetTimeValue to the listOfTimeValues of a BACnetSpecialEvent with period of choice calendarEntry

24913.X6.4.5 Modify an Exception_Schedule by changing the eventPriority of a BACnetSpecialEvent with period of choice calendarEntry

24913.X6.4.6 Modify an Exception_Schedule by deleting a BACnetSpecialEvent with period of choice calendarEntry

24913.X6.4.7 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarEntry of choice Date

25013.X6.4.8 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarEntry of choice DateRange

25013.X6.4.9 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarEntry of choice WeekNDay

25013.X6.4.10 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarReference

25113.X6.4.11 Modify an Exception_Schedule by changing the time of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference

25113.X6.4.12 Modify an Exception_Schedule by changing the value of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference

25113.X6.4.13 Modify an Exception_Schedule by deleting a BACnetTimeValue from the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference

25113.X6.4.14 Modify an Exception_Schedule by adding a BACnetTimeValue to the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference

25213.X6.4.15 Modify an Exception_Schedule by deleting a BACnetSpecialEvent with period of choice calendarReference

25213.X6.5 Modify a Calendar Object

25213.X6.5.1 Modify a Calendar by deleting a BACnetCalendarEntry from the Date_List

25213.X6.5.2 Modify a Calendar by adding a BACnetCalendarEntry of choice Date to the Date_List

25313.X6.5.3 Modify a Calendar by adding a BACnetCalendarEntry of choice DateRange to the Date_List

25313.X6.5.4 Modify a Calendar by adding a BACnetCalendarEntry of choice WeekNDay to the Date_List

25313.X6.6 Modify a Self-inconsistent Schedule to be Consistent

25413.X6.7 Is able to change the datatype that a Schedule object schedules

255K.1 Data Sharing BIBBs

255K.1.X1 BIBB - Data Sharing - ReadRange-A (DS-RR-A)

255K.1.X2 BIBB - Data Sharing-ReadRange-B (DS-RR-B)

1 Purpose

This document contains tests defined by the BTL that are not included in ANSI/ASHRAE Standard 135.1-2007 or are modified versions of tests in 135.1. These tests are used by the BTL testing process and are referenced by the BTL Test Plan document.

Most of the tests defined in this document will be submitted to SSPC 135. Those that are submitted will be removed from future versions of this document as they are accepted/rejected by the SSPC 135 and 135.1 is updated.

Some of the tests are interim tests defined by the BTL because the test tools are not adequate for testing the particular functionality. These tests will be removed once the tests in SSPC 135.1 can be implemented by the BTL. Examples of such tests are the MS/TP tests.

For those tests that will be submitted to the SSPC 135, the test numbering is based on the numbers that the test would have if they were included in 135.1.

2 Interim Data Link Layer Tests

2.2 MS/TP Data Link Layer Tests

Pending the development of a Test Device (TD) that can accurately perform the MS/TP state machine tests specified in 135.1 clause 12.1, the interim test plans described herein shall be used to indirectly test the interoperability of an implementation’s MS/TP data link layer. These tests are temporary until the MS/TP state machine tests in 135.1 can be implemented.

Since the TD is installed on the non-MS/TP side of a reference router, these tests do not cover strict conformance to the MS/TP data link layer. The methodology is to install the IUT on an MS/TP network containing reference devices that are known to conform to BACnet clause 9 and verify that the TD can exchange data with the IUT. A serial analyzer will also be employed on the MS/TP network to verify that the IUT meets the timing requirements of the MS/TP data link layer and does not introduce or cause token-passing anomalies.

These tests require the use of a reference MS/TP router and a reference MS/TP master device. These devices will be selected from a pool of qualified devices that are to be submitted by members of the BMA. The BTL tester is free to select any of the qualified references devices to use during the test, and the identity of the reference devices will not be published. The criteria for qualifying the reference devices is virtually identical to the test plans referenced here, with the addition of a few tests for proper formation of the NPCI by the reference router.

General Test Setup:

Install a reference MS/TP router at MS/TP node address <A>.

Install a reference MS/TP master device at node address <C>.

Install the IUT at node address .

[image: image1.wmf]R

e

f

e

r

e

n

c

e

R

o

u

t

e

r

I

U

T

R

e

f

e

r

e

n

c

e

M

a

s

t

e

r

T

D

N

o

d

e

a

d

d

r

e

s

s

<

B

>

N

o

d

e

a

d

d

r

e

s

s

<

C

>

N

o

d

e

a

d

d

r

e

s

s

<

A

>

M

S

/

T

P

N

e

t

w

o

r

k

The MS/TP node addresses are not critical, but must meet these requirements:

	<A> = as low as possible, 1 is ideal

	 = <A> + 2 or higher (this address changes during testing)

	<C> = + 2 or higher

Recommended Test Tools:

Serial analyzer = Any serial analyzer that meets the following requirements:

1. Each received octet is time stamped with 1msec accuracy.

2. The serial analyzer can support the baud rates being tested. (This may require a clock doubled UART).

3. Captured data can be saved and reloaded, including the time stamp information.

4. The serial analyzer is currently available for purchase.

Other desirable traits:

1. A scripting language that would allow MSTP frames to be decoded, either online or offline.

2. Export a captured session to a text file, including time stamp information. (This would provide the ability for advanced analysis of the data, such as scanning the data for timing anomalies).

Serial Analyzer Measurement Tolerance:

When measuring the silence time between MSTP frames, the desired measurement is the elapsed time from the last bit transmitted of the first frame to the first bit transmitted in the following frame. When using a serial analyzer that applies a time stamp to each octet, taking the difference between the time stamps introduces an error equal to the transmission time of one octet because the difference between the time stamps is actually the elapsed time from the last bit of the last octet of the first frame, to the last bit (not the first bit) of the first octet in the following frame.

Also, since the serial analyzer is only accurate to the nearest millisecond, all measurements are ± 1 millisecond.

As a result of these measurement inaccuracies, all measurements of silence time between frames that must be less than a specified amount are allowed to be as much as 2 msec milliseconds greater than the specified limit, and all measurements of silence time between frames that must be greater than a specified amount are allowed to be as much as 1 millisecond less that the specified limit. The following terms are defined to represent these measurement tolerances:

Tpos_err = 2 milliseconds

Tneg_err = 1 millisecond

Oscilloscope = Agilent 54620 series. This scope has a 2MB sample memory, which is useful for capturing data for an extended time and then zooming in on the details after the capture is complete. It can also “layer” the samples using 32 levels of display intensity, which makes it easier to spot timing anomalies.

2.2.1 Verify Tpostdrive w/ Oscilloscope

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: Verify that the time between the transmission of the last bit in a frame and the time that the IUT stops driving its 485 transmitter is 15 bit times or less.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:

1. Elicit the transmission of any frame type from the IUT. For IUTs that are master nodes, any token frame or Poll_For_Master frame will be satisfactory. For IUTs that are slave nodes, send any request to the slave node that elicits a response frame from the slave.

2. With an oscilloscope, measure the time interval from the trailing edge of the last stop bit transmitted by the IUT to the time that the EIA-485 voltage level returns to idle. If the IUT employs a “padding” octet of X’FF’ as the last octet of every frame, then the time should be measured from the trailing edge of the stop bit of the octet that precedes the X’FF’ “pad” octet.

3. Fail the IUT if the time interval measured in step 2 is greater than the time intervals shown below for each baud rate.

9600 baud:
fail if interval is greater than 1,562 uSeconds

19200 baud:
fail if interval is greater than 781 uSeconds

38400 baud:
fail if interval is greater than 391 uSeconds

76800 baud:
fail if interval is greater than 195 uSeconds

x baud:

fail if interval is greater than (15/x) seconds

2.2.2 Verify Tframe_gap w/ Oscilloscope

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: Verify that the maximum idle time between data octets when transmitting a frame is 20 bit times or less.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:
1. Elicit the transmission of any data frame from the IUT.

2. With an oscilloscope, measure the longest EIA-485 idle time that appears between octets within the data frame transmitted by the IUT. If there is no idle time between octets, pass the IUT.

3. Fail the IUT if the time measured in step 2 is greater than the time intervals shown below for each baud rate.

9600 baud:
fail if interval is greater than 2,083 uSeconds

19200 baud:
fail if interval is greater than 1,042 uSeconds

38400 baud:
fail if interval is greater than 521 uSeconds

76800 baud:
fail if interval is greater than 261 uSeconds

x baud:

fail if interval is greater than (20/x) seconds

2.2.3 Verify Tturnaround w/ Oscilloscope

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: Verify that the IUT waits at least 40 bit times before enabling its 485 transmitter after the reception of the last octet of a frame.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:
Elicit the transmission of any frame type from the IUT. For IUTs that are master nodes, any frame sent after the IUT receives a Token frame or a Poll_For_Master frame will be satisfactory. For IUTs that are slave nodes, send any request to the slave node that elicits a response frame from the slave.

With an oscilloscope, measure the time interval from the trailing edge of the last stop bit in the frame transmitted by the reference master, to the point where the EIA-485 voltage becomes driven by the IUT at the beginning of the frame transmitted by the IUT. If the reference master employs a “padding” octet of X’FF’ as the last octet of every frame, then the time should be measured starting from the trailing edge of the stop bit of the octet that precedes the X’FF’ “pad” octet in the frame transmitted by the reference master.

Fail the IUT if the time measured in step 2 is less than the time intervals shown below for each baud rate.

 9600 baud:
fail if interval is less than 4,167 uSeconds

19200 baud:
fail if interval is less than 2,083 uSeconds

38400 baud:
fail if interval is less than 1,042 uSeconds

76800 baud:
fail if interval is less than 521 uSeconds

x baud:

fail if interval is less than (40/x) seconds

2.2.4 Verify Treply_delay w/ Serial Analyzer

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: Verify that the time between a DER frame sent to the IUT and the first octet of a reply frame or Reply Postponed frame from the IUT is no longer than 250 milliseconds.
Setup: Run the IUT and a Reference Router on the same MS/TP network.

Note to Tester: The 250 millisecond time limit can be stressed by making a DER request which requires a large packet (a packet size approaching the 501 byte MS/TP limit) to be sent in response. For example an RPM request, if supported, for several properties or for “all” from the device object could require the IUT to construct and issue a large packet in response.

Procedure:

1. Power on a reference router and the IUT on an MSTP segment (wait several seconds). Sniff the link using the serial analyzer.

On a VTS machine on the Ethernet side of the router send a read property request to the IUT.

Stop the serial analyzer and view the sniffed link created from the setup procedures.

If the time difference between the last octet of the Type 5 frame sent by the VTS machine and the first octet of the Type 6 or 7 frame sent by the IUT is greater than 250 msec + Tpos_err, then fail the IUT. (The type 6 or 7 frame should be the next captured frame after the Type 5 frame.)

2.2.5 Verify Tusage_delay w/ Serial Analyzer

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test concept: Verify that the IUT begins using the token within 15 msec. of receiving the last octet of a token frame. (The same 15msec. usage_delay applies when responding to Poll For Master.)

Setup: Run the IUT and a reference master on the same MS/TP network.

Procedure for Token tests:

2. Power on a Reference Master and the IUT on an MS/TP segment (wait several seconds). Sniff the link using the serial analyzer.

Sniff the link for 10 seconds then stop the sniff.

If the time difference between the last octet of any Type 0 frame (token) sent by the reference master and the first octet transmitted by the IUT is greater than 15 msec + Tpos_err, then fail the IUT.

Procedure for Poll for Master tests: (Considering that the IUT address must be less than or equal to the Max_Master property as set in the reference device and cannot be exactly one greater than the reference device’s address)

3. Power on the IUT on the MSTP segment.

4. Begin sniffing the link. Make sure the IUT is Polling for Master

5. Power on the Reference Master on the MSTP segment. This should generate a Poll for Master from the Reference Master.

6. Continue sniffing the link until the Reference Master sends a poll for master to the IUT and the IUT responds.

7. Note: Some IUTs will not begin Polling for Master if they are the first device booted up on the segment. In which case steps one and two should be skipped and the following procedures should be used. The Reference Master should be booted up then the IUT should be booted up then the Reference Master should be powered down then go to step 3.

8. View the sniffed link from the setup procedures.

9. If the time difference between the last octet of any Poll for Master frame sent to the IUT by the Reference Master and the first octet transmitted by the IUT is greater than 15 msec + Tpos_err, then fail the IUT.

2.2.6 Verify Npoll w/ Serial Analyzer

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: Verify that the Poll for Master cycle is executed after 52 tokens are received, but not before 50 tokens are received.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:
10. Power on the reference device and IUT on an MS/TP segment (wait several seconds). Sniff the link using the serial analyzer.

11. Separate the addresses of the reference device and the IUT enough so that both devices are able to Poll. The reason for this is because the MS/TP nodes will not begin a Poll for Master cycle if the next device is the device +1.

12. After about 10 seconds, stop the serial analyzer.

13. View the sniffed data created from the setup procedures.

14. Count the number of Type 0 frames transmitted by the IUT on the MS/TP network between the end of one of the IUT’s Poll For Master cycles and the beginning of the next IUT’s Poll For Master cycles. Fail the IUT if this count is greater than 52 or less then 50.

2.2.7 Verify Tusage_timeout w/ Serial Analyzer

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: Verify that the IUT waits at least 20 milliseconds but no longer than 100 milliseconds for another master node to begin using the token or reply to a Poll_For_Master frame.

Setup: Set the Reference Master node address to -1. Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:

15. Power on a Reference Master and the IUT on an MSTP segment (wait several seconds). Sniff the link using the serial analyzer.

16. Sniff the link until token passing is established between the IUT and the Reference Master, then power off the reference master.

17. Continue to run the serial analyzer for 10 more seconds, then stop the data capture.

18. Find the place in the data capture where the Reference Master was powered off. The IUT should have sent a type 0 frame to the reference master, and when the reference master did not use the token (because it was powered off), the IUT should have followed the type 0 frame with one and only one additional type 0 frame (token retry) followed with a series of type 1 frames.

19. If the time difference between the last octet of the type 0 frame sent by the IUT and the first octet of the immediately following type 1 frame transmitted by the IUT is less than 20 msec - Tneg_err or greater than 100 msec + Tpos_err, then fail the IUT.

20. Using the same data capture, measure the time gap (last character to first character) between any two type 1 frames (Poll For Master, or PFM) sent by the IUT. If the time difference is less than 20 msec - Tneg_err or greater than 100 msec + Tpos_err, then fail the IUT.

2.2.8 Max_Master test

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

21. Verify the existence of the Max_Master property in the Device Object of the IUT using ReadProperty. If Max_Master does not exist, fail the IUT.

22. If the IUT PICS indicates that Max_Master is writable, use WriteProperty to set it to the value 127. (The IUT may require a restart for the new value to take effect).

23. If Max_Master is not writable and is not fixed at 127, fail IUT.

2.2.9 Max_Info_Frames Test

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

24. Verify the existence of the Max_Info_Frames property in the Device Object of the IUT using ReadProperty. If Max_Info_Frames does not exist, fail the IUT.

25. If the IUT PICS indicates that Max_Info_Frames is writable, use WriteProperty to set it to the value of 2.

26. If the checklist indicates that Max_Info_Frames is configurable make this value 2.

27. If Max_Info_Frames is not configurable and is not fixed at 1, fail IUT.

2.2.10 Master Node Data Frame Test

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: This test verifies that the IUT can properly receive and transmit decode simple MS/TP data frames.

28. If the IUT supports DM-DDB-B, perform test 135.1 clause 9.30.2.2 (Who-Is, General Inquiry, Remote Broadcast) on the IUT and verify the I-Am response. (This tests for proper reception of MS/TP broadcasts and transmission of MS/TP broadcasts).

29. Perform a ReadProperty of any property (135.1, 9.15.1) to verify correct reception and transmission of unicast messages.

2.2.11 Poll For Master w/ Serial Analyzer

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: This tests that a master node performs the poll for master sequence properly.

Setup: Run the IUT with the reference router at address <A> and reference master at address <C> on the same MS/TP network. Start to capture data with the serial analyzer.

30. Power off the IUT and set its address () equal to <A> + 2. Make sure is also less than <C> - 1.

31. Power on the IUT.

32. If the IUT does not respond to Poll For Master from <A>, fail the IUT.

33. Verify that IUT periodically transmits Poll For Master frames to nodes + 1 through <C> -1. It should also have transmitted only ONE Poll For Master to node <C>.

34. Power off the IUT, and set its address to <C> - 1. Power on the IUT.

35. Verify that the IUT sends ONE Poll For Master frame to node <C>, and then ceases to transmit any Poll For Master frames.

36. Power off the IUT and the reference master at address <C>. Make sure that address <A> is not zero. Power on the IUT, so that the IUT and reference router are the only nodes on the network.

37. Verify that the IUT periodically transmits Poll For Master frames to nodes + 1 through its own Max_Master setting, and nodes zero through <A> -1. It should also send ONE Poll For Master to node <A>.

38. Power off the IUT. Set its address equal to its own Max_Master setting. Power on the IUT.

39. Verify that the IUT periodically transmits Poll For Master frames to nodes zero through node <A> - 1. It should also send ONE Poll For Master to node <A>.

2.2.12 Slave Node Data Frame Test

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: This test verifies that the IUT can properly receive and transmit decode simple MS/TP data frames.

40. If the IUT supports DM-TS-B, send a Remote Broadcast TimeSynchronization service and verify the time change in the IUT Device Object. (This tests for proper reception of MS/TP broadcasts in a slave device).

41. Perform a ReadProperty of any property (135.1, 9.15.1) to verify correct reception and transmission of unicast messages.

2.2.13 Sole Master Test

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: This test verifies that the IUT properly initiates Poll For Master frames when it is the only node installed on the network. This test is only required for routers because non-router master nodes are permitted to “lurk” on the network in the absence of MS/TP traffic. (Lurking is useful for auto-baud detection and detecting different network types, but routers are not permitted to lurk and therefore must begin transmitting Poll For Master frames after startup).

Setup: Power off all of the nodes on the MS/TP network, including the IUT. The node address of the IUT can be set to any address 0 through 127, but it should be less than or equal to its own Max_Master property. The IUT node address will be referred to as address . Start capturing data with the serial analyzer.

42. Power on the IUT.

43. After the IUT initializes (which may take as long as a few minutes, but is not limited), the IUT should start transmitting Poll For Master frames, starting with address +1, through address Max_Master, followed by address 0, through address -1. In other words, a complete circle starting with the node address immediately higher than itself, wrapping around to zero after the Max_Master, and ending with the address immediately below itself. This cycle should repeat indefinitely, but data frames and/or a short delay may appear between the Poll For Master frame sent to -1 and the Poll For Master frame sent to +1. (The IUT can use the token 50 times after each complete Poll For Master cycle, which could appear as a short processing delay if there are no data frames to send, or as many as [50*Max_Info_Frames] data frames).

44. If the IUT does not exhibit the behavior described in step 2, fail the IUT.

2.2.14 MS/TP Network Startup Tests (IUT power on Variation)

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Purpose: Verify that the IUT can join a
ignalled
ng MS/TP network when the IUT is introduced into the MS/TP network from a power-on scenario.

Test Concept: A network of reference masters is constructed and is turned on with the IUT remaining off. Once the network achieves normal network operation, the IUT is connected to the network and powered on. The network is monitored to verify that the IUT successfully joins the network within a reasonable time period.

This test should be repeated both with a single reference master and multiple reference masters.

Setup: The test starts with an MS/TP network comprised of one or more reference master devices that has achieved normal network operation. Normal network operation should be verified using a serial analyzer. If the IUT does not autobaud, then it shall be configured with the same baud rate of the operating network. The IUT shall be configured with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master in use by the reference masters.

Test Steps:

45. Power on the IUT.

CHECK (the IUT does not generate any packets until it receives a PollForMaster frame).

CHECK (verify with the serial analyzer that the IUT correctly joins the MS/TP network by answering a PollForMaster destined for its MAC address, accepting a Token, and generating PollForMaster frames and subsequently passing the Token).

Passing Result: Note that the IUT may take a considerable amount of time before accepting Poll For Master Frames. The duration of the CHECK in step 3 must be sufficient duration for the IUT as defined by the vendor.

2.2.15 MS/TP Network Startup Tests (IUTs wire plugged in)

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: A network of reference masters is constructed and is turned on with the IUT disconnected. Once the network achieves normal network operation, the IUT is powered on. Once the IUT reaches the Sole Master state, the IUT is connected to the network. The network is monitored to verify that the IUT successfully joins the network within a reasonable time period.

This test should be repeated both with a single reference master and multiple reference masters.

Test Configuration: The test starts with an MS/TP network comprised of one or more reference master devices that has achieved normal network operation. Normal network operation shall be verified using a serial analyzer. If the IUT does not autobaud, then it shall be configured with the baud rate of the operating network. The IUT shall be configured with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master as is used by the reference masters.

If the IUT lurks until it detects traffic after power on, then this test shall be skipped. Note that devices that route to/from MS/TP are not allowed to lurk and must pass this test.

The time, Time_to_join, in step 5 is 60 Seconds. This value is selected as a reasonable time that users should expect of BTL listed devices. The exact time is dependant on implementation and the sequence of events that follow the joining of two live networks. The time will be the sum of the time duration of collisions, time to start a PollForMaster cycle, and the time to poll and receive a response from the other master. (This total time cannot be calculated as the standard does not specify how often the master node state machine must be run – only that timers must have a 5ms resolution. As well, it is possible that the master node could be sending out data frames in between each PollForMaster.)

Test Steps:
46. Power on IUT without the MS/TP wire plugged into the IUT.

WAIT a vendor specified time (for device startup and/or auto baud completion).

CHECK (verify with a serial analyzer that the IUT generates Poll For Master frames).

Plug the MS/TP cable into the IUT to join the IUT to the MS/TP network.

CHECK (verify with the serial analyzer that the IUT joins the MS/TP network within Time_to_join seconds)

2.2.16 MS/TP Network Startup Tests (IUTs wire unplugged)

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Test Concept: A network of reference masters is constructed and is turned on with the IUT connected. Once the network achieves normal network operation, the IUT is disconnected from the network. Once the IUT reaches the Sole Master state, the IUT is re-connected to the network. The network is monitored to verify that the IUT successfully rejoins the network within a reasonable time period.

This test should be repeated both with a single reference master and multiple reference masters.

Test Configuration: The test starts with an MS/TP network comprised of one or more reference master devices and the IUT that has achieved normal network operation. Normal network operation shall be verified using a serial analyzer. If the IUT does not autobaud, then it shall be configured with the baud rate of the operating network. The IUT shall be configured with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master as is used by the reference masters.

The time, Time_to_join, in step 6 is 60 Seconds. This value is selected as a reasonable time that users should expect of BTL listed devices. The exact time is dependant on implementation and the sequence of events that follow the joining of two live networks. The time will be the sum of the time duration of collisions, time to start a PollForMaster cycle, and the time to poll and receive a response from the other master. (This total time cannot be calculated as the standard does not specify how often the master node state machine must be run – only that timers must have a 5ms resolution. As well, it is possible that the master node could be sending out data frames in between each PollForMaster.)

Note that if the IUT possesses the token before step 2, the wait time in step 3 will be significantly less than the time indicated. . The time between step 2 and step 5 should only be long enough to perform step 4 as some devices may revert back to lurking if separated from the network for too long.

Test Steps:

1. CHECK (verify with the serial analyzer that the IUT is actively in the network)

2. Unplug the MS/TP cable from the IUT.

3. WAIT Tno_token + Tslot * TS

4. CHECK (verify with a serial analyzer that the IUT generates Poll For Master frames and therefore declares SoleMaster).

5. Plug the MS/TP cable into the IUT to join the IUT to the MS/TP network

6. CHECK (verify with the serial analyzer that the IUT joins the MS/TP network within Time_to_join seconds)

2.2.17 MS/TP Network Startup Tests (Reference device joins the MS/TP network)

Reason for Change: No test exists for this functionality. This test is included in CLB-014.

Purpose: Verify that the IUT can allow other devices to be introduced into a working MS/TP network of which the IUT is the SoleMaster.

Setup: An existing MS/TP network shall be comprised of the IUT. Normal network operation shall be verified using a serial analyzer. In this scenario (SoleMaster), the only frames being transmitted should be Poll For Master Frames generated by the IUT. Reference Master A should be configured with a MAC address less than the IUT and a Max_Master greater than the IUT's MAC address. Reference Master B should be configured with a MAC address greater than the IUT and a Max_Master greater than the IUT's MAC address. Reference Master A and B should be configured with the same baud rate as the IUT.

Test Steps:

47. Power on the IUT.

CHECK (verify with the serial analyzer that the IUT declares sole master and generates Poll For Master frames at TS+1).

Power on Reference Master A.

CHECK (verify that the IUT continues to send Poll for Master frames to successive addresses up to and including the Reference Master A MAC Address).

WAIT (until the Reference Master A sends a Reply to Poll for Master to the IUT).

CHECK (verify that the IUT sends a Token Frame to Reference Master A).

WAIT (until the Reference Master A sends a Poll for Master requests to all devices from its TS+1 to IUT).

CHECK (verify that the IUT sends a Reply to Poll for Master to Reference Master A).

WAIT (until the Reference Master A sends a Token Frame to IUT).

Power on Reference Master B.

CHECK (verify that IUT sends a Poll for Master to all devices from its TS+1 to Reference Master B).

WAIT (until Reference Master B sends a Reply to Poll for Master to IUT).

CHECK (verify that IUT sends a Token Frame to Reference Master B).

CHECK (verify that IUT is quiet until it receives another Token).

2.2.18 Verify Tno_token w/ Serial Analyzer

Reason for Change: No test exists for this functionality.

Purpose: Verify that the IUT waits at least 500 before declaration of loss of token and start behaving as sole master

Test Concept: A network of two reference masters and IUT is constructed and all are turned on Once the network achieves normal network operation, make one reference master (A) to send a Confirmed Request (Read Property or Read Property Multiple) to the other reference master (B). B is powered off or removed from the network before sending the reply. The network is monitored to verify that the IUT (C) does not take token in hand within 500 milliseconds.

Setup: The test starts with an MS/TP network comprised of two reference master devices and IUT that has achieved normal network operation. Normal network operation should be verified using a serial analyzer. If the IUT does not autobaud, then it shall be configured with the same baud rate of the operating network. The IUT shall be configured with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master in use by the reference masters.

Test Steps:

1.
VERIFY two reference masters (A & B) and IUT (C) achieved normal network operation

2.
MAKE one reference master device (A) to send Confirmed request, either Read Property or Read Property Multiple to other reference master device (B).

3.
Power Off or remove the reference Master B from the network before sending the reply.

4.
CHECK (verify with the serial analyzer that IUT does not take token in hand and start passing Poll For Master or pass token within 500 millisecond)

5.
If the IUT does exhibit the behavior described in step4, fail the IUT.

2.2.X1 Data Not For Us Test

Reason for Change: Addendum 135-2008z.3 Modify MS/TP State Machine to Ignore Data Not For Us.

Purpose: Verify that the IUT properly skips the complete data portion of frames not intended for the IUT.

Test Concept: Send a BACnet Data Not Expecting Reply frame that contains the frame pre-amble octet sequence to an address other that the IUT. Follow it immediately with a ReadProperty request for the IUT’s device object to ensure that the IUT will correctly receive and process the ReadProperty request.

Test Steps:

1.
TRANSMIT

Frame Type = BACnet Data Not Expecting Reply

Destination Address = (any Unicast address other than IUT),

Length = 7,

Data = (55 FF 05 FF 00 01 F5)

2.
TRANSMIT ReadProperty-Request

‘Object Identifier’
= (device, 4194303),

‘Property Identifier’
= Object_Name

3.
RECEIVE ReadProperty-Response

‘Object Identifier’
= (device, IUT),

‘Property Identifier’
= Object_Name,

‘Value’

= (any valid value)

2.3 ARCNET (twisted pair bus) Data Link Layer Tests

The ARCNET twisted pair bus is an alternate configuration of the standard ARCNET coax, and therefore, requires a different setup of electronics and chipset configuration. These tests verify that the setup and configuration has been followed in order to provide interoperability.

Since the TD is installed on the non-ARCNET side of a reference router, these tests do not cover strict conformance to the ARCNET data link layer. The methodology is to install the IUT on an ARCNET network containing reference devices that are known to conform to BACnet clause 8 using the twisted pair bus option and verify that the TD can exchange data with the IUT. An oscilloscope will also be employed on the ARCNET network to verify that the IUT meets the duty cycle and biasing requirements of the alternate ARCNET data link layer, as these items are critical to interoperability of ARCNET twisted pair bus. An ARCNET packet sniffer is useful, but not required.

These tests require the use of a reference ARCNET twisted pair bus router and a reference ARCNET twisted pair bus device. These devices will be selected from a pool of qualified devices that are to be submitted by members of the BMA. The tester is free to select any of the qualified references devices to use during the test, and the identity of the reference devices will not be published. The criteria for qualifying the reference devices is virtually identical to the test plans referenced here, with the addition of a few tests for proper formation of the NPCI by the reference router.

General Test Setup:

Install a reference ARCNET twisted pair bus router at ARCNET node address <A>.

Install a reference ARCNET twisted pair bus device at node address <C>.

Install the IUT at node address .

[image: image4.jpg]

The ARCNET node addresses are not critical, but must be unique and not zero.

Recommended Test Tools:

ARCNET packet sniffer = Any ARCNET packet sniffer that meets the following requirements:

1. Each packet is time stamped with 1msec accuracy.

2. The packet sniffer can support the baud rates being tested.

3. Captured data can be saved and reloaded, including the time stamp information.

4. The packet sniffer is currently available for purchase.

Other desirable traits:

5. A BACnet aware packet sniffer to allow ARCNET packets to be decoded, either online or offline.

6. Export a captured session to a text file, including time stamp information. (This would provide the ability for advanced analysis of the data, such as scanning the data for timing anomalies).

Oscilloscope = Agilent 54620 series or similar. This scope has a 2MB sample memory, which is useful for capturing data for an extended time and then zooming in on the details after the capture is complete. It can also "layer" the samples using 32 levels of display intensity, which makes it easier to spot timing anomalies.

2.3.1 Verify the Failsafe Biasing with an Oscilloscope

Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: Verify that failsafe biasing (see ARCNET specification 11.4.2, Fail-safe Bias) is at least 200mV. A maximum value is not specified, but the biasing should be such as to not excessively load the EIA-485 transceivers.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1) Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2) With an oscilloscope probe connected across the bus with the correct polarity, measure the Fail-Safe Bias.
[image: image5.wmf]IUT

(

R

1

-

2

)

Virtual Network

1

R

2

-

3

VD

1

B

VD

1

A

D

2

C

D

3

D

Network

2

TD

N

e

t

w

o

r

k

3

3) Fail the IUT if the Fail-Safe Bias is not at least 200mV.

2.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope

Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: The ARCNET chipset has the option of supporting either coax (normal) or twisted pair (differential driver). The differential driver mode utilizes a 50% duty cycle, while the normal method uses a 25% duty cycle for the bits on the wire. Verify that the duty cycle is 50% for ARCNET twisted pair bus.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1) Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2) With an oscilloscope probe connected across the bus with the correct polarity, measure the bit signal duty cycle (pulse width divided by the interpulse period).

3) Fail the IUT if the duty cycle is not 50% (with allowance for acceptable jitter).

3.x Common language used in tests

‘any valid value’
- Any valid value refers to any value of the correct data type and within the vendor’s range specified for the property this is applied to.

‘any appropriate password’ – Any password that meets the Configuration Requirements specified in the test or test section. Passwords when required by the vendor are required to be no more than 20 characters.

7 Object Support Tests

7.1 Read Support for Properties in the Test Database
Reason for Change: This test does not consider the IUT behavior in cases where a property either can not be read by ReadProperty or whose response may be too long to return in the given APDU and segment limitations of the IUT.
Dependencies: ReadProperty Service Execution Tests, 15.5.

Purpose: To verify that all properties of all objects can be read using BACnet ReadProperty and ReadPropertyMultiple services. The test is performed once using ReadProperty and once using ReadPropertyMultiple. When verifying array properties, the whole array shall be read without using an array index, where possible.

Test Steps:

1.
REPEAT X = (all objects in the IUT's database) DO {

REPEAT Y = (all properties in object X) DO {

IF (Y = property indicated as not accessible by ReadProperty Services) THEN

TRANSMIT ReadProperty-Request,

'Object Identifier' = X,

'Property Identifier' = Y

RECEIVE BACnet-Error-PDU,

Error Class = OBJECT | PROPERTY,

Error Code = READ_ACCESS_DENIED | OTHER

ELSE IF (Y = any property of type ARRAY and is too long to return given the

APDU and segmentation limitations of the IUT) THEN

TRANSMIT ReadProperty-Request,

'Object Identifier' = X,

'Property Identifier' = Y

RECEIVE BACnet-Abort-PDU,

'Server’ = TRUE,

'Abort Reason' = SEGMENTATION_NOT_SUPPORTED |

BUFFER_OVERFLOW

TRANSMIT ReadProperty-Request,

'Object Identifier' = X,

'Property Identifier' = Y,

'Property Array Index' = 0

RECEIVE ReadProperty-ACK,

'Object Identifier' = X,

'PropertyIdentifier' = Y,

'Array Index' = 0,

'Property Value' = (any value specified in the EPICS, P)

REPEAT Z = (each index 1 through P of the property Y) DO {

VERIFY (X), Y = (the value for index Z of this property Y in

the EPICS), ARRAY INDEX = Z

}

ELSE

VERIFY (X), Y = (the value for this property specified in the EPICS)

}

}

Notes to Tester: For cases where the EPICS indicates that the value of a property is unspecified using the "?" symbol, any value that is of the correct datatype shall be considered to be a match.

Passing Result: Trying to read the Log_Buffer property of a Trend Log object by using BACnet ReadProperty and ReadPropertyMultiple services may result in an Error-PDU with an error class of OBJECT or PROPERTY and an error code of OTHER. Note, however, that while neither ASHRAE 135-2001 nor ASHRAE 135-2004 clearly define whether OTHER represents a valid error code in this case, Addendum b to ANSI/ASHRAE.
7.1.2 Non-documented Property Test

Reason for Change: Revised test to exclude special property identifiers.

Purpose: To verify that all properties contained in every object are documented in the EPICS.

Test Concept: For each object in the EPICS database, attempt to read each standard property that the EPICS does not document as being part of the object.

Test Steps:

1. REPEAT X = (a tester selected set of objects) DO {

 REPEAT Y = (0 through 511 except 8 (all), 80 (optional) and 105 (required)all (8), optional (80), and required (105)) DO {

 IF (the property Y is not in the EPICS for object X) THEN

 TRANSMIT ReadProperty-Request,

 'Object Identifier' = X,

 'Property Identifier' = Y

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = UNKNOWN_PROPERTY

 }

 }

Notes to Tester: The objects selected by the tester should include one instance of each supported object type. Where some instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the writability of a property, then one instance of each variant of that object type should be selected.

7.2 Write Support for Properties in Test Database

7.2.1.3 Octetstrings and Characterstrings
Reason for Change: The description here did not account for the Object_Name property which must be of minimum length of 1 not zero. Not in any SSPC proposal. Addendum 135-2008k-1 Add Support for UTF-8.
Properties with an octetstring or characterstring datatype shall be tested with a string of length zerothe minimum supported length, a string with the maximum supported length, and a string with some length between the two. The vendor shall provide the actual value of the maximum length string in the EPICS. See 4.4.2.
When testing character string properties in a device that supports UTF-8 (Protocol_Revision >= 10), at least one of the data values shall contain multi-byte characters.
7.2.2 Write Support Test Procedure

Reason for Change: This test did not account for restrictions placed on properties by the vendor. This is not in any new SSPC proposals.

Purpose: To verify that all writable properties of all objects can be written to using BACnet WriteProperty and WritePropertyMulitiple services. The test is performed once using WriteProperty and once using WritePropertyMultiple. When writing to array properties, the whole array shall be written without using an array index, where possible.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Test Steps:

1.
REPEAT X = (all objects in the IUT's database) DO {

REPEAT Y = (all writable properties in object X) DO {

REPEAT Z = (all values meeting the functional range requirements of 7.2.1, and any additional

restrictions placed on the allowable property values by the vendor using an English

language description for their allowed values for any property. Or by the object or property

definition) DO {

WRITE (X), Y = Z,

VERIFY (X), Y = Z

}

}

}

7.2.X Read-only Property Test

Reason for Change: This test is based on 135.1-2009i and corrects the use of the READ statement.

Purpose: To verify that properties marked as read-only in the EPICS are in fact read-only.

Test Concept: To each read-only (not writable and not conditionally writable) property in the EPICS, write the value of the property as read from the device and verify that an error is returned. Write another value that is within the acceptable range for the datatype and verify that an error is returned. If the property is a list and the IUT supports AddListElement, attempt to modify the property with AddListElement and verify that an error is returned. If the IUT does not support the WriteProperty service, then this test shall be skipped.

Test Steps:

1.
REPEAT X = (a tester selected set of objects) DO {

REPEAT Y = (all read-only properties in object X) DO {

 IF (the property is not an array) THEN

READ Z = X

READ Z = (X), property Y

TRANSMIT WriteProperty-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

'Property Value' =
Z

RECEIVE BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,

'Object Identifier' =

X,

'Property Identifier' =

Y,

'Property Value' =

(any value meeting the range requirements

of 7.2.1 except Z)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

IF (the IUT supports AddListElement and the property is a list) THEN

TRANSMIT AddListElement-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

List of Elements' =
(any elements value meeting the range requirements of 7.2.1 excluding those in Z)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

 ELSE

READ LEN = X, Array_Index = 0

READ LEN = (X), Y, Array_Index =0

IF (LEN > 0)

READ Z = X, Array Index = 1

READ Z = (X), Y, Array_Index=1

TRANSMIT WriteProperty-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

'Property Value' =
Z,

‘Array Index’ =
1

RECEIVE BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,

'Object Identifier' =

X,

'Property Identifier' =

Y,

'Property Value' =

(any value meeting the range requirements

of 7.2.1 except Z)

‘Array Index’ =
1

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

IF (the IUT supports AddListElement and the property is an array of lists) THEN

TRANSMIT AddListElement-Request,

'Object Identifier' =
X,

'Property Identifier' =
Y,

 'Array Index' =

1

 'List of Elements' =
(any elements value meeting the range requirements of 7.2.1 excluding those in Z)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

ELSE

TRANSMIT WriteProperty-Request,

'Object Identifier' =

X,

'Property Identifier' =

Y,

'Property Value' =

(any value meeting the range requirements

of 7.2.1)

RECEIVE BACnet-Error-PDU,

Error Class =

PROPERTY,

Error Code =

WRITE_ACCESS_DENIED

}

}

Notes to tester: When modifying a property, it is expected that an error class of PROPERTY with an error code of WRITE_ACCESS_DENIED is returned but the IUT may instead return an error_class of PROPERTY with an error_code of VALUE_OUT_OF_RANGE, or an error_class of RESOURCES with an error_code of NO_SPACE_TO_WRITE_PROPERTY. In the case that the property is an array, and it has no elements, then the IUT may return and error class of PROPERTY and an error code of INVALID_ARRAY_INDEX. The objects selected by the tester should include one instance of each supported object type. Where some instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the writability of a property, then one instance of each “flavor” of that object type should be selected.

7.2.X1 Date Pattern Properties Test
Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in dates and times.

Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. The value, written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT. The list of Specials comes from the Chapter 21 Application Types section on Date.
Test Steps:

1.
IF (Protocol_Revision is not present or Protocol_Revision < 4)

Specials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified)

ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)

Specials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month)

ELSE

Specials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month,

even days, odd days)

2.
REPEAT SV = (each value in Specials) DO {

WRITE P1 = (D1 updated with the value SV)

VERIFY P1 = (D1 updated with the value SV)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY portions of step 1.

7.2.X2 Time Pattern Properties Test

Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in dates and times.

Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being test, P1, is written with each of the special date field values to ensure that the property accepts them. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT.

Test Steps:

1.
REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {

WRITE P1 = (T1 updated with the value SV)

VERIFY P1 = (T1 updated with the value SV)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY portions of step 1.

7.2.X3 DateTime Pattern Properties Test

Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in dates and times.

Purpose: To verify that the property being tested accepts special date and time field values.

Test Concept: The property being tested, P1, is written with each of the special date and time field values to ensure that the property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value, written to the property is the date D1 and time T1 with one of its fields replaced with one of the date or time special values. If the property is a complex datatype which contains the BACnetDateTime the other fields in the value shall be set within the range accepted by the IUT. The list of DateSpecials comes from the Chapter 21 Application Types section on Date and the list of TimeSpecials comes from the Chapter 21 Application Types section on Time.
Test Steps:

1.
IF (Protocol_Revision is not present or Protocol_Revision < 4)

DateSpecials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified)

TimeSpecials = ()

ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)

DateSpecials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month)

ELSE

DateSpecials = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month,

even days, odd days)

2.
TimeSpecials = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)

3.
REPEAT SV = (each value in DateSpecials +TimeSpecials) DO {

WRITE P1 = (D1+T1 updated with the value SV)

VERIFY P1 = (D1+T1 updated with the value SV)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY portions of step 1.

7.2.X4 Date Non-Pattern Properties Test

Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in dates and times.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property does not accept them. A date is selected which is within the date range that the IUT will accept for the property. The value, V1, written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

1.
REPEAT SV = (year unspecified, month unspecified, day of month unspecified,

day of week unspecified, odd months, even months, last day of month,

even days, odd days) DO {

TRANSMIT WriteProperty-Request

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(V1 updated with the special value SV)

RECEIVE BACnet-Error-PDU

‘Error Class’ =

PROPERTY,

‘Error Code’ =

VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X5 Time Non-Pattern Properties Test

Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in dates and times.

Purpose: To verify that the property being tested does not accept special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property does not accept them. A time is selected which is within the time range that the IUT will accept for the property. The value, V1, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a complex datatype the other fields in the value shall be set within the range accepted by the IUT. This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

1.
REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)

TRANSMIT WriteProperty-Request

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(V1 updated with the special value SV)

RECEIVE BACnet-Error-PDU

‘Error Class’ =

PROPERTY,

‘Error Code’ =

VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X6 DateTime Non-Pattern Properties Test

Test needs to be defined …
7.3 Object Functionality Tests

7.3.1 Property Tests

7.3.1.3 Command Prioritization Test

Reason for Change: The test did not specify how to test a 2 stage multi-state object. No SSPC proposal exists for this test.
Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.19.

BACnet Reference Clause: 19.

Purpose: To verify that the command prioritization algorithm is properly implemented. This test applies to Analog Output, Analog Value, Binary Output, Binary Value, Multi-state Output, and Multi-state Value output and value objects that are commandable.

Test Concept: The TD selects three different values Vlow, Vmed, and Vhigh chosen from the valid values specified in 4.4.2. For binary datatypes, and 2 stage multi-state objects, Vlow and Vhigh shall be the same, and Vmed shall be different. The TD also selects three priorities Plow, Pmed, and Phigh, all between 1 and 5, such that numerically Plow > Pmed > Phigh. The selected values are written one at a time to Present_Value at the corresponding priority. The Present_Value and Priority_Array are checked to verify correct operation. Priorities numerically smaller than 6 (higher priority) are used to eliminate minimum on/off time considerations

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array with a priority higher than 6 have a value of NULL.

Test Steps:

1.
WRITE Present_Value = Vlow, PRIORITY = Plow
2.
VERIFY Present_Value = Vlow
3.
VERIFY Priority_Array = Vlow, ARRAY INDEX = Plow

4.
REPEAT Z = (each index 1 through 5 not equal to Plow) DO {

VERIFY Priority_Array = NULL, ARRAY INDEX = Z

}

5.
WRITE Present_Value = Vhigh, PRIORITY = Phigh
6.
VERIFY Present_Value = Vhigh
7.
VERIFY Priority_Array = Vhigh, ARRAY INDEX = Phigh

8.
REPEAT Z = (each index 1 through 5 not equal to Plow or Phigh) DO {

VERIFY Priority_Array = NULL, ARRAY INDEX = Z

}

9.
WRITE Present_Value = Vmed, PRIORITY = Pmed
10.
VERIFY Present_Value = Vhigh
11.
VERIFY Priority_Array = Vmed, ARRAY INDEX = Pmed

12.
REPEAT Z = (each index 1 through 5 not equal to Plow, Pmed or Phigh) DO {

VERIFY Priority_Array = NULL, ARRAY INDEX = Z

}

13.
WRITE Present_Value = NULL, PRIORITY = Phigh
14.
VERIFY Present_Value = Vmed
15.
REPEAT Z = (each index 1 through 5 not equal to Plow or Pmed) DO {

VERIFY Priority_Array = NULL, ARRAY INDEX = Z

}

16.
WRITE Present_Value = NULL, PRIORITY = Pmed
17.
VERIFY Present_Value = Vlow
18.
REPEAT Z = (each index 1 through 5 not equal to Plow) DO {

VERIFY Priority_Array = NULL, ARRAY INDEX = Z

}

19.
WRITE Present_Value = NULL, PRIORITY = Plow

20.
REPEAT Z = (each index 1 through 5) DO {

VERIFY Priority_Array = NULL, ARRAY INDEX = Z

}

7.3.1.6 Override of Minimum Time
Reason for Change: The notes for the tester were incorrect. There is no SSPC proposal for this change.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.19.

BACnet Reference Clause: 19.

Purpose: To verify that higher priority commands override minimum on or off times. If neither minimum on time or minimum off time is supported this test shall be omitted. This test applies to Binary Output and Binary Value objects.

Test Concept: The initial Present_Value of the object tested is set to INACTIVE and it is controlled at a priority numerically greater (lower priority) than 6. The object has been in this state long enough for any minimum on time to have expired. The Present_Value is written to with a value of ACTIVE at priority 7. The value of slot 6 of the Priority_Array is monitored to verify that it contains the value ACTIVE. Before the minimum on time expires the Present_Value is written to with a value of INACTIVE and a priority numerically lower (higher priority) than 6. This overrides the minimum on time and immediately initiates the minimum off time algorithm.

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array numerically less than 7 have a value of NULL and no internal algorithms are issuing commands to this object at a priority numerically lower (higher priority) that the priority that is currently controlling Present_Value.

Test Steps:

1.
WRITE Present_Value = ACTIVE, PRIORITY = 7

2.
VERIFY Present_Value = ACTIVE

3.
VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

4.
BEFORE Minimum_On_Time

WRITE Present_Value = INACTIVE, PRIORITY = (any value numerically lower than 6 (higher priority))

5.
VERIFY Present_Value = INACTIVE

6.
VERIFY Priority_Array = INACTIVE, PRIORITY = 6

Notes to Tester: If minimum on time is not supported but minimum off time is supported, this test should be conducted by using INACTIVE in steps 1 through 3 and ACTIVE in steps 4 through 76 and by using the Minimum_Off_Time in Step 4.

7.3.1.9 Binary Object Elapsed Active Time Tests

Reason for Change: Errors were pointed out via BTL-CR-0253.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.6.17, 12.6.18, 12.7.17, 12.7.18, 12.8.15, and 12.8.16.
Purpose: To verify that the properties of binary objects that collectively track active time function properly. If the Elapsed_Active_Time and Time_Of_Active_Time_Reset properties are not supported then this test shall be omitted. This test applies to Binary Input, Binary Output, and Binary Value objects.

Test Concept: The Present_Value of the binary object being tested is set to INACTIVE. The Elapsed_Active_Time property is checked to verify that it does not accumulate time while the object is in an INACTIVE state. The Present_Value is then set to ACTIVE. The Elapsed_Active_Time property is checked to verify that it is accumulating time while the object is in an ACTIVE state. The Present_Value is then set to INACTIVE and the Elapsed_Active_Time is reset. The Time_Of_Active_Time_Reset property is checked to verify that it has been updated.

Configuration Requirements: The object being tested shall be configured such that the Present_Value and Elapsed_Active_Time properties are writable or another means of changing these properties shall be provided.

Test Steps:

1.
IF (Present_Value is writable) THEN

WRITE Present_Value = INACTIVE

VERIFY Present_Value = INACTIVE

ELSE

MAKE (Present_Value = INACTIVE)

2.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time

3.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time,

'Property Value' =
(the elapsed active time, TELAPSED in seconds)

4.
WAIT (1 minute)

5.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time

6.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time,

'Property Value' =
(the same TELAPSED as step 3)

7.
IF (Present_Value is writable) THEN

WRITE Present_Value = ACTIVE

VERIFY Present_Value = ACTIVE

ELSE

MAKE (Present_Value = ACTIVE)

8.
WAIT (Internal Processing Fail Time + 30 seconds)

9.
IF (Present_Value is writable) THEN

WRITE Present_Value = INACTIVE

VERIFY Present_Value = INACTIVE

ELSE

MAKE (Present_Value = INACTIVE)

10.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time

11.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time,

'Property Value' =
(T: (TELAPSED + 30) (T ((TELAPSED + TimeX, where TimeX is the time between the beginning of step 7 and this step30 + Internal Processing Fail Time))

11.
IF (Present_Value is writable) THEN

WRITE Present_Value = INACTIVE

VERIFY Present_Value = INACTIVE

ELSE

MAKE (Present_Value = INACTIVE)

12.
IF (Elapsed_Active_Time is writable) THEN

WRITE Elapsed_Active_Time = 0

VERIFY Elapsed_Active_Time = 0

ELSE

MAKE (Elapsed_Active_Time = 0)

13.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date

14.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local Date,

'Property Value' =
(the current local date, D)

15.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time

16.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time,

'Property Value' =
(the current local time, TLOC)

17.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Time_Of_Active_Time_Reset

18.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Present_Value,

'Property Value' =
(a date and time such that the date = D and the time is approximately TLOC)

7.3.1.10 Event_Enable Tests

Reason For Change: The test does not call out what to do if the Event_Enable property is read-only and the IUT cannot be configured as specified in the Configuration Requirements. This test also contains an error in step 11. There should not be a wait after the event-triggering property is put into a FAULT state. There is no SSPC proposal for this test.
Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.23, 12.2.24, 12.3.20, 12.5.22, 12.6.26, 12.7.24, 12.11.10, 12.14.18, 12.15.18, 12.16.33, 12.17.17, 12.18.18, 12.19.18 and 12.23.23.

Purpose: To verify that notification messages are transmitted only if the bit in Event_Enable corresponding to the event transition has a value of TRUE. This test applies to Event Enrollment objects and Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Life Safety Point, Life Safety Zone, Loop, Multi-state Input, Multi-state Output, and Multi-state Value objects that support intrinsic reporting.

Test Concept: The IUT is configured such that the Event_Enable property indicates that some event transitions are to trigger an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that notification messages are transmitted only for those transitions for which the Event_Enable property has a value of TRUE.

Configuration Requirements: The Event_Enable property shall be configured with a value of TRUE for either the TO-OFFNORMAL transition or the TO-NORMAL transition and the other event transition shall have a value of FALSE. If the Event_Enable property is not configurable, follow the test steps as written and verify correct behavior for the value of the Event_Enable property. For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE). The referenced event-triggering property shall be set to a value that results in a NORMAL condition. If a Notification Class object is being used to configure recipient information the value of the Transitions parameter for all recipients shall be (TRUE, TRUE, TRUE).

In the test description below, "X" is used to designate the event-triggering property.

1.
VERIFY Event_State = NORMAL

2.
WAIT (Time_Delay + Notification Fail Time)

3.
IF (X is writable) THEN

WRITE X = (a value that is OFFNORMAL)

ELSE

MAKE (X have a value that is OFFNORMAL)

4.
WAIT (Time_Delay)

5.
BEFORE Notification Fail Time

IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =
(values appropriate to the event type)

ELSE

CHECK (verify that the IUT did not transmit an event notification message)

6.
VERIFY Event_State = OFFNORMAL

7.
IF (X is writable) THEN

WRITE X = (a value that is NORMAL)

ELSE

MAKE (X have a value that is NORMAL)

8.
WAIT (Time_Delay)

9.
BEFORE Notification Fail Time

IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
OFFNORMAL,

'To State' =

NORMAL,

'Event Values' =
(values appropriate to the event type)

ELSE

CHECK (verify that the IUT did not transmit an event notification message)

10.
VERIFY Event_State = NORMAL

11.
IF (the event-triggering object can be placed into a fault condition) THEN {

MAKE (the event-triggering object change to a fault condition)

BEFORE Notification Fail Time

IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =
(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
FAULT,

'Event Values' =
(values appropriate to the event type)

ELSE

CHECK (verify that the IUT did not transmit an event notification message)

VERIFY Event_State = FAULT

}

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.10.X1 Event_Enable Tests for Logging Objects
Reason For Change: There is no test for this functionality. This test is based on 135.1-2003 7.3.1.10. There is no SSPC proposal.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.23, 12.2.24, 12.3.20, 12.5.22, 12.6.26, 12.7.24, 12.11.10, 12.14.18, 12.15.18, 12.16.33, 12.17.17, 12.18.18, 12.19.18 and 12.23.23.

Purpose: To verify that notification messages are transmitted only if the bit in Event_Enable corresponding to the event transition has a value of TRUE. This test applies to the Logging objects that support intrinsic reporting.

Test Concept: The IUT is configured such that the Event_Enable property indicates that some event transitions are to trigger an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that notification messages are transmitted only for those transitions for which the Event_Enable property has a value of TRUE.

Configuration Requirements: If a Notification Class object is being used to configure recipient information the value of the Transitions parameter for all recipients shall be (TRUE, TRUE, TRUE).

1.
VERIFY Event_State = NORMAL
2.
MAKE(the TO-NORMAL bit of the Event_Enable property equal to TRUE)
3.
MAKE (Trend Log object collect number of records specified by Notification_Threshold)

4.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(any log object),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
BUFFER_READY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =

NORMAL,

'Event Values' =
(BACnetDeviceObjectPropertyReference– referring to the buffer property of the log object),

(any valid value),

(any valid value)

TRANSMIT SimpleAck-PDU
5.
VERIFY Event_State = NORMAL
6.
IF (Event_Enable can be changed such that the TO-NORMAL transition is FALSE) {

MAKE(the TO-NORMAL bit of the Event_Enable property equal to FALSE)

MAKE(the Logging object collect number of records specified by Notification_Threshold)

CHECK (verify that the IUT did not transmit an event notification message)

}
7.
IF (the event-triggering object can be placed into a fault condition) THEN {

IF (Event_Enable can be modified) THEN

MAKE(Event_Enable TO-FAULT transition equal TRUE)

IF (Event_Enable TO-FAULT transition = TRUE) THEN {

MAKE (the event-triggering object change to a fault condition)

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(any log object),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =
(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
BUFFER_READY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
FAULT,

 'Event Values' =

(BACnetDeviceObjectPropertyReference– referring to the buffer property of the log object),

(any valid value),

(any valid value)

TRANSMIT SimpleAck-PDU

VERIFY Event_State = FAULT

MAKE (the event-triggering object change to a normal condition)

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(any log object),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
BUFFER_READY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
FAULT,

'To State' =
NORMAL,

'Event Values' =
(BACnetDeviceObjectPropertyReference– referring to the buffer property of the log object),

(any valid value),

(any valid value)

TRANSMIT SimpleAck-PDU

}

IF (Event_Enable can be modified) THEN

MAKE (Event_Enable TO-FAULT transition equal FALSE)

IF (Event_Enable TO-FAULT transition = FALSE) THEN {

MAKE (the event-triggering object change to a fault condition)

VERIFY Event_State = FAULT

CHECK (verify that the IUT did not transmit an event notification message)

MAKE (the event-triggering object change to a normal condition)

}

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service in which case the TD shall skip all of the steps in which a SimpleACK-PDU is sent. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.12 Notify_Type Test

Reason For Change: To make this test generic for all objects that support intrinsic reporting.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that the value of the Notify_Type property determines whether an event notification is transmitted as an alarm or as an event. This test applies to Event Enrollment objects and Accumulator, Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Life Safety Point, Life Safety Zone, Loop, Multi-state Input, Multi-state Output, Multi-state Value, Pulse Converter and Trend Log objects that support intrinsic reporting.
Configuration Requirements: The IUT shall be configured with two event-generation objects, E1 and E2. Object E1 shall be configured with a Notify_Type of ALARM and E2 shall be configured with a Notify_Type of EVENT. Both objects shall be in a NORMAL Event_State at the beginning of the test. The Event_Enable and Acked_Transitions properties shall be configured with a value of (TRUE, TRUE, TRUE). For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE). Ihe value of the Transitions parameter for all recipients shall be (TRUE, TRUE, TRUE)

In the test description below X1 and X2 are used to designate the event-triggering property linked to E1 and E2 respectively.

Test Steps:

1.
VERIFY (E1), Event_State = NORMAL

2.
VERIFY (E2), Event_State = NORMAL

3.
WAIT (Time_Delay + Notification Fail Time)

4.
IF (X1 is writable) THEN

WRITE X1 = (a value that is OFFNORMAL will cause a transition in E1)

ELSE

MAKE (X1 a value that is OFFNORMAL will cause a transition in E1)

5.
IF (the transition is not a FAULT transition) THEN

WAIT (Time_Delay)

6.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(E1),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(any valid valuethe value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMALEvent_State,

'To State' =

OFFNORMAL(any valid value),

'Event Values' =
(values appropriate to the event type)

7.
TRANSMIT SimpleAck-PDU

78.
IF (X2 is writable) THEN

WRITE X2 = (a value that is OFFNORMAL will cause a transition in E2)

ELSE

MAKE (X2 a value that is OFFNORMAL will cause a transition in E2)

89.
IF (the transition is not a FAULT transition) THEN

WAIT (Time_Delay)

910.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(E2),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(any valid valuethe value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMALEvent_State,

'To State' =

OFFNORMAL(any valid value),

'Event Values' =
(values appropriate to the event type)

11.
TRANSMIT SimpleAck-PDU

Notes to Tester: If Notify_Type is writable this test may be performed with one event generating object by changing Notify_Type from ALARM to EVENT in order to cover both cases. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.13 Limit_Enable Test

Reason for Change: This test has been modified to allow for portions of it to be skipped if the Limit_Enable property is not modifiable, to always transition through NORMAL, and to not disable a limit when the object is in an OFFNORMAL state. This test is included in the SSPC proposal MSO-001.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.22, 12.2.23, and 12.3.19.

Purpose: To verify that the Limit_Enable property correctly enables or disables reporting of out of range events. This test applies to Analog Input, Analog Output, and Analog Value objects that support intrinsic reporting.
Test Concept: The event-triggering property is manipulated to cause both the high limit and the low limit to be exceeded for each possible combination of values for Limit_Enable. The resulting event notification messages are monitored to verify that they are transmitted only for circumstances where the associated event limit is enabled.

Configuration Requirements: Configure the object with High_Limit, Low_Limit and Deadband values such that High_Limit - Deadband > Low_Limit and both the Low_Limit and High_Limit values are within the valid range of values for Present_Value. If the device cannot be configured with limit values that meet these conditions, then this test shall be skipped. The Event_Enable property should be set to (TRUE, ?, TRUE) for this test. If the Event_Enable cannot be configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are TRUE, this test may be skipped.
In the test description below "X" is used to designate the event-triggering property.

Test Steps:

1.
IF Limit_Enable can be made to be equal (TRUE, TRUE)

2.

If Limit_Enable is writable

WRITE Limit_Enable = (TRUE, TRUE)

ELSE

MAKE Limit_Enable = (TRUE, TRUE)

3.

WAIT (Time_Delay + Notification Fail Time)

4.

VERIFY Event_State = NORMAL

5.

IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

6.

WAIT (Time_Delay)

7.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

HIGH_LIMIT,

'Event Values' =

(values appropriate to the event type)

8.

TRANSMIT SimpleAck-PDU

9.

IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

10
.
WAIT (Time_Delay)

11.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-NORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

HIGH_LIMIT,

'To State' =

NORMAL,

'Event Values' =

(values appropriate to the event type)

12.

TRANSMIT SimpleAck-PDU

13.

WAIT (Time_Delay)

14.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

LOW_LIMIT,

'Event Values' =

(values appropriate to the event type)

15.

TRANSMIT SimpleAck-PDU

16.

IF (X is writable) THEN

WRITE X = (a value that is between Low_Limit + deadband and High_Limit)

ELSE

MAKE (X a value that is between than Low_Limit + deadband and High_Limit)
17.

WAIT (Time_Delay)
18.

BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-NORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

LOW_LIMIT,

'To State' =

NORMAL,

'Event Values' =

(values appropriate to the event type)

19.

TRANSMIT SimpleAck-PDU

20.
IF Limit_Enable can be made to equal (FALSE, TRUE)

21.

IF Limit_Enable is writable

22.

WRITE Limit_Enable = (FALSE, TRUE)

23.

ELSE

24.

MAKE (Limit_Enable = (FALSE,TRUE))
25.

IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

26.

WAIT (Time_Delay)

27.

BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

HIGH_LIMIT,

'Event Values' =

(values appropriate to the event type)

28.

IF (X is writable) THEN

WRITE X = (a value that is between Low_Limit and High_Limit-Deadband)

ELSE

MAKE (X a value that is between Low_Limit and High_Limit-Deadband)
29.

WAIT (Time_Delay)

30.

BEFORE Notification Fail Time RECEIVE ConfirmdEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-NORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

HIGH_LIMIT,

'To State' =

NORMAL,

'Event Values' =

(values appropriate to the event type)

31.

TRANSMIT SimpleAck-PDU

32.

IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

33.

WAIT (Time_Delay + Notification Fail Time)

34.

CHECK (verify that no notification message was transmitted)

35.

IF (X is writable) THEN

WRITE X = (a value that is between Low_Limit and High_Limit)

ELSE

MAKE (X a value that is between Low_Limit and High_Limit)

36.

WAIT (Time_Delay + Notification Fail Time)

37.

CHECK (verify that no notification message was transmitted)

38. IF Limit_Enable can be made to equal (TRUE, FALSE)

39.

IF Limit_Enable is writable

WRITE Limit_Enable = (TRUE, FALSE)

ELSE

MAKE (Limit_Enable = (TRUE, FALSE))
40.

IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

41.

WAIT (Time_Delay + Notification Fail Time)

42.

CHECK (verify that no notification message was transmitted)

43.

IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

44.

WAIT (Time_Delay)

45.

BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

LOW_LIMIT,

'Event Values' =
(values appropriate to the event type)

46.

TRANSMIT SimpleAck-PDU

47.

IF (X is writable) THEN

WRITE X = (a value that is between Low_Limit + Deadband and High_Limit)

ELSE

MAKE (X a value that is between Low_Limit + Deadband and High_Limit)

48.

WAIT (Time_Delay)

49.

BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-NORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

LOW_LIMIT,

'To State' =

NORMAL,

'Event Values' =
(values appropriate to the event type)

50.
IF Limit_Enable can be made to equal (FALSE, FALSE)

51.

IF Limit_Enable is writable

WRITE Limit_Enable = (FALSE, FALSE)

ELSE

MAKE (Limit_Enable = (FALSE, FALSE))
52.

IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

53.

WAIT (Time_Delay + Notification Fail Time)

54.

CHECK (verify that no notification message was transmitted)

55.

IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

56.

WAIT (Time_Delay + Notification Fail Time)

57.

CHECK (verify that no notification message was transmitted)

58.

IF (X is writable) THEN

WRITE X = (a value that is between Low_Limit and High_Limit)

ELSE

MAKE (X a value that is between Low_Limit and High_Limit)

59.

WAIT (Time_Delay + Notification Fail Time)

60.

CHECK (verify that no notification message was transmitted)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service in which case the TD shall skip all of the steps in which a SimpleACK-PDU is sent. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.X3 Array Resizing Test

Reason for Change: This test was added to allow for testing of array sizing rules added in 135-2001a. The change is in WS-066.

The test in this clause shall be applied to resizable arrays in devices claiming Protocol_Revision 4 or higher. They may be applied to resizable arrays in devices claiming Protocol_Revision 3 or lower, but only where conformance to the rules on resizing arrays of Protocol_Revision 4 is claimed.

Dependencies: None

BACnet Reference Clause: 12.

Purpose: To verify that resizable arrays are resized in accordance with the rules set forth in ANSI/ASHRAE Standard 135-2001, Clause 12.

Test Concept: The array is written as a whole to set it to a non-zero size. It is then resized smaller and larger by writing the entire array. It is then resized smaller and larger by writing to element number zero. An attempt is made to increase it with an invalid write. After each operation the array size and array contents are checked. Finally, if it can be resized to have zero elements, it is then written to size zero. If possible, all elements in the arrays should be distinguishable from each other and across write operations.

Test Steps:
1.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Value' =

(array of non-zero size N1)

2.
RECEIVE Simple-ACK-PDU

3.
VERIFY (array is as written in step 1)

4.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Value' =

(array of non-zero size N2, where N2 ≤ N1)

5.
RECEIVE Simple-ACK-PDU

6.
VERIFY (array is as written in step 4)

7.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Value' =

(array of non-zero size N3, where N3 ≥ N1)

8.
RECEIVE Simple-ACK-PDU

9.
VERIFY (array is as written in step 7)

10.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Array Index' =

0,

'Property Value' =

(non-zero N4, where N4 ≤ N1)

11.
RECEIVE Simple-ACK-PDU

12.
VERIFY (array contains first N4 elements of the array written in step 7)

13.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Array Index' =

0,

'Property Value' =

(N5, where N5 ≥ N4)

14.
RECEIVE Simple-ACK-PDU

15.
VERIFY (array contains first N4 elements of the array written in step 7, plus N5 – N4

additional elements, initialized to particular values if specified for the array property

being tested)

16.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Array Index' =

(N6, where N6 ≥ N5),

'Property Value' =

(one array element)

17.
RECEIVE BACnet-Error-PDU

Error Class =

PROPERTY,

Error Code =

INVALID_ARRAY_INDEX

18.
VERIFY (array is unchanged from step 15)

19. IF (the array can be resized to have zero elements) THEN

TRANSMIT WriteProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
(the array property being tested),

'Property Value' =
(empty array)

RECEIVE Simple-ACK-PDU

VERIFY (array is empty)

7.3.1.X4 Event_Message_Texts Tests

Reason For Change: 135-2008z-1.

Purpose: To verify that the value of the Event_Message_Texts property is updated when an object generates an event notification.

Test Concept: Read the Event_Message_Texts from the object. Transition the object through each event state which is enabled in the object saving the Message Text parameter from the received notification. Verify that the Event_Message_Texts updates with the Event_Message_Texts value received from the notification.

Configuration Requirements: The IUT shall be configured with an event-generation object, O1 which shall be in a NORMAL Event_State at the beginning of the test. If the algorithm of the object does not support NORMAL to NORMAL transitions, then the TO-OFFNORMAL bit of the Event_Enable shall be TRUE.

In the test description below X1 is used to designate the event-triggering property linked to O1.

Test Steps:

1.
READ EMT = Event_Message_Texts

2.
IF (Event_Enable is (TRUE, ?, ?)) THEN

3.

IF (X1 is writable) THEN

WRITE X1 = (a value that is OFFNORMAL)

ELSE

MAKE (X1 a value that is OFFNORMAL)

4.

WAIT (Time_Delay)

5.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(O1),

'Time Stamp' =

(the IUT’s local time),

'Notification Class' =

(the class corresponding to the object being tested),

'Priority' =

(the configured TO-OFFNORMAL priority),

'Event Type' =

(any valid event type),

'Notify Type' =

Notify_Type,

'AckRequired' =

(the configured value for the TO-OFFNORMAL transition),

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

‘Message Text’ =

(M: any valid value placed into EMT[1]),

'Event Values' =

(values appropriate to the event type)

6.

VERIFY Event_Message_Texts = EMT

7.
IF (Event_Enable is (?, ?, TRUE)) THEN

8.

IF (X1 is writable) THEN

WRITE X1 = (a value that will result in a TO-NORMAL transition)

ELSE

MAKE (X1 a value that will result in a TO-NORMAL transition)

9.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(O1),

'Time Stamp' =

(the IUT’s local time),

'Notification Class' =

(the class corresponding to the object being tested),

'Priority' =

(the configured TO-NORMAL priority),

'Event Type' =

(any valid event type),

'Notify Type' =

Notify_Type,

'AckRequired' =

(the configured value for the TO-NORMAL transition),

'From State' =

(any valid value),

'To State' =

NORMAL,

‘Message Text’ =

(M: any valid value placed into EMT[3]),

'Event Values' =

(values appropriate to the event type)

10.

VERIFY Event_Message_Texts = EMT

11.
IF (Event_Enable is (?, TRUE, ?)) THEN

12.

MAKE (O1 transition to a FAULT state)

13.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(O1),

'Time Stamp' =

(the IUT’s local time),

'Notification Class' =

(the class corresponding to the object being tested),

'Priority' =

(the configured TO-FAULT priority),

'Event Type' =

(any valid event type),

'Notify Type' =

Notify_Type,

'AckRequired' =

(the configured value for the TO-FAULT transition),

'From State' =

(any valid value),

'To State' =

FAULT,

‘Message Text’ =

(M: any valid value placed into EMT[2]),

'Event Values' =

(values appropriate to the event type)

14.

VERIFY Event_Message_Texts = EMT

7.3.2 Object Specific Tests

7.3.2.8 Calendar Test

These tests verify that the Present_Value property of the Calendar object bears the relationship to Date_List specified by BACnet Clause 12.8.6.

7.3.2.8.1 Single Date Rollover Test
Reason for Change: 1) Test 7.3.2.8.1 takes the UTC_Offset property by mistake into account for determining the Time parameter of the TimeSynchronization service request. 2) Test 7.3.2.8.1 does not consider the support of the UTCTimeSynchronization service. This change is included in the SSPC proposal MSO-003. Now in SSPC proposed addendum 135.1-2009j.
Dependencies: ReadProperty Service Execution Tests, 9.15; TimeSynchronization Service Execution Tests, 9.26; UTCTimeSynchronization Service Execution Tests, 9.31.
BACnet Reference Clause: 12.7.

Purpose: To verify the ability to represent the Calendar status when the Date_List is in the form of an individual date. Either execution of the TimeSynchronization or the UTCTimeSyncrhonization service must be supported or another means must be supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date_List containing a single date. The IUT's clock is set to the date that immediately precedes the one specified in Date_List and a time near the end of the day. The test verifies that the Present_Value of the Calendar object is initially FALSE and that as the time rolls over to the next day the Present_Value changes to TRUE.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date_List with a single BACnetCalendarEntry in the form of a Date.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(the day preceding the one specified in Date_List,

24:00:00 + UTC_Offset – Schedule Evaluation Fail Time – 1 minute)) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (the day preceding the one specified in Date_List, converted to UTC)) |

MAKE (the local time = 24:00:00 – Schedule Evaluation Fail Time – 1 minute)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = FALSE

4.
WAIT (Schedule Evaluation Fail Time + 2 minutes)

5.
VERIFY Present_Value = TRUE

7.3.2.8.2 Date Range Test
Reason for Change: This test does not consider support of the UTCTimeSynchronization service. This change is included in the SSPC proposal MSO-003. Now in SSPC proposed addendum 135.1-2009j.
Dependencies: ReadProperty Service Execution Tests, 9.15; TimeSynchronization Service Execution Tests, 9.26; UTCTimeSynchronization Service Execution Tests, 9.31.
BACnet Reference Clause: 12.9.

Purpose: To verify the ability to represent the Calendar status when the Date_List is in the form of a BACnetDateRange. Either execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means must be supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date_List containing a single BACnetDateRange. The IUT's clock is set to a time and date that is outside of the date range. The Present_Value is read and verified to be FALSE. The clock is reset to a value within the date range and the Present_Value is read again to verify that it has the value TRUE. If the IUT can be configured with wildcard fields in the date range then it shall be tested with and without wildcards.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date_List with a single BACnetCalendarEntry in the form of a BACnetDateRange.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(any day and time outside of the specified date range selected by the tester) |

 TRANSMIT UTCTimeSynchronization-Request,

'Time' = (any day and time outside of the specified date range selected by the tester, take Daylight_Savings_Status and UTC_Offset into account) |

MAKE (the local time = any day and time outside of the specified date range selected by the tester)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = FALSE

4.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(any day and time inside the specified date range selected by the tester)) |

TRANSMIT UTCTimeSynchronization-Request,

'Time' = (any day and time inside the specified date range selected by the tester, take Daylight_Savings_Status and UTC_Offset into account) |

MAKE (the local time = any day and time inside the specified date range selected by the tester))
5.
WAIT Schedule Evaluation Fail Time
6.
VERIFY Present_Value = TRUE

7.3.2.8.3 WeekNDay Test
Reason for Change: 1) Test 7.3.2.8.3 takes the UTC_Offset property by mistake into account for determining the Time parameter of the TimeSynchronization service request. 2) Test 7.3.2.8.3 does not consider the support of the UTCTimeSynchronization service. 3) In steps 6-12 of test 7.3.2.8, the Present_Value remains FALSE. To ensure that the Present_Value correctly represents the Calendar status, steps 7 through 9 and 13 through 15 were added to force a change of the Present_Value in between. This change is included in the SSPC proposal MSO-003. Now in SSPC proposed addendum 135.1-2009j.
Dependencies: ReadProperty Service Execution Tests, 9.15; TimeSynchronization Service Execution Tests, 9.26; UTCTimeSynchronization Service Execution Tests, 9.31.
BACnet Reference Clause: 12.9.

Purpose: To verify the ability to represent the Calendar status when the Date_List is in the form of a BACnetWeekNDay. Either execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means must be supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date_List containing a single BACnetWeekNDay. The IUT's clock is set to a time and date that matches the BACnetWeekNDay mask. The Present_Value is read and verified to be TRUE. The clock is reset to a value that matches the BACnetWeekNDay mask except for the month. The Present_Value is read and verified to be FALSE. The clock is reset again to a value that matches the BACnetWeekNDay mask except for the week of the month. The Present_Value is read and verified to be FALSE. The clock is reset again to a value that matches the BACnetWeekNDay mask except for the day of the week. The Present_Value is read and verified to be FALSE. In between each change, the clock is reset to force the Present_Value back to TRUE.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date_List with a single BACnetCalendarEntry in the form of a BACnetWeekNDay. The BACnetWeekNDay shall be the 11th month, last seven days, and Saturday.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(24-November-2001, 13:00:00 + UTC_Offset)) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (24-November-2001, 13:00:00, converted to UTC)) |

MAKE (the local time = 24-November-2001 at 13:00:00)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = TRUE

4.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(27-October-2001, 13:00:00 + UTC_Offset) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (27-October-2001, 13:00:00, converted to UTC)) |

MAKE (the local time = 27-October-2001 at 13:00:00)

5.
WAIT Schedule Evaluation Fail Time
6.
VERIFY Present_Value = FALSE

7.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(24-November-2001, 13:00:00 + UTC_Offset)) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (24-November-2001, 13:00:00, converted to UTC)) |

MAKE (the local time = 24-November-2001 at 13:00:00)

8.
WAIT Schedule Evaluation Fail Time
9.
VERIFY Present_Value = TRUE

710.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(17-November-2001, 13:00:00 + UTC_Offset) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (17-November-2001, 13:00:00, converted to UTC)) |

MAKE (the local time = 17-November-2001 at 13:00:00)

811.
WAIT Schedule Evaluation Fail Time
912.
VERIFY Present_Value = FALSE

13.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(24-November-2001, 13:00:00 + UTC_Offset)) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (24-November-2001, 13:00:00, converted to UTC)) |

MAKE (the local time = 24-November-2001 at 13:00:00)

14.
WAIT Schedule Evaluation Fail Time
15.
VERIFY Present_Value = TRUE

1016.
(TRANSMIT TimeSynchronization-Request,

'Time' =
(25-November-2001, 13:00:00 + UTC_Offset) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (25-November-2001, 13:00:00, converted to UTC)) |

MAKE (the local time = 25-November-2001 at 13:00:00)

1117.
WAIT Schedule Evaluation Fail Time
1218.
VERIFY Present_Value = FALSE

7.3.2.10 Device Object Tests

These are the tests for the Device object. Other tests for functionality of the Device object are covered by tests for the application service or special functionality to which they correspond.
7.3.2.10.X4 Successful Increment of the Database_Revision Property after Changing the Object_Identifier Property of an Object
Reason for change: To correct a cut&paste&forgot-to-revise typo in the Test Concept.
Purpose: To verify that the Database_Revision property of the Device object increments after changing the Object_Identifier property of an object. If the Object_Identifier property of an object cannot be changed, this test shall be omitted.

Test Concept: The Database_Revision property of the Device object is read. An object's nameObject_Identifier property is changed. The Database_Revision property of the Device object is read again to verify that it incremented.

Configuration Requirements: none.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the Device object),

'Property Identifier' =
Database_Revision

2.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the Device object),

'Property Identifier' =
Database_Revision,

'Property Value' =
(any value = initial value)

3.
MAKE (the Object_Identifier property of an object change)

4.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the Device object),

'Property Identifier' =
Database_Revision

5.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the Device object),

'Property Identifier' =
Database_Revision,

'Property Value' =
(greater than initial value)

7.3.2.21 Notification Class Object Tests
This section was renumbered in 135.1-2007 to 7.3.2.21. This was section 7.3.2.20 in 135.1-2003.

7.3.2.21.1 Priority Tests

Reason for change: 135.1.2009g-11 only portrayed the intended revision with a context-diff, so the whole revised test is rendered here.
Purpose: To verify that the IUT implements the functionality of the Priority property of the Notification Class object when initiating even notifications.

Test Concept: The TD will select one instance of the Notification Class object and one instance of an event-generating object that is linked to it. The properties of the event-generating object will be manipulated to cause the Event_State to change from NORMAL to OFFNORMAL, from OFFNORMAL back to NORMAL, from NORMAL to FAULT, and from FAULT back to NORMAL. For each state transition the appropriate use of priority in the resulting event notification will be verified. It must be possible to trigger the events of this test or the test result is considered to be a failure.

Configuration Requirements: The IUT shall be configured with one or more instance of the Notification Class object and at least one event-generating object that is linked to the Notification Class object. The event-generating object may be any object that supports intrinsic reporting or it may be an Event Enrollment object. The Notification Class object shall be configured with separate, distinct Priority values for TO-OFFNORMAL, TO-NORMAL, and TO-FAULT transitions. All Event_Enable bits shall be set to TRUE. The referenced event-triggering property shall be set to a value that results in a NORMAL condition.

In the test description below, “X” is used to designate the event-triggering property.

Test Steps:

1.
WAIT (Time_Delay + Notification Fail Time)

2.
VERIFY Event_State = NORMAL

3.
IF (X is writable) THEN

WRITE X = (a value that is OFFNORMAL)

ELSE

MAKE (X have a value that is OFFNORMAL)

4.
WAIT (Time_Delay)

5.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =
(values appropriate to the event type)

6.
VERIFY Event_State = OFFNORMAL

7.
IF (X is writable) THEN

WRITE X = (a value that is NORMAL)

ELSE

MAKE (X have a value that is NORMAL)

8.
WAIT (Time_Delay)

9.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
OFNORMAL,

'To State' =

NORMAL,

'Event Values' =
(values appropriate to the event type)

10.
VERIFY Event_State = NORMAL

11.
IF (the event-triggering object can be placed into a fault condition) THEN {

12.

MAKE (the event-triggering object change to a fault condition)

13.

WAIT (Time_Delay)

13.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
FAULT,

'Event Values' =
(values appropriate to the event type)

14.

VERIFY Event_State = FAULT

15.

MAKE (the event-triggering object change to a normal condition)

17.

WAIT (Time_Delay)

16.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
FAULT,

'To State' =
NORMAL,

'Event Values' =
(values appropriate to the event type)

17.

VERIFY Event_State = NORMAL

}

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.
7.3.2.21.3 Recipient_List Tests
7.3.2.21.3.1 ValidDays Test

Reason for Change: This test does not consider support of the UTCTimeSynchronization service. Now in SSPC proposed addendum 135.1-2009j.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.
BACnet Reference Clause: 12.21.8.

Purpose: To verify the operation of the Valid Days parameter of a BACnetDestination as used in the Recipient_List property of the Notification Class object.

Test Concept: The TD will select one instance of the Notification Class object and one instance of an event-generating object that is linked to it. The Recipient_List of the Notification Class object shall contain a single recipient with the Valid Days parameter configured so that at least one day is TRUE and at least one day is FALSE. The properties of the event-generating object will be manipulated to cause the Event_State to change from NORMAL to OFFNORMAL. The tester verifies that if the local date is one of the valid days a notification message is transmitted and the if local date is not a valid day then no notification message is transmitted.

Configuration Requirements: The IUT shall be configured with one or more instance of the Notification Class object and at least one event-generating object that is linked to the Notification Class object. The event-generating object may be any object that supports intrinsic reporting or it may be an Event Enrollment object. The event-generating object shall have the Event_Enable property configured to transmit notification messages for all event transitions. The event-generating object shall be configured to be in a NORMAL event state at the start of the test. The Notification Class object shall be configured with a single recipient in the Recipient_List. The Valid Days parameter shall be configured so that at least one day of the week has a value of TRUE and at least one day of the week has a value of FALSE. The Transitions parameter shall be configured for the recipient to receive notifications for all event transitions.

In the test description below, “X” is used to designate the event-triggering property.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request,

'Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that

corresponds to one of the valid days)) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that corresponds to one of the valid days, converted to UTC)) |

MAKE (the local date and time = (any time within the window defined by From Time and To Time in the

BACnetDestination that corresponds to one of the valid days))

2.
WAIT (Time_Delay + Notification Fail Time)

3.
VERIFY Event_State = NORMAL

4.
IF (X is writable) THEN

WRITE X = (a value that is OFFNORMAL)

ELSE

MAKE (X have a value that is OFFNORMAL)

5.
WAIT (Time_Delay)

6.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =
(values appropriate to the event type)

7.
VERIFY Event_State = OFFNORMAL

8.
(TRANSMIT TimeSynchronization-Request,

'Time' = (any time within the window defined by From Time and To time in the BACnet Destination that

corresponds to one of the invalid days)) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that corresponds to one of the invalid days, converted to UTC)) |

MAKE (the local date and time = (any time within the window defined by From Time and To Time in the

BACnetDestination that corresponds to one of the invalid days))

9.
IF (X is writable) THEN

WRITE X = (a value that is NORMAL)

ELSE

MAKE (X have a value that is NORMAL)

10.
WAIT (Time_Delay + Notification Fail Time)

11.
CHECK (verify that no notification message was transmitted)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.2.21.3.2 FromTime and ToTime Test

Reason for Change: This test does not consider support of the UTCTimeSynchronization service. Now in SSPC proposed addendum 135.1-2009j.
Dependencies: ValidDays Test, 7.3.2.21.3.1; ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.
BACnet Reference Clause: 12.21.8.

Purpose: To verify the operation of the From Time and To Time parameters of a BACnetDestination as used in the Recipient_List property of the Notification Class object.

Test Concept: The case where the local date and time fall within the window defined by the From Time and To Time parameters is covered by the ValidDays test in 7.3.2.21.3.1. This test uses the same IUT configuration and sets the local time to a value that is one of the ValidDays but outside of the window defined by the From Time and To Time parameters. The objective is to verify that an event notification message is not transmitted when the event is triggered.

Configuration Requirements: The configuration requirements are identical to the requirements in 7.3.2.21.3.1.
Test Steps:

1.
(TRANSMIT TimeSynchronization-Request,

'Time' = (any time outside the window defined by From Time and To Time in the BACnet Destination that

corresponds to one of the valid days)) |

(TRANSMIT UTCTimeSynchronization-Request,

'Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that corresponds to one of the valid days, converted to UTC)) |

MAKE (the local date and time = (any time outside the window defined by From Time and To Time in the

BACnetDestination that corresponds to one of the valid days))

2.
WAIT (Time_Delay + Notification Fail Time)

3.
VERIFY Event_State = NORMAL

4.
IF (X is writable) THEN

WRITE X = (a value that is OFFNORMAL)

ELSE

MAKE (X have a value that is OFFNORMAL)

5.
WAIT (Time_Delay + Notification Fail Time)

6.
CHECK (verify that no notification message was transmitted)

7.3.2.21.3.4 Transitions Test

Reason for change: the version in 135.1-2009g-11 only portrays the intended revision with a context-diff, so the entirety of the revised test is rendered here.
Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.21.8.

Purpose: To verify that notification messages are transmitted only if the bit in the Transitions parameter corresponding to the event transition is set.

Test Concept: The IUT is configured such that the Transitions parameter indicates that some event transitions are to trigger an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that notification messages are transmitted only for those transitions for which the Transitions parameter has a value of TRUE.

Configuration Requirements: The IUT shall be configured with one or more instance of the Notification Class object and at least one event-generating object that is linked to the Notification Class object. The event-generating object may be any object that supports intrinsic reporting or it may be an Event Enrollment object. The event-generating object shall have the Event_Enable property configured to transmit notification messages for all event transitions. The event-generating object shall be configured to be in a NORMAL event state at the start of the test. The Notification Class object shall be configured with a single recipient in the Recipient_List. The Transitions parameter shall be configured with a value of TRUE for either the TO-OFFNORMAL transition or the TO-NORMAL transition and the other event transition shall have a value of FALSE. The local time shall be configured such that it represents one of the valid days in the window specified by From Time and To Time.

In the test description below, “X” is used to designate the event-triggering property.

1.
VERIFY Event_State = NORMAL

2.
WAIT (Time_Delay + Notification Fail Time)

3.
IF (X is writable) THEN

WRITE X = (a value that is OFFNORMAL)

ELSE

MAKE (X have a value that is OFFNORMAL)

4.
WAIT (Time_Delay)

5.
BEFORE Notification Fail Time

IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =
(values appropriate to the event type)

ELSE

CHECK (verify that the IUT did not transmit an event notification message)

6.
VERIFY Event_State = OFFNORMAL

7.
IF (X is writable) THEN

WRITE X = (a value that is NORMAL)

ELSE

MAKE (X have a value that is NORMAL)

8.
WAIT (Time_Delay)

9.
BEFORE Notification Fail Time

IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
OFFNORMAL,

'To State' =

NORMAL,

'Event Values' =
(values appropriate to the event type)

ELSE

CHECK (verify that the IUT did not transmit an event notification message)

10.
VERIFY Event_State = NORMAL

11.
IF (the event-triggering object can be placed into a fault condition) THEN {

MAKE (the event-triggering object change to a fault condition)

WAIT (Time_Delay)

BEFORE Notification Fail Time

IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =
(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
(any valid event type),

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
FAULT,

'Event Values' =
(values appropriate to the event type)

ELSE

CHECK (verify that the IUT did not transmit an event notification message)

VERIFY Event_State = FAULT

}

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.
7.3.2.23 Schedule Object Tests

This section was renumbered in 135.1-2007 to 7.3.2.23. The old reference was 7.3.2.22
7.3.2.23.1 Effective_Period Test

Reason for Change: This test did not consider the UTCTimeSynchronization service. There is no SSPC proposal for this change.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.
BACnet Reference Clause: 12.24.6.

Purpose: To verify that Effective_Period controls the range of dates during which the Schedule object is active.
Test Concept: Two Date values are chosen by the TD based on the criteria in Table 7-1 such that one is outside of the Effective_Period and the other corresponds to a known scheduled state inside the Effective_Period. The IUT's local date and time are changed between these dates and the Present_Value property is monitored to verify that write operations occur only within the Effective_Period.

Configuration Requirements: The IUT shall be configured with a schedule object such that the time periods defined in Table 7-1 have uniquely scheduled values. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-1. Criteria for Effective_Period Test Dates and Values

	Date:
	Criteria:
	Value:

	D1
	1. Date occurs during Effective_Period, and

2. Date is active either in Weekly_Schedule or Exception_Schedule.
	V1

	D2
	1. Date does not occur during Effective_Period, and

2. Date is active either in Weekly_Schedule or Exception_Schedule.
	V2 different from V1.

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1, converted to UTC)

| MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2, converted to UTC)

| MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY Present_Value = V2 V1
7.3.2.23.2
Weekly_Schedule Property Test

Reason for Change: This test does not consider to UTCTimeSynchronization service. There is no SSPC proposal for this change.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.7.

Purpose: To verify that Weekly_Schedule contains distinguishable schedules for each day of the week, and that a day's entire schedule can be executed.

Test Concept: The IUT's local date and time are changed sequentially to represent each day of the week as shown in Table 7-2. The Present_Value property is monitored to verify that write operations occur for each separately scheduled day.

Configuration Requirements: The IUT shall be configured with a schedule object containing a weekly schedule with seven distinguishable daily schedules meeting the requirements of Table 7-2. The local date and time shall be set such that the Present_Value property has a value other than V1. If no schedule exists that meets these requirements and none can be configured, this test shall be omitted.

Table 7-2. Criteria for Weekly_Schedule Test Dates and Values

	Date:
	Criteria:
	Value:

	D1
	1. Date occurs during Effective_Period,

2. Date occurs on a Monday, and

3. Date is not active in Exception_Schedule.
	V1

	D2
	1. Date occurs during Effective_Period,

2. Date occurs on a Tuesday, and

3. Date is not active in Exception_Schedule.
	V2 is different from V1.

	D3
	1. Date occurs during Effective_Period,

2. Date occurs on a Wednesday, and

3. Date is not active in Exception_Schedule.
	V3 is different from V2.

	D4
	1. Date occurs during Effective_Period,

2. Date occurs on a Thursday, and

3. Date is not active in Exception_Schedule.
	V4 is different from V3.

	D5
	1. Date occurs during Effective_Period,

2. Date occurs on a Friday, and

3. Date is not active in Exception_Schedule.
	V5 is different from V4.

	D6
	1. Date occurs during Effective_Period,

2. Date occurs on a Saturday, and

3. Date is not active in Exception_Schedule.
	V6 is different from V5.

	D7
	1. Date occurs during Effective_Period,

2. Date occurs on a Sunday, and

3. Date is not active in Exception_Schedule.
	V7 is different from V6.

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY Present_Value = V2
8.
(TRANSMIT TimeSynchronization-Request, 'Time' = D3) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D3, converted to UTC) |

MAKE (the local date and time = D3)

9.
WAIT Schedule Evaluation Fail Time
10.
VERIFY Present_Value = V3

11.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D4, converted to UTC) |

MAKE (the local date and time = D4)

12.
WAIT Schedule Evaluation Fail Time

13.
VERIFY Present_Value = V4

14.
(TRANSMIT TimeSynchronization-Request, 'Time' = D5) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D5, converted to UTC) |

MAKE (the local date and time = D5)

15.
WAIT Schedule Evaluation Fail Time
16.
VERIFY Present_Value = V5

17.
(TRANSMIT TimeSynchronization-Request, 'Time' = D6) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D6, converted to UTC) |

MAKE (the local date and time = D6)

18.
WAIT Schedule Evaluation Fail Time

19.
VERIFY Present_Value = V6
20.
(TRANSMIT TimeSynchronization-Request, 'Time' = D7) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D7, converted to UTC) |

MAKE (the local date and time = D7)

21.
WAIT Schedule Evaluation Fail Time

22.
VERIFY Present_Value = V7
23.
REPEAT X = (the time portion of the BACnetTimeValue entries for one of the daily schedules in Table 7-2) DO {

(TRANSMIT TimeSynchronization-Request, 'Time' = X) |

(TRANSMIT UTCTimeSynchronization-Request, 'Time' = X, converted to UTC) |

MAKE (the local date and time = X)

WAIT Schedule Evaluation Fail Time

VERIFY Present_Value = (the scheduled value corresponding to time X)

}

7.3.2.23.3 Exception_Schedule Property Tests
7.3.2.23.3.2
Calendar Entry Date Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a specified date appearing in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-4. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a specific date. The criteria for the dates used in the test are given in Table 7-4. The local date and time shall be set such that the Present_Value property has a value other than V1. This test shall not be performed if the Protocol_Revision property is present in the Device object and has a value of 4 or greater.
Table 7-4. Criteria for Calendar Entry Date Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: Date,

2B. Date matches calendarEntry: Date, and

2C. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period, and

2. Date does not appear in any BACnetSpecialEvents, and

3. Date occurs on the same date as, but with time following, an entry in a

 BACnetDailtySchedule in the referencing Schedule object.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.23.3.3
Calendar Entry DateRange Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date appearing in an Exception_Schedule's date range enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-5. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a date range. The criteria for the dates used in the test are given in Table 7-5. The local date and time shall be set such that the Present_Value property has a value other than V1. This test shall not be performed if the Protocol_Revision property is present in the Device object and has a value of 4 or greater.
Table 7-5. Criteria for Calendar Entry DateRange Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: DateRange,

2B. Date matches BACnetCalendarEntry: DateRange, and

2C. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period, and

2. Date does not appear in any BACnetSpecialEvents, and

3. Date occurs on the same date as, but with time following, an entry in a

 BACnetDailtySchedule in the referencing Schedule object.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.23.3.4
Calendar Entry WeekNDay Month Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's Month field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-6. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying a month. The criteria for the dates used in the test are given in Table 7-6. The local date and time shall be set such that the Present_Value property has a value other than V1. This test shall not be performed if the Protocol_Revision property is present in the Device object and has a value of 4 or greater.
Table 7-6. Criteria for Calendar Entry WeekNDay Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay: specifies Month,

2C. Date matches calendarEntry: WeekNDay: Month, and

2.D. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period, and

2. Date does not appear in any BACnetSpecialEvents, and

3. Date occurs on the same date as, but with time following, an entry in a

 BACnetDailtySchedule in the referencing Schedule object.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.23.3.5
Calendar Entry WeekNDay Week Of Month Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's WeekOfMonth field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-7. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying a week of the month. The criteria for the dates used in the test are given in Table 7-7. The local date and time shall be set such that the Present_Value property has a value other than V1. This test shall not be performed if the Protocol_Revision property is present in the Device object and has a value of 4 or greater.
Table 7-7. Criteria for Calendar Entry WeekNDay Week Of Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth is in the range 1..5,

2D. Date matches calendarEntry: WeekNDay: WeekOfMonth, and

2E Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth is in the range 1..5, and

2D. Date does not match calendarEntry: WeekNDay: WeekOfMonth.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.23.3.6
Calendar Entry WeekNDay Last Week Of Month Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's WeekOfMonth field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-8. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying the last week of the month. The criteria for the dates used in the test are given in Table 7-8. The local date and time shall be set such that the Present_Value property has a value other than V1. This test shall not be performed if the Protocol_Revision property is present in the Device object and has a value of 4 or greater.
Table 7-8. Criteria for Calendar Entry WeekNDay Last Week Of Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6,

2D. Date is in the last week of the month, and

2E. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6, and

2D. Date is not in the last week of the month.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.23.3.7
Calendar Entry WeekNDay Day Of Week Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's DayOfWeek field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-9. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying the day of the week. The criteria for the dates used in the test are given in Table 7-9. The local date and time shall be set such that the Present_Value property has a value other than V1. This test shall not be performed if the Protocol_Revision property is present in the Device object and has a value of 4 or greater.
Table 7-9. Criteria for Calendar Entry WeekNDay Day of Week Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies only DayOfWeek,

2C. Date falls on the specified day of the week, and

2D. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies only DayOfWeek, and

2C. Date does not fall on the specified day of the week.
	

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.23.3.8
Event Priority Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority when both specify the same date.

Configuration Requirements: The IUT shall be configured with a Schedule object containing two or more BACnetSpecialEvents, all active on the same date, with different eventPriority values, with distinguishable BACnetTimeValue entries. If possible all BACnetSpecialEvents shall have a BACnetTimeValue entry with identical time but different values. In the test description D1 represents a date and time where all of the special events are active.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = (the value corresponding to the special event with the highest eventPriority)
7.3.2.23.3.9
List of BACnetTimeValue Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a Special_Event's entire schedule can be executed.

Test Concept: A special event is scheduled that contains multiple BACnetTimeValue entries. The local date and time are changed to values that match each of the BACnetTimeValue entries and the Present_Value property is read to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured with a Schedule object containing a BACnetSpecialEvent with two or more BACnetTimeValue entries and no BACnetSpecialEvents with a higher priority. Each BACnetTimeValue entry shall have a distinguishable value.

Test Steps:

1.
REPEAT Di = (the times used in the BACnetTimeValue pairs of the special event) DO {

(TRANSMIT TimeSynchronization-Request, 'Time' = Di) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = Di)

WAIT Schedule Evaluation Fail Time

VERIFY Present_Value = (the value corresponding to the special event with the highest eventPriority)

}

7.3.2.23.4
Weekly_Schedule and Exception_Schedule Interaction Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clauses: 12.24.7, 12.24.8.
Purpose: To verify that an Exception_Schedule takes precedent over a coincident BACnetDailySchedule.

Test Concept: The IUT is configured with a Weekly_Schedule and an Exception_Schedule that apply to the same time. The local date and time are changed to the time when the Exception-Schedule is supposed to take control and the Present_Value is read to verify that the scheduled write operation occurs. The local date and time are changed again to a value that would cause another change if the Weekly_Schedule were in control. The Present_Value is read to verify the Exception_Schedule is still controlling.

Configuration Requirements: The IUT shall be configured with a Schedule object containing a Weekly_Schedule and an Exception_Schedule that apply to the same dates. The BACnetSpecialEvents in the Exception_Schedule shall have a higher EventPriority than any other coincident BACnetSpecialEvent. The BACnetTimeValue pairs shall be assigned values such that the values written by the Weekly_Schedule are distinguishable from the values written by the Exception_Schedule. Let D1 represent the date and time when the Exception_Schedule is configured to take control and write value V1. There shall be at least one BACnetTimeValue pair in the Weekly_Schedule that specifies a time, D2, that is after D1 but before the Exception_Schedule expires. The Weekly_Schedule is configured to write value V2 at time D2.

For BACnet implementations with a Protocol_Revision of 4 or higher, the date D2 shall be chosen to occur between D1 and any entry in the Exception schedule that schedules a NULL value.
Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

25.
WAIT Schedule Evaluation Fail Time
36.
VERIFY Present_Value = V1
7.3.2.23.5
Exception_Schedule Restoration Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; ReinitializeDevice Service Execution Tests, 9.27; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clauses: 12.24.4, 12.24.7, 12.24.8, 12.24.9.
Purpose: To verify the restoration behavior in an Exception_Schedule.

Test Concept: The IUT is configured with a Schedule object containing an Exception_Schedule with BACnetTimeValue entries that do not include the time 00:00. The local date and time are changed to a value between 00:00 and the first entry in the Exception_Schedule. Present_Value is read to verify that it contains the Schedule_Default value, or Vlast for implementations with a Protocol_Revision less than 4. The IUT is reset and the Present_Value is checked again to verify that it contains the Schedule_Default value, or Vlast for implementations with a Protocol_Revision less than 4.

Configuration Requirements: The IUT shall be configured with a Schedule object that contains an Exception_Schedule that has more than one scheduled write operation for a particular day and the first scheduled write is scheduled to occur before the first entry in the corresponding Weekly_Schedule entry. None of the write operations shall be scheduled for time 00:00 and there shall be no higher priority coincident BACnetSpecialEvents. In the test description D1 represents a time between 00:00 on the day the Exception_Schedule is active and the time of the first schedule write operation in the BACnetSpecialEvent. Vlast represents the value that is scheduled to be written in the last BACnetTimeValue pair for the day.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

2.
WAIT Schedule Evaluation Fail Time
3.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

VERIFY Present_Value = Schedule_Default

ELSE

VERIFY Present_Value = Vlast
4.
IF (ReinitializeDevice execution is supported) THEN

TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' =WARMSTART,

'Password' =

 (any valid password)

RECEIVE BACnet-Simple-ACK-PDU

ELSE

MAKE (the IUT reinitialize)

5.
CHECK (Did the IUT perform a WARMSTART reboot?)

6.
WAIT Schedule Evaluation Fail Time

7.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

VERIFY Present_Value = Schedule_Default

ELSE

VERIFY Present_Value = Vlast
7.3.2.23.6
Weekly_Schedule Restoration Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; ReinitializeDevice Service Execution Tests, 9.27; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.4, 12.24.7, 12.24.9.
Purpose: To verify the restoration behavior in a Weekly_Schedule.

Test Concept: The IUT is configured with a Schedule object containing a Weekly_Schedule with a BACnetDailySchedule that has multiple BACnetTimeValue entries that do not include the time 00:00. There shall be no Exception_Schedule that overrides this Weekly_Schedule during the date and time used for this test. The local date and time are changed to a value between 00:00 and the first entry in the BACnetDailySchedule. Present_Value is read to verify that it contains the Schedule_Default value, or Vlast for implementations with a Protocol_Revision less than 4. The IUT is reset and the Present_Value is checked again to verify that it contains the Schedule_Default value, or Vlast for implementations with a Protocol_Revision less than 4.

Configuration Requirements: The IUT shall be configured with a Schedule object that contains a Weekly_Schedule that has more than one scheduled write operation for a particular day. None of the write operations shall be scheduled for time 00:00 and there shall be no higher priority coincident BACnetSpecialEvents. In the test description D1 represents a time between 00:00 and the time of the first scheduled write operation in the BACnetDailySchedule. Vlast represents the value that is scheduled to be written in the last BACnetTimeValue pair for the day.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D1, converted to UTC) |

MAKE (the local date and time = D1)

2.
WAIT Schedule Evaluation Fail Time
3.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

VERIFY Present_Value = Schedule_Default

ELSE

VERIFY Present_Value = Vlast
4.
IF (ReinitializeDevice execution is supported) THEN

TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' =
WARMSTART,

'Password' =

(any valid password)

RECEIVE BACnet-Simple-ACK-PDU

ELSE

MAKE (the IUT reinitialize)

5.
CHECK (Did the IUT perform a WARMSTART reboot?)

6.
WAIT Schedule Evaluation Fail Time

7.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

VERIFY Present_Value = Schedule_Default

ELSE

VERIFY Present_Value = Vlast
7.3.2.23.7
List_Of_Object_Property_Reference Internal Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.10.

Purpose: To verify that the Schedule object writes to objects and properties contained within the IUT.

Test Concept: The Schedule object is configured to write to a property of another object within the same device. The IUT's clock is then set to a time between a pair of scheduled write operations, and verification of the first write operation's data value is performed. The time is advanced to the second time, the Schedule object's Present_Value is checked, and verifications of the write operations are performed. If the IUT does not support writing to object properties within the IUT, then this test shall not be performed.

Configuration Requirements: The IUT is configured with a Schedule object containing a List_Of_Object_Property_ References property that references, if possible, at least one property in another object within the IUT. The Schedule object is configured with either a Weekly_Schedule or an active Exception_Schedule, during a period where Effective_Period is active, with at least two consecutive entries with distinguishable values in the List of BACnetTimeValues, and with no Exception_Schedules at a higher priority. D1 represents the date and time of the first of these two BACnetTimeValues, with corresponding value V1, while D2 and V2 (a value distinguishable from V1) represent the second BACnetTimeValue. A time Dt is defined to occur between D1 and D2.
Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = Dt) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = Dt, converted to UTC) |

MAKE (the local date and time = Dt)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
VERIFY (value of referenced property in IUT) = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = V2

8.
VERIFY (value of referenced property in IUT) = V2

7.3.2.23.8
List_Of_Object_Property_Reference External Test

Reason for Change: This test does not consider the UTCTimeSynchronization service. This test is not part of an SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.10.

Purpose: To verify that the Schedule object writes to object properties contained in a device other than the IUT.

Test Concept: The Schedule object is configured to write to a property of another object in the same device and a property of an object in the TD. The IUT's clock is then set to a time between a pair of scheduled write operations, and verification of the first write operation's data value is performed. The time is advanced to the second time, the Schedule object's Present_Value is checked, and verifications of the write operation are performed. If the IUT does not support writes to object properties contained in a device other than the IUT, then this test shall not be performed.

Configuration Requirements: The TD is configured to indicate that it supports the WriteProperty-Request service but not WritePropertyMultiple-Request. The IUT is configured with a Schedule object containing a List_Of_Object_Property_ References property that references a property of an object contained in the TD. The Schedule object is configured with either a Weekly_Schedule or an active Exception_Schedule, during a period where Effective_Period is active, with at least two consecutive entries with distinguishable values in the List of BACnetTimeValues, and with no Exception_Schedules at a higher priority. D1 represents the date and time of the first of these two BACnetTimeValues, with corresponding value V1, while D2 and V2 (a value distinguishable from V1) represent the second BACnetTimeValue. A time Dt is defined to occur between D1 and D2.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = Dt) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = Dt, converted to UTC) |

MAKE (the local date and time = Dt)
2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) |

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D2, converted to UTC) |

MAKE (the local date and time = D2)
5.
BEFORE Schedule Evaluation Fail Time

RECEIVE WriteProperty-Request,

'Object Identifier' =
(the referenced object in the TD),

'Property Identifier' =
(the referenced property in the TD),

'Property Value' =
V2
6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = V2

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the range 1-16, excluding 6.

7.3.2.23.X Schedule Object Protocol_Revision 4 Tests

The Schedule object was revised in Addendum a to ANSI/ASHRAE 135-2001, which increased Protocol_Revision to 4. Although the basic structure of the Schedule object changed little, its operations are sufficiently different that the existing tests for the original Schedule object need revision in some cases and complete replacement in others, and new tests for some additional changes were needed. This clause presents specific tests to be run for Schedule objects in devices that claim Protocol_Revision 4 or higher.

The Schedule object has no properties required to be writable or otherwise configurable. The following tests are designed to be performed on such a Schedule object. However, if the Schedule object is in any way configurable it shall be configured to accommodate as many of the following tests as is possible for the implementation. If it is impossible to configure the IUT in the manner required for a particular test that test shall be omitted. If the IUT supports Schedule objects that can write outside the device this shall be demonstrated in one of the Schedule tests.

Tests of the Schedule object center upon observing the write operations scheduled to occur at specific dates and times, verified by reading the Schedule object's Present_Value property. For the test to be performed in a reasonable amount of time it is necessary to be able to alter settings of the device's clock and calendar.

For each test, a date and (as required) time ("Date") for the test is determined beforehand. Tables 7-1 through 7-10 give the criteria for the Date, designated D1, D2, and so on, to be used in the tests. Dates meeting these criteria may be chosen from existing schedules, or a schedule may be developed by the manufacturer to meet these criteria.

Associated with each Date Dn defining the time of a schedule write operation is a value Vn, which is the value associated with the time member of Date in the BACnetTimeValue pair. Vn may take on any primitive datatype.

7.3.2.23.X.1 Revision 4 Effective_Period Test

Reason for Change: No tests existed for revision 4 functionality. The change is in SED-005.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.6.

Purpose: To verify that Effective_Period controls the range of dates during which the Schedule object is active.
Test Concept: Two Date values are chosen by the TD based on the criteria in Table 7-1 such that one is outside of the Effective_Period and the other corresponds to a known scheduled state inside the Effective_Period. The IUT's local date and time are changed between these dates and a property referenced by the List_Of_Object_Property_References property is monitored to verify that write operations occur only within the Effective_Period.

Configuration Requirements: The IUT shall be configured with a schedule object such that the time periods defined in Table 7-1 have uniquely scheduled values. The local date and time shall be set such that the Present_Value property has a value other than V1. The List_Of_Object_Property_References property shall contain at least one reference either to a property within the IUT alterable by the Schedule object or a writable property in another device (in either case: the '"referenced property"); if the List_Of_Object_Property_References property cannot be thus configured this test shall be skipped.

Table 7-1. Criteria for Effective_Period Test Dates and Values

	Date:
	Criteria:
	Value:

	D1
	1. Date occurs during Effective_Period, and

2. Date appears either in Weekly_Schedule or Exception_Schedule.
	V1

	D2
	1. Date does not occur during Effective_Period, and

2. Date appears either in Weekly_Schedule or Exception_Schedule.
	V2 different from V1.

Test Steps:

1.
VERIFY "referenced property" = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1 converted to UTC)

| MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY "referenced property" = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY "referenced property" = V1
7.3.2.23.X.2 Revision 4 Weekly_Schedule Property Test

Reason for Change: No tests existed for revision 4 functionality. The change is in SED-005.
Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clauses: 12.24.4, 12.24.7.

Purpose: To verify that Weekly_Schedule contains distinguishable schedules for each day of the week, and that a day's entire schedule can be executed.

Test Concept: The IUT's local date and time are changed sequentially to represent each day of the week as shown in Table 7-2. The Present_Value property is monitored to verify that write operations occur for each separately scheduled day.

Configuration Requirements: The IUT shall be configured with a schedule object containing a weekly schedule with seven distinguishable daily schedules meeting the requirements of Table 7-2. The local date and time shall be set such that the Present_Value property has a value other than V1. If no schedule exists that meets these requirements and none can be configured, this test shall be omitted. An "active period" is defined as a period of time when the Exception_Schedule determines the value appearing in Present_Value.

Table 7-2. Criteria for Weekly_Schedule Test Dates and Values

	Date:
	Criteria:
	Value:

	D1
	1. Date occurs during Effective_Period,

2. Date occurs on a Monday, and

3. Date does not occur during an active period in Exception_Schedule.
	V1

	D2
	1. Date occurs during Effective_Period,

2. Date occurs on a Tuesday, and

3. Date does not occur during an active period in Exception_Schedule.
	V2 is different from V1.

	D3
	1. Date occurs during Effective_Period,

2. Date occurs on a Wednesday, and

3. Date does not occur during an active period in Exception_Schedule.
	V3 is different from V2.

	D4
	1. Date occurs during Effective_Period,

2. Date occurs on a Thursday, and

3. Date does not occur during an active period Exception_Schedule.
	V4 is different from V3.

	D5
	1. Date occurs during Effective_Period,

2. Date occurs on a Friday, and

3. Date does not occur during an active period in Exception_Schedule.
	V5 is different from V4.

	D6
	1. Date occurs during Effective_Period,

2. Date occurs on a Saturday, and

3. Date does not occur during an active period in Exception_Schedule.
	V6 is different from V5.

	D7
	1. Date occurs during Effective_Period,

2. Date occurs on a Sunday, and

3. Date does not occur during an active period in Exception_Schedule.
	V7 is different from V6.

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1 converted to UTC)

| MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY Present_Value = V2
8.
(TRANSMIT TimeSynchronization-Request, 'Time' = D3)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D3 converted to UTC)

| MAKE (the local date and time = D3)

9.
WAIT Schedule Evaluation Fail Time
10.
VERIFY Present_Value = V3

11.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D4 converted to UTC)

| MAKE (the local date and time = D4)

12.
WAIT Schedule Evaluation Fail Time

13.
VERIFY Present_Value = V4

14.
(TRANSMIT TimeSynchronization-Request, 'Time' = D5)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D5 converted to UTC)

| MAKE (the local date and time = D5)

15.
WAIT Schedule Evaluation Fail Time
16.
VERIFY Present_Value = V5

17.
(TRANSMIT TimeSynchronization-Request, 'Time' = D6)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D6 converted to UTC)

| MAKE (the local date and time = D6)

18.
WAIT Schedule Evaluation Fail Time

19.
VERIFY Present_Value = V6
20.
(TRANSMIT TimeSynchronization-Request, 'Time' = D7)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D7 converted to UTC)

| MAKE (the local date and time = D7)

21.
WAIT Schedule Evaluation Fail Time

22.
VERIFY Present_Value = V7
23.
REPEAT X = (the time portion of the BACnetTimeValue entries for one of the daily schedules in

 Table 7-2) DO {

(TRANSMIT TimeSynchronization-Request, 'Time' = X) |
| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = X, converted to UTC)

 | MAKE (the local date and time = X)

WAIT Schedule Evaluation Fail Time

VERIFY Present_Value = (the scheduled value corresponding to time X)

}

7.3.2.23.X.3 Revision 4 Exception_Schedule Property Tests

Reason for Change: No tests existed for revision 4 functionality. The change is in SED-006.
7.3.2.23.X.3.7 Revision 4 Calendar Entry WeekNDay Day Of Week Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's DayOfWeek field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-10. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying the day of the week. The criteria for the dates used in the test are given in Table 7-10. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-10. Criteria for Calendar Entry WeekNDay Day of Week Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies only DayOfWeek,

2C. Date falls on the specified day of the week, and

2D. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies only DayOfWeek, and

2C. Date does not fall on the specified day of the week.
	

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1 converted to UTC)

| MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time

4.
VERIFY Present_Value = V1
5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY Present_Value = (any value other than V1)

7.3.2.23.X.3.8 Revision 4Event Priority Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority when both are active at the same time, and that it relinquishes to the lower priority.

Configuration Requirements: The IUT shall be configured with a Schedule object containing two or more BACnetSpecialEvents, all active on the same date, with different eventPriority values (if possible, all 16 priority levels should be represented), and with overlapping BACnetTimeValue entries distributed thus: the entry with the lowest priority shall have the earliest time-value pair (D1) with a non-NULL value, and the last time-value pair (DN) with a NULL value; the next higher priority shall have a time-value pair D2 occurring after D1 with a different non-NULL value, and a time-value pair DN-1 with a NULL value and occurring before DN; and so on. The result is that the time-value pairs shall be ordered chronologically thus: D1, D2, D3, ..., DN-1, DN. An example of such a configuration testing five priority levels is shown in Table 7-11.

Table 7-11. Example of event and value prioritization

	Event
	
	
	
	
	Time:
	
	
	
	

	 Priority:
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	D8
	D9

	1
	-
	-
	-
	-
	V5
	NULL
	-
	-
	-

	2
	-
	-
	-
	V4
	-
	-
	NULL
	-
	-

	3
	-
	-
	V3
	-
	-
	-
	-
	NULL
	-

	4
	-
	V2
	-
	-
	-
	-
	-
	-
	NULL

	5
	V1
	-
	-
	-
	-
	-
	-
	-
	-

	Present_Value:
	V1
	V2
	V3
	V4
	V5
	V4
	V3
	V2
	V1

Note: Each event priority in the table above represents 1 BACnetSpecialEvent. The BACnetSpecialEvent should contain the time value pairs listed in the table (Dx, Vx). There should be only 1 BACnetSpecialEvent per priority for this test.

Test Steps:

1. REPEAT D = (the times in the configured time-value pairs with non-NULL values) DO

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC)

| MAKE (the local date and time = D)

3.
WAIT Schedule Evaluation Fail Time

4.
VERIFY Present_Value = (the value corresponding to the time D)

5. REPEAT D = (the times in the configured time-value pairs with NULL values,

except the final DN) DO

6.
(TRANSMIT TimeSynchronization-Request, 'Time' = D)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC)

| MAKE (the local date and time = D)

7.
WAIT Schedule Evaluation Fail Time

8.
VERIFY Present_Value = (the non-NULL value corresponding to the priority lower than that

associated with D)

7.3.2.23.X.3.9 Revision 4 List of BACnetTimeValue Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent's entire schedule can be executed.

Test Concept: A special event is scheduled that contains multiple BACnetTimeValue entries with distinguishable non-NULL values. The local date and time are changed to values that match each of the BACnetTimeValue entries and the Present_Value property is read to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured with a Schedule object containing a BACnetSpecialEvent with two or more BACnetTimeValue entries. Each BACnetTimeValue entry shall be non-Null and have a distinguishable value. The BACnetSpecialEvent selected for this test shall be the highest priority event active for the day selected for testing.
Test Steps:

1.
REPEAT Di = (the times used in the BACnetTimeValue pairs of the special event) DO {

(TRANSMIT TimeSynchronization-Request, 'Time' = Di)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1 converted to UTC)

| MAKE (the local date and time = Di)

WAIT Schedule Evaluation Fail Time

VERIFY Present_Value = (the value corresponding to the special event)

}

7.3.2.23.X.3.10 Revision 4 Calendar Entry WeekNDay Odd-Numbered Month Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's Month field, specifying odd-numbered months (BACnetWeekNDay month enumeration value 13), in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed such that all months of the year are tested. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying odd-numbered months in a specific year and a second, lower priority, BACnetCalendarEntry with a WeekNDay entry specifyingall days of the year specified in the first. The criteria for the dates used in the test are given in Table 7-7.

Table 7-7. Criteria for Calendar Entry WeekNDay Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay: specifies odd-numbered months with a specific year (Y), and

2C. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay:Month specifiesall days of the year used in D1, and
2C. Lower eventPriority than that used for D1.
	V2

(different from V1)

Test Steps:

1.
REPEAT X = (All months, 1-12)
2.

(TRANSMIT TimeSynchronization-Request, 'Time' = D, where month = X and year is Y)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC)

| MAKE (the local date and time = D)

3.

WAIT Schedule Evaluation Fail Time
4.

IF (X = Odd) THEN

VERIFY Present_Value = V1

ELSE

VERIFY Present_Value = V2

7.3.2.23.X.3.11 Revision 4 Calendar Entry WeekNDay Even-Numbered Month Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

This test is identical to 7.3.2.22.X2.3.10, except that even-numbered months (BACnetWeekNDay month enumeration value 14), are used instead of odd-numbered months.

7.3.2.23.X.3.12 Revision 4 Lower Event Priority Change Test
Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that when a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority, that a change in the lower priority level is not observed in Present_Value until control is relinquished to it.

Configuration Requirements: A Schedule object is configured with two BACnetSpecial Events, thus: the first event is at lower priority than the second and contains two time-value pairs: the first, D1, has a non-NULL value V1 and the second, D4, has a non-NULL value V4 which is different from V1 and different from V3. The second event contains three time-value pairs: the first, D2, occurs after D1 and before D3, and has a non-NULL value V2 different from the value V1; the second, D3, occurs after D2 and has a non-NULL value V3 different from the value V2; the third, D5 occurs after D4 and has a NULL value. (This arrangement of events facilitates testing Schedule objects that schedule only BOOLEAN or two-state enumerations.) Table 7-12 illustrates the time and value pairs in this test.

Table 7-12. Event and value prioritization test times and value

	
	
	
	Time:
	
	

	Event Priority:
	D1
	D2
	D3
	D4
	D5

	Higher
	-
	V2
	V3
	-
	NULL

	Lower
	V1
	-
	-
	V4
	-

	Present_Value:
	V1
	V2
	V3
	V3
	V4

Note: Each event priority in the table above represents 1 BACnetSpecialEvent. The BACnetSpecialEvent should contain the time value pairs listed in the table (Dx, Vx). There should be only 1 BACnetSpecialEvent per priority for this test.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1 converted to UTC)

| MAKE (the local date and time = D1)

2.
VERIFY Present_Value = V1
3.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

4.
VERIFY Present_Value = V2
5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D3)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D3 converted to UTC)

| MAKE (the local date and time = D3)

6.
VERIFY Present_Value = V3
7.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D4 converted to UTC)

| MAKE (the local date and time = D4)

8.
VERIFY Present_Value = V3 (not V4)

9.
(TRANSMIT TimeSynchronization-Request, 'Time' = D5)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D5 converted to UTC)

| MAKE (the local date and time = D5)

10.
VERIFY Present_Value = V4
7.3.2.23.X.3.13 Revision 4 Schedule_Default Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.9.

Purpose: To verify that the value in Schedule_Default is applied when no weekly or exception schedule is in effect.

Configuration Requirements: The IUT shall be configured with a Schedule object with a Schedule_Default value Vdefault, and containing at least one of, and if possible both (non-overlapping):

- a Weekly_Schedule containing a time-value pair at time D1 with a non-NULL value V1 different from Vdefault, and a subsequent time-value pair with a NULL value at time D2.

- an Exception_Schedule with no overlap with the time frame D1 to D2, a time-value pair at time D3 with a non-NULL value V3 different from Vdefault,and a subsequent time-value pair with a NULL value at time D4.

Test Steps:

1. IF (the Schedule object is configured with a Weekly_Schedule) THEN

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1 converted to UTC)

| MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = Vdefault
8. IF (the Schedule object is configured with an Exception_Schedule) THEN

9.
(TRANSMIT TimeSynchronization-Request, 'Time' = D3)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D3 converted to UTC)

| MAKE (the local date and time = D3)

10.
WAIT Schedule Evaluation Fail Time
11.
VERIFY Present_Value = V3

12.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D4 converted to UTC)

| MAKE (the local date and time = D4)

13.
WAIT Schedule Evaluation Fail Time
14.
VERIFY Present_Value = Vdefault
7.3.2.23.X.4 Revision 4 Weekly_Schedule and Exception_Schedule Interaction Test

Reason for Change: No tests existed for revision 4 functionality. This test is included in KV-001.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clauses: 12.24.7, 12.24.8.

Purpose: To verify that an Exception_Schedule takes precedent over a coincident BACnetDailyScheduleWeekly_Schedule; to verify that Weekly_Schedule automatically takes control once it becomes active and after the Exception_Schedule is expired; and to verify that the value in Schedule_Default is applied when no weekly or exception schedule is in effect.

Test Concept: The IUT is configured with a Weekly_Schedule and an Exception_Schedule that apply to the same time dates. The local date and time are changed to the time when the Exception_-Schedule is supposed to take control and the Present_Value is read to verify that the scheduled write operation occurs. The local date and time are changed again to a value that would cause another change if the Weekly_Schedule were in control. The Present_Value is read to verify the Exception_Schedule is still controlling. The local date and time are changed again to a value where Exception_Schedule is not in effect and Present_Value is read to verify that Weekly_Schedule is controlling. The local date and time are changed again to a value where both Exception_Schedule and Weekly_Schedule are not in effect and Present_Value is read to verify that Schedule_Default is written into it.

Configuration Requirements: The IUT shall be configured with a Schedule object containing a Weekly_Schedule and an Exception_Schedule that apply to the same dates within the Effective_Period. The BACnetSpecialEvents in the Exception_Schedule shall have a higher EventPriority than any other coincident BACnetSpecialEvent. There shall be no other BACnetSpecial Events in the Exception_Schedule. The BACnetTimeValue pairs shall be assigned values such that the values written by the Weekly_Schedule are distinguishable from the values written by the Exception_Schedule. Let D1 represent the date and time when the Exception_Schedule is configured to take control and write value V1. Let D2 represent the time in Weekly_Schedule that occurs after D1 to write value V2. Let D3 represent the time in Exception_Schedule that occurs after D2 to write value NULL. Let D4 represent the time in Weekly_Schedule that occurs after D3 to write value NULL. There shall be at least one BACnetTimeValue pair in the Weekly_Schedule that specifies a time, D2, that is after D1 but before the Exception_Schedule expires. The Weekly_Schedule is configured to write value V2 at time D2. If Schedule_Default is configurable, then the IUT shall be configured with a Schedule_Default value Vdefault., a non-NULL value distinguishable from V1 and V2.

Notes to Tester: Though the value in a Schedule_Default property can in ordinary circumstances be NULL, during the conduct of this test, that is disallowed because it could mask several potential implementation flaws. There are potentially erroneous sources of NULL values in both Exception_Schedule and Weekly_Schedule at the critical time D4 when Vdefault , should appear in Present_Value.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D1 converted to UTC)

| MAKE (the local date and time = D1)

2.
WAIT Schedule Evaluation Fail Time

3.
VERIFY Present_Value = V1

4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

5.
WAIT Schedule Evaluation Fail Time

5. VERIFY Present_Value = V1

6. (TRANSMIT TimeSynchronization-Request, 'Time' = D3)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D3 converted to UTC)

| MAKE (the local time = D3)

8.
WAIT Schedule Evaluation Fail Time

4) VERIFY Present_Value = V2

 10.

(TRANSMIT TimeSynchronization-Request, 'Time' = D4)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D4 converted to UTC)

| MAKE (the local time = D4)

11.
WAIT Schedule Evaluation Fail Time

12.
VERIFY Present_Value = Vdefault

7.3.2.23.X.5 Revision 4 Exception_Schedule Restoration Test

No test required.

7.3.2.23.X.6 Revision 4 Weekly_Schedule Restoration Test

No Test required.

7.3.2.23.X.7 Revision 4 List_Of_Object_Property_Reference Internal Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.9.

Purpose: To verify that the Schedule object writes to objects and properties contained within the IUT.

Test Concept: The Schedule object is configured to write to a property of another object within the same device. The IUT's clock is then set to a time between a pair of scheduled write operations, and verification of the first write operation's data value is performed. The time is advanced to the second time, the Schedule object's Present_Value is checked, and verifications of the write operations are performed. If the IUT does not support writing to object properties within the IUT, then this test shall not be performed.

Configuration Requirements: The IUT is configured with a Schedule object containing a List_Of_Object_Property_ References property that references, if possible, at least one property in another object within the IUT. The Schedule object is configured with either a Weekly_Schedule or an active Exception_Schedule, during a period where Effective_Period is active, with at least two consecutive entries with distinguishable values in the List of BACnetTimeValues. D1 represents the date and time of the first of these two BACnetTimeValues, with corresponding value V1, while D2 and V2 (a value distinguishable from V1) represent the second BACnetTimeValue. A time Dt is defined to occur between D1 and D2.
Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = Dt)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = Dt converted to UTC)

| MAKE (the local date and time = Dt)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
VERIFY (value of referenced property in IUT) = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = V2

8.
VERIFY (value of referenced property in IUT) = V2

7.3.2.23.X.8 Revision 4 List_Of_Object_Property_Reference External Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.9.

Purpose: To verify that the Schedule object writes to object properties contained in a device other than the IUT.

Test Concept: The Schedule object is configured to write to a property of another object in the same device and a property of an object in the TD. The IUT's clock is then set to a time between a pair of scheduled write operations, and verification of the first write operation's data value is performed. The time is advanced to the second time, the Schedule object's Present_Value is checked, and verifications of the write operation are performed. If the IUT does not support writes to object properties contained in a device other than the IUT, then this test shall not be performed.

Configuration Requirements: The TD is configured to indicate that it supports the WriteProperty-Request service but not WritePropertyMultiple-Request. The IUT is configured with a Schedule object containing a List_Of_Object_Property_ References property that references a property of an object contained in the TD. The Schedule object is configured with either a Weekly_Schedule or an active Exception_Schedule, during a period where Effective_Period is active, with at least two consecutive entries with distinguishable values in the List of BACnetTimeValues. D1 represents the date and time of the first of these two BACnetTimeValues, with corresponding value V1, while D2 and V2 (a value distinguishable from V1) represent the second BACnetTimeValue. A time Dt is defined to occur between D1 and D2.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = Dt)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = Dt converted to UTC)

| MAKE (the local date and time = Dt)
2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)
5.
BEFORE Schedule Evaluation Fail Time

RECEIVE WriteProperty-Request,

'Object Identifier' =
(the referenced object in the TD),

'Property Identifier' =
(the referenced property in the TD),

'Property Value' =
V2
6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = V2
Note to Tester: The Priority parameter for the WriteProperty-Request may be left out if the Schedule is configured with a value of 16 in its Priority_For_Writing property or if the target property is a standard property of a standard object for which commandability is not an option.
7.3.2.23.Y Revision 4 Midnight Evaluation Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.4.

Purpose: To verify that the Schedule object evaluates its schedule as it passes through midnight (00:00).

Configuration Requirements: The IUT shall be configured with a Schedule object with a Schedule_Default value Vdefault, and containing at least one of, and if possible both (non-overlapping):

- a Weekly_Schedule containing a time-value pair at time D1 (not 00:00) with a non-NULL value V1 different from Vdefault, and no scheduled write operations during the day after D1, and none on the day following.

- an Exception_Schedule with an event occurring on a day different from D1, containing a time-value pair at time D3 with a non-NULL value V3 different from Vdefault , and no scheduled write operations during the day after D3, and none on the day following.

Two additional times, used in the execution of the test, are defined as follows:

- D2 occuring on the same day as D1, after D1 and before midnight.

- D4 occuring on the same day as D3, after D3 and before midnight.

It is recommended that to minimize testing time, D1 through D4 be chosen to be close to midnight. However, all times used in this test shall be separated by at least Schedule Evaluation Fail Time.

An illustration of the test times and values configured and observed is shown in Table 7-13.

Table 7-13. Test times and value

	Time:
	D1
	D2
	00:00
	D3
	D4
	00:00

	Exception_Schedule:
	-
	-
	-
	V3
	-
	-

	Weekly_Schedule:
	V1
	-
	-
	-
	-
	-

	Present_Value:
	
	V1
	Vdefault
	
	V3
	Vdefault

Test Steps:

1. IF (the Schedule object is configured with a Weekly_Schedule) THEN

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D2 converted to UTC)

| MAKE (the local date and time = D2)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
WAIT (until 00:00)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = Vdefault
8. IF (the Schedule object is configured with an Exception_Schedule) THEN

9.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4)

| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D4 converted to UTC)

| MAKE (the local date and time = D4)

10.
WAIT Schedule Evaluation Fail Time
11.
VERIFY Present_Value = V3

12.
WAIT (until 00:00)

13.
WAIT Schedule Evaluation Fail Time
14.
VERIFY Present_Value = Vdefault
7.3.2.24 Log Object Tests

This section was renumbered in 135.1-2007 to 7.3.2.24. The old section number was 7.3.2.23.
7.3.2.24.1 Enable Test

Reason for Change: Enable was being set to TRUE too early such that step 10 could pass incorrectly. The change is in JB-020.

Note: 135.1-2009g-16 ratified the prior version of this test—the version that appeared in BTL Specified Tests-5.0.final
Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.5.

Purpose: To verify that the Enable property enables and disables the logging of data by the log object.

Test Concept: The log object is configured to acquire data by each means (polling and COV subscription) available to the implementation. Enable is enabled and the collection of one or more records in the Log_Buffer is confirmed. Enable is then disabled and non-collection of records is confirmed.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with a time that will occur after the completion of the test. Stop_When_Full, if configurable, shall be set to FALSE.

Test Steps:

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0

3. WAIT Internal Processing Fail Time
4. WRITE Enable = TRUE

5. READ X = Total_Record_Count

6. MAKE (IUT collect another record)

7. WAIT (Notification Fail Time + Internal Processing Fail Time)

8. VERIFY Total_Record_Count > X
9. WRITE Enable = FALSE

10. READ Y = Total_Record_Count

11. MAKE (IUT collect another record)

12. WAIT (Notification Fail Time + Internal Processing Fail Time)

13. VERIFY Total_Record_Count = Y
Note to Tester: For each MAKE (IUT collect another record) perform the following steps

IF(Event Log Object) THEN

MAKE (Event Log Object collect another record)

ELSE

IF (COV subscription in use) THEN

MAKE (monitored value change sufficient to generate another record)

ELSE IF (interval or period logging is in use) THEN

WAIT (Log_Interval)

ELSE

MAKE (Trend Log or Trend Log Multiple Object collect another record)

7.3.2.24.2 Start_Time Test

Reason For Change: To make this test generic for all logging objects.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.23.6.

Purpose: To verify that logging is enabled at the time specified by Start_Time.

Test Concept: The log object is configured to acquire data by each mean available to the implementation. The test is begun at some time prior to the time specified in Start_Time and non-collection of records is confirmed. Collection of records after the time specified by Start_Time is then confirmed.

Configuration Requirements: Start_Time shall be configured with a date and time such that steps 1 through 6 will be concluded before that time. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occurs after the end of the test. Stop_When_Full, if configurable, shall be set to FALSE; Enable shall be set to TRUE.

Test Steps:

1. WRITE Record_Count = 0

2. WAIT Internal Processing Fail Time

3. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

4. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

5. MAKE (IUT collect another record)

6. WAIT (Notification Fail Time + Internal Processing Fail Time)

7. VERIFY Total_Record_Count = (value X returned in step 4)

8. WHILE (IUT clock is earlier than Start_Time) DO

VERIFY Total_Record_Count = (value X returned in step 4)

9. WAIT (Notification Fail Time + Internal Processing Fail Time)

10.
MAKE (IUT collect another record)

11. WAIT (Notification Fail Time + Internal Processing Fail Time)

12. VERIFY Total_Record_Count > (value X returned in step 4)

Note to Tester: For each MAKE (IUT collect another record) perform the following steps

IF(Event Log Object) THEN

MAKE (Event Log Object collect another record)

ELSE

IF (COV subscription in use) THEN

MAKE (monitored value change sufficient to generate another record)

ELSE IF (interval or period logging is in use) THEN

WAIT (Log_Interval)

ELSE

MAKE (Trend Log or Trend Log Multiple Object collect another record)
7.3.2.24.3 Stop_Time Test

Reason for Change: To make this test generic for all logging objects. Enable was being set to TRUE too early such that step 10 could pass incorrectly. The change is in JB-020.

Note: 135.1-2009g-16 ratified the prior version of this test—the version that appeared in BTL Specified Tests-5.0.final
Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.7.

Purpose: To verify that logging is disabled at the time specified by Stop_Time.

Test Concept: The log object is configured to acquire data by each means available to the implementation. The test is begun at some time prior to the time specified in Stop_Time and collection of records is confirmed. Non-collection of records after the time specified by Stop_Time is then confirmed.

Configuration Requirements: Stop_Time shall be configured with a date and time such that steps 1 through 9 will be concluded before that time. Start_Time, if present shall be configured with date and time preceding the initiation of the test. Stop_When_Full, if configurable, shall be set to FALSE.

Test Steps:

1. WRITE Enable = FALSE

2. WAIT Internal Processing Fail Time

3. WRITE Record_Count = 0

4. WRITE Enable = TRUE.

5. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

6. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

7. WAIT Internal Processing Fail Time

8.MAKE (IUT collect another record)

9. WAIT (Notification Fail Time + Internal Processing Fail Time)

10. VERIFY Total_Record_Count > (value X returned in step 5)

11. WHILE (IUT clock is earlier than Stop_Time) DO {}

12. WAIT (Notification Fail Time + Internal Processing Fail Time)

13. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

14. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

15.MAKE (IUT collect another record)

16. WAIT (Notification Fail Time + Internal Processing Fail Time)

17. VERIFY Total_Record_Count = (value X returned in step 14)

Note to Tester: For each MAKE (IUT collect another record) perform the following steps

IF(Event Log Object) THEN

MAKE (Event Log Object collect another record)

ELSE

IF (COV subscription in use) THEN

MAKE (monitored value change sufficient to generate another record)

ELSE IF (interval or period logging is in use) THEN

WAIT (Log_Interval)

ELSE

MAKE (Trend Log or Trend Log Multiple Object collect another record)

7.3.2.24.4 Log_Interval Test

Reason for Change: To make this test generic for all logging objects. The test here supercedes the version in 135.1-2009j-12. The Configuration Requirements are enhanced, and a Notes to Tester is added.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.23.9.

Purpose: To verify that the logging period is controlled by Log_Interval.

Test Concept: The log object is configured to acquire data by polling. Polling is done at two different intervals, defined by Log_Interval, with about 10 records acquired at each rate. The timestamps of the records are inspected to verify the polling rate.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Stop_When_Full, if configurable, shall be set to FALSE. Log_Enable shall be set to TRUE. Logging_Type is not equal to TRIGGERED. Non-zero values shall be chosen for Log_Interval in accordance with the range and resolution specified by the manufacturer for this property.

Test Steps:

1. WRITE Log_Interval = (some non-zero value)

2. WRITE Record_Count = 0

3. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)

4. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 1)

5. WRITE Log_Interval = (a non-zero value different from the one written in step 1)

6. WRITE Record_Count = 0

7. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)

8. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 5)

Notes to tester: The step 1 write of Logging_Interval to a non-zero value will make a change in Logging_Type from COV to POLLED, if Logging_Type was initially COV.
7.3.2.24.5 COV_Resubscription_Interval Test

Reason for Change: The test was incorrect. The change is in JB-020.

Dependencies: Confirmed Notifications Subscription, 8.10.1.
BACnet Reference Clause: 12.23.10.

Purpose: To verify that a Trend Log acquiring data via COV notification reissues its subscription at the interval set by COV_Resubscription_Interval.

Test Concept: The Trend Log is configured to acquire data from the TD by COV notification. The TD verifies the resubscription interval.
Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Stop_When_Full, if configurable, shall be set to FALSE. Enable shall be set to TRUE. Non-zero values shall be chosen for COV_Resubscription_Interval in accordance with the range and resolution specified by the manufacturer for this property.

Test Steps:

1. IF (the IUT uses SubscribeCOV) THEN

RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value),

'Monitored Object Identifier' =
(the object to be monitored),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =
(any value >= COV_Resubscription_Interval)

 ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' =
(any value),

'Monitored Object Identifier' =
(the object to be monitored),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =
(any value >= COV_Resubscription_Interval),

'Monitored Property Identifier' =
(the property to be monitored),

'COV Increment' =
(Client_COV_Increment -- optional)

2. TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Initiating Object Identifier' =
(Device object identifier of the TD),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(corresponding value in step 1),

'Time Remaining' =
(any value <= the Lifetime from step 1),

'List of Values' =
(appropriate BACnetPropertyValue(s))

5. BEFORE (the lesser of COV_Resubscription_Interval + Re-subscription Interval Tolerance and

 Lifetime from step 1)

IF (the IUT uses SubscribeCOV)

RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =

(any value >= COV_Resubscription_Interval)

ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =

(any value >= COV_Resubscription_Interval),

'Monitored Property Identifier' =
(corresponding value in step 1),

'COV Increment' =

(corresponding value in step 1)

6. TRANSMIT BACnet-SimpleACK-PDU

7. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Initiating Object Identifier' =
(Device object identifier of the TD),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(corresponding value in step 1),

'Time Remaining' =

(any value <= the LifeTime from step 5),

'List of Values' =

(appropriate BACnetPropertyValue(s))

8. RECEIVE BACnet-SimpleACK-PDU
9. WAIT (COV_Resubscription_Interval - Re-subscription Interval Tolerance)

10. BEFORE (2 * Re-subscription Interval Tolerance)

IF (the IUT uses SubscribeCOV)

RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =
(corresponding value in step 1)

ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =

(corresponding value in step 1),

'Monitored Property Identifier' =
(corresponding value in step 1),

'COV Increment' =

(corresponding value in step 1)

11. TRANSMIT BACnet-SimpleACK-PDU

Passing Result: Where the Lifetime parameter of a SubscribeCOV request is less than COV_Resubscription_Interval + Re-subscription Interval Tolerance, the IUT shall send the subsequent SubscribeCOV request within Lifetime seconds even though this is a smaller time window than defined by the test. If the IUT does not meet this stricter time window, then the IUT shall fail the test.

7.3.2.24.6 Stop_When_Full Tests

Two tests are performed on Stop_When_Full. The first is performed only when Stop_When_Full can be configured to TRUE, the second when Stop_When_Full can be configured to FALSE.

7.3.2.24.6.1 Stop_When_Full TRUE Test

Reason for Change: To make this test generic for all logging objects. The Configuration Requirements were incorrect. This test in some form will become included in 135.1 by virtue of 135.1-2009j-10 when that is approved.
Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.12.

Purpose: To verify that Stop_When_Full set to TRUE properly indicates that the log object ceases collecting data when its Log_Buffer acquires Buffer_Size data items.

Test Concept: The log objectis configured to acquire data by whatever means. Data is collected until more than Buffer_Size records have been collected and Enable is verified to be FALSE.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occurs after the end of the test. Stop_When_Full, if configurable, shall be set to TRUE. Log_Enable shall be set to FALSE.

Test Steps:

1. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count,

2. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count,

'Property Value' =
(any valid value, X)

3. WRITE Record_Count = 0

4. WAIT Internal Processing Fail Time

5. WRITE Enable = TRUE

6. WHILE ((Total_Record_Count) modulo 232 < Buffer_Size) DO { }

7. WAIT Internal Processing Fail Time

8. VERIFY Log_Enable = FALSE

7.3.2.24.6.2
Stop_When_Full FALSE Test
Reason for Change: This test in some form will become included in 135.1 by virtue of 135.1-2009j-10 when that is approved.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.23.12.

Purpose: To verify that Stop_When_Full set to FALSE properly indicates that the Trend Loglog object continues collecting data after its Log_Buffer acquires Buffer_Size data items.

Test Concept: The log object is configured to acquire data by whatever means. Data is collected until more than Buffer_Size records have been collected and Log_Enable is verified to be TRUE.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Stop_When_Full, if configurable, shall be set to FALSE. Log_Enable shall be set to FALSE.

Test Steps:

1. WRITE Record_Count = 0

2. WAIT Internal Processing Fail Time

3. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

4. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count,

'Property Value' =
(any valid value, X)

5. WRITE Enable = TRUE

6. WHILE ((Total_Record_Count – (value X returned in step 4)) modulo 232 < (Buffer_Size+1)) DO { }

7. WAIT Internal Processing Fail Time

8. VERIFY Enable = TRUE

7.3.2.24.7 Buffer_Size Test

Reason for Change: To make this test generic for all logging objects. This test in some form will become included in 135.1 by virtue of 135.1-2009j-13 when that is approved.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.23.13.

Purpose: To verify that Buffer_Size properly indicates the number of records that can be stored in the Log_Buffer.

Test Concept: The log object is configured to acquire data by whatever means. Data is collected until at least Buffer_Size records have been collected, then the Log_Buffer is read and the presence of Buffer_Size discrete records is verified.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Enable shall be set to TRUE.

Test Steps:

1. WHILE (Record_Count < Buffer_Size) DO { }

2. WRITE Enable = FALSE

3. WAIT Internal Processing Fail Time

4. CHECK (that Log_Buffer has Buffer_Size discrete records)
7.3.2.24.8 Record_Count Test

Reason for Change: To make this test generic for all logging objects. The 135.1-2009 version of this test had incorrectly expected the Log_Buffer to contain no records. This test in some form will become included in 135.1 by virtue of 135.1-2009j-14 when that is approved.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.25.15.

Purpose: To verify that the Record_Count property indicates the number of records that are stored in the Log_Buffer.

Test Concept: The Trend Llogging object is configured to acquire data by whatever means. Record_Count is set to zero and Log_Buffer is read to verify no records are presentonly one record is present and it is the buffer-purged event. Collection of data proceeds until Record_Count is about Buffer_Size/2, collection is halted and Log_Buffer is read to verify the Record_Count value. Collection then resumes until Buffer_Size records are read; collection is then halted and Log_Buffer read to verify Record_Count again.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Log_Enable shall be set to FALSE.

Test Steps:

1. WRITE Record_Count = 0

2. WAIT Internal Processing Fail Time
3. CHECK (that Log_Buffer has no records)

3. VERIFY (Log_Buffer contains 1 entry, and it is the buffer-purged event)
4. WRITE Log_Enable = TRUE

5. WHILE (Record_Count < Buffer_Size/2) DO { }

6. WRITE Log_Enable = FALSE

7. WAIT Internal Processing Fail Time
8. VERIFYCHECK (that Log_Buffer has the number of records indicated by Record_Count)

9. WRITE Log_Enable = TRUE

10. WHILE (Record_Count < Buffer_Size) DO { }

11. WRITE Log_Enable = FALSE

12. WAIT Internal Processing Fail Time
13. VERIFYCHECK (that Log_Buffer has the number of records indicated by Record_Count)
7.3.2.24.10 Notification_Threshold Test

Reason For Change: To make this test generic for all logging objects. The calculation for the Total_Record_Count and other record count properties were incorrect. The Event_Values description was also incorrect. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.23.17.

Purpose: To verify that the Notification_Threshold property reflects the number of records collected since a previous notification, or since logging started, that causes a Buffer_Ready notification to be sent.

Test Concept: The log object is configured to acquire data by whatever means. Record_Count is set to zero. Collection of data proceeds until a notification is seen, collection is halted and the value of Record_Count is checked. Collection resumes until the second notification, when collection is again halted and Record_Count verified. If, for whatever reason, the IUT cannot be configured such that the TD is able to halt collection before another record is collected after issuing the notification this test shall not be performed.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occurs after the end of the test. Enable shall be set to FALSE.

Test Steps:

1. WRITE Record_Count = 0

2. WAIT Internal Processing Fail Time
3. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

4. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

5. WRITE Enable = TRUE

6. MAKE (log object collect number of records so as to cause a notification to go out)

7. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the log object being tested),

'Time Stamp' =

(any appropriate BACnetTimeStamp value),

'Notification Class' =

(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

BUFFER_READY,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

NORMAL,

' Event Values' =

(BACnetDeviceObjectPropertyReference– referring to the buffer property of the log object),

(any valid value < X),

(any value Y1 where Y1 >= X and Y1 <= X+Notification_Threshold)
8. TRANSMIT BACnet-SimpleACK-PDU
9. VERIFY (Total_Record_Count>=Y1)

10. MAKE (log object collect records until Total_Record_Count == Y1 + Notification_Threshold)

11. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the log object being tested),

'Time Stamp' =

(any appropriate BACnetTimeStamp value),

'Notification Class' =

(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

BUFFER_READY,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

NORMAL,

' Event Values' =

(BACnetDeviceObjectPropertyReference– referring to the buffer property of the log object),

(Y1),

(Y1 + Notification_Threshold)
12. TRANSMIT BACnet-SimpleACK-PDU
13. VERIFY (Total_Record_Count>= Y1 + Notification_Threshold)
14. WRITE Enable = FALSE

7.3.2.24.12 COV Subscription Failure Test

Reason for Change: The COV subscription might already be in effect when the test begins. This test in some form will become included in 135.1 by virtue of 135.1-2009l when that is approved.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.25.5, 12.25.9, and 12.25.10.

Purpose: To verify that a failed COV subscription causes a TO-FAULT transition.

Test Concept: The Trend Log is configured to acquire data by COV subscription from the TD. After it attempts to subscribe with the TD the Trend Log is halted and Event_State is checked. .A Trend Log configured to acquire samples via COV is monitored to ensure that when a COV subscription fails, the object will go into fault.

Configuration Requirements: The Trend Log is configured to acquire data by COV subscription from the TD. Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Log_Enable shall be set to TRUEFALSE.

Test Steps:

1. VERIFY Event_State = NORMAL

2. WRITE Log_Enable = TRUE

1. MAKE (the logging object perform its COV subscription)

2. IF (the IUT uses SubscribeCOV for this Trend Log)

RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value),

'Monitored Object Identifier' =
(any object),

'Issue Confirmed Notifications' =
(TRUE|FALSE),

'Lifetime' =
(2 * COV_Resubscription_Interval)

 ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' =
(any value),

'Monitored Object Identifier' =
(any object),

'Issue Confirmed Notifications' =
(TRUE|FALSE),

'Lifetime' =

(2 * COV_Resubscription_Interval),

'Monitored Property Identifier' =
(the property to be monitored),

'COV Increment' =
(Client_COV_Increment -- optional)

4. TRANSMIT BACnet-SimpleACK-PDU

5. WAIT COV_Resubscription_Interval

3. TRANSMIT BACnet-Error-PDU

 Error Class = (any valid error class),

 Error Code = (any valid error code)
4. VERIFY Event_State = FAULT
Notes to Tester: Step 3 may be optionally skipped, effectively having the TD send no response.

7.3.2.24.X1 Log-Status Test

Reason for Change: To make this test generic for all logging objects. The test here supercedes the version in 135.1-2009i-14, with a completely different, less prescriptive approach.
Dependencies: ReadRange Service Execution Tests, 9.21; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.14.

Purpose: To verify proper logging of log-disabled and buffer-purged events.

Test Concept: The buffer is cleared. Then the Enable property is changed and it is verified that the Record_Count property is changed and it is verified that the status entry is made correctly in the Log_Buffer. The Record_Count is also set to zero while the Enable property is FALSE and it is verified that the buffer-purged event is recorded into the Log_Buffer.
Test Configuration: The log object is configured to acquire data by whatever means available. Configure the logging such that the entire test may be run without the trend buffer overflowing.

Test Steps:

1.
WRITE Enable = FALSE

2.
WRITE Record_Count = 0

3.
VERIFY (Log_Buffer contains 1 entries, and it is the buffer-purged event)

4.
WRITE Enable = TRUE

5.
WRITE Enable = FALSE

6.
VERIFY (Record_Count => 3 and the first entry is the buffer-purged event, the second entry is

the log-enable TRUE event and the last entry is the log-enable FALSE event)

Notes to Tester: When Protocol_Revision >= 7 the length of BACnetLogStatus shall be 3 rather than 2.
7.3.2.24.X2 Time_Change Test

Reason for Change: To make this test generic for all logging objects. The test here supercedes the version in 135.1-2009i-14, with a completely different, less prescriptive approach. Addendum 135-2008x-2 Clarify Trend Log Time Stamp.
Purpose: To verify proper logging of time-change events in the log buffer

Test Concept: Change the clock in the device and verify that a record is logged indicating the number of seconds that the clock changed by or indicating zero if unknown. This test shall be skipped if the device does not support the Local_Time property in the device object or there is no way to change the time in the device.
Configuration Requirements: The log object is configured to acquire data by whatever means available. Configure the logging such that the entire test may be run without the trend buffer overflowing.

Test Steps:

1.
WRITE Enable = FALSE

2.
WRITE Record_Count = 0

3.
VERIFY (Log_Buffer contains 1 entry, and it is the buffer-purged event)

4.
TRANSMIT ReadProperty-Request,

‘Object Identifier’ = (device that contains log object)

‘Property Identifier’ = Local_Time

5.
RECEIVE ReadProperty-Ack,

‘Object Identifier’ = (device that contains log object)

‘Property Identifier’ = Local_Time

‘Property Value’ = (currentTime)

6.
WRITE Enable = TRUE

7.
MAKE (the time change on the device by a reasonable amount (deltaTime); change by one hour or

more)

8.
WRITE Enable = FALSE

9.
VERIFY Record_Count => 4

10.
CHECK (Log_Buffer contains a log-status entry of time-change)

11.
IF time-change amount is not zero, THEN

VERIFY (time-change value ~= deltaTime)

12.
VERIFY TimeStamp on the time-change entry ~= (currentTime + deltaTime)

7.3.2.24.X3 COV-Sampling Verification Test

Reason for Change: The test here supercedes the version in 135.1-2009i-14, with a completely different, less prescriptive approach. The Test Concept is simplified. The Configuration Requirements are enhanced.
Purpose: To verify logged samples are based on COV rather than by interval.

Test Concept: The trend log is configured to log based on COV increment. Logging is enabled. After a period of time the buffer is checked to verify the data in the buffer is based on the COV values and not on the set interval.

Configuration Requirements: The IUT shall be configured such that the monitored object has COV configured or the Client_COV_Increment shall be configured or it is not monitoring a REAL property. The Logging_Type shall not have a value of TRIGGERED.
Test Steps:

1.
WRITE Enable = FALSE

2.
WRITE Record_Count = 0

3.
WRITE Log_Interval = 0

4.
WRITE Enable = TRUE

5.
MAKE (monitored property change its value)
6.
WAIT (60 seconds)

7.
MAKE (monitored property change its value)
8.
WAIT (90 seconds)

9.
MAKE (monitored property change its value)
10.
WAIT (40 seconds)

11.
CHECK (Log_Buffer contains 3 or 4 data entries, and time between each sample is not equal)

7.3.2.24.X4 Interval Gathering of External Trends Test

Reason for Change: To make this test generic for all log objects. This test exactly, has been included in 135.1 by virtue of 135.1-2009i-14
Purpose: To verify the IUT uses ReadProperty to pull external data at the specified intervals.

Test Concept: The log object is configured to acquire data from the TD using polling. The TD verifies the receipt of ReadProperty requests are at the Log_Interval set.

Configuration Requirements: The log shall be configured to be polling for external trends during the entire time of this test. The Stop_When_Full property, if configurable, shall be set to FALSE. Enable shall be set to TRUE. The TD shall be configured so that it does not support execution of ReadPropertyMultiple.

Test Steps:

1.
BEFORE (Log_Interval)

REPEAT X = (for each property logged) DO

RECEIVE ReadProperty-Request,

‘Object Identifier’ =
(Object that contains the monitored property)

‘Property Identifier’ =
(external property that is being trended)

TRANSMIT ReadProperty-Ack

‘Object Identifier’ =
 (Object that contains the monitored property)

‘Property Identifier’ =
(property being monitored)

‘Propert
y Value’ =
(any value)

2.
WAIT (Log Interval)

3.
REPEAT X = (for each property logged) DO

RECEIVE ReadProperty-Request,

‘Object Identifier’ =
(Object that contains the monitored property)

‘Property Identifier’ =
(external property that is being trended)

TRANSMIT ReadProperty-Ack

‘Object Identifier’ =
 (Object that contains the monitored property)

‘Property Identifier’ =
(property being monitored)

‘Property Value’ =
(any value)

4.
CHECK (to ensure all properties logged are requested)

7.3.2.24.X5 Last_Notify_Record Test

Reason for Change: The test here supercedes the version in 135.1-2009i-14, with a completely different, less prescriptive approach, and which avoids undefined success criterion C1. The Test Concept is simplified.
Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.23.19, and 12.23.26

Purpose: To verify that the Last_Notify_Record property reflects the values sent in the most recent notification.

Test Concept: The log object is configured to acquire data by whatever means. Record_Count is set to zero. Collection of data proceeds until one notification is seen, collection is halted and the value of the Last_Notify_Record is checked.

Test Steps:

1.
WRITE Enable = TRUE

2.
MAKE (log object collect number of records specified by Notification_Threshold)

3.
RECEIVE ConfirmedEventNotification-Request,

‘Process Identifier’
= (the configured process identifier),

‘Initiating Device Identifier’= IUT,

‘Event Object Identifier’
= (log object being tested),

‘Time Stamp’

= (any appropriate BACnetTimeStamp value),

‘Notification Class’
= (configured notification class),

‘Priority’

= (value configured to correspond to a TO-NORMAL),

‘Event Type’

= BUFFER_READY,

‘Notify Type’

= EVENT | ALARM,

‘AckRequired’

= TRUE | FALSE,

‘FromState’

 = NORMAL,

‘To State’

= NORMAL,

‘Event Values’

= (BACnetDeviceObjectPropertyReference– referring to the buffer property of log object),

(unsigned, previous notification),

(unsigned, current notification)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
WRITE Enable = FALSE

6.
VERIFY (Last_Notify_Record = current notification)

7.3.2.24.X6 Records_Since_Notification Test

Reason for Change: To make this test generic for all logging objects. This test exactly, has been included in 135.1 by virtue of 135.1-2009i-14
Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.23.19, and 12.23.26

Purpose: To verify that the Records_Since_Notification property reflects the number of records recorded by the log that have not yet been reported via a BUFFER_READY notification.

Test Concept: The log object is configured to acquire data by whatever means. Record_Count is set to zero. Collection of data proceeds and is Halted before a notification is seen. The value of the Records_Since_Notification is checked.

Test Steps:

1.
WRITE Enable = TRUE

2. WRITE Record_Count = 0
3.
MAKE (log object collect a sufficient number of records in order to trigger a notification)

4.
RECEIVE ConfirmedEventNotification-Request,

‘Process Identifier’
= (the configured process identifier)

‘Initiating Device Identifier’= IUT,

‘Event Object Identifier’
= (log object being tested),

‘Time Stamp’

= (any appropriate BACnetTimeStamp value),

‘Notification Class’
= (configured notification class),

‘Priority’

= (value configured to correspond to a TO-NORMAL),

‘Event Type’

= BUFFER_READY,

‘Notify Type’

= EVENT | ALARM,

‘AckRequired’

= TRUE | FALSE,

‘FromState’

 = NORMAL,

‘To State’

= NORMAL,

‘Event Values’

= (BACnetDeviceObjectPropertyReference– referring to the buffer property of log object),

(unsigned, previous notification),

(unsigned, current notification, C1)

5.
TRANSMIT BACnet-SimpleACK-PDU

6.
MAKE (log object collect N records, such that N < Notification_Threshold-1)

7.
WRITE Enable = FALSE

8.
READ T1 = Total_Record_Count

9.
VERIFY Records_Since_Notification = T1 - C1

7.3.2.24.X7 Trigger Verification Test

Reason for Change: This test has been included in 135.1-2009i-14, but is here with a correction to the typo in Record_Count, and with the steps renumbered to be consecutive..
Dependencies: ReadRange Service Execution, 9.21;

BACnet Reference Clause: 12.25.27, 12.30.12

Purpose: To verify logged samples are based on the triggered Logging_Type.

Test Concept: The log is configured to log based on TRIGGERED. Logging is enabled. After a period of time the buffer is checked to verify the data in the buffer is based on triggered values.

Configuration Requirements: The IUT shall be configured such that the monitored object’s Logging_Type is set to TRIGGERED.

Test Steps:

1.
WRITE Enable = FALSE

2.
WRITE Record_Count = 0

3.
WRITE Enable = TRUE

4.
WAIT (10 seconds)

5.
WRITE Trigger = TRUE

6.
WAIT (20 seconds)

7.
WRITE Trigger = TRUE

8.
WAIT (40 seconds)

9.
WRITE Trigger = TRUE

10.
WAIT (30 seconds)

11.
WRITE Enable = FALSE

12.
READ N = Record_Count
13.
REPEAT X = (1 through 4)

TRANSMIT ReadRange

‘Object Identifier’ =

O1,

‘Property Identifier’ =

Log_Buffer,

‘Reference Index’ =

N-4+X,

‘Count’ =

1

RECEIVE ReadRangeAck

‘Object Identifier’ =

O1,

‘Property Identifier’ =

Log_Buffer,

‘Result Flags’ =

(False, False, False),

‘Item Count’ =

1

‘Item Data’ =

((one data record storing the timestamp in TS[X]))

14.
CHECK(TS[2] - TS[1] ~= 20 seconds)

15.
CHECK(TS[3] - TS[2] ~= 40 seconds)

16.
CHECK(TS[4] - TS[3] ~= 30 seconds)
7.3.2.24.X8 Clock-Aligned Logging

Test yet to be defined.

7.3.2.24.X9 Logging Interval_Offset

Test yet to be defined.
7.3.2.26 Event Log Object Tests
7.3.2.26.X1 Internal Logging of Notifications

Reason for Change: Ensuring that the Event Log implementation fundamentally works. This test is in SSPC proposal DO-016. After the proposal, we corrected the use of the MORE_ITEMS flag state. The FIRST_ITEM flag was also corrected. These changes were noted in BTL-CR-0246.
Purpose: To verify the IUT correctly collects and represents the Notifications which it initiates.

Test Concept: Make the IUT generate two event notification messages which the IUT logs. Use ReadRange to retrieve them from an Event Log and compare the two representations.

Configuration Requirements: The tester shall choose two events which the IUT will initiate and place into its Event Log. O1 is an event initiating object in IUT, which is configured to send event notifications to TD. LO1 is an Event Log object in IUT.
Test Steps:

1. WRITE Enable = TRUE

2. MAKE (IUT generate an EventNotification)
3. RECEIVE ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

O1

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. MAKE (IUT generate another EventNotification to ensure at least two records are logged)
6. RECEIVE ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

O1

'Time Stamp' =

(T2, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)
7. TRANSMIT BACnet-SimpleACK-PDU
8. READ RC = LO1, Record_Count
9. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -2

10. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 2,

'Item Data'

= (logged data that matches the information received in steps 3 and 6,

 except that Process_Identifier can be any value and need not match)
10. CHECK (T2 > T1, and that they were logged in order)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the TD shall skip the steps in which a SimpleACK-PDU is sent.
7.3.2.26.X2 Remote Logging of Notifications

Reason for Change: No test exists for this functionality.
Purpose: To verify that the IUT correctly collects and represents the Notifications which it receives.

Test Concept: Make TD send multiple event notification messages. Use ReadRange to retrieve the events from an Event Log or perhaps from multiple Event Logs in the IUT, and compare the two representations.

Configuration Requirements: LO1 is an Event Log object in IUT which logs the Event types which are sent. Stop_When_Full in LO1 shall be FALSE or absent.
Test Steps:

1. WRITE Enable = TRUE

2. TRANSMIT ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
TD,

'Event Object Identifier' =

(any valid object identifier),

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)

3. RECEIVE BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

(any valid object identifier),

'Time Stamp' =

(T2, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)
5. RECEIVE BACnet-SimpleACK-PDU
6. READ RC = LO1, Record_Count
7. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -2

8. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 2,

'Item Data'

= (logged data that matches the information received in steps 3 and 6,

 except that Process_Identifier can be any value and need not match)

8. CHECK (that the events were logged in the order in which they were received)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the test shall skip the steps in which a SimpleACK-PDU is expected.
7.3.2.26.X3 Internal Logging of ACK_NOTIFICATION

Reason for Change: No test exists for this functionality.
Purpose: To verify the IUT correctly collects and represents an ACK_NOTIFICATION which it initiates.

Test Concept: Make the IUT generate an ACK_NOTIFICATION message. Use ReadRange to retrieve that same event from an Event Log and compare the two representations. If the IUT does not support logging of the ACK_NOTIFICATIONs which it initiates, this test shall be skipped.
Configuration Requirements: O1 is an event initiating object in IUT, which is configured to send event notifications to TD. LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONs.
Test Steps:

1. WRITE Enable = TRUE
2. MAKE (O1 issue an ACK_NOTIFICATION)
3. READ RC = LO1, Record_Count
4. RECEIVE ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

O1,

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ACK_NOTIFICATION,

'To State' =

(state S1, any valid state for this event type)
5. TRANSMIT BACnet-SimpleACK-PDU
6. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -1

7. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 1,

'Item Data'

= (logged data that matches the information received in step 4,

 except that Process_Identifier can be any value and need not match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the TD shall skip the step in which a SimpleACK-PDU is sent.
7.3.2.26.X4 Remote Logging of ACK_NOTIFICATION

Reason for Change: No test exists for this functionality.
Purpose: To verify that the IUT correctly collects and represents ACK_NOTIFICATIONs which it receives.

Test Concept: Send an ACK_NOTIFICATION to the IUT. Use ReadRange to retrieve that same event from an Event Log and compare the two representations.

Configuration Requirements: LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONs. Stop_When_Full in LO1 shall be FALSE or absent.
Test Steps:

1. WRITE Enable = TRUE

2. TRANSMIT ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

(any valid object identifier),

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ACK_NOTIFICATION,

'To State' =

(state S1, any valid state for this event type)
3. RECEIVE BACnet-SimpleACK-PDU
4. READ RC = LO1, Record_Count
5. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -1

6. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 1,

'Item Data'

= (logged data that matches the information received in step 2,

 except that Process_Identifier can be any value and need not match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the test shall skip the step in which a SimpleACK-PDU is expected.
7.3.2.29 Structured View Object Tests

7.3.2.29.X1 Subordinate_List Size Changes Subordinate_Annotations

Reason For Change: No tests existed for Structured View Object functionality.

Dependencies: WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.29.7 and 12.29.8.

Purpose: This test case verifies that when the size of the Subordinate_List array is changed, the size of the Subordinate_Annotations array is changed accordingly to the same size. In addition the test case verifies that Instance Number in any uninitialized objectIdentifiers in the Subordinate_List have the value 4194303. If the size of the Subordinate_List and Subordinate_Annotations arrays cannot be changed, then this test shall not be performed.

Test Concept: The Subordinate_List and Subordinate_Annotations arrays are set to a certain size. They are then increased by writing the Subordinate_List array element 0, decreased by writing the Subordinate_List array, increased by writing the Subordinate_List array and decreased by writing the Subordinate_List array element 0.

Configuration Requirements: The IUT shall be configured with a Structured View object with resizable Subordinate_List and Subordinate_Annotations arrays.

Test Steps:

1. WRITE Subordinate_List = 2, ARRAY INDEX = 0

2. VERIFY Subordinate_List = 2, ARRAY INDEX = 0

3. VERIFY Subordinate_Annotations = 2, ARRAY INDEX = 0

4. WRITE Subordinate_List = (L1, some value greater than 2), ARRAY INDEX=0

5. VERIFY Subordinate_List = L1, ARRAY INDEX = 0

6. REPEAT X = (values greater than 2 up to L1) DO {

VERIFY (Instance Number within the Subordinate_List objectIdentifier) = 4194303, ARRAY INDEX = X

}
7. VERIFY Subordinate_Annotations = L1, ARRAY INDEX = 0

8. WRITE Subordinate_List = (Subordinate_List array of length 2)

9. VERIFY Subordinate_List = 2, ARRAY INDEX = 0

10. VERIFY Subordinate_Annotations = 2, ARRAY INDEX = 0

11. WRITE Subordinate_List = (Subordinate_List array of length L2 greater than 2)

12. VERIFY Subordinate_List = L2, ARRAY INDEX = 0

13. VERIFY Subordinate_Annotations = L2, ARRAY INDEX = 0

14. WRITE Subordinate_List = 2, ARRAY INDEX = 0

15. VERIFY Subordinate_List = (an array consisting of elements 1 & 2 from the array written in step 11)

16. VERIFY Subordinate_Annotations = 2, ARRAY INDEX = 0
7.3.2.29.X2 Subordinate_Annotations Size Changes Subordinate_List
Reason For Change: No tests existed for Structured View Object functionality.

Dependencies: WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.29.7 and 12.29.8.

Purpose: This test case verifies that when the size of the Subordinate_Annotations array is changed, the size of the Subordinate_List array is changed accordingly to the same size. In addition the test case verifies that Instance Number in any uninitialized objectIdentifiers in the Subordinate_List have the value 4194303. If the size of the Subordinate_Annotations and Subordinate_List arrays cannot be changed, then this test shall not be performed.

Test Concept: The Subordinate_Annotations and Subordinate_List arrays are set to a certain size. They are then increased by writing the Subordinate_Annotations array element 0, decreased by writing the Subordinate_Annotations array, increased by writing the Subordinate_Annotations array and decreased by writing the Subordinate_Annotations array element 0.

Configuration Requirements: The IUT shall be configured with a Structured View object with resizable Subordinate_Annotations and Subordinate_List arrays.

Test Steps:

1. WRITE Subordinate_Annotations = 2, ARRAY INDEX = 0

2. VERIFY Subordinate_Annotations = 2, ARRAY INDEX = 0

3. VERIFY Subordinate_List = 2, ARRAY INDEX = 0

4. WRITE Subordinate_Annotations = (L1, some value greater than 2), ARRAY INDEX=0

5. VERIFY Subordinate_Annotations = L1, ARRAY INDEX = 0

6. REPEAT X = (values greater than 2 up to L1) DO {

VERIFY (Instance Number within the Subordinate_List objectIdentifier) = 4194303, ARRAY INDEX = X

}
7. VERIFY Subordinate_List = L1, ARRAY INDEX = 0

8. WRITE Subordinate_Annotations = (Subordinate_Annotations array of length 2)

9. VERIFY Subordinate_Annotations = 2, ARRAY INDEX = 0

10. VERIFY Subordinate_List = 2, ARRAY INDEX = 0

11. WRITE Subordinate_Annotations = (Subordinate_Annotations array of length L2 greater than 2)

12. VERIFY Subordinate_Annotations = L2, ARRAY INDEX = 0

13. VERIFY Subordinate_List = L2, ARRAY INDEX = 0

14. REPEAT X = (values greater than 2 up to L2) DO {

VERIFY (Instance Number within the Subordinate_List objectIdentifier) = 4194303, ARRAY INDEX = X

}
15. WRITE Subordinate_Annotations = 2, ARRAY INDEX = 0

16. VERIFY Subordinate_Annotations
= (an array consisting of elements 1 & 2 from the array written in step 11)

17. VERIFY Subordinate_List = 2, ARRAY INDEX = 0
8 Application Service Initiation Tests

8.2 ConfirmedCOVNotification Service Initiation Tests

8.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

Reason for Change: This test has been adopted in 135.1-2009h-3, though the extraneous BACnet-SimpleACK-PDU appear in that version. Addendum 135-2008w-1 Add more primitive value objects.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Present_Value property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24 hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less than the COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an amount greater than the COV increment and a notification shall be received. The Present_Value may be changed using the WriteProperty service or by another means such as changing the input signal represented by an Analog Input object. For some implementations it may be necessary to write to the Out_Of_Service property first to accomplish this task. For implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value) DO {

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

(any value (0 chosen by the TD),

'Monitored Object Identifier' =

X,

'Issue Confirmed Notifications' =

TRUE,

'Lifetime' =

L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

X,

'Time Remaining' =

(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value and initial Status_Flags)
4.
TRANSMIT BACnet-SimpleACK-PDU

5.
TRANSMIT ReadProperty-Request,

'Object Identifier' =

X,

'Property Identifier' =

COV_Increment

6.
RECEIVE BACnet-ComplexACK-PDU,

'Object Identifier' =

X,

'Property Identifier' =

COV_Increment,

'Property Value' =

(a value "increment" that will be used below)

7.
IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service = TRUE

BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(any value appropriate for the Lifetime selected),

'List of Values' =

(any value appropriate for Present_Value and new Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU

8.
IF (Present_Value is now writable) THEN

WRITE X, Present_Value = (any value that differs from "initial Present_Value" by less than "increment")

ELSE

MAKE (Present_Value = any value that differs from "initial Present_Value" by less than "increment")

9.
WAIT Notification Fail Time

10.
CHECK (verify that no COV notification was transmitted)
11.
IF (Present_Value is now writable) THEN

WRITE X, Present_Value = (any value that differs from "initial Present_Value" by an amount greater than "increment")

ELSE

MAKE (Present_Value = any value that differs from "initial Present_Value" by an amount greater than "increment")

12.
BEFORE NotificationFailTime

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

X,

'Time Remaining' =

(any value appropriate for the Lifetime selected),

'List of Values' =

(the new Present_Value and new Status_Flags)

13.
TRANSMIT BACnet-SimpleACK-PDU
14.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Monitored Object Identifier' =

X

15.
RECEIVE BACnet-SimpleACK-PDU

16.
IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service =

FALSE

8.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property

Reason for Change: This test has been adopted in 135.1-2009h-3, though the extraneous BACnet-SimpleACK-PDU appear in that version. Addendum 135-2008w-1 Add more primitive value objects.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Status_Flags property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. If the IUT supports the infinite Lifetime option, L may be set to 0 for this test otherwise, L shall be set to a value between 0 < L (24 hours. The Status_Flags property of the monitored object is then changed and a notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other means, this test shall be skipped., the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.
Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value) DO {

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value (0 chosen by the TD),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =
L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

X,

'Time Remaining' =

(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value and initial Status_Flags)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from "initial Status_Flags") |

MAKE (Status_Flags = any value that differs from "initial Status_Flags")

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =
(any value appropriate for Present_Value and new Status_Flags)

8.
TRANSMIT BACnet-SimpleACK-PDU

9.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Monitored Object Identifier' =
X

10.
RECEIVE BACnet-SimpleACK-PDU

11.
IF (Out_Of_Service was changed in step 5) THEN

WRITE X, Out_Of_Service = FALSE

8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Present_Value Property

Reason for Change: The test was changed to remove the assumption that the IUT supports infinite lifetime. The change is in LJT-001. The test was changed to include Notification Fail Time wait before each ConfirmedCOVNotification request. This test has been adopted in 135.1-2009h-3, though the extraneous BACnet-SimpleACK-PDU appear in that version.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Present_Value property of Binary Input, Binary Output, and Binary Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. If the IUT supports the infinite Lifetime option, L may be set to 0 for this test otherwise, L shall be set to a value between 0 < L (24 hours. The Present_Value of the monitored object is changed and a notification shall be received. The Present_Value may be changed using the WriteProperty service or by another means such as changing the input signal represented by a Binary Input object. For some implementations it may be necessary to write to the Out_Of_Service property first to accomplish this task. For implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO {

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

(any value (0 chosen by the TD),

'Monitored Object Identifier' =

X,

'Issue Confirmed Notifications' =

TRUE,

'Lifetime' =

L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value and initial Status_Flags)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service = TRUE

BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(any value appropriate for Present_Value and new Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU

6.
IF (Present_Value is now writable) THEN

WRITE X, Present_Value = (any value that differs from "initial Present_Value")

ELSE

MAKE (Present_Value = any value that differs from "initial Present_Value")

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =
(the new Present_Value and new Status_Flags)

8.
TRANSMIT BACnet-SimpleACK-PDU

9.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Monitored Object Identifier' =
X

10.
RECEIVE BACnet-SimpleACK-PDU

11.
IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service = FALSE

8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags Property

Reason for Change: The test was changed to remove the assumption that the IUT supports infinite lifetime. The change is in LJT-001. The test was changed to include Notification Fail Time wait before each ConfirmedCOVNotification request. This test has been adopted in 135.1-2009h-3, though the extraneous BACnet-SimpleACK-PDU appear in that version.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Status_Flags property of Binary Input, Binary Output, and Binary Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. If the IUT supports the infinite Lifetime option, L may be set to 0 for this test otherwise, L shall be set to a value between 0 < L (24 hours. The Status_Flags property of the monitored object is then changed and a notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other means, this test shall be skipped., the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.
Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO {

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value (0 chosen by the TD),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =
L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value and initial Status_Flags)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from "initial Status_Flags") |

MAKE (Status_Flags = any value that differs from "initial Status_Flags")

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =
(any value appropriate for Present_Value and new Status_Flags)

8.
TRANSMIT BACnet-SimpleACK-PDU

9.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Monitored Object Identifier' =
X

10.
RECEIVE BACnet-SimpleACK-PDU

11.
IF (Out_Of_Service was changed in step 5) THEN

WRITE X, Out_Of_Service = FALSE

8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, or Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

Reason for Change: This test has been adopted in 135.1-2009h-3, though the extraneous BACnet-SimpleACK-PDU appear in that version. Addendum 135-2008w-1 Add more primitive value objects.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value objects.
Test Concept: A subscription for COV notifications is established, using a Lifetime of L. If the IUT supports the infinite Lifetime option, L may be set to 0 for this test otherwise, L shall be set to a value between 0 < L (24 hours. The Present_Value of the monitored object is changed and a notification shall be received. The Present_Value may be changed using the WriteProperty service or by another means such as changing the input signal represented by the object. For some implementations it may be necessary to write to the Out_Of_Service property first to accomplish this task. For implementations where it is not possible to write to these properties at all, the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value) DO {

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value (0 chosen by the TD),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =
L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value and initial Status_Flags)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service = TRUE

BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(any value appropriate for Present_Value and the new Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU

6.
IF (Present_Value is now writable) THEN

WRITE X, Present_Value = (any value that differs from "initial value")

ELSE

MAKE (Present_Value = any value that differs from "initial value")

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =
(the new Present_Value and new Status_Flags)

8.
TRANSMIT BACnet-SimpleACK-PDU

9.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Monitored Object Identifier' =
X

10.
RECEIVE BACnet-SimpleACK-PDU

11.
IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service =

FALSE

8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

Reason for Change: This test has been adopted in 135.1-2009h-3, though the extraneous BACnet-SimpleACK-PDU appear in that version. Addendum 135-2008w-1 Add more primitive value objects.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Status_Flags property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. If the IUT supports the infinite Lifetime option, L may be set to 0 for this test otherwise, L shall be set to a value between 0 < L (24 hours. The Status_Flags property of the monitored object is then changed and a notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other means, this test shall be skipped., the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.
Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

REPEAT X = (one supported object of each type from the set Multi-state input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value) DO {

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value (0 chosen by the TD),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =
L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value and initial Status_Flags)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from "initial Status_Flags") |

MAKE (Status_Flags = any value that differs from "initial Status_Flags")

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =
(any value appropriate for Present_Value and new Status_Flags)

8.
TRANSMIT BACnet-SimpleACK-PDU

9.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Monitored Object Identifier' =
X

10.
RECEIVE BACnet-SimpleACK-PDU

11.
IF (Out_Of_Service was changed in step 5) THEN

WRITE X, Out_Of_Service = FALSE

8.2.7 Change of Value Notification from Loop Object Present_Value Property

Reason for Change: The test was changed to remove the assumption that the IUT supports infinite lifetime. The change is in LJT-001. The test was changed to include Notification Fail Time wait before each ConfirmedCOVNotification request. This test has been adopted in 135.1-2009g-1, with the extraneous RECEIVE BACnet-SimpleACK-PDU removed along with other changes, then also in h-3, though the extraneous RECEIVE BACnet-SimpleACK-PDU then re-appear in that version.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Present_Value property of a loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. If the IUT supports the infinite Lifetime option, L may be set to 0 for this test otherwise, L shall be set to a value between 0 < L (24 hours. The Present_Value of the monitored object is changed by an amount less than the COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an amount greater than the COV increment and a notification shall be received.

The Present_Value may be changed by placing the Loop Out_Of_Service and writing directly to the Present_Value. For implementations where this option is not possible an alternative trigger mechanism shall be provided to accomplish this task, such as changing the Setpoint or the Setpoint_Reference. All of these methods are equally acceptable.

The object identifier of the Loop object being tested is designated as LOOP in the test steps below.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

(any value (0 chosen by the TD),

'Monitored Object Identifier' =

LOOP,

'Issue Confirmed Notifications' =

TRUE,

'Lifetime' =

L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

LOOP,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value, initial Status_Flags, initial Setpoint, and

initial Controlled_Variable_Value)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
TRANSMIT ReadProperty-Request,

'Object Identifier' =

LOOP,

'Property Identifier' =

COV_Increment

6.
RECEIVE BACnet-ComplexACK-PDU,

'Object Identifier' =

LOOP,

'Property Identifier' =

COV_Increment,

'Property Value' =

(a value "increment" that will be used below)

7.
IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of_Service = TRUE

BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
LOOP,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(any value appropriate for Present_Value, new Status_Flags, initial Setpoint, and initial Controlled_Variable_Value)

8.

 TRANSMIT BACnet-SimpleACK-PDU

9.
IF (Present_Value is now writable) THEN

WRITE X, Present_Value = (any value that differs from "initial Present_Value" by less than "increment")

ELSE

MAKE (Present_Value = any value that differs from "initial Present_Value" by less than "increment")

10.
WAIT Notification Fail Time

11.
CHECK (verify that no COV notification was transmitted)
12.
IF (Present_Value is now writable) THEN

WRITE X, Present_Value =
(any value that differs from "initial Present_Value" by an amount greater than
"increment")

RECEIVE BACnet-SimpleACK-PDU

ELSE

MAKE (Present_Value = any value that differs from "initial Present_Value" by an amount greater than "increment")

13.
BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

LOOP,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(the new Present_Value, new Status_Flags, initial Setpoint, and initial

Controlled_Variable_Value)

14.
TRANSMIT BACnet-SimpleACK-PDU

15.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Monitored Object Identifier' =

LOOP

16.
RECEIVE BACnet-SimpleACK-PDU

17.
IF (Out_Of_Service is writable) THEN

WRITE L, Out_Of_Service =

FALSE

8.2.8 Change of Value Notification from a Loop Object Status_Flags Property

Reason for Change: The test was changed to remove the assumption that the IUT supports infinite lifetime. The change is in LJT-001. The test was changed to include Notification Fail Time wait before each ConfirmedCOVNotification request. This test has been adopted in 135.1-2009h-3, though the extraneous BACnet-SimpleACK-PDU appear in that version.
Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the Status_Flags property of a Loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. If the IUT supports the infinite Lifetime option, L may be set to 0 for this test otherwise, L shall be set to a value between 0 < L (24 hours. The Status_Flags property of the monitored object is then changed and a notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any other means, this test shall be skipped., the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally acceptable.
The object identifier of the Loop object being tested is designated as LOOP in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value (0 chosen by the TD),

'Monitored Object Identifier' =
LOOP,

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =
L

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =

(the same value used in step 1),

'Initiating Device Identifier' =

IUT,

'Monitored Object Identifier' =

LOOP,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =

(the initial Present_Value, initial Status_Flags, initial Setpoint, and

initial Controlled_Variable_Value)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
WRITE L, Out_Of_Service = TRUE | WRITE L, Status_Flags = (a value that differs from "initial Status_Flags") |

MAKE (Status_Flags = any value that differs from "initial Status_Flags")

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
LOOP,

'Time Remaining' =
(any value appropriate for the Lifetime selected),

'List of Values' =
(any value appropriate for Present_Value, new Status_Flags, initial Setpoint, and initial

Controlled_Variable_Value)

8.

TRANSMIT BACnet-SimpleACK-PDU

9.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Monitored Object Identifier' =
LOOP

10.
RECEIVE BACnet-SimpleACK-PDU

11.
IF (Out_Of_Service was changed in step 5) THEN

WRITE L, Out_Of_Service = FALSE

8.2.x1 Missing Lifetime Test

Reason for Change: This test exactly, has been included in 135.1 by virtue of 135.1-2009i-3. The change is in SSPC proposal MP-002.

Purpose: This test case verifies the special case of the SubscribeCOV where a missing the Lifetime parameter shall imply an infinite Lifetime subscription.

Test Concept: A subscription for COV notification is established with the IUT. The subscribe message shall omit the Lifetime parameter. The COV notification is received from the IUT and the 'Time Remaining' value is verified to be 0.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value > 0 chosen by the TD),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications' =
TRUE

2.
RECEIVE BACnet-SimpleACK-PDU,

3.
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same value used in step 1),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
X,

'Time Remaining' =
0,

'List of Values' =
(the initial Present_Value and initial Status_Flags)

4.
TRANSMIT BACnet-SimpleACK-PDU

8.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Present_Value property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value objects.
Test Steps: The steps for this test case are identical to the test steps in 8.2.1 except that the SubscribeCOV service request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Status_Flags property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value objects.
Test Steps: The steps for this test case are identical to the test steps in 8.2.2 except that the SubscribeCOV service request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.
8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value objects.
Test Steps: The steps for this test case are identical to the test steps in 8.2.5 except that the SubscribeCOV service request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Status_Flags property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value objects.
Test Steps: The steps for this test case are identical to the test steps in 8.2.6 except that the SubscribeCOV service request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.
8.4 ConfirmedEventNotification Service Initiation Tests

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. This change is not included in any SSPC proposal.
8.4.1 CHANGE_OF_BITSTRING Tests

Reason for Change: This test didn't work if using Event Enrollment object as the referenced object. There is no SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.11, 13.3.1, and 13.8.

Purpose: To verify the correct operation of the Change of Bitstring event algorithm. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_BITSTRING.

Test Concept: The object begins the test in a NORMAL state. The referenced property is changed to a value that is one of the values designated in List_Of_Bitstring_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The referenced property is then changed to a value corresponding to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x: x = one of the List_Of_Bitstring_Values after the bitmask is

 applied)

ELSE

MAKE (the referenced property have a value x: x = one of the List_Of_Bitstring_Values after the

bitmask is applied)

3.
WAIT (Time_Delay)

4.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

CHANGE_OF_BITSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

' Event Values' =

referenced-bitstring, Status_Flags

5.
TRANSMIT BACnet-SimpleACK-PDU

6. IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?)

7.
VERIFY Event_State = OFFNORMAL

8.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 4, *, *)

9.
IF (Present_Value is writable) THEN

WRITE (referenced property) = (a value x: x corresponds to a NORMAL state)

ELSE

MAKE (the referenced property have a value x: x corresponds to a NORMAL state)

10.
WAIT (Time_Delay)

11.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

CHANGE_OF_BITSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

OFFNORMAL,

'To State' =

NORMAL,

' Event Values' =

referenced-bitstring, Status_Flags

12.
TRANSMIT BACnet-SimpleACK-PDU

13.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

14.
VERIFY Event_State = NORMAL

15.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 4, *, the timestamp in step 11)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in steps 8 and 15 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 4.

8.4.2 CHANGE_OF_STATE Tests

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. The change is in LJT-001.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.5, 12.7, 12.17, 12.19, 13.2,13.3.2, and 13.8.

Purpose: To verify the correct operation of the CHANGE_OF_STATE event algorithm. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_STATE and to intrinsic event reporting for Binary Input, Binary Value, Multi-state Input and Multi-state Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a value that is one of the values designated in List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification message. For Multi-state Input and Multi-state Value objects there is a special case of the CHANGE_OF_STATE algorithm that applies to transitions to the FAULT state. The test procedure includes a test for this special case.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

For multi-state objects, the object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested Present_Value should be replaced by the appropriate property reference.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the object, or referenced object, if using Event Enrollment, is a binary object or it is a mulit-state object with a non-empty Alarm_Values property) THEN
3.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = Alarm_Value for binary objects or one of the Alarm_Values for multi-state objects)

ELSE

MAKE (Present_Value have a value x: x = Alarm_Value for binary objects or one of the Alarm_Values for multi-state objects)

4.

WAIT (Time_Delay)

5.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

CHANGE_OF_STATE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

' Event Values' =

Present_Value, Status_Flags

6.

TRANSMIT BACnet-SimpleACK-PDU

7.

IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?)

8.

VERIFY Event_State = OFFNORMAL

9.

IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 5, *, *)

10.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

11.

WAIT (Time_Delay)

12.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

CHANGE_OF_STATE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

OFFNORMAL,

'To State' =

NORMAL,

' Event Values' =

Present_Value, Status_Flags

13.

TRANSMIT BACnet-SimpleACK-PDU

14.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

15.

VERIFY Event_State = NORMAL

16.

IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 5, *, the timestamp in step 12)

17.
IF (the object, or referenced object, if testing Event Enrollment, being tested is a multi-state object and is configured with a non-empty Fault_Values property) THEN
18.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Fault_Values)

ELSE

MAKE (Present_Value have a value x: x = one of the Fault_Values)

19.

WAIT (Time_Delay)

20.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
CHANGE_OF_STATE,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
FAULT,

' Event Values' =
Present_Value, Status_Flags

21.

TRANSMIT BACnet-SimpleACK-PDU

22.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, TRUE, ?, ?)

23.

VERIFY Event_State = FAULT

24.

IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 5, the timestamp in step 20, the timestamp in step 12)

25.

IF (the object being tested is a multi-state object that supports intrinsic reporting and Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Reliability = MULTI_STATE_FAULT

26.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

27.

WAIT (Time_Delay)

28.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
CHANGE_OF_STATE,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
FAULT,

'To State' =
NORMAL,

' Event Values' =
Present_Value, Status_Flags

29.

TRANSMIT BACnet-SimpleACK-PDU

30.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

31.
VERIFY Event_State = NORMAL

32.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 5, the timestamp in step 20, the timestamp in step 28)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in steps 9 and 16 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 5.

8.4.3 CHANGE_OF_VALUE Tests

8.4.3.1 Numerical Algorithm

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. This change is not included in any SSPC proposal.
The test in this subclause applies to use of the CHANGE_OF_VALUE algorithm applied to Integer or Real datatypes.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.11, 13.3.2, and 13.8.

Purpose: To verify the correct operation of the CHANGE_OF_VALUE event algorithm as applied to numerical datatypes. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_VALUE.

Test Concept: The object begins the test in a NORMAL state. The referenced property is changed by a value that is less than the Referenced_Property_Increment. The tester verifies that no event notification is transmitted. The referenced property is changed again to a value that differs from the original value by an amount greater than the Referenced_Property_Increment. The tester verifies that an event notification message is transmitted and that the proper Event_State transitions occur.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-NORMAL transition. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating object shall be in a NORMAL state at the start of the test.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x: x differs from the initial value by less than

 Referenced_Property_Increment)

ELSE

MAKE (the referenced property have a value x: x differs from the initial value by less than

 Referenced_Property_Increment)

3.
WAIT (Time_Delay + Notification Fail Time)

4.
CHECK (verify that no event notification message is transmitted)

5.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x: x differs from the initial value in step 1 by more than

 Referenced_Property_Increment)

ELSE

MAKE (the referenced property have a value x: x differs from the initial value in step 1 by more than

 Referenced_Property_Increment)

6.
WAIT (Time_Delay)

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

CHANGE_OF_VALUE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

NORMAL,

' Event Values' =

changed-value, Status_Flags

8.
TRANSMIT BACnet-SimpleACK-PDU

9.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

10.
VERIFY Event_State = NORMAL

11.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (*, *, the timestamp in step 7)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in step 11 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 7.

8.4.3.2 Bitstring Algorithm

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. This change is not included in any SSPC proposal.
The test in this subclause applies to use of the CHANGE_OF_VALUE algorithm applied to Bitstring datatypes.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.11, 13.3.2, and 13.8.

Purpose: To verify the correct operation of the CHANGE_OF_VALUE event algorithm as applied to Bitstring datatypes. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_VALUE.

Test Concept: The object begins the test in a NORMAL state. The referenced property is changed to a new value such that none of the bits in the Bitmask are changed. The tester verifies that no event notification is transmitted. The referenced property is changed again to a value that differs in one or more bits that are included in the Bitmask. The tester verifies that an event notification message is transmitted and that the proper Event_State transitions occur.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-NORMAL transition. The Issue_Confirmed_Notifications property shall have a value of TRUE. The Bitmask shall be configured so that at least one but not all bits of the referenced property are included in the mask. The event-generating object shall be in a NORMAL state at the start of the test.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x: x differs from the initial value but only in bits that are not

 included in Bitmask)

ELSE

MAKE (the referenced property have a value x: x differs from the initial value but only in bits that are not

 included in Bitmask)

3.
WAIT (Time_Delay + Notification Fail Time)

4.
CHECK (verify that no event notification message is transmitted)

5.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x: x differs from the initial value in one or more bits included in

 Bitmask)

ELSE

MAKE (the referenced property have a value x: x differs from the initial value one or more bits included

in Bitmask)

6.
WAIT (Time_Delay)

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

CHANGE_OF_VALUE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

NORMAL,

' Event Values' =

changed-value, Status_Flags

8.
TRANSMIT BACnet-SimpleACK-PDU

9.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

10.
VERIFY Event_State = NORMAL

11.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (*, *, the timestamp in step 7)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in step 11 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 7.

8.4.4 COMMAND_FAILURE Tests

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. This change is not included in any SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.6, 12.18 13.2,13.3.4, and 13.8.

Purpose: To verify the correct operation of the COMMAND_FAILURE algorithm. This test applies to Event Enrollment objects with an Event_Type of COMMAND_FAILURE and to intrinsic event reporting for Binary Output and Multi-State Output objects.

Test Concept: The Feedback_Value (Feedback_Property_Reference) must be decoupled from the input signal that is normally used to verify the output. Initially Present_Value (referenced property) and Feedback_Value (Feedback_Property_Reference) are in agreement. Present_Value (the referenced property) is changed and an event notification should be transmitted indicating a transition to an OFFNORMAL state. The Feedback_Value (Feedback_Property_Reference) is changed to again agree with the Present_Value (referenced property). A second event notification is transmitted indicating a return to a NORMAL state.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating object shall be in a NORMAL state at the start of the test. The Feedback_Value property shall be decoupled from the input signal that is normally used to verify the output so that it can be independently manipulated.

In the test description below Present_Value is used as the referenced property and Feedback_Value is used to verify the output. If an Event Enrollment object is being tested these properties shall be replaced by the appropriate property reference.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, FALSE, FALSE)

3.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a different value)

ELSE

MAKE (Present_Value take on a different value)

4.
WAIT (Time_Delay)

5.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the

Event Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

COMMAND_FAILURE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

' Event Values' =

Present_Value, Status_Flags, Feedback_Value

6.
TRANSMIT BACnet-SimpleACK-PDU

7.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

8.
VERIFY Event_State = OFFNORMAL

9.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 5, *, *)

10.
IF (Feedback_Value is writable) THEN

WRITE Feedback_Value = (a value consistent with Present_Value)

ELSE

MAKE (Feedback_Value take on a value consistent with Present_Value)

11.
WAIT (Time_Delay)

12.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the

Event Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

COMMAND_FAILURE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

OFFNORMAL,

'To State' =

NORMAL,

' Event Values' =

Present_Value, Status_Flags, Feedback_Value

13.
TRANSMIT BACnet-SimpleACK-PDU

14.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

15.
VERIFY Event_State = NORMAL

16.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 5, *, the timestamp in step 12)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in steps 9 and 16 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 5.

8.4.5 FLOATING_LIMIT Tests

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. This change is not included in any SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.11, 12.16, 12.20, 13.2, 13.3.5, and 13.8.

Purpose: To verify the correct operation of the Floating Limit event algorithm. This test applies to Event Enrollment objects with an Event_Type of FLOATING_LIMIT and to Loop objects that support intrinsic reporting. When testing Loop objects both High_Diff_Limit and Low_Diff_Limit shall be replaced by Error_Limit in the test description below.

Test Concept: The object begins the test in a NORMAL state. The referenced property is raised to a value that is below but within Deadband of the high limit. At this point the object should still be in a NORMAL state. The referenced property is raised to a value that is above the high limit. After the time delay expires the object should enter the HIGH_LIMIT state and transmit an event notification message. The referenced property is lowered to a value that is below the high limit but still within Deadband of the limit. The object should remain in the HIGH_LIMIT state. The referenced property is lowered further to a normal value that is not within Deadband of a limit. After the time delay expires the object should enter the NORMAL state and issue an event notification. The same process is repeated to test the low limit.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x:

(Setpoint_Reference + High_Diff_Limit – Deadband)< x < (Setpoint_Reference + High_Diff_Limit))

ELSE

MAKE (the referenced property have a value x:

(Setpoint_Reference + High_Diff_Limit – Deadband)< x < (Setpoint_Reference + High_Diff_Limit))

3.
WAIT (Time_Delay + Notification Fail Time)

4.
CHECK (verify that no notification message has been transmitted)

5.
VERIFY Event_State = NORMAL

6.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x: x > (Setpoint_Reference + High_Diff_Limit))

ELSE

MAKE (the referenced property have a value x: x > (Setpoint_Reference + High_Diff_Limit))

7.
WAIT (Time_Delay)

8.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Loop object being tested or the object referenced by the Event Enrollment

object being tested),

'Event Object Identifier' = (the Loop object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

FLOATING_LIMIT,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

HIGH_LIMIT,

' Event Values' =

reference-value, Status_Flags, setpoint-value, error-limit,

9.
TRANSMIT BACnet-SimpleACK-PDU

10.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

11.
VERIFY Event_State = HIGH_LIMIT

12.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 8, *, *)

13.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x:

(Setpoint_Reference + High_Diff_Limit – Deadband)< x < Setpoint_Reference + High_Diff_Limit))

ELSE

MAKE (the referenced property have a value x:

(Setpoint_Reference + High_Diff_Limit – Deadband)< x < Setpoint_Reference + High_Diff_Limit))

14.
WAIT (Time_Delay + Notification Fail Time)

15.
CHECK (verify that no notification message has been transmitted)

16.
VERIFY Event_State = HIGH_LIMIT

17.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x:

(Setpoint_Reference - Low_Diff_Limit + Deadband) < x < (Setpoint_Reference + High_Diff_Limit – Deadband))

ELSE

MAKE (the referenced property have a value x:

(Setpoint_Reference - Low_Diff_Limit + Deadband) < x < (Setpoint_Reference + High_Diff_Limit – Deadband))

18.
WAIT (Time_Delay)

19.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Loop object being tested or the object referenced by the Event Enrollment

object being tested),

'Event Object Identifier' = (the Loop object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

FLOATING_LIMIT,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

HIGH_LIMIT,

'To State' =

NORMAL,

' Event Values' =

reference-value, Status_Flags, setpoint-value, error-limit,

20.
TRANSMIT BACnet-SimpleACK-PDU

21.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

22.
VERIFY Event_State = NORMAL

23.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 8, *, the timestamp in step 19)

24.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x:

(Setpoint_Reference - Low_Diff_Limit < x < (Setpoint_Reference - Low_Diff_Limit + Deadband))

ELSE

MAKE (the referenced property have a value x:

(Setpoint_Reference - Low_Diff_Limit < x < (Setpoint_Reference - Low_Diff_Limit + Deadband))

25.
WAIT (Time_Delay + Notification Fail Time)

26.
CHECK (verify that no notification message has been transmitted)

27.
VERIFY Event_State = NORMAL

28.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x such x < (Setpoint_Reference - Low_Diff_Limit))

ELSE

MAKE (referenced property have a value x: x < (Setpoint_Reference - Low_Diff_Limit))

29.
WAIT (Time_Delay)

30.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Loop object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

FLOATING_LIMIT,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

LOW_LIMIT,

' Event Values' =

reference-value, Status_Flags, setpoint-value, error-limit,

31.
TRANSMIT BACnet-SimpleACK-PDU

32.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

33.
VERIFY Event_State = LOW_LIMIT

34.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 30, *, the timestamp in step 19)

35.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x:

 (Setpoint_Reference - Low_Limit) < x < (Setpoint_Reference - Low_Limit + Deadband))

ELSE

MAKE (the referenced property have a value x:

 (Setpoint_Reference - Low_Limit) < x < (Setpoint_Reference - Low_Limit + Deadband))

36.
WAIT (Time_Delay + Notification Fail Time)

37.
CHECK (verify that no notification message has been transmitted)

38.
VERIFY Event_State = Low_Limit

39.
IF (the referenced property is writable) THEN

WRITE (referenced property) = (a value x:

(Setpoint_Reference - Low_Limit + Deadband) < x < (Setpoint_Reference + High_Diff_Limit – Deadband))

ELSE

MAKE (the referenced property have a value x:

(Setpoint_Reference - Low_Limit + Deadband) < x < (Setpoint_Reference + High_Diff_Limit – Deadband))

40.
WAIT (Time_Delay)

41.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the Loop object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

FLOATING_LIMIT,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

LOW_LIMIT,

'To State' =

NORMAL,

' Event Values' =

reference-value, Status_Flags, setpoint-value, error-limit,

42.
TRANSMIT BACnet-SimpleACK-PDU

43.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

44.
VERIFY Event_State = NORMAL

45.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 30, *, the timestamp in step 41)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in steps 12, 23, 34 and 45 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 8.

8.4.6 OUT_OF_RANGE Tests

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. This change is not included in any SSPC proposal.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1, 12.2, 12.3, 12.11, 13.2,13.3.6, and 13.8.

Purpose: To verify the correct operation of the OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of OUT_OF_RANGE and to intrinsic event reporting for Analog Input, Analog Output, and Analog Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is raised to a value that is below but within Deadband of the high limit. At this point the object should still be in a NORMAL state. The Present_Value (referenced property) is raised to a value that is above the high limit. After the time delay expires the object should enter the HIGH_LIMIT state and transmit an event notification message. The Present_Value (referenced property) is lowered to a value that is below the high limit but still within Deadband of the limit. The object should remain in the HIGH_LIMIT state. The Present_Value (referenced property) is lowered further to a normal value that is not within Deadband of a limit. After the time delay expires the object should enter the NORMAL state and issue an event notification. The same process is repeated to test the low limit.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL and TO-NORMAL transitions. For objects using intrinsic reporting the Limit_Enable property shall have a value of TRUE for both HighLimit and LowLimit events. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested Present_Value should be replaced by the appropriate property reference.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: (High_Limit – Deadband)< x < High_Limit)

ELSE

MAKE (Present_Value have a value x: (High_Limit – Deadband)< x < High_Limit)

3.
WAIT (Time_Delay + Notification Fail Time)

4.
CHECK (verify that no notification message has been transmitted)

5.
VERIFY Event_State = NORMAL

6.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x such x > High_Limit)

ELSE

MAKE (Present_Value have a value x: x > High_Limit)

7.
WAIT (Time_Delay)

8.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the

Event Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

HIGH_LIMIT,

' Event Values' =

Present_Value, Status_Flags, Deadband, High_Limit

9.
TRANSMIT BACnet-SimpleACK-PDU

10.
VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

11.
VERIFY Event_State = HIGH_LIMIT

12.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 8, *, *)

13.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: (High_Limit – Deadband)< x < High_Limit)

ELSE

MAKE (Present_Value have a value x: (High_Limit – Deadband)< x < High_Limit)

14.
WAIT (Time_Delay + Notification Fail Time)

15.
CHECK (verify that no notification message has been transmitted)

16.
VERIFY Event_State = HIGH_LIMIT

17.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: (Low_Limit + Deadband) < x < (High_Limit – Deadband))

ELSE

MAKE (Present_Value have a value x: (Low_Limit + Deadband) < x < (High_Limit – Deadband))

18.
WAIT (Time_Delay)

19.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the

Event Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

HIGH_LIMIT,

'To State' =

NORMAL,

' Event Values' =

Present_Value, Status_Flags, Deadband, High_Limit

20.
TRANSMIT BACnet-SimpleACK-PDU

21.
VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

22.
VERIFY Event_State = NORMAL

23.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 8, *, the timestamp in step 19)

24.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: Low_Limit < x < (Low_Limit + Deadband))

ELSE

MAKE (Present_Value have a value x: Low_Limit < x < (Low_Limit + Deadband))

25.
WAIT (Time_Delay + Notification Fail Time)

26.
CHECK (verify that no notification message has been transmitted)

27.
VERIFY Event_State = NORMAL

28.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x such x < Low_Limit)

ELSE

MAKE (Present_Value have a value x: x < Low_Limit)

29.
WAIT (Time_Delay)

30.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the

Event Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

LOW_LIMIT,

' Event Values' =

Present_Value, Status_Flags, Deadband, Low_Limit

31.
TRANSMIT BACnet-SimpleACK-PDU

32.
VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

33.
VERIFY Event_State = LOW_LIMIT

34.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 30, *, the timestamp in step 19)

35.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: Low_Limit < x < (Low_Limit + Deadband))

ELSE

MAKE (Present_Value have a value x: Low_Limit < x < (Low_Limit + Deadband))

36.
WAIT (Time_Delay + Notification Fail Time)

37.
CHECK (verify that no notification message has been transmitted)

38.
VERIFY Event_State = LOW_LIMIT

39.
IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: (Low_Limit + Deadband) < x < (High_Limit – Deadband))

ELSE

MAKE (Present_Value have a value x: (Low_Limit + Deadband) < x < (High_Limit – Deadband))

40.
WAIT (Time_Delay)

41.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the

Event Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

LOW_LIMIT,

'To State' =

NORMAL,

' Event Values' =

Present_Value, Status_Flags, Deadband, Low_Limit

42.
TRANSMIT BACnet-SimpleACK-PDU

43.
VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

44.
VERIFY Event_State = NORMAL

45.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

VERIFY Event_Time_Stamps = (the timestamp in step 30, *, the timestamp in step 41)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in steps 12, 23, 34 and 45 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 8.

8.4.7 BUFFER_READY Tests

Reason for Change: The test was updated to match the 2001b version of the BACnet Trend Log, and was generalized to allow the test to be applied to any type of object that supports the algorithm. This test is in SSPC proposal MP-003. Clarification was made to the initial MAKE statement in step 2 after the proposal was submitted.
Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.11, 12.23, 13.2, 13.3.7, and 13.8.

Purpose: To verify the correct operation of the BUFFER_READY event algorithm.

Test Concept: The object that performs the notification (“the notifying object”) begins the test in a NORMAL state, with no records stored in the object containing the buffer (“the buffer object”). The buffer object acquires the number of records specified by Records_Since_Notification, at which time the notifying object performs a TO-NORMAL transition and sends BUFFER_READY notifications.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-NORMAL transition. The notifying object shall be in a NORMAL state at the start of the test.

Test Steps:

1. VERIFY Event_State = NORMAL

2. MAKE(buffer object collect enough records to cause a BUFFER_READY notification to be issued and shall take no more than Notification_Threshold records)

3. RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the Event

Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =
(any appropriate BACnetTimeStamp value),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
BUFFER_READY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
NORMAL,

' Event Values' =
(BACnetDeviceObjectPropertyReference– referring to the buffer property),

(previous-notification),

(current-notification, CN1)

4. TRANSMIT BACnet-SimpleACK-PDU

5. MAKE (buffer object collect number of records specified by Notification_Threshold)

6. RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the Event

Enrollment object being tested),

'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =
(any appropriate BACnetTimeStamp value),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
BUFFER_READY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
NORMAL,

' Event Values' =
(BACnetDeviceObjectPropertyReference– referring to the buffer property),

CN1,

(current-notification)

7.
TRANSMIT BACnet-SimpleACK-PDU

8.4.8.14 TO-FAULT Transition Tests

Purpose: This test case verifies the correct operation of the CHANGE_OF_LIFE_SAFETY event algorithm for objects transitioning between the NORMAL and FAULT event states. It applies to intrinsic event reporting for Life Safety Point and Life Safety Zone objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to one of the values designated in List_Of_Fault_Values. After the time delay expires, the object should enter the FAULT state and transmit an event notification message. This test also incorporates the return transition from FAULT to NORMAL.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

In the test description below, Present_Value is used as the referenced property.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
MAKE (Present_Value have a value x such that x corresponds to a FAULT state)

3.
WAIT Time_Delay

3.
BEFORE Notification Fail Time
4.

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
CHANGE_OF_LIFE_SAFETY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =

FAULT,

'Event Values' =
Present_Value, Mode, Status_Flags, Operation_Expected

5.
TRANSMIT BACnet-SimpleACK-PDU

6.
VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

7.
VERIFY Event_State = FAULT

8. VERIFY Event_Time_Stamps = (the timestamp in step 5, *, *)

9.
MAKE (Present_Value have a value x such that x corresponds to a NORMAL state)

11.
WAIT Time_Delay

10.
BEFORE Notification Fail Time
11.
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
CHANGE_OF_LIFE_SAFETY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
FAULT,

'To State' =

NORMAL,

'Event Values' =
Present_Value, Mode, Status_Flags, Operation_Expected

12.
TRANSMIT BACnet-SimpleACK-PDU

13.
VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

14.
VERIFY Event_State = NORMAL

15.
VERIFY Event_Time_Stamps = (the timestamp in step 13, *, *)

8.4.X1 DOUBLE_OUT_OF_RANGE Tests (ConfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the DOUBLE_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of DOUBLE_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is DOUBLE_OUT_OF_RANGE instead of OUT_OF_RANGE.

8.4.X2 SIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the SIGNED_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of SIGNED_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is SIGNED_OUT_OF_RANGE instead of OUT_OF_RANGE.

8.4.X3 UNSIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the UNSIGNED_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of UNSIGNED_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is UNSIGNED_OUT_OF_RANGE instead of OUT_OF_RANGE.

8.4.X4 CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_CHARACTERSTRING event algorithm. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a value that is one of the values designated in List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a different value in the List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification message. The transition to and from FAULT is also tested.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested Present_Value should be replaced by the appropriate property reference.

Test Steps:

1.
VERIFY Event_State = NORMAL

2.
IF (the object, or referenced object, if using Event Enrollment, has a non-empty Alarm_Values property) THEN

3.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Alarm_Values)

ELSE

MAKE (Present_Value have a value x: x = one of the Alarm_Values)

4.

WAIT (Time_Delay)

5.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

CHANGE_OF_CHARACTERSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =

Present_Value, Status_Flags

6.

TRANSMIT BACnet-SimpleACK-PDU

7.

IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?)

8.

VERIFY Event_State = OFFNORMAL

9.

VERIFY Event_Time_Stamps = (the timestamp in step 5, *, *)

10.
IF (the object, or referenced object, if using Event Enrollment, has a Alarm_Values property with more than 1 entry) THEN

11.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Alarm_Values not used in prior steps)

ELSE

MAKE (Present_Value have a value x: x = one of the Alarm_Values not used in prior steps)

12.

WAIT (Time_Delay)

13.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

CHANGE_OF_CHARACTERSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =

Present_Value, Status_Flags

14.

TRANSMIT BACnet-SimpleACK-PDU

15.

IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?)

16.

VERIFY Event_State = OFFNORMAL

17.

VERIFY Event_Time_Stamps = (the timestamp in step 13, *, *)

18.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

19.

WAIT (Time_Delay)

20.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the Event Enrollment object being tested),

'Time Stamp' =

(the current local time),

'Notification Class' =

(the configured notification class),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

CHANGE_OF_CHARACTERSTRING,

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

OFFNORMAL,

'To State' =

NORMAL,

'Event Values' =

Present_Value, Status_Flags

21.

TRANSMIT BACnet-SimpleACK-PDU

22.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

23.

VERIFY Event_State = NORMAL

24.

VERIFY Event_Time_Stamps = (the timestamp in step 13, *, the timestamp in step 20)

25.
IF (the object, or referenced object, if testing Event Enrollment, is configured with a non-empty Fault_Values property) THEN

26.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Fault_Values)

ELSE

MAKE (Present_Value have a value x: x = one of the Fault_Values)

27.

WAIT (Time_Delay)

28.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-FAULT transition),

'Event Type' =
CHANGE_OF_CHARACTERSTRING,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
FAULT,

'Event Values' =
Present_Value, Status_Flags

29.

TRANSMIT BACnet-SimpleACK-PDU

30.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, TRUE, ?, ?)

31.

VERIFY Event_State = FAULT

32.

VERIFY Event_Time_Stamps = (the timestamp in step 13, the timestamp in step 28, the timestamp in step 20)

33.

VERIFY Reliability = MULTI_STATE_FAULT

34.

IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

35.

WAIT (Time_Delay)

36.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested),

'Time Stamp' =
(the current local time),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
CHANGE_OF_CHARACTERSTRING,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
FAULT,

'To State' =
NORMAL,

'Event Values' =
Present_Value, Status_Flags

37.

TRANSMIT BACnet-SimpleACK-PDU

38.
IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

39.
VERIFY Event_State = NORMAL

40.
VERIFY Event_Time_Stamps = (the timestamp in step 13, the timestamp in step 28, the timestamp in step 36)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages. The time stamps indicated by "*" in steps 9 and 17 can have a value that indicates an unspecified time or a time that precedes the timestamp in step 5.

8.4.X5 Proprietary Algorithm Tests (ConfirmedEventNotifications)

This test has not be developed and shall be skipped.

8.4.X6 Extended Algorithm Tests (ConfirmedEventNotifications)

This test has not be developed and shall be skipped.
8.5 UnconfirmedEventNotification Service Initiation Tests

8.5.7 BUFFER_READY Tests

Reason for Change: This is a generalized version of the 135.1 test 8.5.7. This test is in SSPC proposal MP-003.

Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.11, 12.23, 13.2, 13.3.7, and 13.8.

Purpose: To verify the correct operation of the BUFFER_READY event algorithm.

Test Concept: The object that performs the notification (“the notifying object”) begins the test in a NORMAL state, with no records stored in the object containing the buffer (“the buffer object”). The buffer object acquires the number of records specified by Records_Since_Notification, at which time the notifying object performs a TO-NORMAL transition and sends BUFFER_READY notifications.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-NORMAL transition. The notifying object shall be in a NORMAL state at the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.7 except that the event notifications shall be conveyed using the UnconfirmedEventNotification service request and the TD does not acknowledge receiving the notifications.

8.5.X1 DOUBLE_OUT_OF_RANGE Tests (UnconfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the DOUBLE_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of DOUBLE_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event_Type is DOUBLE_OUT_OF_RANGE instead of OUT_OF_RANGE.

8.5.X2 SIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the SIGNED_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of SIGNED_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event_Type is SIGNED_OUT_OF_RANGE instead of OUT_OF_RANGE.

8.5.X3 UNSIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the UNSIGNED_OUT_OF_RANGE event algorithm. This test applies to Event Enrollment objects with an Event_Type of UNSIGNED_OUT_OF_RANGE and to object types that generate this event type intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event_Type is UNSIGNED_OUT_OF_RANGE instead of OUT_OF_RANGE.

8.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>.

Purpose: To verify the correct operation of the CHANGE_OF_CHARACTERSTRING event algorithm. This test applies to Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a value that is one of the values designated in List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a different value in the List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification message. The transition to and from FAULT is also tested.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested Present_Value should be replaced by the appropriate property reference.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X4 except that the event notification requests are UnconfirmedEventNotification requests and the TD does not acknowledge receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X4 except that the event notifications shall be conveyed using an UnconfirmedEventNotification service request.

8.5.X5 Proprietary Algorithm Tests (UnconfirmedEventNotifications)

This test has not be developed and shall be skipped.

8.5.X6 Extended Algorithm Tests (UnconfirmedEventNotifications)

This test has not be developed and shall be skipped.

8.6 GetAlarmSummary Service Initiation Tests

8.6.X1 Updating Alarm Summary Information with GetAlarmSummary

Reason for Change: No test exists for this functionality. This test is in CN-097.

Purpose: This test case verifies that the IUT is capable of updating or presenting alarm summary information using the GetAlarmSummary service.

This test is written so as to allow the TD to monitor a conversation between the IUT and a reference server. The reference server may be the TD, or some other device.
Configuration: For this test, the tester shall choose an event generating device, D1, that does not support execution of GetEventInformation nor GetEnrollmentSummary.
Test Steps:

1.
MAKE (the IUT present or update the alarm summary presented to the user)

2.
RECEIVE GetAlarmSummary-Request,

SOURCE =

IUT,

DESTINATION =

D1
3.
RECEIVE BACnet-ComplexACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT,

‘List of Alarm Summaries’ =
(any valid list that represents the state of event generating

objects in D1)

4.
CHECK(that the IUT presents or updates the alarm summary information presented to the user and

that the presentation is consistent with the information received in step 3)

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation, formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that D1 does not support execution of GetEventInformation and/or GetEnrollmentSummary, the IUT may initiate a GetEventInformation and/or GetEnrollmentSummary. If this occurs, the IUT shall only pass the test if it automatically falls back to using GetAlarmSummary upon receipt of the correct BACnetError-PDU from D1 indicating that alternate service is not supported.

8.8 GetEventInformation Service Initiation Tests

8.8.X1 Updating Alarm Summary Information with GetEventInformation Without Chaining

Reason for Change: No test exists for this functionality. This test is in CN-097.

Purpose: This test case verifies that the IUT is capable of updating or presenting alarm summary information using the GetEventInformation service.

This test is written so as to allow the TD to monitor a conversation between the IUT and a reference server. The reference server may be the TD, or some other device.
Configuration: For this test, the tester shall choose an event generating device, D1, which does not support execution of GetAlarmSummary nor GetEnrollmentSummary. D1 shall not have enough active event generating objects to cause the result to require more than 1 response message.
Test Steps:

1.
MAKE (the IUT present or update the alarm summary presented to the user)

2.
RECEIVE GetEventInformation-Request,

SOURCE =

IUT,

DESTINATION =

D1
3.
RECEIVE BACnet-ComplexACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT,

‘List of Event Summaries’ =
(any valid list that represents the state of event generating

objects in D1),

‘More Events’ =

FALSE

4.
CHECK(that the IUT presents or updates the alarm summary information presented to the user and

that the presentation is consistent with the information received in step 3)

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation, formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that D1 does not support execution of GetAlarmSummary and/or GetEnrollmentSummary, the IUT may initiate a GetAlarmSummary and/or GetEnrollmentSummary. If this occurs, the IUT shall only pass the test if it automatically falls back to using GetEventInformation upon receipt of the correct BACnetError-PDU from D1 indicating that alternate service is not supported.

8.8.X2 Updating Alarm Summary Information with GetEventInformation With Chaining

Reason for Change: No test exists for this functionality. This test is in CN-097.

Purpose: This test case verifies that the IUT is capable of updating or presenting alarm summary information using the GetEventInformation service.

This test is written so as to allow the TD to monitor a conversation between the IUT and a reference server. The reference server may be the TD, or some other device.
Configuration: For this test, the tester shall choose an event generating device, D1, which does not support execution of GetAlarmSummary nor GetEnrollmentSummary. D1 shall have enough active event generating objects to cause the result to require 2 response messages.
Test Steps:

1.
MAKE (the IUT present or update the alarm summary presented to the user)

2.
RECEIVE GetEventInformation-Request,

SOURCE =

IUT,

DESTINATION =

D1
3.
RECEIVE BACnet-ComplexACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT,

‘List of Event Summaries’ =
(any valid list that represents the state of event generating

objects in D1),

‘More Events’ =

TRUE

4.
RECEIVE GetEventInformation-Request,

SOURCE =

IUT,

DESTINATION =

D1,

‘Last Received Object Identifier’ =
(last object identifier sent in step 3)

5.
RECEIVE BACnet-ComplexACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT,

‘List of Event Summaries’ =
(any valid list that represents the state of event generating

objects in D1),

‘More Events’ =

FALSE

6.
CHECK(that the IUT presents or updates the alarm summary information presented to the user and

that the presentation is consistent with the information received in step 3)

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation, formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that D1 does not support execution of GetAlarmSummary and/or GetEnrollmentSummary, the IUT may initiate a GetAlarmSummary and/or GetEnrollmentSummary. If this occurs, the IUT shall only pass the test if it automatically falls back to using GetEventInformation upon receipt of the correct BACnetError-PDU from D1 indicating that alternate service is not supported.

8.10

SubscribeCOV Service Initiation Tests

8.10.X1
Generates 8 Hour Lifetimes

Reason For Change: The 8 hour restriction was added by the BTL and no test exists for this requirement in 135.1. This test is not in any proposal.

Purpose: To verify that the IUT correctly generates subscription requests with lifetimes of at less than or equal to 8 hours. Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the IUT.

1.
RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
TRUE | FALSE,

'Lifetime' =

(any valid lifetime between 1 and 28800)

2.
TRANSMIT BACnet-SimpleACK-PDU
8.14 Add List Element Service Initiation Tests

8.14.1 Non-Array Properties
Reason for change: 135.1 requires that multiple entries be supplied in the AddListElement request. This change is in proposal CN-107.

Purpose: To verify that the IUT can initiate an AddListElement service request that does not contain the 'Property Array Index' parameter.

Test Steps:

1.
RECEIVE AddListElement-Request,

'Object Identifier' =
(any object that contains a property having a list datatype),

'Property Identifier' =
(any property having a list datatype),

'List of Elements' =
(one or more elements with the correct datatype to add to the list)

2.
TRANSMIT BACnet-SimpleACK-PDU

8.14.2 Array Properties
Reason for change: 135.1 requires that multiple entries be supplied in the AddListElement request. This change is in proposal CN-107.

Purpose: To verify that the IUT can initiate an AddListElement service request that contains the 'Property Array Index' parameter.

Test Steps:

1.
RECEIVE AddListElement-Request,

'Object Identifier' =
(any object that contains a property having a datatype that is an array of lists),

'Property Identifier' =
(any property having a datatype that is an array of lists),

'Property Array Index' =
(any value > 0),

'List of Elements' =
(one or more elements with the correct datatype to add to the list)

2.
TRANSMIT BACnet-SimpleACK-PDU

8.15 RemoveListElement Service Initiation Tests

8.15.1 Non-Array Properties
Reason for change: 135.1 requires that multiple entries be supplied in the RemoveListElement request. This change is in proposal CN-107.

Purpose: To verify that the IUT can initiate a RemoveListElement service request that does not contain the 'Property Array Index' parameter.

Test Steps:

1.
RECEIVE RemoveListElement-Request,

'Object Identifier' =
(any object that contains a property having a list datatype),

'Property Identifier' =
(any property having a list datatype),

'List of Elements' =
(one or more elements with the correct datatype to remove from the list)

2.
TRANSMIT BACnet-SimpleACK-PDU

8.15.2 Array Properties
Reason for change: 135.1 requires that multiple entries be supplied in the RemoveListElement request. This change is in proposal CN-107.

Purpose: To verify that the IUT can initiate a RemoveListElement service request that contains the 'Property Array Index' parameter.

Test Steps:

1.
RECEIVE RemoveListElement-Request,

'Object Identifier' =
(any object that contains a property having a datatype that is an array of lists),

'Property Identifier' =
(any property having a datatype that is an array of lists),

'Property Array Index' =
(any value > 0),

'List of Elements' =
(one or more elements with the correct datatype to remove from the list)

2.
TRANSMIT BACnet-SimpleACK-PDU

8.21.1 Reading Values with no Specified Range

Reason for change: 135-2008u-3.
Purpose: To verify that the IUT can correctly initiate a ReadRange service request that does not specify any range of values to be returned.

Test Steps:

1.
RECEIVE ReadRange-Request,

'Object Identifier' =
(O, any Trend Log object),

'Property Identifier' =
Log_Buffer(P, any list property the IUT can read)

2.
TRANSMIT ReadRange-ACK

'Object Identifier' =
O,

'Property Identifier' =
P,

‘Result Flags’ =

(TRUE, (bLast), (NOT bLast)),

‘Item Count’ =

(C: any valid value)

‘Item Data’ =

(C valid records for the requested property)

3.
CHECK(that the IUT performs the vendor specified action)

8.21.3 Reading a Range of Values by Position

Reason for change: 135-2008u-3.

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that specifies the range of values to be returned by position.

Test Steps:

1.
RECEIVE ReadRange-Request,

'Object Identifier' =
(O, any Trend Log object),

'Property Identifier' =
Log_Buffer(P, any list property),

'Reference Index' =
(any Unsigned value),

'Count' =

(C1, any INTEGER value)

2.
TRANSMIT ReadRange-ACK

'Object Identifier' =
O,

'Property Identifier' =
P,

‘Result Flags’ =

((TRUE if the first was requested, FALSE otherwise), ?, ?),

‘Item Count’ =

(C2: any valid value <= |C|)

‘Item Data’ =
(C2 valid records for the requested property)

3.
CHECK(that the IUT performs the vendor specified action)
8.22 WriteProperty Service Initiation Tests

8.22.4 Accepting Input and Modifying Properties

Reason for Change: This test exists in 135.1-2009g and is modified in 135.1-2009i. It is included here solely to show all changes in one place.

Purpose: This test case verifies that the IUT is capable of accepting user input and using it to modify properties. It is a generic test used to test data input requirements.

This test is written so as to allow the TD to monitor a conversation between the IUT and a reference server. The reference server may be the TD, or some other device.

Configuration: For this test, the tester shall choose a property, P1, from an object, O1, in a device, D1, that does not support execution of WritePropertyMultiple.

Test Steps:

1.
MAKE (the IUT accept a new value for P1 from the user)

2.
RECEIVE WriteProperty-Request,

SOURCE =

IUT,

DESTINATION =

D1,

'Object Identifier' =

O1,

'Property Identifier' =

P1

'Property Value' =

(the value provided to the IUT for P1)
3.
RECEIVE BACnet-SimpleACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT,
Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation, formatting, language conversion etc.

Notes to Tester: If the property being modified is an array element, the IUT may include an Array Index parameter in the WriteProperty-Request in step 2. Under these circumstances this is acceptable and shall not be considered a failure condition.

Notes to Tester: If the IUT has not already determined that D1 does not support execution of WritePropertyMultiple, the IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall only pass the test if it automatically falls back to using WriteProperty upon receipt of the correct BACnetError-PDU from D1 indicating that WritePropertyMultiple is not supported.

Notes to Tester: The IUT is allowed to include a Priority parameter with a value in the range 1..16.

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the range 1-16, excluding 6.
8.22.5 Accepting Input and Commanding/Relinquishing Properties
Reason for Change: This test exists in 135.1-2009g and is modified in 135.1-2009i. It is included here solely to show all changes in one place.

Purpose: This test case verifies that the IUT is capable of accepting user input and using it to modify a commandable property at a specific priority. It also tests that the IUT is capable of relinquishing at that same priority.

This test is written so as to allow the TD to monitor a conversation between the IUT and a reference server. The reference server may be the TD, or some other device.

Configuration: For this test, the tester shall choose a commandable property, P1, from an object, O1, in a device, D1, that does not support execution of WritePropertyMultiple. PR1 is the specific priority that will be tested.

Test Steps:

1.
MAKE (the IUT accept a new value for P1 from the user, to be commanded at priority PR1)

2.
RECEIVE WriteProperty-Request,

SOURCE =

IUT,

DESTINATION =

D1,

'Object Identifier' =

(O1),

'Property Identifier' =

(P1)

‘Priority’ =

(PR1)

'Property Value' =

(the value provided to the IUT for P1)

3.
RECEIVE BACnet-SimpleACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT
4.
MAKE (the IUT relinquish P1 at priority PR1)

5.
RECEIVE WriteProperty-Request,

SOURCE =

IUT,

DESTINATION =

D1,

'Object Identifier' =

(O1),

'Property Identifier' =

(P1)

‘Priority’ =

(PR1)

'Property Value' =

NULL

6.
RECEIVE BACnet-SimpleACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT
Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation, formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that D1 does not support execution of WritePropertyMultiple, the IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall only pass the test if it automatically falls back to using WriteProperty upon receipt of the correct BACnetError-PDU from D1 indicating that WritePropertyMultiple is not supported.

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the range 1-16, excluding 6.
8.22.X4 Writing Array Properties as a Whole Array
Reason for Change: No test exists for this functionality. This test is not included in any SSPC proposal.

Purpose: This test verifies that the IUT is writing the entire array to the TD without the use of the array index.

TODO: Test needs to be written 10/23/2008 BTL-WG minutes
8.24
DeviceCommunicationControl Service Initiation Tests

8.24.1
Indefinite Duration, Disable, No Password

Reason For Change: This test was modified to include the responding ACK.
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should cease for an indefinite time duration and do not convey a password.

Test Steps:

1.
RECEIVE DeviceCommunicationControl-Request,

'Enable/Disable' =
DISABLE,

2.
TRANSMIT BACnet-SimpleACK-PDU

8.24.2
Indefinite Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should cease for an indefinite time duration and convey a password.

Test Steps:

1.
RECEIVE DeviceCommunicationControl-Request,

'Enable/Disable' =
DISABLE,

'Password' =
(a password of at least 5 characters) (a password of up to 20 characters)

2.
TRANSMIT BACnet-SimpleACK-PDU

8.24.3
Time Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should cease for a specific time duration and convey a password.

Test Steps:

1.
RECEIVE DeviceCommunicationControl-Request,

'Time Duration' =
(any unsigned value > 0),

'Enable/Disable' =
DISABLE,

'Password' =
(a password of at least 5 characters) (a password of up to 20 characters)
2.
TRANSMIT BACnet-SimpleACK-PDU

8.24.4
Enable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should resume and convey a password.

Test Steps:

1.
RECEIVE DeviceCommunicationControl-Request,

'Enable/Disable' =
ENABLE,

'Password' =
(a password of at least 5 characters) (a password of up to 20 characters)
2.
TRANSMIT BACnet-SimpleACK-PDU

8.24.5
Enable, No Password

Reason For Change: This test was modified to include the responding ACK.
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should resume and do not convey a password.

Test Steps:

1.
RECEIVE DeviceCommunicationControl-Request,

'Enable/Disable' =
ENABLE,

2.
TRANSMIT BACnet-SimpleACK-PDU

8.24.6
Time Duration, Disable, No Password

Reason For Change: This test was modified to include the responding ACK.
Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should cease for a specific time duration and do not convey a password. If the IUT does not support the “no password” option, this test shall not be performed.

Test Steps:

1.
RECEIVE DeviceCommunicationControl-Request,

'Time Duration' =
(any unsigned value > 0),

'Enable/Disable' =
DISABLE

2.
TRANSMIT BACnet-SimpleACK-PDU
8.24.7 Time Duration, Disable-Initiation, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication should cease for a specific time duration and that convey a password.

Test Steps:

1.
RECEIVE DeviceCommunicationControl-Request,

'Time Duration' =
 (any unsigned value in the range from 1 to 65535),

'Enable/Disable' = DISABLE

'Password' =
 (a password of up to 20 characters)

2.
TRANSMIT BACnet-SimpleACK-PDU

8.27
ReinitializeDevice Service Initiation Tests

8.27.2
COLDSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a COLDSTART should be performed and convey a password.

Test Steps:

1.
RECEIVE ReinitializeDevice-Request,

'Reinitialized State of Device' =
COLDSTART,

'Password' =(a password of at least 5 characters) (a password of up to 20 characters)

2.
TRANSMIT BACnet-SimpleACK-PDU
8.27.4
WARMSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a WARMSTART should be performed and convey a password.

Test Steps:

1.
RECEIVE ReinitializeDevice-Request,

'Reinitialized State of Device' =
WARMSTART,

'Password' =(a password of at least 5 characters) (a password of up to 20 characters)
2.
TRANSMIT BACnet-SimpleACK-PDU

9 Application Service Execution Tests

The test cases defined in this clause shall be used to verify that a BACnet device correctly implements the service procedure for the specified application service. BACnet devices shall be tested for the proper execution of each application service for which the PICS indicates execution is supported.

For each application service included in this clause several test cases are defined that collectively test the various options and features defined for the service in the BACnet standard. A test case is a sequence of one or more messages that are exchanged between the implementation under test (IUT) and the testing device (TD) in order to determine if a particular option or feature is correctly implemented. Multiple test cases that have a similar or related purpose are collected into test groups.

Under some circumstances an IUT may be unable to demonstrate conformance to a particular test case because the test applies to a feature that requires a particular BACnet object or optional property that is not supported in the IUT. For example, a device may support the File Access services but restrict files to stream access only. Such a device would have no way to demonstrate that it could implement the record access features of the File Access services. When this type of situation occurs the IUT shall be considered to be in conformance with BACnet provided the PICS documentation clearly indicates the restriction. Failure to document the restriction shall constitute nonconformance to the BACnet standard. All features and optional parameters for BACnet application services shall be supported unless a conflict arises because of unsupported objects or unsupported optional properties.

For each application service the tests are divided into two types, positive tests and negative tests. The positive tests verify that the IUT can correctly handle cases where the service is expected to be successfully completed. The negative tests verify correct handling for various error cases that may occur. Negative tests include inappropriate service parameters but they do not include cases with encoding errors or otherwise malformed PDUs. Tests to ensure that the IUT can handle malformed PDUs are defined in 13.4.

Many test cases allow flexibility in the value to be used in a service parameter. The tester is free to choose any value within the constraints defined in the test case. The IUT shall be able to respond correctly to any valid selection the tester might make. The EPICS is considered to be a definitive reference indicating the BACnet functionality supported and the configuration of the object database. Any discrepancies between the BACnet functionality or the value of properties in the object database as defined in the EPICS, and the values returned in messages defined for a test case constitutes a failure of the test. For example, if a test step involved reading a property of an object in the database the returned value must match the value provided in the EPICS. defined in the EPICS and the functionality demonstrated by the device during testing shall constitute a failure. For example, it is considered a failure if a test step involves writing to a property and the EPICS indicates the property is writable but the device returns an error indicating 'write access denied'.
9.1 AcknowledgeAlarm Service Execution Tests

9.1.1 Positive AcknowledgeAlarm Service Execution Tests

9.1.1.Y1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter
Reason for Change: No test exists for this functionality. This test is included in BDS-032.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, when the acknowledgement contains a mismatched or unmatched 'Acknowledging Process Identifier' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm with a mismatched 'Acknowledging Process Identifier' (the Process Identifier associated with another recipient), or unmatched (a Process Identifier not associated with any recipient), and verifies that the acknowledgment is properly noted by the IUT. This test should be performed twice, once with a mismatched Process Identifier and once with an unmatched Process Identifier.

Configuration Requirements: The IUT shall be configured with at least one object, Object1, that can detect alarm conditions and send confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification, configured to receive different Process Identifiers.

Test Steps:

1.
VERIFY (Object1), Acked_Transitions = B'111'

2.
MAKE (a change that triggers the detection of an alarm event in the IUT)

3.
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

Object1,

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the Notification Class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM or EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)

4.
TRANSMIT BACnet-Simple-ACK-PDU

5.
RECEIVE

DESTINATION =

(at least one device other than the TD),

SOURCE =

IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

Object1,

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the notification class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)
6.
TRANSMIT

DESTINATION =

IUT,

SOURCE =

(DESTINATION in step 5),

BACnet-Simple-ACK-PDU

7.
VERIFY (Object1), Acked_Transitions = B'011' | B'101' | B'110'

8.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (Any mismatched or unmatched value),

'Event Object Identifier' =

Object1,

'Event State Acknowledged' =
(the state specified in the 'To State'

parameter of the notification),

'Time Stamp' =

(the timestamp conveyed in the notification),

'Time of Acknowledgment' =
(the current timestamp)

9.
RECEIVE BACnet-Simple-ACK-PDU

10.
VERIFY (Object1), Acked_Transitions = B'111'

9.1.1.Y2 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter
Reason for Change: No test exists for this functionality. This test is included in BDS-032. Additional changes have been made to this since BDS-032 and therefore a new proposal is needed.
Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, when the acknowledgement contains a mismatched or unmatched 'Acknowledging Process Identifier' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm with a mismatched 'Acknowledging Process Identifier' (the Process Identifier associated with another recipient), or unmatched (a Process Identifier not associated with any recipient), and verifies that the acknowledgment is properly noted by the IUT. This test should be performed twice, once with a mismatched Process Identifier and once with an unmatched Process Identifier.

Configuration Requirements: The IUT shall be configured with at least one object, Object1, that can detect alarm conditions and send unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification, configured to receive different Process Identifiers.

Test Steps:

1.
VERIFY (Object1), Acked_Transitions = B'111'
2.
MAKE (a change that triggers an alarm event in the IUT)

32.
RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

Object1,

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the Notification Class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM or EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)

43.
RECEIVE

DESTINATION =

(at least one device other than the TD),

SOURCE =

IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

(the object detecting the alarm),

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the notification class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)

54.
VERIFY (Object1), Acked_Transitions = B'011' | B'101' | B'110'

65.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (Any mismatched or unmatched value),

'Event Object Identifier' =

Object1,

'Event State Acknowledged' =
(the state specified in the 'To State'

parameter of the notification),

'Time Stamp' =

(the timestamp conveyed in the notification),

'Time of Acknowledgment' =
(the current timestamp)

76.
RECEIVE BACnet-Simple-ACK-PDU

87.
VERIFY (Object1), Acked_Transitions = B'111'
9.1.1.X3 Successful Alarm Acknowledgment of Confirmed Event Notifications when 'To State' is either High-Limit or Low-Limit, Revision 5 and higher only

Reason for Change: No test exists for this functionality. There is no new SSPC proposal.
Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including notification of other workstations and updating of the Acked_Transitions status when the 'To State' parameter is either High-Limit or Low-Limit and the 'Event State Acknowledged' parameter is Off-Normal.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device with an 'To State' event of either High-Limit or Low-Limit. The TD acknowledges the alarm using all of the correct parameters and using an 'Event State Acknowledged' parameter of 'Off-Normal' and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.1 shall be followed except that the 'To State' parameter shall be either High-Limit or Low-Limit. When acknowledging the alarm the TD shall use an 'Event State Acknowledged' parameter of Off-Normal.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.1.

9.1.2 Negative AcknowledgeAlarm Service Execution Tests

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used in step 3. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant.

9.1.2.3 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Event Object Identifier' is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal.

Purpose: To verify that an alarm remains unacknowledged if the 'Event Object Identifier' represents an object that does not exist or is not consistent with the other parameters that define the alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm using an improper 'Event Object Identifier' and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper 'Event Object Identifier' and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.1 shall be followed except that in the first AcknowledgeAlarm request the 'Time Stamp' shall have the same value as the 'Time Stamp' from the event notification and the 'Event Object Identifier' shall specify an object that does not support or is not configured for alarming or, which does not exist..

Notes to Tester: A passing result is the same message sequence described in 9.1.2.1 except that the Error Class and Error Code in step 7 shall be OBJECT and UNKNOWN_OBJECT if the object referenced by ‘Event Object Identifier’ does not exist or OBJECT and NO_ALARM_CONFIGURED if the object exists but does not support or is not configured for alarming. For devices claiming a Protocol Revision less than 5, an Error Class and Error Code of SERVICES and INCONSISTENT_PARAMETERS or Error Class of OBJECT and Error Code of OTHER shall also be allowed.

9.1.2.4 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Event State Acknowledged' is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal.

Purpose: To verify that an alarm remains unacknowledged if the 'Event State Acknowledged' is inconsistent with the other parameters that define the alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm using an invalid event state and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper event state and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.1 shall be followed except that in the first AcknowledgeAlarm request the 'Time Stamp' shall have the same value as the 'Time Stamp' from the event notification, the ‘To State’ in the notification shall be any offnormal transition and the 'Event State Acknowledged' shall have a value that is different from the 'To State' in the event notification and shall not be OFFNORMAL.

Notes to Tester: A passing result is the same message sequence described in 9.1.2.1 except that the Error Code in step 7 shall be INVALID_EVENT_STATE. For devices claiming a Protocol Revision less than 5, an Error Code of INCONSISTENT_PARAMETERS shall also be allowed.

9.1.2.6 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the Referenced Object Does Not Exist

Purpose: To verify that an alarm remains unacknowledged if the 'Event Object Identifier' represents an object that does not exist.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm using an invalid event object identifier and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper event object identifier and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.5 shall be followed except that in the first AcknowledgeAlarm request the 'Time Stamp' shall have the same value as the 'Time Stamp' from the event notification and the 'Event Object Identifier' shall have a value that is different from the 'Event Object Identifier' in the event notification and for which no object exists in the IUT.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.5 except that the Error Class in step 7 shall be OBJECT and the Error Code in step 7 shall be UNKNOWN_OBJECT. For devices that claim a Protocol_Revision of 5 or prior, an Error Class of SERVICES with an Error Code of INCONSISTENT_PARAMETERS or Error Class of OBJECT and Error Code of OTHER shall also be accepted.
9.1.2.7 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the 'Event State Acknowledged' is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal.

Purpose: To verify that an alarm remains unacknowledged if the 'Event State Acknowledged' is inconsistent with the other parameters that define the alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm using an invalid 'Event State Acknowledged' and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper 'Event State Acknowledged' and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.5 shall be followed except that in the first AcknowledgeAlarm request the 'Time Stamp' shall have the same value as the 'Time Stamp' from the event, the ‘To State’ in the notification shall be any offnormal transition and the 'Event State Acknowledged' shall have a value that is different from the 'To State' in the event notification and shall not be OFFNORMAL.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.5 except that the Error Code in step 7 shall be INVALID_EVENT_STATE. For devices claiming a Protocol Revision less than 5, an Error Code of INCONSISTENT_PARAMETERS shall also be allowed.

9.2 ConfirmedCOVNotification Service Execution Tests

9.2.1.1 Change of Value Notifications from Analog, Binary, Multi-state, and Life Safety Objects

Reason For Change: Test taken from 135.1-2009j.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Multi-state Input, Multi-state Output, Multistate Value, Life Safety Point, and Life Safety Zone objects. Since the ability to subscribe to COV notifications is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this clause shall be applied once for each object type.
Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from analog, binary and multi-state objectsobject types that provide the Present_Value and Status_Flags properties in COV notifications.

Test Steps:

REPEAT X = (one object of each type in the set {Analog Input, Analog Output, Analog Value, Binary Input, Binary

Output, Binary Value, Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, Life Safety Zone})

DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
TRUE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags

appropriate to object type X)

4.

RECEIVE BACnet-SimpleACK-PDU

5.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as

 displaying information on a workstation screen are carried out)

}

9.2.1.X4 Change of Value Notification from Proprietary Objects

This test has not be developed and shall be skipped.

9.2.2.1 Change of Value Notification Arrives after Subscription has Expired

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has expired.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
WAIT (a value two times Lifetime)

4.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 21),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object X)

5.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

9.2.2.2 Change of Value Notifications with Invalid Process Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that does not match any current subscriptions.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(a process identifier different from the one used in step 21),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object X)

4.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

9.2.2.3 Change of Value Notifications with Invalid Initiating Device Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains an initiating device identifier that does not match any current subscriptions.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier different used in step 21),

'Initiating Device Identifier' =
(any valid Device object except TD),

'Monitored Object Identifier' =
X,

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object X)

4.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier that does not match any current subscriptions.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =

(any valid process identifier),

'Monitored Object Identifier' =

(any object X of a type that supports COV notification),

'Issue Confirmed Notifications ' =

TRUE,

'Lifetime' =

(a value no greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 21),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
(any object Y supporting COV notification except X),

'Time Remaining' =

(any amount of time greater than 0),

'List of Values' =

(a list of values appropriate to object Y)

4.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

Error Class =

SERVICES,

Error Code =

(any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)
9.3 UnconfirmedCOVNotification Service Execution Tests

9.3.X1 Change of Value Notifications

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from objects that provide the Present_Value and Status_Flags properties in COV notifications.

Test Steps:

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
FALSE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags appropriate to object type X)

4.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying

information on a workstation screen are carried out)

9.3.X2 Change of Value Notification from Loop Objects
Reason for Change: Addendum 135-2008w-1 Add more primitive value objects

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from loop objects.

Test Steps:

1. RECEIVE SubscribeCOV,

'Subscriber Process Identifier' = (any valid process identifier),

'Monitored Object Identifier' = (any Loop object, X),

'Issue Confirmed Notifications ' = FALSE,

'Lifetime' = (a value greater than one minute)

2. TRANSMIT BACnet-SimpleACK-PDU

3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 2),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X,

'Time Remaining' = (the time remaining for the subscription),

'List of Values' = (Present_Value, Status_Flags, Setpoint, and

Controlled_Variable_Value appropriate to object X)

4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying information on a

workstation screen are carried out)

9.3.X9 Change of Value Notification from Proprietary Objects

This test has not been developed and shall be skipped.

9.7 GetEnrollmentSummary Service Execution Tests

9.7.1.1 Enrollment Summary with Zero Summaries

Reason for change: BTL-CRR-0089_9.7.1.1.doc clarified that it is not important what filter parameter or parameter is used to engender the return of a summary with zero summaries.
Purpose: To verify that the IUT can execute the GetEnrollmentSummary request when there are no enrollments to report.

Configuration Requirements: The IUT shall be configured with no enrollments to report.

Test Steps:

1.
TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL NOT_ACKED
2.
RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (an empty list)

Notes to Tester: If the IUT cannot be configured with no enrollments to report, then the GetEnrollmentSummary-Request shall be transmitted with a further constrained argument so that the resulting filtered enrollment summary yields zero summaries.

9.7.2.3 Event Type Filter

Reason for Change: Revise test for new Event Types.

Purpose: To verify that the IUT can execute the GetEnrollmentSummary request when the 'Event Type Filter' is used.

Configuration Requirements: If possible, the IUT shall be configured so that it has one or more event-generating objects for

each of the event types CHANGE_OF_BITSTRING, CHANGE_OF_STATE, CHANGE_OF_VALUE, COMMAND_FAILURE, FLOATING_LIMIT, and OUT_OF_RANGE. If only a subset of these event types are supported as many of them as possible shall be configured.

Test Steps:

1. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = CHANGE_OF_BITSTRING

2. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = CHANGE_OF_BITSTRING)

3. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = CHANGE_OF_STATE

4. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = CHANGE_OF_STATE)

5. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = CHANGE_OF_VALUE

6. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = CHANGE_OF_VALUE)

7. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = FLOATING_LIMIT

8. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = FLOATING_LIMIT)

Configuration Requirements: If possible, the IUT shall be configured so that it has one or more event-generating objects for each of its supported event types. If the IUT cannot be configured in such a way all at once,

then the test shall be repeated so that each of its supported event types is tested. If only a subset of these event types are supported as many of them as possible shall be configured.

Test Steps:

REPEAT Y = (All the configurations that will be tested) DO {

REPEAT X = (All the Event Types currently configured) DO {

TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' =

ALL,

'Event Type Filter' =

X

RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' =
(all configured event-generating objects with

Event_Type = X)

}
9.8 GetEventInformation Service Execution Tests

9.8.6 Chaining Test
Reason for Change: If the test requires that it be executed using a 50 octet APDU but the response for a single event can exceed this amount when the timestamps form of the BACnetDateTime are used. The change is in LJT-001.

Purpose: This test case exercises the chaining capabilities using multiple GetEventInformation messages.

Configuration Requirements: The IUT shall be configured so that there are more event states than can be conveyed in a single APDU of 128 bytes. The IUT shall be configured to contain enough events to trigger the chaining effect. If the IUT can not be configured to contain enough active events to trigger chaining, this test may be skipped.
Test Concept: In steps 1-4, the test first tests proper chaining by requesting two lists from the IUT and verifying that the second list is properly distinct from the first. In steps 5-9, to test the “fixed object processing order” as defined in BACnet 13.12.1.1.1, it requests the first list again, and then, before requesting the second list, the tester makes the last object in the first list no longer have any active event states. When the TD requests the second list using the object identifier of the now-normal device, the IUT should respond with the same second list as it did before.

Test Steps:

1.
TRANSMIT GetEventInformation-Request,

'max-APDU-length-accepted' =
B'0001',

'segmented-response-accepted' =
FALSE

2.
RECEIVE GetEventInformation-ACK,

'List of Event Summaries' =
(an arbitrary list),

'More Events' = TRUE

3.
TRANSMIT GetEventInformation-Request,

'Last Received Object Identifier' =
the last object identifier of the list received in step 2)

4.
RECEIVE GetEventInformation-ACK,

'List of Event Summaries' =
(a list of object identifiers not including any received in step 2)

5.
TRANSMIT GetEventInformation-Request,

'max-APDU-length-accepted' =
B'0001',

'segmented-response-accepted' =
FALSE

6.
RECEIVE GetEventInformation-ACK,

'List of Event Summaries' =
(an arbitrary list),

'More Events' =
TRUE

7.
MAKE (the object identified by the last object identifier in the list received in step 6 have no active event states)

8.
TRANSMIT GetEventInformation-Request,

'Last Received Object Identifier' =
(the last object identifier of the list received in step 6)

9.10 SubscribeCOV Service Execution Tests

9.10.1 Positive SubscribeCOV Service Execution Tests

The purpose of this test group is to verify the correct execution of the SubscribeCOV service request under circumstances where the service is expected to be successfully completed.

9.10.1.1
Confirmed COV Notifications

Reason For Change: This test incorrectly used a WAIT instead of the BEFORE structure when defining the delay before the notification may be sent. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription for confirmed COV notifications. An implementation that supports COV reporting cannot respond with an error for both this test and the test in 9.10.1.2.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

(any value > 0 if automatic cancellation is supported, otherwise 0)

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(any value > 0 if automatic cancellation is supported, otherwise 0),

'List of Values' =

(values appropriate to the object type of the monitored object)
4.
TRANSMIT BACnet-SimpleACK-PDU

9.10.1.2
Unconfirmed COV Notifications

Reason For Change: This test incorrectly used a WAIT instead of the BEFORE structure when defining the delay before the notification may be sent. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription for unconfirmed COV notifications. An implementation that supports COV reporting cannot respond with an error for both this test and the test in 9.10.1.1.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
FALSE,

'Lifetime' =

(any value > 0 if automatic cancellation is supported,
otherwise 0)

2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(any value > 0 if automatic cancellation is supported, otherwise 0),

'List of Values' =

(values appropriate to the object type of the monitored object)

9.10.1.3
Explicit Indefinite Lifetime COV Subscriptions

Reason For Change: This test incorrectly used a WAIT instead of the BEFORE structure when defining the delay before the notification may be sent. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription with an indefinite lifetime (lifetime = 0). Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the IUT.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
TRUE | FALSE,

'Lifetime' =

0

2.
RECEIVE BACnet-SimpleACK-PDU

3.
IF (the subscription was for confirmed notifications) THEN

BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

0,

'List of Values' =

(values appropriate to the object type of the monitored object)

ELSE

BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

0,

'List of Values' =

(values appropriate to the object type of the monitored object)

5.
MAKE (a change to the monitored object that should cause a COV notification)

6.
IF (the subscription was for confirmed notifications) THEN

BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

0,

'List of Values' =

(values appropriate to the object type of the monitored object

 including the changed value that triggered the notification)

ELSE

BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

0,

'List of Values' =

(values appropriate to the object type of the monitored object

including the changed value of that triggered the notification)
9.10.1.7
Finite Lifetime Subscriptions
Reason for change: BTL-CRR-0200_9.10.1.7.doc clarified that the ‘Time Remaining’ need not be exactly the ‘Lifetime’, and BTL-CRR-0194_ACK_in_9.10.1.1_and_9.10.1.7.doc adds the obligatory TRANSMIT BACnet-SimpleACK-PDU.
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription with a temporary lifetime. Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the IUT.

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
TRUE | FALSE,

'Lifetime' =

(a value between 60 seconds and 300 seconds)

2.
RECEIVE BACnet-SimpleACK-PDU

3.
WAIT Notification Fail Time

4.
IF (the subscription was for confirmed notifications) THEN

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(the requested subscription lifetimethe time remaining in the subscription),

'List of Values' =

(values appropriate to the object type of the monitored object)

TRANSMIT BACnet-SimpleACK-PDU

ELSE

RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(the requested subscription lifetimethe time remaining in the subscription),

'List of Values' =

(values appropriate to the object type of the monitored object)

5.
MAKE (a change to the monitored object that should cause a COV notification)

6.
IF (the subscription was for confirmed notifications) THEN

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(a value greater than 0 and less than or equal to the requested subscription

lifetime),

'List of Values' =

(values appropriate to the object type of the monitored object)

TRANSMIT BACnet-SimpleACK-PDU

ELSE

RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(a value greater than 0 and less than or equal to the requested subscription

lifetime),

'List of Values' =

(values appropriate to the object type of the monitored object

including the changed value of that triggered the notification)

7.
WAIT (the lifetime of the subscription)

8.
MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)

9.
CHECK (verify that the IUT did not transmit a COV notification message)
9.10.1.X1 Ensuring 5 Concurrent COV Subscribers

Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can support 5 concurrent subscriptions.

Test Concept: Have the TD subscribe with 5 different process identifiers, V1 through V5, and then check to ensure that 5 notifications are sent when the monitored object changes.

Test Steps

1.
REPEAT (X=V1 to V5) DO {

TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
X,

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
FALSE,

'Lifetime' =
(any valid value that will allow the subscription to outlast the test)

RECEIVE BACnet-SimpleACK-PDU

WAIT Notification Fail Time

IF (if confirmed notifications were requested) THEN

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =
(any valid value),

'List of Values' =
(the initial Present_Value and initial Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU

ELSE

RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =
(any valid value),

'List of Values' =
(the initial Present_Value and initial Status_Flags)

}

2. MAKE (Present_Value = any value that differs from "initial Present_Value" such that a COV notification would be generated)

3. REPEAT (X=V1 to V5) DO {

IF (if confirmed notifications were requested) THEN

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

‘Time Remaining' =
(any valid value),

'List of Values' =
(the new Present_Value and Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU

ELSE

RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(any valid value),

'List of Values' =

(the new Present_Value and Status_Flags)

}

Passing Result: The notification in step 3 can be received in any order by the TD.

9.10.1.X3
Accepts 8 Hour Lifetimes

Reason For Change: BTL added 8 hr requirement and no test exists for this in 135.1. This test is not in any proposal.

Purpose: To verify that the IUT correctly accepts lifetimes of at least 8 hours. Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the IUT.

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
TRUE | FALSE,

'Lifetime' =

28800
2.
RECEIVE BACnet-SimpleACK-PDU

3.
BEFORE Notification Fail Time

IF (the subscription was for confirmed notifications) THEN

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(the requested subscription lifetime),

'List of Values' =

(values appropriate to the object type of the

monitored object)

ELSE

RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(the requested subscription lifetime),

'List of Values' =

(values appropriate to the object type of the

monitored object)

5.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(the same identifier used in the subscription),

'Monitored Object Identifier' =
(the same object used in the subscription)

9.10.2.1 The Monitored Object Does Not Support COV Notification
Reason for Change: This test does not provide for the new error code mandated by the newer revision of the BACnet standard. There is no new SSPC proposal. 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored object does not support COV notifications.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object that exists in the IUT and does not support COV notifications),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

60

2.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
ELSE

RECEIVE (BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
SERVICE_REQUEST_DENIED | OTHER)

| (BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED)
9.10.2.X1
The Monitored Object Does Not Exist

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored object does not exist.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object of a type that supports COV and an instance which does not exist

in the IUT),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

60

2.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT

ELSE

RECEIVE BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
SERVICE_REQUEST_DENIED | OTHER

| (BACnet-Error PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT)

Note to tester: If the IUT is able to support objects other than those that currently exist, and none of those objects that currently do not exist would support COV notification if they did, then the IUT may return an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED instead of UNKNOWN_OBJECT.

9.10.2.X2
There Is No Space For A Subscription

Reason for Change: 135-2008h.5.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when there is no space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out of resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol_Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept is less than 10000, then this test may be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1, or until the IUT returns an

Error-PDU) {

1.

TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
PID,

'Monitored Object Identifier' =

(any object of that supports COV),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

6000

2.

RECEIVE BACnet-SimpleACK-PDU |

(BACnet-Error-PDU,

Error Class =
RESOURCES,

Error Code =
NO_SPACE_TO_ADD_LIST_ELEMENT)

3.

READ ACS = (Active_COV_Subscriptions)

4.

IF (a BACnet-Simple-Ack was received in step 2) THEN

CHECK (that the subscription is in ACS)

ELSE

CHECK (that the subscription is not in ACS)

}

9.10.2.X3
The Lifetime Parameter is Out of Range

Reason for Change: 135-2008h.5.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the Lifetime parameter is out of range.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any object in the IUT that supports COV),

'Issue Confirmed Notifications' =
TRUE,

'Lifetime' =

(a value larger than that supported by the IUT)

2.
IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

RECEIVE BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
VALUE_OUT_OF_RANGE

ELSE

RECEIVE BACnet-Error PDU,

Error Class =
SERVICES,

Error Code =
VALUE_OUT_OF_RANGE | SERVICE_REQUEST_DENIED | OTHER

9.14 AddListElement Service Execution Tests

9.14.2 Negative AddListElement Service Execution Tests

9.14.2.2 Adding a List Element With an Invalid Datatype

Reason for change: Success criteria should specify 'First Failed Element' = 1 and the additional error conditions are now accepted.
Purpose: To verify the ability of the IUT to correctly respond to an AddListElement service request to add an element with an invalid datatype to a list.

Test Steps:

1. TRANSMIT AddListElement-Request,

 'Object Identifier' = L,

 'Property Identifier' = ListProp,

 'List of Elements' = (a single element with a datatype inappropriate for this property)

2. RECEIVE AddListElement-Error,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE,

 'First Failed Element' = 01 |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =

 INVALID_TAG)
Notes to Tester: value selected for step 1 is 'inappropriate', not a value which is 'allowed' but not supported by this instance of the property. I.e. it is not one of the datatypes that would ever be supported by an instance of this property in this object type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example in a CHOICE, by this property in this object type, but not supported by this instance of the property.

9.14.2.3 An AddListElement Failure Part Way Through a List

Reason For Change: The test specified an incorrect error code. This change is included in WS-038-4.

Purpose: To verify the ability of the IUT to respond to an AddListElement service request to add multiple elements to a list where one of the elements cannot be added. Upon failure, the AddListElement service should leave the list unchanged.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object Identifier' =

L,

'Property Identifier' =

ListProp

2.
RECEIVE ReadProperty-ACK,

'Object Identifier' =

L,

'Property Identifier' =

ListProp,

'Property Value' =

(any valid value referred to as "InitialList" below)

3.
TRANSMIT AddListElement-Request,

'Object Identifier' =

L,

'Property Identifier' =

ListProp

'List of Elements' =

(two or more elements to be added to the list with the second element

having an inappropriate datatype)

4.
IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN

RECEIVE AddListElement-Error,

Error Class =

SERVICES, PROPERTY

Error Code =

INVALID_PARAMETER_DATATYPE INVALID_DATATYPE

'First Failed Element' =

2

| (RECEIVE BACnet-Reject-PDU,

Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)

ELSE

RECEIVE AddListElement-Error,

Error Class =

SERVICES,

Error Code =

INVALID_PARAMETER_DATATYPE

'First Failed Element' =
2

| (AddListElement-Error,

Error Class =

PROPERTY,

Error Code =

INVALID_DATATYPE)

| (BACnet-Reject-PDU,

Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)
5.
VERIFY (L), ListProp =

InitialList

Notes to Tester: value selected for step 3 is 'inappropriate', not a value which is 'allowed' but not supported by this instance of the property. I.e. it is not one of the datatypes that would ever be supported by an instance of this property in this object type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example in a CHOICE, by this property in this object type, but not supported by this instance of the property.

9.15 RemoveListElement Service Execution Tests

9.15.2 Negative RemoveListElement Service Execution Tests

9.15.2.2 A RemoveListElement Failure Part Way Through a List

Reason For Change: The test specified an incorrect error code. This is included in WS-038-4.

Purpose: To verify the ability of the IUT to respond to a RemoveListElement service request to remove multiple elements from a list where one of the elements cannot be removed. Upon failure, the RemoveListElement service should leave the list unchanged.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object Identifier' =

L,

'Property Identifier' =

ListProp

2.
RECEIVE ReadProperty-ACK,

'Object Identifier' =

L,

'Property Identifier' =

ListProp,

'Property Value' =

(any valid value referred to as "InitialList" below)

3.
TRANSMIT RemoveListElement-Request,

'Object Identifier' =

L,

'Property Identifier' =

ListProp

'List of Elements' =

(one element from InitialList, followed by an element of the correct

datatype that is not in InitialList, followed by one or more elements from

InitialList)

4.
If (Protocol_Revision is present and Protocol_Revision >= 7) THEN

RECEIVE RemoveListElement-Error,

Error Class =

SERVICES | PROPERTY SERVICES,

Error Code =

OTHER LIST_ELEMENT_NOT_FOUND

'First Failed Element' =

2

ELSE

RECEIVE RemoveListElement-Error

5.
VERIFY (L), ListProp = InitialList

9.16 CreateObject Service Execution Tests

9.16.1 Positive CreateObject Service Execution Tests

9.16.1.2
Creating Objects by Specifying the Object Identifier with No Initial Values

Reason For Change: Corrected CreateObject-Request format and added clarification that the IUT can place a restriction on the instance used. This correction is not in any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object specifier.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any unique object identifier of a type that is creatable and an

instance number that is creatable)

2.
RECEIVE CreateObject-ACK,

'Object Identifier' =

(the object identifier specified in step 1)

3.
VERIFY (the object identifier of the newly created object),

(any required property of the specified object) = (any value of the correct datatype for the specified

property)

4.
VERIFY (the IUT's Device object), Object_List = (any object list containing the newly created object)

9.16.1.4
Creating Objects by Specifying the Object Identifier and Providing Initial Values

Reason For Change: Corrected the property format of the request and added clarification that the IUT can place restrictions on the instance and initial values allowed for creation. This change is not in any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object specifier and a list of initial property values is provided.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any unique object identifier of a type that is creatable and an

instance number that is creatable)

'List Of Initial Values' =
(a list of one or more properties and their initial values, that the IUT will

accept initial values for)

2.
RECEIVE CreateObject-ACK,

'Object Identifier' =

(the object identifier specified in step 1)

3.
REPEAT X = (properties initialized in the CreateObject-Request) DO {

VERIFY (the object identifier for the newly created object),

X = (the value specified in the 'List Of Initial Values' parameter of the CreateObject-Request)

}

4.
VERIFY (the IUT's Device object), Object_List = (any object list containing the newly created object)

9.16.2 Negative CreateObject Service Execution Tests

The purpose of this test group is to verify correct execution of the CreateObject service requests under circumstances where the service is expected to fail.

9.16.2.1
Attempting to Create an Object That Does Not Have a Unique Object Identifier

Reason For Change: Corrected the parameter used in the service request. This is not in any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an object identifier that already exists in the IUT.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any object identifier representing an object that already exists

having an object type for which dynamic creation is

supported)

2.
RECEIVE CreateObject-Error,

Error Class =

OBJECT,

Error Code =

OBJECT_IDENTIFIER_ALREADY_EXISTS

'First Failed Element Number' =
0

9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values

Reason for Change: INTERPRETATION IC 135-2004-28
Purpose: To verify the correct execution of the CreateObject service request when an object type is used as the object specifier and a list of initial property values containing an invalid value is provided.

Test Steps:

1.
READ X1 = Object_List

2.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any creatable object type),

'List Of Initial Values' =
(a list of twoone or more properties and their initial values, that the IUT will

accept initial values for, with one of the values being out of range)

3.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)

ELSE

RECEIVE CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE |

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED | OTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)

4.
CHECK(Verify that the new object was not created)

5.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any creatableobject type of step 2),

'List Of Initial Values' =
(a list of twoone or more properties and their initial values, that the IUT will

accept initial values for, with one of the values being an inappropriate datatype)

6.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE

CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

INVALID_DATATYPE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE | INVALID_TAG)

ELSE

RECEIVE CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE | INVALID_DATATYPE |

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED | OTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE | INVALID_TAG)

6.
CHECK(Verify that the new object was not created)

7.
READ X2 = Object_List

8.
CHECK (X1=X2)
9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial Values
Reason for Change: INTERPRETATION IC 135-2004-28
Purpose: To verify the correct execution of the CreateObject service request when an object identifier is used as the object specifier and a list of initial property values containing an invalid value is provided.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any unique object identifier of a type that is creatable and an

instance number that is creatable)

'List Of Initial Values' =
(a list of twoone or more properties and their initial values, that the IUT will

accept initial values for, with one of the values being out of range)

2.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)

ELSE

RECEIVE CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE | INVALID_DATATYPEOTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)
3. CHECK(Verify that the new object was not created)

4.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any uniqueobject identifier from step 1of a type that is creatable),

'List Of Initial Values' =

(a list of twoone or more properties and their initial values, that the

IUT will accept initial values for, with one of the values being an

inappropriate datatype)

5.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE

CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

INVALID_DATATYPE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =

 INVALID_TAG)
ELSE

RECEIVE

CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE | INVALID_DATATYPE | OTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE | INVALID_TAG)
6.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the 'Object Identifier' used in step 1),

'Property Identifier' =
(any required property of the specified object)Object_Name
7.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE BACnet-Error-PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT

ELSE

RECEIVE BACnet-Error-PDU

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT | NO_OBJECTS_OF_SPECIFIED_TYPE | OTHER

9.16.2.6
Attempting to Create an Object with an instance of 4194303

Reason For Change: Corrected parameter for service request. This change is not in any SSPC proposal.
Purpose: This test case verifies the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an object identifier with an instance of 4194303. This test shall be performed only if the Protocol_Revision property is present in the Device object and has a value greater than or equal to 4.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any object identifier representing a creatable object-type with

an instance of 4194303)

2.
RECEIVE BACnet-Reject-PDU,

'Reject Reason' =
PARAMETER_OUT_OF_RANGE

9.16.2.X1
Attempting to Create a non-Supported Object Type (by Object Type)

Reason for Change: Addendum 135-2008u-2
Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an object type that is not supported in the IUT.

Test Conditionality: If Protocol_Revision < 10, then this test may be skipped.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any unsupported object type)

2.
RECEIVE CreateObject-Error,

Error Class =

OBJECT,

Error Code =

UNSUPPORTED_OBJECT_TYPE

'First Failed Element Number' =
0

9.16.2.X2
Attempting to Create a non-Supported Object Type (by Object Identifier)

Reason for Change: Addendum 135-2008u-2
Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys an object identifier for an object type that is not supported in the IUT.

Test Conditionality: If Protocol_Revision < 10, then this test may be skipped.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any object identifier having an unsupported object type)

2.
RECEIVE CreateObject-Error,

Error Class =

OBJECT,

Error Code =

UNSUPPORTED_OBJECT_TYPE

'First Failed Element Number' =
0
5.
VERIFY (the IUT's Device object),

Object_List =

(any object list that does not contain the object specified in step 1)

Notes to tester: If the IUT limits the instances that can be created, this shall be taken into account when selecting an object identifier in step 1.
9.17.2.1
Attempting to Delete an Object That is Not Deletable
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct response to an attempt to delete an object that is not deletable.
Configuration Requirements: The IUT shall be configured with an object X that cannot be deleted.

Test Steps:

1. READ V1 = Object_Name

2. TRANSMIT DeleteObject-Request,

'Object Identifier' = X

3. RECEIVE BACnet-Error-PDU,
Error Class = OBJECT,

Error Code = OBJECT_DELETION_NOT_PERMITTED
4. VERIFY (X), Object_Name = V1 (the Object_Name specified in the EPICS)
5. VERIFY (X), Object_List = (any object list that contains X)

9.18 ReadProperty Service Execution Tests
9.18.1.2 Reading a Single Element of an Array

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute ReadProperty service requests when the requested property is an array and a single element of the array is requested.

Test Steps:

1. READ V = (Device, X), Object_List ARRAY_INDEX=1

2. CHECK (V is of type object-identifier)

1. VERIFY (Device, X),

Object_List = (the first element of the Object_List array as specified in the EPICS),

ARRAY INDEX = 1

Passing Result: The returned value should be of type object-identifier.
9.18.1.X1 Reading Properties Based on Data Type

Reason for Change: A general ReadProperty test is not supplied by 135.1 that can be used in a variety of situations. The BTL-WG has kept this test to ensure that all data types are tested. Modified test to remove dependency on EPICS values.
Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of the supported base data types.

Test Concept: This test is repeated once for each base data type that the IUT supports. For each execution of the test a property, P1, shall be selected that is of the data type being tested and the object containing P1 is designated Object1 in the test description.

Test Steps:

1. READ V = (Object1), P1

2. CHECK (V returns any valid value of the correct data type for property P1)

9.20 ReadPropertyMultiple Service Execution Tests

9.20.1.1 Reading a Single Property from a Single Object
Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify the ability to read a single property from a single object.

Test Concept: A single supported property is read from the Device object. The property is selected by the TD and is designated as P1 in the test description.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1 | Object2,

'Property Identifier' = P1

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = (the object selected in step 1),

'Property Identifier' = P1,

'Property Value' = (any valid valuethe value of P1 specified in the EPICS)

9.20.1.2 Reading Multiple properties from a Single Object

Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify the ability to read multiple properties from a single object.
Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1 | Object 2,

'Property Identifier' = P1,

'Property Identifier' = P2

-- … (Two properties are required but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = (the object selected in step 1),

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),

'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS)

-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.3 Reading a Single Property from Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify the ability to read a single property from multiple objects.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Object Identifier' = Object2,

'Property Identifier' = P2

-- … (Two properties are required but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),

'Object Identifier' = Object2,

'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS)

-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.4 Reading Multiple Properties from Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify the ability to read multiple properties from multiple objects.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Identifier' = P2,

'Property Identifier' = P3,

'Object Identifier' = Object2,

'Property Identifier' = P4,

'Property Identifier' = P5,

'Property Identifier' = P6

-- … (Two objects must be included but but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),

'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS),

'Property Identifier' = P3,

'Property Value' = (any valid value for P3the value of P3 specified in the EPICS),

'Object Identifier' = Object2,

'Property Identifier' = P4,

'Property Value' = (any valid value for P4the value of P4 specified in the EPICS)

'Property Identifier' = P5,

'Property Value' = (any valid value for P5the value of P5 specified in the EPICS),

'Property Identifier' = P6

'Property Value' = (any valid value for P6the value of P6 specified in the EPICS)

-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error

Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read

Access Specifications' contains a specification for an unsupported property.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Identifier' = P2,

'Property Identifier' = (any property, P3, not supported in this object),

'Property Identifier' = P4

2. RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value for P1the value of P1 specified in the EPICS),

'Property Identifier' = P2,

'Property Value' = (any valid value for P2the value of P2 specified in the EPICS),

'Property Identifier' = P3,

'Error Class' = PROPERTY,

'Error Code' = UNKNOWN_PROPERTY,

'Property Identifier' = P4,

'Property Value' = (any valid value for P4the value of P4 specified in the EPICS)
9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

Reason For Change: This test exists in 135.1-2009l. Modified Test to remove dependency on EPICS values.
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read Access Specifications' contains specifications for multiple unsupported properties.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Identifier' =
P2,

'Property Identifier' =
(any property, P3, not supported in this object),

'Property Identifier' =
(any property, P4, not supported in this object),

'Object Identifier' =
(any non-existent object, O2, which is of a type supported by the IUT), not supported in the IUT)

'Property Identifier' =
P5,

'Property Identifier' =
P6

2.
RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value for P1the value of P1 specified in the EPICS),

'Property Identifier' =
P2,

'Property Value' =
(any valid value for P2the value of P2 specified in the EPICS),

'Property Identifier' =
P3,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Property Identifier' =
P4,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Object Identifier' =
O2,

'Property Identifier' =
P5,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT),

'Property Identifier' =
P6,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT)
9.20.1.7 Reading ALL Properties

Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x.
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier ALL. One instance of each object-type supported is tested.

Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = ObjectX,

'Property Identifier' = ALL

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1ObjectX,

REPEAT P = (each property supported by Object1ObjectX) DO {
'Property Identifier' = P,

'Property Value' = (any valid value for Pthe value of P specified in the EPICS)

}

}

Notes to Tester: Any proprietary properties that are supported for the object-type shall also be returned (see BACnet 15.7.3.1.2). If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
9.20.1.8 Reading OPTIONAL Properties

Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x.
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier OPTIONAL. One instance of each object-type supported is tested. The property identifier OPTIONAL means that only those standard properties present in the object that have a conformance code "O" shall be returned.
Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
Object1ObjectX,
'Property Identifier' = OPTIONAL

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1ObjectX,

REPEAT P = (each optional property supported by Object1ObjectX) DO {
'Property Identifier' = P,

'Property Value' = (any valid value for Pthe value of P specified in the EPICS)

}

}

Notes to Tester: If no optional properties are supported then an empty 'List of Results' shall be returned for the specified property. If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
9.20.1.9 Reading REQUIRED Properties

Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x.
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property identifier REQUIRED. One instance of each object-type supported is tested. The property identifier REQUIRED means that only those standard properties having a conformance code of "R" or "W" shall be returned.
Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' = Object1ObjectX,
'Property Identifier' = REQUIRED

RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1ObjectX,

REPEAT P = (each required property defined for Object1ObjectX) DO {
'Property Identifier' = P,

'Property Value' = (any valid value for Pthe value of P specified in the EPICS)

}

}
Notes to Tester: If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
9.20.1.X1 Reading Properties Based on Data Type

Reason For Change: A general ReadPropertyMultiple test is not supplied by 135.1 that can be used in a variety of situations. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute ReadPropertyMultiple service requests for requested properties of each of the supported base data types.

Test Concept: The test 9.18.1.X1 Reading Properties Based on Data Type is repeated using ReadPropertyMultiple instead of ReadProperty.

9.20.2.3 Reading Single Non-Array Properties with an Array Index

Reason for Change: To include errors that might be returned for devices with Protocol_Revision less than 4. The test in 135.1-2003a-12 is incorrect. This change is not in any SSPC proposal
Purpose: This test case verifies that the IUT can execute ReadPropertyMultiple service requests when the requested property value is not an array but an array index is included in the service request.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
Vendor_Name,

'Array Index' =

1

2.
IF (Protocol_Revision is present and Protocol_Revision >= 4)

RECEIVE

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
PROPERTY_IS_NOT_AN_ARRAY) |

(ReadPropertyMultiple-ACK,

'Object Identifier' =(Device, X),

'Property Identifier' = Vendor_Name,

'Array Index' =
1

'Error Class' =
PROPERTY,

'Error Code' =
PROPERTY_IS_NOT_AN_ARRAY)

ELSE

RECEIVE

(BACnet-Reject-PDU,

'Reject Reason' =
INCONSISTENT_PARAMETERS) |

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
INVALID_ARRAY_INDEX) |

(ReadPropertyMultiple-ACK,

'Object Identifier' =(Device, X),

'Property Identifier' = Vendor_Name,

'Array Index' =
1

Error Class =
PROPERTY,

Error Code =
INVALID_ARRAY_INDEX

) |

(ReadPropertyMultiple-ACK,

'Object Identifier' =(Device, X),

'Property Identifier' = Vendor_Name,

'Array Index' =
1

Error Class =
SERVICES,

Error Code =
INCONSISTENT_PARAMETERS

) |

 (BACnet-Error-PDU,

Error Class =
SERVICES,

Error Code =
INCONSISTENT_PARAMETERS) |

(BACnet-Reject-PDU,

‘Reject Reason’ = INVALID_TAG)
|

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
PROPERTY_IS_NOT_AN_ARRAY) |

(ReadPropertyMultiple-ACK,

'Object Identifier' =(Device, X),

'Property Identifier' = Vendor_Name,

'Array Index' =
1

'Error Class' =
PROPERTY,

'Error Code' =
PROPERTY_IS_NOT_AN_ARRAY)
9.21 ReadRange Service Execution Tests

9.21.1.X1 ReadRange Support for All List Properties

Reason for change: Need a ReadRange test for non-Log_Buffer list properties.

Purpose: To verify that all list properties of all objects can be read using the 3 by position forms of the ReadRange service.

Test Steps:

1.
REPEAT X = (all objects in the IUT's database) DO {

REPEAT Y = (all list properties in object X) DO {

TRANSMIT ReadRange-Request

'Object Identifier' =
X,

'Property Identifier' =
Y,

RECEIVE ReadRange-ACK

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Result Flags’ =
(?, ?, ?),

‘Item Count’ =
(C: up to number of items in Y)

‘Item Data’ =
(the first C elements of Y)

TRANSMIT ReadRange-Request

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Reference Index’ =
1,

‘Count’ =

(C: any valid positive value)

RECEIVE ReadRange-ACK

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Result Flags’ =
(TRUE, ?, ?),

‘Item Count’ =
(C2: up to C)

‘Item Data’ =
(the first C2 elements of Y)

TRANSMIT ReadRange-Request

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Reference Index’ =
(the number of elements in Y),

‘Count’ =

(C: any valid negative value)

RECEIVE ReadRange-ACK

'Object Identifier' =
X,

'Property Identifier' =
Y,

‘Result Flags’ =
(?, TRUE, ?),

‘Item Count’ =
(C2: up to abs(C))

‘Item Data’ =
(the last C2 elements of Y)

}

}

9.21.1.X3 Data Type verification Test

Reason For Change: Updated tests to test 2001b ReadRange changes. This change is in JB-021.

Purpose: To verify that the ReadRange service performs properly for each data type supported.

Test Concept: Set Log_DeviceObjectProperty to an external property and verify that ReadRange performs properly after data has been acquired.

Test Configuration: Set Log_DeviceObjectProperty to an external property of type (REAL, UNSIGNED, INTEGER, BOOLEAN, BIT STRING, ENUMERATED). Make the IUT collect samples. Then use one of the qualifying 9.21.1 tests to verify the operation of the ReadRange-Request and ReadRange-Ack. Qualifying tests are: 9.21.1.1, 9.21.1.2, 9.21.1.3, 9.21.1.4, 9.21.1.4.X1, 9.21.1.X1 or 9.21.1.X2.

9.21.1.X5 Reading Items with Negative Count and MOREITEMS
Reason For Change: No existing test exists. This change is in
DO-018_ReadRange_with_Negative_Count_and_MOREITEMS .

Purpose: To verify that the IUT correctly responds to a ReadRange service request by returning the correct subset of items when a sequence number or byTime, and a negative count are requested, and the count is more items than the IUT actually returns.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This range is specified using a negative value for 'Count'. The TD shall be configured such that its Max APDU Length Accepted, Segmented Response Accepted, in combination with the chosen 'Count' selected, mean that the results cannot be conveyed in a single ReadRange-Ack, thus forcing the MOREITEMS flag to be TRUE in the response.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'

= (the logging object configured for this test),

'Property Identifier'

= Log_Buffer,

'Reference Sequence Number'
= (any value x: known to be in the Log_Buffer),

'Count'

= (any value y: y < 0 and

 which forces the MOREITEMS flag TRUE in the response.)
2.
RECEIVE ReadRange-ACK,

'Object Identifier'

= (the logging object configured for this test),

'Property Identifier'

= Log_Buffer,

'Result Flags'

= {?, ?, TRUE},

'Item Count'

= (any value z: 0 < z < |y|),

'Item Data'

= (the specified z records in order of increasing

 sequence number. The items specified are all items in the

 range of (x - z + 1) through x in that order.),

'First Sequence Number'

= (x - z + 1)

Notes to Tester: Though expressed as a bySequence exchange, these could alternately be byTime.
Test Example (using sample buffer shown in diagram below):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= 20:1,

'Property Identifier'
= Log_Buffer,

'Reference Sequence Number' = 24,

'Count'

= -9
2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= 20:1,

'Property Identifier'
= Log_Buffer,

'Result Flags'
= {FALSE, FALSE, TRUE},

'Item Count'
= 6,

'Item Data'
= Records < d, e, f, g, h, i > in that order.

'First Sequence Number' = 19

[image: image2.wmf]16

17

18

19

20

21

22

23

24

25

26

Seq No.

a

b

c

d

e

f

g

h

i

j

k

Indicates records returned in 'item data'

9.21.2
Negative ReadRange Service Execution Tests

9.21.2.1
Attempting to Read a Property That Does not Exist

Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property does not exist. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier' =
(any object that exists in the IUT),

'Property Identifier' =
(any list property not supported by the IUT),

2.
RECEIVE BACnet-Error-PDU,

'Error Class' =
PROPERTY,

'Error Code’ =
UNKNOWN_PROPERTY

9.21.2.2
Attempting to Read a Property That is not a List

Reason For Change: 135-2008u-3. .

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not a list. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier' =
(any object that exists in the IUT),

'Property Identifier' =
(any non-list property supported by and present in the IUT),

2.
RECEIVE BACnet-Error-PDU,

'Error Class' =
PROPERTY,

'Error Code’ =
PROPERTY_IS_NOT_A_LIST

9.21.2.3
Attempting to Read a non-Array Property with an Array Index

Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not an array of lists. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier' =
(any object that exists in the IUT),

'Property Identifier' =
(any non-array list property supported by and present in the IUT),

‘Array Index’ =
(any valid value)

2.
RECEIVE BACnet-Error-PDU,

'Error Class' =
PROPERTY,

'Error Code’ =
PROPERTY_IS_NOT_AN_ARRAY

9.22 WriteProperty Service Execution Tests
9.22.1.1 Writing a Single Element of an Array
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is an array and a single array element is written.

Test Concept: The TD shall select an object in the IUT that contains a writable array property. This property is designated

P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writing array values it shall be configured with at least one writable property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = (any value N: 1  N  the size of the array)

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Array Index' = N(any value N: 1  N  the size of the array)
'Property Value' = (any valid value of the correct datatype subject to the restrictions specified

 in the EPICS as defined in 4.4.2 for this array, except the value X read

for this element in step 1)
3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), P1 = (the value used in step 2), ARRAY INDEX = N

9.22.1.2 Writing a Commandable Property Without a Priority

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is commandable but a priority is not specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is commandable and has no internal algorithm writing to it at priority 16. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports commandable properties that have no internal algorithm writing at

priority 16, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), Priority_Array, ARRAY INDEX = 16

1. VERIFY (Object1), Priority_Array =(the value defined for this property in the EPICS), ARRAY INDEX = 16

2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = Present_Value,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1)
3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), Priority_Array = (the value used in step 2), ARRAY INDEX = 16

9.22.1.3 Writing a Non-Commandable Property with a Priority

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is not commandable but a priority is specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is not commandable and has no internal algorithm writing to it. If no suitable property can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports non-commandable properties that have no internal algorithm writing to them, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Priority' = (any valid priority)

'Property Value' = (any valid value defined for this property subject to the restrictions specified in the EPICS

as defined in 4.4.2, except the value X read in step 1)

3. RECEIVE BACnet-BACnet-SimpleACK-PDU

4. VERIFY (Object1), P1 = (the value used in step 2)

9.22.1.X1 Writing an Array Size

Reason For Change: No test exists for this functionality. This test was covered by CN-039 but the SSPC rejected the test in favour of the tests outlined in WS-030. The BTL-WG has chosen to keep this specific test in order to allow the tester to test individual properties. Modified this test to remove dependency on EPICS values.
Purpose: This test case verifies that the IUT can execute WriteProperty service requests to the array size of a writable, non-fixed size array property.

Test Concept: The TD shall select an object in the IUT that contains a writable array property of a non-fixed size. This property is designated P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writable non-fixed size array properties it shall be configured with at least one writable non-fixed size array property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = 0

1.
VERIFY (Object1), P1[0] = (the array size defined for this array property in the EPICS)
2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

‘Array Index’ = 0

'Property Value' =
(any valid array size defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,

except the value verified in step 1)

3.
RECEIVE Simple-ACK-PDU

4.
VERIFY (Object1), P1[0] = (the value used in step 2)

9.22.1.X2 Writing to Properties Based on Data Type

Reason for Change: A general WriteProperty test is not supplied by 135.1 that can be used in a variety of situations. The BTL-WG has kept this test to ensure that all data types are tested.
Purpose: This test case verifies that the IUT can execute WriteProperty service requests to specific data types supported by the IUT.

Test Concept: For the specified base data type, the TD shall select an object in the IUT that contains a writable property of that data type. This property is designated P1.

Configuration Requirements: The IUT shall be configured with at least one writable property of the specified data type to be used for this test.
Test Steps:

1.
 X = READ (Object1), P1
2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,

except the value X determined in step 1)

3.
RECEIVE Simple-ACK-PDU

4.
VERIFY (Object1), P1 =
(the value used in step 2)
9.22.2.1 Writing Non-Array Properties with an Array Index

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property value is not an array but an array index is included in the service request.
Test Concept: The TD shall select an object in the IUT that contains a writable scalar property designated P1. An attempt will be made to write to this property using an array index. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

'Property Array Index' = (any positive integer)

3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN

RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = PROPERTY_IS_NOT_AN_ARRAY

ELSE

RECEIVE BACnet-Error PDU,

Error Class = SERVICES,

Error Code = INCONSISTENT_PARAMETERS

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
9.22.2.2 Writing Array Properties with an Array Index that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the requested property value is an array but the array index is out of range.

Test Concept: The TD shall select an object in the IUT that contains a writable array property designated P1. An attempt will be made to write to this property using an array index that is out of range. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

'Property Array Index' = (any positive integer that is larger that the supported size if the array)

3. RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_ARRAY_INDEX

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
9.22.2.3 Writing with a Property Value Having the Wrong Datatype

Reason for Change: Relax Tests of INVALID_DATATYPE per INTERPRETATION IC 135-2004-28. Modified Test to remove dependency on EPICS values.
Purpose: To verify that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be made to write to this property using an invalid datatype. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any value with an invalid datatype)

3.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE BACnet-Error PDU,

Error Class =
PROPERTY,

Error Code =
INVALID_DATATYPE

ELSE

RECEIVE

(BACnet-Error PDU,

Error Class =
PROPERTY,

Error Code =
INVALID_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =
INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =
 INVALID_TAG)

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
9.22.2.4 Writing with a Property Value that is Out of Range
Reason for Change: Based on test in 135.1-2009i and then modified test to remove dependency on EPICS values.
Purpose: To verify that the IUT can execute WriteProperty service requests when an attempt is made to write a value that is outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range. If the IUT does not contain any writable properties that have restricted ranges, then this test shall be skipped.
Test Steps:

1. READ X = (Object1), P1

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS),

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
(Object1, any object with writable properties),

'Property Identifier' =
(P1, any property with a restricted range of values),

'Property Value' =
(any value that is outside the supported range)

3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN
RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE

ELSE

RECEIVE (BACnet-Error-PDU,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE) |

(BACnet-Reject-PDU,

Reject Reason = PARAMETER_OUT_OF_RANGE)
4.
VERIFY (Object1), P1 =
X(the value defined for this property in the EPICS)

Notes to tester: The value used in step 2 shall be of the correct datatype. For bit string types, the bit count shall be correct, for Date and Time values, the value shall be within the range defined by the standard for the datatype, for constructed values, the constructed value shall match the structure defined by the ASN.1 and all field values shall be within the ranges defined by the standard for those field values.

9.23 WritePropertyMultiple Service Execution Tests
9.23.1.1 Writing a Single Property to a Single Object

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write a single property to a single object.

Test Concept: This test case attempts to write to a single scalar property, P1, that is not commandable. If no such writable property exists the test can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1)

3. RECEIVE BACnet-Simple-ACK-PDU

4. VERIFY (Object1), P1 = (the value specified in step 2)
9.23.1.2 Writing Multiple properties to a Single Object

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write multiple properties to a single object.

Test Concept: This test case attempts to write to multiple scalar properties, P1 and P2, that are not commandable. If two such writable properties don't exist the test can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any object that has two writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured, if possible, with writable array or commandable properties and the test steps modified to account for this variation. If no object type is supported that has two or more writable properties this test may be omitted. The IUT must support either the configuration required for this test or a configuration required for test 9.23.1.3

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)

3. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)

4. RECEIVE BACnet-Simple-ACK-PDU

5. VERIFY (Object1), P1 = (the value specified for P1 in step 23)

6. VERIFY (Object1), P2 = (the value specified for P2 in step 23)
9.23.1.3 Writing a Single Property to Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write a single property from multiple objects.

Test Concept: This test case attempts to write to single scalar properties, P1 and P2, that reside in different objects but are not commandable. If two such writable properties don't exist the test can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that the commandable property's value will change.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object2), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object2), P2 = (the value specified for this property in the EPICS)

3. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Object Identifier' = Object2,

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)

4. RECEIVE BACnet-Simple-ACK-PDU

5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)

6. VERIFY (Object2), P2 = (the value specified for P2 in step 3)
9.23.1.4 Writing Multiple Properties to Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write multiple properties to multiple objects.

Test Concept: This test case attempts to write properties, P1 and P2, that reside in Object1, and properties P3 and P4 that

reside in Object2. P1, P2, P3 and P4 are not commandable properties. If four such writable properties do not exist the test

can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that

the commandable property's value will change.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

3. READ Z = (Object2), P3

4. READ A = (Object2), P4

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)

3. VERIFY (Object2), P3 = (the value specified for this property in the EPICS)

4. VERIFY (Object2), P4 = (the value specified for this property in the EPICS)

5. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2),

'Object Identifier' = Object2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Z except for the one read in step 3),

'Object Identifier' = Object2,

'Property Identifier' = P4,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value A except for the one read in step 4)

6. RECEIVE BACnet-BACnet-SimpleACK-PDU

7. VERIFY (Object1), P1 = (the value specified for P1 in step 5)

8. VERIFY (Object1), P2 = (the value specified for P2 in step 5)

9. VERIFY (Object2), P3 = (the value specified for P3 in step 5)

10. VERIFY (Object2), P4 = (the value specified for P4 in step 5)
9.23.1.X4 Writing an Array Size

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests to the array size of a writable, non-fixed size array property.

Test Concept: Repeat test 9.22.1.X1 Writing an Array Size using WritePropertyMultiple instead of WriteProperty.

9.23.2.1 Writing Multiple Properties with a Property Access Error

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write

Access Specifications' contains a specification for an unsupported property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable. The second property is not supported for this object. The objective is to verify that an appropriate error response is returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation. In the test description Object1 will be used to designate the object, P1 the writable property, and P2 the unsupported property used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = UNKNOWN_PROPERTY,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P2

4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

9.23.2.2 Writing Multiple Properties with an Object Access Error

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write

Access Specifications' contains a specification for an unsupported object.

Test Concept: An attempt is made to write to a single property in two different objects. The first object is supported and the property is writable. The second object is not supported. The objective is to verify that an appropriate error response is returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation. In the test description Object1 and P1 will be used to designate the writable object and property used for this test. The designation BadObject will be used to indicate an object that is not supported.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Object Identifier' = BadObject,

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = OBJECT,

‘Error Code’ = UNKNOWN_OBJECT,

‘Object Identifier’ = BadObject,

‘Property Identifier’ = P2

4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

9.23.2.3 Writing Multiple Properties with a Write Access Error

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write

Access Specifications' contains a specification for a read only property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable.

The second property is supported but read only. The objective is to verify that an appropriate error response is returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array or commandable property and the test steps modified to account for this variation. In the test description Object1 will be used to designate the object, P1 the writable property, and P2 the read only property used for this test.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)

3. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),

'Property Identifier' = P2,

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 1)

4. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = WRITE_ACCESS_DENIED,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P2

5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)

6. VERIFY (Object1), P2 = Y(the value specified for this property in the EPICS)

9.23.2.4 Writing Non-Array Properties with an Array Index

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the property value is not an array but an array index is included in the service request. This test shall only be performed if Protocol_Revision is present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable scalar property designated P1. An attempt will be made to write to this property using an array index. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

`Property Array Index' = (any positive integer)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = PROPERTY_IS_NOT_AN_ARRAY,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

9.23.2.5 Writing Array Properties with an Array Index that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the requested property value is an array but the array index is out of range. This test shall only be performed if Protocol_Revision is present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable array property designated P1. An attempt will be made to write to this property using an array index that is out of range. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

`Property Array Index' = (any positive integer that is larger that the supported size of the array)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = INVALID_ARRAY_INDEX,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

9.23.2.6 Writing with a Property Value Having the Wrong Datatype

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that has an invalid datatype. This test shall only be performed if Protocol_Revision is present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable property designated P1.

An attempt will be made to write to this property using an invalid datatype. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value with an invalid datatype)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = INVALID_DATATYPE,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)
9.23.2.7 Writing with a Property Value that is Out of Range
Reason for Change: This test was added to allow for testing of 2001a functionality. This test is included in SSPC proposal SED-030. Modified test to remove dependency on EPICS values.
Purpose: To verify that the IUT can execute WritePropertyMultiple service requests when an attempt is made to write a value that is outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range.

Test Steps:

1. READ X = (Object1), P1

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS),
2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
(Object1, any object with writable properties),

'Property Identifier' =
(P1, any property with a restricted range of values),

'Property Value' =
(any value that is outside the supported range)

3.
IF (Protocol_Revision < 4)

RECEIVE

(WritePropertyMultiple-Error,

'Error Class' =

PROPERTY,

'Error Code' =

VALUE_OUT_OF_RANGE,

'Object Identifier' =
Object1,

'Property Identifier' =
P1) |

(BACnet-Reject-PDU,

'Reject Reason' =
PARAMETER_OUT_OF_RANGE)

ELSE

RECEIVE

WritePropertyMultiple-Error,

'Error Class' =

PROPERTY,

'Error Code' =

VALUE_OUT_OF_RANGE,

'Object Identifier' =
Object1,

'Property Identifier' =
P1

4. VERIFY (OBJECT1), P1 = (the value defined for this property in the EPICS)
9.23.2.X1 WritePropertyMultiple Reject Test

Reason for Change: Addendum 135-2008u section 1.

Purpose: This test case verifies that the IUT does not send a Reject-PDU after applying part of a WritePropertyMultiple.

Test Concept: Two writable properties, P1 and P2 are written to the IUT but the portion of the WritePropertyMultiple specifying P2 is invalid. If the IUT returns a Reject, then the value of the first property is checked to ensure it has not changed.

Test Steps:

1.
READ OldValue = O1, P1

2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(NewValue: any value other than OldValue that would be accepted by

the IUT for P1)

'Object Identifier' =
O2,

'Property Identifier' =
P2

3.
RECEIVEWritePropertyMultiple-Error,

'Error Class' =
SERVICES,

'Error Code' =
INVALID_TAG

'Object Identifier' = O2

'Property Identifier' = P2) |

 (RECEIVE BACnet-Reject-PDU,

'Reject Reason' =
INVALID_TAG | MISSING_REQUIRED_PARAMETER)

4.
IF (an Error-PDU was received in step 3) THEN

VERIFY (O1), P1 = NewValue

ELSE -- a Reject-PDU was received

VERIFY (O1), P1 = OldValue

9.24 DeviceCommunicationControl Service Execution Test

9.24.1 Positive DeviceCommunicationControl Service Execution Tests

9.24.1.1 Indefinite Time Duration Restored by DeviceCommunicationControl
Reason for Change: To verify that the IUT does not initiate service requests while the communication is disabled, the Who-Is service request was added to step 4 and a WHILE loop was added to step 4 to make sure that the IUT does not enable the communication prematurely. Modified test to remove dependency on EPICS values.
Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when indefinite time duration is specified and communication is restored using the DeviceCommunicationControl service.

Test Steps:

1. READ Y = (Device, X), Object_Name

2.
TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' =
DISABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

3.
RECEIVE BACnet-Simple-ACK-PDU

4.
WAIT Internal Processing Fail Time

5.
WHILE (an arbitrary time > Internal Processing Fail Time selected by the tester has not expired) DO {

TRANSMIT ReadProperty-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
(any required non-array property of the Device object)

TRANSMIT

DESTINATION = LOCAL BROADCAST,

Who-Is-Request

WAIT (1 second)

-- poll delay

}

6.
WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester)

6.
CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2)

7.
TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' =
ENABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

8.
RECEIVE BACnet-Simple-ACK-PDU

9.
VERIFY (Device, X), Object_Name = Y(any required non-array property) = (the value for this property specified in the EPICS)
9.24.1.2 Indefinite Time Duration Restored by ReinitializeDevice
Reason for Change:

1) To verify that the IUT does not initiate service requests while the communication is disabled, the Who-Is service request was added to step 4.

2) A WHILE loop was added to step 4 to make sure that the IUT does not enable the communication prematurely.

3) Modified test to remove dependency on EPICS values

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when indefinite time duration is specified and communication is restored using the ReinitializeDevice service.

Dependencies: ReinitializeDevice Service Execution Tests, 9.27.

Test Steps:

1. READ Y = (Device, X), Object_Name

2.
TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' =
DISABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

3.
RECEIVE BACnet-Simple-ACK-PDU

4.
WAIT Internal Processing Fail Time
5.
WHILE (an arbitrary time > Internal Processing Fail Time selected by the tester has not expired) DO {

TRANSMIT ReadProperty-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
(any required non-array property of the Device object)

TRANSMIT

DESTINATION = LOCAL BROADCAST,

Who-Is-Request

WAIT (1 second)

-- poll delay

}

6.
WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester)

6.
CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2)

7.
TRANSMIT ReinitializeDevice-Request,

Reinitialized State of Device' =
WARMSTART,

'Password' =

(any appropriate password as described in the Configuration Requirements)

8.
RECEIVE BACnet-Simple-ACK-PDU

9.
CHECK (Did the IUT perform a WARMSTART reboot?)

10.
VERIFY (Device, X), Object_Name = Y

(any required non-array property) = (the value for this property specified in the EPICS)
9.24.1.3 Finite Time Duration
Reason for Change:

1) To verify that the IUT does not initiate service requests while the communication is disabled, the Who-Is service request was added to step 4.

2) A WHILE loop was added to step 4 to make sure that the IUT does not enable the communication prematurely.
3) Modified test to remove dependency on EPICS values
Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when finite time duration is specified.

Test Steps:

1. READ Y = (Device, X), Object_Name

2.
TRANSMIT DeviceCommunicationControl-Request,

'Time Duration' =
(a value T > 1, in minutes, selected by the tester),

'Enable/Disable' =
DISABLE,

'Password' =
(any appropriate password as described in the Configuration Requirements)

3.
RECEIVE BACnet-Simple-ACK-PDU

4.
WAIT Internal Processing Fail Time
5.
WHILE (Time Duration T since step 1 has not expired) DO {

TRANSMIT ReadProperty-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
(any required non-array property of the Device object)

TRANSMIT

DESTINATION = LOCAL BROADCAST,

Who-Is-Request

WAIT (1 second)

-- poll delay

}

6.
WAIT(T)

6.
CHECK (Verify that the IUT did not transmit any messages between the acknowledgment

in step 2 and expiration of timer T)

7.
VERIFY (Device, X), Object_Name = Y

(any required non-array property) = (the value for this property specified in the EPICS)
9.24.1.5 Finite Time Duration Restored by ReinitializeDevice

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when a finite time duration is specified and communication is restored using the ReinitializeDevice service.

Test Steps:

1. READ Y = (Device, X), Object_Name

2. TRANSMIT DeviceCommunicationControl-Request,

'Time Duration' = (a value T > 1, in minutes, selected by the tester)

'Enable/Disable' = DISABLE,
'Password' = (any appropriate password as described in the Configuration Requirements)
3. RECEIVE BACnet-SimpleACK-PDU

4. WAIT Internal Processing Fail Time
5. TRANSMIT ReadProperty-Request,

'Object Identifier' = (Device, X),

'Property Identifier' = (any required non-array property of the Device object)

6. WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester, and < T as specified in the

DeviceCommunicationControl-Request)

7. CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2.)

8. TRANSMIT ReinitializeDevice-Request,

'Reinitialize State of Device' = WARMSTART,
'Password' = (any appropriate password as described in the Configuration Requirements)
9. RECEIVE BACnet-Simple-ACK-PDU

10. CHECK (Did the IUT perform a WARMSTART reboot?)

11. VERIFY (Device, X), Object_Name = Y(any required non-array property) = (the value for this property as described in the EPICS)
9.24.2.2 Missing Password

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct execution of DeviceCommunicationControl service procedure when a password is required but not provided. If the IUT does not provide password protection this test case shall be omitted.

Test Steps:

1. TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' = DISABLE,

2. (RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,

Error Code = PASSWORD_FAILURE) |
(RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,

Error Code = MISSING_REQUIRED_PARAMETER)

3. VERIFY (any valid property) = (any valid value)(Device, X), (any required non-array property) = (the value for this property specified in the EPICS)
9.30 TimeSynchronization Service Execution Tests

Dependencies: ReadProperty Service Execution tests, 9.18.

BACnet Reference Clause: 16.7.

9.30.1 Positive TimeSynchronization Service Execution Tests

The purpose of this test group is to verify correct execution of TimeSynchronization service requests under circumstances where the service is expected to be successfully completed.

9.30.1.1 TimeSynchronization Local Broadcast
Reason for change: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a local broadcast TimeSynchronization service request.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date

2.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date,

'Property Value' =
(any valid date referred to as "InitialDate" below)

3.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time

4.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time,

'Property Value' =
(any valid time referred to as "InitialTime" below)

5.
TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' =
TimeSynchronization-Request,

date =

(any date other than InitialDate),

time =

(any time that does not correspond to InitialTime)

6.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date

7.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date,

'Property Value' =
(the date specified in step 5)

8.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time

9.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time,

'Property Value' =
(the time specified in step 5)

Notes to Tester: The time value returned by the IUT in step 9 shall agree with the time specified in step 5 within the resolution for time specified in the EPICS. If the time returned by the IUT indicates that a small amount of time has passed (< 1 second) since the TimeSynchronization request was received the result shall be considered to be a pass. If the time indicates that the day of week is unspecified but all other fields are correct the result shall be considered to be a pass.
9.30.1.2 TimeSynchronization Directed to the IUT

Reason for change: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a TimeSynchronization service request directed to the IUT's MAC address.

Test Steps: This test is identical to 9.30.1.1 except that the TimeSynchronization-Request in step 5 shall be transmitted using the IUT's MAC address as the destination.

Notes to Tester: The passing results are identical to 9.30.1.1.

9.31 UTCTimeSynchronization Service Execution Tests

BACnet Reference Clause: 16.8.

9.31.1 Positive UTCTimeSynchronization Service Execution Tests

The purpose of this test group is to verify correct execution of UTCTimeSynchronization service request.
9.31.1.1 UTCTimeSynchronization Local Broadcast

Reason for change: UTC_Offset and Daylight_Savings_Status are needed here, as these optional properties are required for the UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a local broadcast UTCTimeSynchronization service request.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date

2.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date,

'Property Value' =
(any valid date referred to as "InitialDate" below)

3.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time

4.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time,

'Property Value' =
(any valid time referred to as "InitialTime" below)

5.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
UTC_Offset

6.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
UTC_Offset,

'Property Value' =
(any valid offset referred to as "Initial_UTC_Offset")

7.
TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' =
UTCTimeSynchronization-Request,

date =

(any date other than InitialDate),

time =

(any time that does not correspond to InitialTime)

8.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Daylight_Savings_Status

9.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Daylight_Savings_Status,

'Property Value' =
(any valid status)

10.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date

11.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date,

'Property Value' =
(the date specified in step 9, corrected for Initial_UTC_Offset and Daylight_Savings_Status)

12.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time

13.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time,

'Property Value' =
(the time specified in step 9, corrected for Initial_UTC_Offset and Daylight_Savings_Status)

Passing Results: The time value returned by the IUT in steps 11 and 13 shall agree, within the resolution for time specified in the EPICS, with the date and time specified in step 7, corrected for both Initial_UTC_Offset and Daylight_Savings_Status. It is the Daylight_Savings_Status from step 9 which should be used in the determination in steps 11 and 13. The IUT may update the Daylight_Savings_Status during the execution of the UTCTimeSynchronization request. If the time returned by the IUT indicates that a small amount of time has passed (< 1 second) since the UTCTimeSynchronization request was received, then the result shall be considered a pass.

9.31.1.2 UTCTimeSynchronization Directed to the IUT

Reason for change: UTC_Offset and Daylight_Savings_Status are needed here, as these optional properties are required for the UTCTimeSynchronization service.

Test Steps: This test is identical to 9.31.1.1 except that in step 9 the UTCTimeSynchronization request is used and the date and time conveyed represent UTC and the UTCTimeSynchronization-Request in step 9 shall be transmitted using the IUT's MAC address as the destination.

Notes to Tester: The passing results are identical to 9.31.1.1.
9.32 Who-Has Service Execution Tests

The purpose of this test group is to verify the correct execution of the Who-Has service request.

Dependencies: None.

BACnet Reference Clause: 16.9.

9.32.1 Execution of Who-Has Service Requests Originating from the Local Network

The purpose of this test group is to verify the correct execution of the Who-Has request service procedure for messages originating from the local network.

9.32.1.1 Object ID Version with No Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object identifier form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 = (Object1), Object_Name

2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Object Identifier' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),

'Object Name' = V1(the object name specified in the EPICS for this object)

9.32.1.2 Object Name Version with no Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object name form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Object Name' = V1(any object name specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),

'Object Name' = V1(the object name specified in step 1)

9.32.1.3 Object ID Version with IUT Inside of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object identifier form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0  L < the Device object instance number of the IUT),

'Device Instance High Limit' = (any value H,: H > the Device object instance number of the IUT),

'Object Identifier' = Object1(any object identifier specified in the EPICS),

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),

'Object Name' = V1(the object name specified in the EPICS for this object)

9.32.1.4 Object ID Version with IUT Outside of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT ignores a local broadcast Who-Has service request that utilizes the object identifier form and specifies a device range restriction that does not include the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value > 0: the Device object instance number does not fall

in the range between Device Instance Low Limit and Device Instance

High Limit),

'Device Instance High Limit' = (any value > Device Instance Low Limit: the Device object

instance number does not fall in the range between Device Instance Low

Limit and Device Instance High Limit),

'Object Identifier' = Object1(any object identifier specified in the EPICS)

2. WAIT Internal Processing Fail Time

3. CHECK (verify that the IUT does not respond)

9.32.1.5 Object Name Version with IUT Inside of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object name form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0 L < the Device object instance number of the IUT),

'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),

'Object Name = V1(any object name specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),

'Object Name' = V1(the object name specified in step 1)

9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0  L < the Device object instance number of the IUT),

'Device Instance High Limit' = (The Device object instance number of the IUT),

'Object Identifier' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),

'Object Name' = V1(the object name specified in the EPICS for this object)

9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (The Device object instance number of the IUT),

'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),

'Object Identifier' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),

'Object Name' = V1(the object name specified in the EPICS for this object)

9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service requests that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

Who-Has-Request,

'Device Instance Low Limit' = (any value L: 0  L < the Device object instance number of the IUT),

'Device Instance High Limit' = (The Device object instance number of the IUT),

'Object Name = V1(any object name specified in the EPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),

'Object Name' = V1(the object name specified in step 1)

9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service requests that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DA = LOCAL BROADCAST,

SA = TD,

Who-Has-Request,

'Device Instance Low Limit' = (The Device object instance number of the IUT),

'Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),

'Object Name = V1(any object name specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),

'Object Name' = V1(the object name specified in the EPICS for this object)

9.32.1.11 Object Name Version, Directed to a Specific MAC Address

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT responds with a broadcast I-Have service request even if the Who-Has service requests was not transmitted with a broadcast address.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT Who-Has-Request,

'Object Name' = V1(any object name specified in the EPICS),

3. WAIT Internal Processing Fail Time

4. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in the EPICS for this object),

'Object Name' = V1(the object name specified in step 1)

9.32.1.X1 Who-Has After Object_Name Changed
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Dependencies: Who-Has Service Execution Tests, 9.32.1.2

BACnet Reference Clause: 16.9

Purpose: Verifies correct responses to Who-Has service requests after an object's Object_Name property is changed.

Test Concept: The Object_Name property of the referenced object is verified to contain the value (V1), where V1 is the value specified for that property in the EPICS. The Object_Name property is then changed to a different value (V2), which is not already used by a different object in the IUT. The test then verifies correct responses to Who-Has requests that include an 'Object Name' parameter, using the values V1 and V2.

Configuration: An object (Object1) exists within the IUT that has an Object_Name property that can be changed. If no such object exists in the IUT then this test shall be omitted.

Test Steps:

1. TRANSMIT ReadProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = Object_Name

2. RECEIVE ReadProperty-ACK,

'Object Identifier' = Object1,

'Property Identifier' = Object_Name

'Property Value' = V1

3. MAKE (Object1, Object_Name = V2)

4. TRANSMIT

Who-Has-Request,

DA= LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

'Object Name' = V1

5. CHECK (the IUT does not respond with an I-Have request with an 'Object Name' of V1)

6. TRANSMIT

Who-Has-Request,

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

'Object Name' = V2

7. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier'
= Object1,

'Object Name' = V2

9.32.1.X2 Who-Has After Object_Identifier Changed

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Dependencies: Who-Has Service Execution Tests, 9.32.1.1

BACnet Reference Clause: 16.9

Purpose: Verifies correct responses to Who-Has service requests after an object's Object_Identifier property is changed.

Test Concept: The Object_ Identifier property of the referenced object is verified to contain the value (V1), where V1 is the value specified for that property in the EPICS. The Object_ Identifier property is then changed to a different value (V2), which is not already used by a different object in the IUT. The test then verifies correct responses to Who-Has requests that include an 'Object Identifier' parameter, using the values V1 and V2.

Configuration: An object (Object1) exists within the IUT that has an Object_ Identifier property that can be changed. If no such object exists in the IUT then this test shall be omitted.

Test Steps:

1. TRANSMIT ReadProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = Object_Identifier

2. RECEIVE ReadProperty-ACK

'Object Identifier' = Object1,

'Property Identifier' = Object_Identifier

'Property Value' = V1

3. MAKE (Object1, Object_Identifier = V2)

4. TRANSMIT

DA= LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

Who-Has-Request,

'Object Identifier' = V1

5. CHECK (the IUT does not respond with an I-Have request with an 'Object Identifier' V1)

6. TRANSMIT

Who-Has-Request,

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

'Object Identifier' = V2

7. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = V2

'Object Name' = (Object1, Object_Name)
9.32.2.1 Object ID Version, Global Broadcast from a Remote Network

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability of the IUT to recognize the origin of a globally broadcast Who-Has service request and to respond such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DESTINATION = LOCAL BROADCAST,

SA = TD,

DNET = GLOBAL BROADCAST,

SNET = (any remote network number),

SADR = (any MAC address valid for the specified network),

Who-Has-Request,

'Object Identifier' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network specified in step 1),
I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),

'Object Name' = V1(the object name specified in the EPICS for this object)

9.32.2.2 Object ID Version, Remote Broadcast

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability of the IUT to recognize the origin of a remotely broadcast Who-Has service request and to respond such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

DESTINATION = LOCAL BROADCAST,

SA = TD,

SNET = (any remote network number),

SADR = (any MAC address valid for the specified network),

Who-Has-Request,

'Object Identifier' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time

4. RECEIVE

DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network specified in step 1),

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = Object1(the object identifier specified in step 1),

'Object Name' = V1(the object name specified in the EPICS for this object)
10 Network Layer Protocol Tests

10.1 Processing Application Layer Messages Originating from Remote Networks
Reason for Change: The test assumes that the IUT and the TD are located on the same network. For the IUT, the TD appears to be the appropriate router to the network specified in step 1. There is no SSPC proposal for this change. Modified test to remove dependency on EPICS values.
Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 6.5.4.

Purpose: To verify that the IUT can respond to requests that originate from a remote network.

Test Concept: The TD transmits a ReadProperty-Request message that contains network layer information indicating that it originated from a remote network. The response from the IUT shall include correct DNET and DADR information so that the message can reach the original requester. The MAC layer destination address in the response can be either a local broadcast, indicating that the IUT does not know the address of the router, or the MAC address of the appropriate routerTD.

Test Steps:

1.
TRANSMIT

DESTINATION =
IUT,

SOURCE =
TD,

SNET =

(any network number that is not the local network),

SADR =
(any valid MAC address consistent with the source network),

ReadProperty-Request,

'Object Identifier' =
(any supported object),

'Property Identifier' =
(any required property of the specified object)

2.
RECEIVE

DESTINATION = LOCAL BROADCAST | (an appropriate router address)TD,

SOURCE =
IUT,

DNET =
(the SNET specified in step 1),

DADR =
(the SADR specified in step 1),

Hop Count =
255,

ReadProperty-ACK,

'Object Identifier' =
(the object specified in step 1),

'Property Identifier' =
(the property specified in step 1),

'Property Value' =
(any valid value for this propertythe value of the specified property as defined in the EPICS)
10.2 Router Functionality Tests

10.2.2 Processing Network Layer Messages

10.2.2.7.1 Unknown Network

Reason for Change: Changed ‘Reject Reason’ to ‘Rejection Reason’ to distinguish it from the Reject PDU.
Purpose: To verify the IUT will reject a message addressed to a device on an unknown and unreachable DNET.

Test Steps:

1. TRANSMIT PORT A,

DESTINATION = IUT,

SOURCE = D1A,

DNET = 9,

DADR = (any valid MAC address),

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' = ReadProperty-Request,

'Object Identifier' = (any object identifier),

'Property Identifier' = (any property of the specified object)

2. RECEIVE PORT B,

DESTINATION = LOCAL BROADCAST,

SOURCE = IUT,

Who-Is-Router-To-Network,

Network Number = 9

3. RECEIVE PORT A,

DESTINATION = D1A,

SOURCE = IUT,

Reject-Message-To-Network,

Rejection Reason = 1, (unknown destination network)

DNET = 9

10.2.2.7.2 Unknown Network Layer Message Type

Reason for Change: Changed ‘Reject Reason’ to ‘Rejection Reason’ to distinguish it from the Reject PDU.
Purpose: To verify that the IUT will reject a network layer message with an unknown message type.

Test Steps:

1. TRANSMIT PORT A,

DESTINATION = IUT,

SOURCE = D1A,

Message Type = (any value from X'0A' to X'7F)

2. RECEIVE PORT A,

DESTINATION = D1A,

SOURCE = IUT,

Reject-Message-To-Network,

Rejection Reason = 3 (unknown network layer message type),

DNET = 1
10.2.2.7.3 Unknown Network Layer Message Type For Someone Else
Reason For Change: This test is included in 135.1 Addendum 135.1a-9 however it contains some errors. These changes are not included in any SSPC proposal.
Purpose: This test case verifies that the IUT will not reject a network layer message with an unknown message type when it is destined elsewhere. This test shall not be run if the value of the IUT’s Protocol_Revision is less than 4.

BACnet Reference Clause: 6.6.3.5

Test Steps:

1.
TRANSMIT PORT A, DA = IUT, SA = D1A,

DNET = 2,

DADR = D2C,

Hop Count = 255,

Message Type = (any value in the range reserved for use by ASHRAE)

2.
RECEIVE Port B, DA = D2C, SA = IUT,

SNET = 1,

SADR = D1A,

Message Type = (value from step 1)

3.
TRANSMIT PORT A, DA = LOCAL BROADCAST, SA = D1A,

DNET = GLOBAL BROADCAST,

DLEN = 0,

Hop Count = 255,

Message Type = (any value in the range reserved for use by ASHRAE)

4.
RECEIVE PORT B, DA = LOCAL BROADCAST, SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = D1A,

Hop Count = (any value greater than 1 and less than 255),

Message Type = (value from step 3)

5.
TRANSMIT PORT A, DA = IUT, SA = D1A,

DNET = 2,

DADR = D2C,

Hop Count = 255,

Message Type = (any value in the range available for vendor proprietary messages),

Vendor ID = (any value other than the IUT’s Vendor_Identifier)

6.
RECEIVE Port B, DA = D2C, SA = IUT,

SNET = 1,

SADR = D1A,

Message Type = (value from step 15),

Vendor ID = (value from step 5)

7.
TRANSMIT PORT A, DA = LOCAL BROADCAST, SA = D1A,

DNET = GLOBAL BROADCAST,

DLEN = 0,

Hop Count = 255,

Message Type = (any value in the range available for vendor proprietary messages),

Vendor ID = (any value other than the IUT’s Vendor_Identifier)

8.
RECEIVE PORT B, DA = LOCAL BROADCAST, SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = D1A,

Hop Count = (any value greater than 1 and less than 255),

Message Type = (value from step 7),

Vendor ID = (value from step 7)

10.6
Virtual Routing Functionality Tests

Some devices (typically gateways) can route BACnet packets between a physical BACnet LAN and one or more virtual BACnet LANs that contain one or more virtual BACnet devices. See H.1 and H.2 in the BACnet standard for a description of virtual BACnet LANs and virtual BACnet devices.

This clause defines the tests necessary to demonstrate routing functionality to/from virtual BACnet LANs. The tests assume that the routing device has two ports, one connected to a virtual BACnet LAN containing one or more virtual BACnet devices, and one connected to a physical BACnet LAN. IUT Port 1 is directly connected to Network 1 (a virtual BACnet LAN) and Port 2 is directly connected to Network 2 (a physical BACnet LAN). The logical configuration of the internetwork used for these tests is shown in Figure 10.6.X1. The test descriptions in this clause assume that the TD can physically connect to Network 2 and mimic all of the other devices. An acceptable alternative is to construct an internetwork with real devices as indicated. Logical network 3 shall use a LAN technology that has MAC addresses that are different in length from Network 2.

The logical devices included in the internetwork are:

IUT:
implementation under test, a router between Networks 1 and 2

VD1A:
virtual device on Network 1

VD1B:
virtual device on Network 1

D2C:
device on Network 2

D3D:
device on Network 3

D4E:
device on Network 4

R2-3:
router between Network 2 and Network 3

General Configuration Requirements: The IUT shall be configured with routing tables indicating that Network 1 is directly connected to Port 1 and that Network 2 is directly connected to Port 2 as shown in Figure 10.6.X1. The routing table shall contain no other entries. The routing device shall be configured to have one or more virtual devices (VD1A, VD1B, etc.) on Network 1. Although the network numbers 1-3 are used above and below, the tester may configure the network using any legal network numbers and modify the tests accordingly. Furthermore, the tester shall appropriately modify the tests for devices that route to multiple virtual networks simultaneously.

Figure 10.6.X1. Logical internetwork configuration for virtual routing functionality tests

10.6.1 Startup

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT will broadcast an appropriate I-Am-Router-To-Network message upon startup.

Test Steps:

1.
MAKE (power cycle the router to make it reinitialize)

2.
RECEIVE,

DESTINATION = LOCAL BROADCAST,

SOURCE = IUT,

I-Am-Router-To-Network,

Network Numbers = 1

Note to tester: If the IUT routes to multiple virtual networks simultaneously, then all of their network numbers should be reported in one or more I-Am-Router-To-Network messages.

10.6.2 Processing Network Layer Messages

10.6.2.1 Execution of Who-Is-Router-To-Network

10.6.2.1.1 No Specified Network Number

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT will broadcast an I-Am-Router-To-Network message listing all downstream virtual networks when it receives a Who-Is-Router-To-Network message with no specified network number.

Test Steps:

1.
TRANSMIT,

DESTINATION = LOCAL BROADCAST,

SOURCE = TD,

Who-Is-Router-to-Network

2.
RECEIVE,

DESTINATION = LOCAL BROADCAST,

SOURCE = IUT,

I-Am-Router-To-Network,

Network Numbers = 1

Note to tester: If the IUT routes to multiple virtual networks simultaneously, then all of their network numbers should be reported in one or more I-Am-Router-To-Network messages.

10.6.2.1.2 A Known Remote Network Number is Specified

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT will broadcast an appropriate I-Am-Router-To-Network message when it receives a Who-Is-Router-To-Network message with a specified network number that is included in the routing table.

Test Steps:

1.
TRANSMIT,

DESTINATION = LOCAL BROADCAST,

SOURCE = TD,

Who-Is-Router-To-Network,

Network Number = 1

2.
RECEIVE,

DESTINATION = LOCAL BROADCAST,

SOURCE = IUT,

I-Am-Router-To-Network,

Network Numbers = 1

10.6.2.1.3 A Network Number is Specified and the Router Does Not Respond

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT does not respond if it receives a Who-Is-Router-To-Network message specifying a network number for a network that is known to be reachable through the same port through which the I-Am-Router-To-Network message was received.

Test Steps:

1.
TRANSMIT,

DESTINATION = LOCAL BROADCAST,

SOURCE = TD,

Who-Is-Router-To-Network,

Network Number = 2

2.
WAIT Internal Processing Fail Time

3.
CHECK (verify that the IUT does not transmit I-Am-Router-To-Network
(Network Numbers = 2…) or Who-Is-Router-To-Network (Network Number = 2))

4.
TRANSMIT,

DESTINATION = LOCAL BROADCAST,

SOURCE = R2-3,

I-Am-Router-To-Network,

Network Numbers = 3

5.
TRANSMIT,

DESTINATION = LOCAL BROADCAST,

SOURCE = TD,

Who-Is-Router-To-Network,

Network Number = 3

6.
WAIT Internal Processing Fail Time

7.
CHECK (verify that the IUT does not transmit I-Am-Router-To-Network
(Network Numbers = 3…) or Who-Is-Router-To-Network (Network Number = 3))

10.6.2.1.4 An Unknown and Unreachable Network Number is Specified

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that if the IUT receives a Who-Is-Router-To-Network message specifying an unknown network number it will not transmit a Who-Is-Router-To-Network message on the same LAN.

Test Steps:

1.
TRANSMIT,

DESTINATION = LOCAL BROADCAST,

SOURCE = TD,

Who-Is-Router-To-Network,

Network Number = 35001

2.
WAIT Internal Processing Fail Time

3.
CHECK (verify that the IUT does not transmit I-Am-Router-To-Network
(Network Numbers = 35001…) or Who-Is-Router-To-Network (Network Number = 35001) on Network 2)

10.6.2.2
Reject-Message-To-Network

This clause tests some of the possible circumstances where a message should be rejected by the network layer.

10.6.2.2.1 Unknown Network

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify the IUT will reject a message sent to the IUT that is addressed to a device on an unknown and unreachable DNET.

Test Steps:

1.
TRANSMIT,

DA = IUT,

SA = TD,

DNET = 59001,

DADR = (any valid MAC address),

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

2.
RECEIVE,

DA = TD,

SA = IUT,

Reject-Message-To-Network,

Rejection Reason = 1 (unknown destination network),

DNET = 59001

3.
CHECK (verify that the IUT did not transmit I-Am-Router-To-Network
(Network Numbers = 59001…) on Network 2)

10.6.2.2.2 Unknown Network Layer Message Type

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT will reject a network layer message directed to the IUT that contains an unknown message type that is in the range of message types reserved for use by ASHRAE.

Test Steps:

1.
TRANSMIT,

DESTINATION = IUT,

SOURCE = TD,

Message Type = (any value in the range reserved for use by ASHRAE)

2.
RECEIVE,

DESTINATION = TD,

SOURCE = IUT,

Reject-Message-To-Network,

Rejection Reason = 3 (unknown network layer message type)

DNET = any value
10.6.3 Routing of Unicast APDUs

10.6.3.1
Route Request Message from a Local Device to a Virtual Device and Route Response Message from the Virtual Device to the Local Device

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT can route a unicast request message from a local device to a virtual device and route the response from the virtual device to the local device.

Note to tester: The destination device (VD1A) can be any virtual device in the IUT.

Test Steps:

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier of any object in the target device),

'Property Identifier' =
(any property of the specified object containing a value small enough so that the response will not need to be segmented)

2.
RECEIVE,

DA = TD,

SA = IUT,

SNET = 1,

SADR = VD1A,

BACnet-ComplexACK-PDU,

'Object Identifier' =
(the object identifier used in step 1),

'Property Identifier' =
(the property identifier used in step 1),

‘Property Value’ =
(the contents of the specified property)

3.
TRANSMIT,

DA = IUT,

SA = TD,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier of any object in the target device),

'Property Identifier' =
(any property of the specified object containing a value small enough so that the response will not need to be segmented, but not the same property as in step 1)

4.
RECEIVE,

DA = TD,

SA = IUT,

SNET = 1,

SADR = VD1A,

BACnet-ComplexAck-PDU,

'Object Identifier' =
(the object identifier used in step 3),

'Property Identifier' =
(the property identifier used in step 3),

‘Property Value’ =
(the contents of the specified property)

10.6.3.2
Route Request Message from a Virtual Device to a Local Device

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT can route a unicast request message from a virtual device to a local device. This test shall be skipped if none of the IUT’s virtual devices can issue a confirmed or unconfirmed request in a unicast message.

Configuration Requirements: The IUT shall be configured or otherwise stimulated so that one of its virtual devices will send a unicast message to a particular target device on Network 2.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or stimulated to send a unicast message to a device on a local network. Depending on the capabilities of the IUT this may involve sending a message from the target device to the IUT (unicast or broadcast), writing the network address of the target device to an object property in the IUT, writing the Device ID of the target device to an object property in the IUT, writing the Device Name of the target device to an object property in the IUT, or configuring the IUT using a proprietary method. The IUT may need to broadcast a Who-Is or Who-Has request in order to discover the network address of the target device if the network address is unknown.

Test Steps:

1.
RECEIVE,

DA = TD

SA = IUT

SNET = 1,

SADR = (MAC address of any virtual device on Network 1),

Any valid BACnet-Confirmed-Request-PDU or BACnet-Unconfirmed-Request-PDU

10.6.3.3
Route Request Message from a Remote Device to a Virtual Device and Route Response Message from the Virtual Device to the Remote Device

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT can route a unicast request message from a remote device to a virtual device and route the response from the virtual device to the remote device.

Test Steps:

1.
TRANSMIT,

DA = IUT,

SA = R2-3,

DNET = 1,

DADR = VD1A,

SNET = 3,

SADR = D3D,

Hop Count = 254,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier of any object in the target device),

'Property Identifier' =
(any property of the specified object containing a value small enough so that the response will not need to be segmented)

2.
RECEIVE,

DA = R2-3,

SA = IUT,

DNET = 3,

DADR = D3D,

SNET = 1,

SADR = VD1A,

Hop Count = (any integer x: 1 < x < 255),

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 1),

'Property Identifier' =
(the property identifier used in step 1),

‘Property Value’ =
(the contents of the specified property)

10.6.3.4
Route Request Message from a Virtual Device to a Remote Device

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT can route a unicast message from a virtual device to a remote device. This test shall be skipped if none of the IUT’s virtual devices can issue a confirmed or unconfirmed request in a unicast message.

Configuration Requirements: The IUT shall be configured such that its routing table shall only contain entries for the directly connected networks (physical and virtual). The IUT shall be configured or otherwise stimulated so that one of its virtual devices will send a unicast message to a particular target device on Network 3.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or stimulated to send a unicast message to a device on a remote network. Depending on the capabilities of the IUT this may involve sending a message from the target device to the IUT (unicast or broadcast), writing the network address of the target device to an object property in the IUT, writing the Device ID of the target device to an object property in the IUT, writing the Device Name of the target device to an object property in the IUT, or configuring the IUT using a proprietary method. The IUT may need to broadcast a Who-Is or Who-Has request in order to discover the network address of the target device if the network address is unknown.

Test Steps:

1.
IF (RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

Who-Is-Router-To-Network,

Network Number = 3) THEN

TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3

I-Am-Router-To-Network,

Network Numbers = 3

2.
RECEIVE,

DA = R2-3,

SA = IUT,

DNET = 3,

DADR = D3D,

SNET = 1,

SADR = (MAC address of any virtual device on Network 1),

Hop Count = (any integer x: 1 < x < 255),

Any valid BACnet-Confirmed-Request-PDU or BACnet-Unconfirmed-Request-PDU

10.6.3.5
Unicast Messages That Should Not Be Routed

10.6.3.5.1
Unknown Network

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT will not attempt to route a message directed to a device on an unknown network if the message was transmitted using a local broadcast MAC address.

Notes to Tester: Choose a virtual device on Network 1 for this test.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = 59001,

DADR = (the MAC address of the selected virtual device),

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier of an object in the virtual device),

'Property Identifier' =
(any property of the specified object)

2.
WAIT Internal Processing Fail Time

3.
CHECK (verify that the IUT did not transmit I-Am-Router-To-Network
(Network Numbers = 59001…) or Reject-Message-To-Network (Network Number = 59001) or any message in response to the Read Property request on Network 2)

10.6.3.5.2 Network Reachable Through the Same Port

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT will not attempt to route a message directed to a device on a known network reachable through the same port if the message was transmitted using a local broadcast MAC address.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3

I-Am-Router-To-Network,

Network Numbers = 3

2.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = 3,

DADR = D3D,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

3.
WAIT Internal Processing Fail Time

4.
CHECK (verify that the IUT did not transmit I-Am-Router-To-Network
(Network Numbers = 3…) or Reject-Message-To-Network (Network Number = 3) or any message in response to the Read Property request on Network 2)

10.6.4
Routing of Broadcast APDUs to Virtual Devices

10.6.4.1
Broadcasts that Should Be Ignored

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT will not route APDUs that are locally broadcasted on the directly connected physical BACnet network or remotely broadcasted to a network that is reachable through the same port that the message was received from. This test shall be skipped if the IUT’s virtual devices are not capable of executing any application services that may be broadcasted.

Test Concept: In order to verify that a broadcast message is not routed, we must look for some indication that the message was routed. Two commonly supported services that can be used for this test are Who-Is and Who-Has, but complications may arise because a device is allowed to transmit the expected responses (I-Am and I-Have, respectively) at any time. There are a few other services that may also be used, but special device configuration will most likely be required. The tester shall choose one of the following test options, with the requirement that the option chosen must use services supported by at least one of the IUT’s virtual devices.

A. Who-Is Option

This test option is an alternative for IUTs that have a virtual device that supports the execution of the Who-Is service. This test shall be run after all tests for the execution of the Who-Is service have been run with a passing result. One virtual device that supports the execution of the Who-Is service shall be selected for this test.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

BACnet-Unconfirmed-Request-PDU,

Who-Is-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device)

2.
WAIT Internal Processing Fail Time

3.
CHECK (verify that the IUT does not transmit an I-Am message from the virtual device selected in step 1)

4.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3,

SNET = 3,

SADR = D3D,

BACnet-Unconfirmed-Request-PDU,

Who-Is-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device)

5.
WAIT Internal Processing Fail Time

6.
CHECK (verify that the IUT does not transmit an I-Am message from the virtual device selected in step 4)

7.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = 3,

DLEN = 0,

‘Hop Count’ = 255,

BACnet-Unconfirmed-Request-PDU,

Who-Is-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device)

8.
WAIT Internal Processing Fail Time

9.
CHECK (verify that the IUT does not transmit an I-Am message from the virtual device selected in step 7)

Notes to Tester: I-Am messages may be sent at any time by any device. If one or both of the CHECK steps fail, then repeat the test until you can determine with confidence whether the I-Am messages are in response to the Who-Is (a failing result) or are being transmitted for some other reason (a passing result).

B. Who-Has Option

This test option is an alternative for IUTs that have a virtual device that supports the execution of the Who-Has service. This test shall be run after all tests for the execution of the Who-Has service have been run with a passing result. One virtual device that supports the execution of the Who-Has service shall be selected for this test.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

BACnet-Unconfirmed-Service-Request,

Who-Has-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device),

'Object Identifier' = (any object identifier of an object in the virtual device)

2.
WAIT Internal Processing Fail Time

3.
CHECK (verify that the IUT does not transmit an I-Have message from the virtual device selected in step 1 that contains the object identifier used in step 1)

4.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3,

SNET = 3,

SADR = D3D,

BACnet-Unconfirmed-Service-Request,

Who-Has-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device),

'Object Identifier' = (any object identifier of an object in the virtual device)

5.
WAIT Internal Processing Fail Time

6.
CHECK (verify that the IUT does not transmit an I-Have message from the virtual device selected in step 4 that contains the object identifier used in step 4)

7.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = 3,

DLEN = 0,

‘Hop Count’ = 255,

BACnet-Unconfirmed-Service-Request,

Who-Has-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device),

'Object Identifier' = (any object identifier of an object in the virtual device)

8.
WAIT Internal Processing Fail Time

9.
CHECK (verify that the IUT does not transmit an I-Have message from the virtual device selected in step 4 that contains the object identifier used in step 7)

Notes to Tester: I-Have messages may be sent at any time by any device. If one or both of the CHECK steps fail, then repeat the test until you can determine with confidence whether the I-Have messages are in response to the Who-Has (a failing result) or are being transmitted for some other reason (a passing result).

C. Generic Test Option

This test option is intended for IUTs whose virtual devices do not support the execution of the Who-Has or Who-Is services. This option uses a service that may be broadcasted and that is supported by one of the IUT’s virtual devices. This test shall be run after all tests for the execution of the particular service have been run with a passing result.

Configuration requirements: Configure the IUT so that the receipt of a particular service request by a particular virtual device will cause some indication that is visible to the tester. Verify that the indication occurs if the service request is sent directly to the virtual device or remote broadcasted on Network 1.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

BACnet-Unconfirmed-Request-PDU,

XXX-Request

2.
WAIT Internal Processing Fail Time

3.
CHECK (verify that the indication does not occur)

4.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3,

SNET = 3,

SADR = D3D,

BACnet-Unconfirmed-Service-Request,

XXX-Request

5.
WAIT Internal Processing Fail Time

6.
CHECK (verify that the indication does not occur)

7.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = 3,

DLEN = 0,

‘Hop Count’ = 255,

BACnet-Unconfirmed-Service-Request,

XXX-Request

8.
WAIT Internal Processing Fail Time

9.
CHECK (verify that the indication does not occur)

10.6.4.2
Route Global Broadcast from a Local Device to Virtual Devices

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT properly forwards global broadcast messages that originate on a local network to its virtual devices. This test shall be skipped if the IUT’s virtual devices are not capable of executing any application services that may be broadcasted.
The tester shall select one of the following test options, depending on what services are supported by the virtual devices in the IUT.

A. Who-Is Test Option

Select one virtual device in the IUT that supports the execution of Who-Is requests.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = D2C,

DNET = GLOBAL BROADCAST,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

Who-Is-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device)

2.
RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = (the MAC address of the virtual device),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU,

I-Am-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

OR

RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

SNET = 1,

SADR = (the MAC address of the virtual device),

BACnet-Unconfirmed-Request-PDU,

I-Am-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

B. Who-Has Test Option

Select one virtual device in the IUT that supports the execution of Who-Has requests.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = GLOBAL BROADCAST,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

Who-Has-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device),

'Object Identifier' = (any object identifier of an object in the virtual device)

2.
RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = (the MAC address of the virtual device),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU,

I-Have-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

OR

RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

SNET = 1,

SADR = (the MAC address of the virtual device),

BACnet-Unconfirmed-Request-PDU,

I-Have-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

C. Generic Test Option

This test option is intended for IUTs whose virtual devices do not support the execution of the Who-Has or Who-Is services. This option uses a service that may be broadcasted and that is supported by one of the IUT’s virtual devices. This test shall be run after all tests for the execution of the particular service have been run with a passing result.

Configuration requirements: Configure the IUT so that the receipt of a particular service request by a particular virtual device will cause some indication that is visible to the tester.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = GLOBAL BROADCAST,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

XXX-Request

2.
CHECK (verify that the indication occurs)

10.6.4.3
Route Global Broadcast from a Remote Device to Virtual Devices

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT properly forwards global broadcast messages that originate on a remote network to its virtual devices. This test shall be skipped if the IUT’s virtual devices are not capable of executing any application services that may be broadcasted.
The tester shall select one of the following test options, depending on what services are supported by the virtual devices in the IUT.

A. Who-Is Test Option

Select one virtual device in the IUT that supports the execution of Who-Is requests.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 3,

SADR = D3D,

Hop Count = 254,

BACnet-Unconfirmed-Request-PDU,

Who-Is-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device)

2.
RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = (the MAC address of the virtual device),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU,

I-Am-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

OR

RECEIVE,

DA = R2-3,

SA = IUT,

DNET = 3,

DLEN = 0,

SNET = 1,

SADR = (the MAC address of the virtual device),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU,

I-Am-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

B. Who-Has Test Option

Select one virtual device in the IUT that supports the execution of Who-Has requests.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 3,

SADR = D3D,

Hop Count = 254,

BACnet-Unconfirmed-Request-PDU,

Who-Has-Request,

'Device Instance Range Low Limit' = (the Device object instance number of the virtual device),

'Device Instance Range High Limit' = (the Device object instance number of the virtual device),

'Object Identifier' = (any object identifier of an object in the virtual device)

2.
RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = (the MAC address of the virtual device),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU,

I-Have-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

OR

RECEIVE,

DA = R2-3,

SA = IUT,

DNET = 3,

DLEN = 0,

SNET = 1,

SADR = (the MAC address of the virtual device),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU,

I-Have-Request,

‘Device Identifier’ = (the Device object instance number of the virtual device),

…

C. Generic Test Option

This test option is intended for IUTs whose virtual devices do not support the execution of the Who-Has or Who-Is services. This option uses a service that may be broadcasted and that is supported by one of the IUT’s virtual devices. This test shall be run after all tests for the execution of the particular service have been run with a passing result.

Configuration requirements: Configure the IUT so that the receipt of a particular service request by a particular virtual device will cause some indication that is visible to the tester.

1.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 3,

SADR = D3D,

Hop Count = 254,

BACnet-Unconfirmed-Request-PDU,

XXX-Request

2.
CHECK (verify that the indication occurs)

10.6.4.4
Route Remote Broadcast from a Local Device to Virtual Devices

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT properly forwards remote broadcast messages that originate on a local network to its virtual devices. This test shall be skipped if the IUT’s virtual devices are not capable of executing any application services that may be broadcasted.

Execute test 10.6.4.2 (Route Global Broadcast from a Local Device to Virtual Devices) modified as follows. Instead of transmitting a global broadcast message, the TD should transmit a remote broadcast message from a device on Network 2 directed to Network 1:

X.
TRANSMIT,

DA = LOCAL BROADCAST,

SA = TD,

DNET = 1,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU…

10.6.4.5
Route Remote Broadcast from a Remote Device to Virtual Devices

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT properly forwards remote broadcast messages that originate on a remote network to its virtual devices. This test shall be skipped if the IUT’s virtual devices are not capable of executing any application services that may be broadcasted.

Execute test 10.6.4.3(Route Global Broadcast from a Remote Device to Virtual Devices) modified as follows. Instead of transmitting a global broadcast message, the TD should transmit a remote broadcast message from a device on Network 3 directed to Network 1:

X.
TRANSMIT,

DA = IUT,

SA = R2-3,

DNET = 1,

DLEN = 0,

SNET = 3,

SADR = D3D,

Hop Count = 254,

BACnet-Unconfirmed-Request-PDU…

10.6.4.6
Route Global Broadcast Message from a Virtual Device

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT can route a global broadcast message from one of its virtual devices to the local (physical) network. This test shall be skipped if none of the IUT’s virtual devices can transmit a global broadcast message.

Test Steps:

1.
RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = (MAC address of a virtual device on Network 1),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU…

10.6.4.7
Route Remote Broadcast Message from a Virtual Device to a Local Network

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT can route a remote broadcast message from a virtual device to a local physical network. This test shall be skipped if none of the IUT’s virtual devices can issue a remote broadcast message.

Configuration Requirements: The IUT shall be configured or otherwise stimulated so that one of its virtual devices will send a remote broadcast message to Network 2.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or stimulated to send a broadcast message to a local (physical) network. Depending on the capabilities of the IUT this may involve sending a message from a device on the target network to the IUT (unicast or broadcast), writing a broadcast address to an object property in the IUT, or configuring the IUT using a proprietary method.

Test Steps:

1.
RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

SNET = 1,

SADR = (MAC address of a virtual device on Network 1),

BACnet-Unconfirmed-Request-PDU…

10.6.4.8
Route Remote Broadcast Message from a Virtual Device to a Remote Network

Reason for Change: No test exists for this functionality. This test is not in any new SSPC proposal.

Purpose: To verify that the IUT can route a remote broadcast message from a virtual device to a remote network. This test shall be skipped if none of the IUT’s virtual devices can issue a remote broadcast message.

Configuration Requirements: The IUT shall be configured such that its routing table shall only contain entries for the directly connected networks (physical and virtual). The IUT shall be configured or otherwise stimulated so that one of its virtual devices will send a remote broadcast message to Network 3.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or stimulated to send a broadcast message to a remote network. Depending on the capabilities of the IUT this may involve sending a message from a device on the target network to the IUT (unicast or broadcast), writing a broadcast address to an object property in the IUT, or configuring the IUT using a proprietary method.

Test Steps:

1.
IF (RECEIVE,

DA = LOCAL BROADCAST,

SA = IUT,

Who-Is-Router-To-Network,

Network Number = 3) THEN

TRANSMIT,

DA = LOCAL BROADCAST,

SA = R2-3

I-Am-Router-To-Network,

Network Numbers = 3

2.
RECEIVE,

DA = R2-3,

SA = IUT,

DNET = 3,

DLEN = 0,

SNET = 1,

SADR = (MAC address of a virtual device on Network 1),

Hop Count = (any integer x: 1 < x < 255),

BACnet-Unconfirmed-Request-PDU…

10.6.5
Hop Count Protection

Reason for Change: No test exists for this functionality. This test is included in SSPC proposal BDS-052.
Purpose: To verify that the IUT will discard a message if the Hop Count becomes zero.

Execute the following three tests as specified below: 10.6.3.3 (Route Request Message from a Remote Device to a Virtual Device and Route Response Message from the Virtual Device to the Remote Device), 10.6.4.3 (Route Global Broadcast from a Remote Device to Virtual Devices) and 10.6.4.5 (Route Remote Broadcast from a Remote Device to Virtual Devices).

The tests shall be modified as follows. The modified version of the tests shall not be executed until the IUT has successfully passed the unmodified tests.

10.6.3.3: The message transmitted to the IUT shall have Hop Count = 1. The IUT must not transmit a response to the ReadProperty request in order to obtain a passing result.

10.6.4.3 and 10.6.4.5: The broadcast message transmitted to the IUT shall have Hop Count = 1. In the Who-Is and Who-Has test options, the IUT must not respond to the Who-Is or Who-Has message in order to obtain a passing result. In the generic test option, the indication must not occur in order to obtain a passing result.

10.6.6
Network Layer Priority

Reason for Change: No test exists for this functionality. This test is included in SSPC proposal BDS-053.

Purpose: To verify that the IUT can process messages with all network priorities.

Note to tester: The destination device (VD1A) can be any virtual device in the IUT.

1.
TRANSMIT,

DA = IUT,

SA = TD,

‘Network Priority’ = B’11’,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier of any object in the target device),

'Property Identifier' =
(any property of the specified object containing a value small enough so that the response will not need to be segmented)

2.
RECEIVE,

DA = TD,

SA = IUT,

‘Network Priority’ = B’11’,

SNET = 1,

SADR = VD1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 1),

'Property Identifier' =
(the property identifier used in step 1),

‘Property Value’ =
(the contents of the specified property)

3.
TRANSMIT,

DA = IUT,

SA = TD,

‘Network Priority’ = B’10’,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier of any object in the target device),

'Property Identifier' =
(any property of the specified object containing a value small enough so that the response will not need to be segmented, but not the same property used in step 1)

4.
RECEIVE,

DA = TD,

SA = IUT,

‘Network Priority’ = B’10’,

SNET = 1,

SADR = VD1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 3),

'Property Identifier' =
(the property identifier used in step 3),

‘Property Value’ =
(the contents of the specified property)

5.
TRANSMIT,

DA = IUT,

SA = TD,

‘Network Priority’ = B’01’,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier of any object in the target device),

'Property Identifier' =
(any property of the specified object containing a value small enough so that the response will not need to be segmented, but not the same property used in steps 1 or 3)

6.
RECEIVE,

DA = TD,

SA = IUT,

‘Network Priority’ = B’01’,

SNET = 1,

SADR = VD1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 5),

'Property Identifier' =
(the property identifier used in step 5),

‘Property Value’ =
(the contents of the specified property)

7.
TRANSMIT,

DA = IUT,

SA = TD,

‘Network Priority’ = B’00’,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier of any object in the target device),

'Property Identifier' =
(any property of the specified object containing a value small enough so that the response will not need to be segmented, but not the same property used in steps 1/3/5)

8.
RECEIVE,

DA = TD,

SA = IUT,

‘Network Priority’ = B’00’,

SNET = 1,

SADR = VD1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 7),

'Property Identifier' =
(the property identifier used in step 7),

‘Property Value’ =
(the contents of the specified property)

10.6.7 Multiple Devices on a Single Virtual Network

Note: If only one virtual device may be configured then VD1B may be any Device ID and MAC address not equal to those of VD1A.

10.6.7.1
Who-Is Specifying Different Device ID

Reason for Change: No test exists for this functionality. This test is included in SSPC proposal BDS-054.

Purpose: To verify that the IUT correctly associates MAC addresses with individual virtual device Ids when the IUT contains multiple devices.

Test Steps:

1.
TRANSMIT,

DA = IUT,

SA = TD,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

Who-Is-Request,

'Device Instance Range Low Limit' = (Device object instance of VD1B)

'Device Instance Range High Limit' = (Device object instance of VD1B)

2.
CHECK (verify that the IUT does not transmit an I-Am-Request-PDU)

10.6.7.2
Who-Has Specifying Different Device ID

Reason for Change: No test exists for this functionality. This test is included in SSPC proposal BDS-055.

Purpose: To verify that the IUT correctly associates MAC addresses with individual virtual device Ids when the IUT contains multiple devices.

Test Steps:

1.
TRANSMIT,

DA = IUT,

SA = TD,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

Who-Has-Request,

'Object Identifier' = (Device object identifier of VD1B)

2.
CHECK (verify that the IUT does not transmit an I-Have-Request-PDU)

10.6.7.3
Read of Object Not Contained by Virtual Device

Reason for Change: No test exists for this functionality. This test is included in SSPC proposal BDS-056.

Purpose: To verify that the IUT will respond with an error for a read of an object contained in a different virtual device than the one addressed.

Test Steps:

1.
TRANSMIT,

DA = IUT,

SA = TD,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(Device object identifier of VD1B),

'Property Identifier' =
Object_Identifier

2.

RECEIVE,

DA = TD,

SA = IUT,

SNET = 1,

SADR = VD1A,

BACnet-Error-PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT

3.
TRANSMIT,

DA = IUT,

SA = TD,

DNET = 1,

DADR = VD1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object in virtual device VD1B that does not also exist in VD1A),

'Property Identifier' =
(any property of the specified object)

4.

RECEIVE,

DA = TD,

SA = IUT,

SNET = 1,

SADR = VD1A,

BACnet-Error-PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT

10.6.7.4
Who-Is Specifying Unknown Device Ids

Reason for Change: No test exists for this functionality. This test is included in SSPC proposal BDS-057.

Purpose: To verify that the IUT will not respond to discovery for devices that it does not contain.

Test Steps:

1. TRANSMIT,

DA = IUT,

SA = TD,

DNET = 1,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

Who-Is-Request,

'Device Instance Range Low Limit' = (Low Limit of instance range excluding all virtual devices)

'Device Instance Range High Limit' = (High Limit of instance range excluding all virtual devices)

2.
CHECK (verify that the IUT does not transmit an I-Am-Request-PDU)

10.6.7.5
Who-Has Specifying Unknown Device Ids

Reason for Change: No test exists for this functionality. This test is included in SSPC proposal BDS-058.

Purpose: To verify that the IUT will not respond to discovery for devices that it does not contain.

Test Steps:

1.
TRANSMIT,

DA = IUT,

SA = TD,

DNET = 1,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

Who-Has-Request,

'Device Instance Range Low Limit' = (Low Limit of instance range excluding all virtual devices)

'Device Instance Range High Limit' = (High Limit of instance range excluding all virtual devices)

'Object Identifier' = (Device object identifier of VD1B)

2.
CHECK (verify that the IUT does not transmit an I-Have-Request-PDU)
13 Special Functionality Tests

13.1
Segmentation
13.1.12.1 IUT Does Not Support Segmented Response

Reason for change: Adding ‘Server’ flag, in consequence of BTL-CRR-0177_server_in_Abort-PDU.doc
Purpose: To verify that the IUT returns the correct abort message when it does not support segmented responses and a response would be larger than 1 segment.

BACnet Reference Clause: 5.4.5.3.

Test Concept: The TD uses ReadPropertyMultiple to ask for more data than can fit in a single segment. The TD also specifies that the smallest (50 octet) segment size be used for the response. The data that are requested is the Object_Identifier property of the Device object of the IUT. The number of copies of the data that is requested is one more than the maximum number which would fit in a 50-octet segment.

Configuration Requirements: The IUT supports execution of the ReadPropertyMultiple service, but does not support transmission of segmented responses.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'max-APDU-length-accepted' =
B'0000',

'segmented-response-accepted' =
TRUE,

'Object Identifier' =
(Device, X),

'Property Identifier' =
Object_Identifier,

'Property Identifier' =
Object_Identifier,

'Property Identifier' =
Object_Identifier,

'Property Identifier' =
Object_Identifier,

'Property Identifier' =
Object_Identifier

2.
RECEIVE BACnet-Abort-PDU,

'Server’ = TRUE,

'Abort Reason' = SEGMENTATION_NOT_SUPPORTED
13.2 Time Master

Reason for Change: The test in 135.1 does not take UTC Time Sync into account. A version of this test is included in CN-103 however it did not take into account optimization techniques used by a device. There is no SSPC proposal for these changes.
13.2.1 TimeSynchronization Recipients Test, Protocol_Revision < 7

Purpose: To verify that an IUT implemented to a Protocol_Revision less than 7 can perform the function of a time master.

Dependencies: None.

BACnet Reference Clause: 12.11.31, 16.7

Test Concept: The Time Master functionality requires that the device supports the Device object's Time_Synchronization_Recipients property. For these tests to be fully completed, the IUT's Time_Synchronization_Recipients property must list at least one valid recipient. Note that for Protocol_Revision  7, the IUT could send both TimeSynchronization and UTCTimeSynchronization requests to all recipients, or the IUT could determine which service(s) is supported by the recipient and transmit accordingly. The tester should simply ignore any additional TimeSynchronization-Request to TD2, and ignore any additional UTCTimeSynchronization-Request to TD1. The order in which the IUT transmits the requests is not important, as long as at least one of each type of transmission is observed, and that at least one transmission of TimeSynchronization-Request to TD1 and at least one transmission to UTCTimeSynchronization-Request to TD2 is observed.

Test Configuration: The tester should configure two TD devices for use with this test. TD1 shall support only Time Synchronization while TD2 shall support only UTC_TimeSynchronization. If the IUT claims a Protocol_Revision of 7 or higher, this test shall not be performed.

Test Steps:

1
WRITE Time_Synchronization_Recipients = ([TD1, TD2])

2.
MAKE (the IUT issue time-synchronization request to all recipients)

3.
RECEIVE UTCTimeSynchronization-Request

DESTINATION =
TD2,

SOURCE =

IUT,

'Time' =

(the IUT's current UTC date and time)

4.
RECEIVE TimeSynchronization-Request,

DESTINATION =
TD1,

SOURCE =

IUT,

'Time' =

(the IUT's current local date and time)

5.
WRITE Time_Synchronization_Recipients = BROADCAST

6.
MAKE (the IUT issue time request to all recipients)

7.
RECEIVE UTCTimeSynchronization-Request,

DESTINATION =
BROADCAST,

SOURCE =

 IUT,

'Time' =

(the IUT's current UTC date and time)

8.
RECEIVE TimeSynchronization-Request,

DESTINATION =
BROADCAST,

SOURCE =

 IUT,

'Time' =

(the IUT's current local date and time)

Notes to tester: The order in which the IUT transmits the requests is not important. Ignore an additional TimeSynchronization-Request to TD2, if one is observed. Ignore an additional UTCTimeSynchronization-Request to TD1, if one is observed. Test steps 5, 6, 7, and 8 should be performed three times, using local broadcast, remote broadcast and global broadcast forms of the recipient in step 5.

13.2.2 TimeSynchronization Recipients Test, Protocol_Revision ≥= 7

Purpose: To verify that an IUT can issue TimeSynchronization requests to the recipients in the Time_Synchronization_Recipients property.

Dependencies: None.

BACnet Reference Clause: 12.11.23, 12.11.24, 12.11.31, 16.7

Test Concept: The Time Master functionality requires that the IUT be able to put into a TimeSynchronization request, the IUT's current date and time. The IUT is not required to be in any particular timezone, nor required to know what timezone it is in, though it must know its own local date and time. The device must support Time_Synchronization_Recipients. If the IUT claims a Protocol_Revision less than 7, this test shall not be performed.

Test Configuration: There are two devices TD and OD., at two distinct addresses, both of which support TimeSynchronization execution.

Test Steps:

1.
WRITE Time_Synchronization_Recipients = ([TD, OD])

2.
MAKE (IUT issue TimeSynchronization-Request to all recipients)

3.
REPEAT R = (Recipients in the IUT's Time_Synchronization_Recipients property) DO {

RECEIVE TimeSynchronization-Request,

DESTINATION =
R,

SOURCE =

IUT,

'Time' =

(the IUT's current local date and time)

}

4.
WRITE Time_Synchronization_Recipients = (a valid non-empty list different from that used in step 1)

5.
MAKE (the IUT issue TimeSynchronization_Request to all recipients)

6.
REPEAT R = (Recipients in the IUT's Time_Synchronization_Recipients property) DO {

RECEIVE TimeSynchronization-Request,

DESTINATION =
R,

SOURCE =

IUT,

'Time' =

(the IUT's current local date and time)

}

Notes to tester: The order in which the IUT transmits the requests is not important. In test steps 1 and 4 use of MAC-address and directed or global BROADCAST is desirable.

13.2.3 UTCTimeSynchronization Recipients Test

Purpose: To verify that an IUT can initiate UTCTimeSynchronization requests to the recipients in the UTC_Time_Synchronization_Recipients property. NOTE: IUT is not required to execute UTCTimeSynchronization, merely to initiate it.

Dependencies: None.

BACnet Reference Clause: 12.11.47, 16.8

Test Concept: DM-UTC-A functionality requires only that the IUT be able to put into a UTCTimeSynchronization request, the current UTC date and time. The IUT is not required to be in any particular timezone, nor required to know what timezone it is in, nor even to know its own local date and/or time. It could, for example obtain the current UTC date and time dynamically from some external provider.

Test Configuration: There are two devices TD and OD.,at two distinct addresses, both of which support UTCTimeSynchronization execution.

Test Steps:

1.
WRITE UTC_Time_Synchronization_Recipients = ([TD, OD])

2.
MAKE (IUT issue UTCTimeSynchronization-Request to all recipients)

3.
REPEAT R = (Recipients in the IUT's UTC_Time_Synchronization_Recipients property) DO {

RECEIVE UTCTimeSynchronization-Request,

DESTINATION =
R,

SOURCE =

IUT,

'Time' =

(the IUT's current UTC date and time)

}

4.
WRITE UTC_Time_Synchronization_Recipients = (a valid non-empty list different from that used in step 1)

5.
MAKE (the IUT issue UTCTime_Synchronization_Requests to all recipients)

6.
REPEAT R = (Recipients in the IUT's UTC_Time_Synchronization_Recipients property) DO {

RECEIVE UTC_TimeSynchronization-Request,

DESTINATION =
R,

SOURCE =

IUT,

'Time' =

(the IUT's current UTC date and time)

}

Notes to tester: The order in which the IUT transmits the requests is not important. In test steps 1 and 4 use of MAC-address and directed or global BROADCAST is desirable.

13.2.4 Time_Synchronization_Interval Test

Dependencies: None.

BACnet Reference Clause: 12.11.48.

Purpose: To verify that when Time_Synchronization_Interval is non-zero, it specifies the periodic interval in minutes at which TimeSynchronization requests are issued. Conversely, it attempts to establish that when the property is zero, these requests are not periodically issued.

Test Concept: The Time_Synchronization_Recipients property is made to contain a list of a single recipient. Time_Synchronization_Interval is configured to a non-zero value, X1, and the interval between notifications is measured. Then Time_Synchronization_Interval is set to zero and observation made that time synchronization requests are not issued in an interval of at least the preceding period. If the Time_Synchronization_Recipients property is not present then this test shall be skipped.

Configuration Requirements: The Time_Synchronization_Recipients property is configured to contain a single recipient. Align_Intervals is set to FALSE. Time_Synchronization_Interval is initially configured to zero.

Test Steps:

1.
WRITE Time_Synchronization_Interval = X1

2.
BEFORE 2 times X1

RECEIVE TimeSynchronization-Request,

'Time' = T1

3.
RECEIVE TimeSynchronization-Request,

'Time' = T2

4.
CHECK (T2 - T1 = X1 to a precision of ±1 minute)

5.
WRITE Time_Synchronization_Interval = zero

6.
WHILE (elapsed time < 2 times X1) DO {

CHECK (IUT does not issue TimeSynchronization-Request)

}

Note to tester: tolerance in step 4. to vary within a whole minute is in accord with the granularity

used in the language in 135-2008 section 12.11.48 and 12.11.50

13.2.5 UTC Time_Synchronization_Interval Test

Dependencies: None.

BACnet Reference Clause: 12.11.48.

Purpose: To verify that when Time_Synchronization_Interval is non-zero, it specifies the periodic interval in minutes at which UTCTimeSynchronization requests are issued. Conversely, it attempts to establish that when the property is zero, these requests are not periodically issued.

Test Concept: The UTC_Time_Synchronization_Recipients property is made to contain a list of a single recipient. Time_Synchronization_Interval is configured to a non-zero value, X1, and the interval between notifications is measured. Then Time_Synchronization_Interval is set to zero and observation made that UTC time synchronization requests are not issued in an interval of at least the preceding period. If the UTC_Time_Synchronization_Recipients property is not present then this test shall be skipped.

Configuration Requirements: The UTC_Time_Synchronization_Recipients property is configured to contain a single recipient. Align_Intervals is set to FALSE. Time_Synchronization_Interval is initially configured to zero.

Test Steps:

1.
WRITE Time_Synchronization_Interval = X1

2.
BEFORE 2 times X1

RECEIVE UTCTimeSynchronization-Request,

'Time' = T1

3.
BEFORE 2 times X1

RECEIVE UTCTimeSynchronization-Request,

'Time' = T2

4.
CHECK (T2 - T1 = X1 to a precision of ±1 minute)

5.
WRITE Time_Synchronization_Interval = zero

6.
WHILE (elapsed time < 2 times X1) DO {

CHECK (IUT does not issue UTCTimeSynchronization-Request)

}

13.2.6 Align_Intervals and Interval_Offset TimeSynchronization Test

Dependencies: 13.2.2, "TimeSynchronization Recipients Test, Protocol_Revision ≥ 7".

BACnet Reference Clause: 12.11.49 and 12.11.50.

Purpose: To verify that when Align_Intervals is TRUE and that Interval_Offset is a factor of (divides without remainder) an hour or day that time synchronization requests are aligned to the hour or day.

Test Concept: Interval_Offset is set to zero and Align_Intervals is set to TRUE so that alignment of Time_Synchronization_Requests to the clock will occur; this requires a Time_Synchronization_Interval greater than one minute and less than or equal to 60 minutes and also that the interval be an evenly divisible factor of 60 minutes or 1440 minutes (i.e. Time_Synchronization_Interval is 2, 3, 4, 5, 6, 10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 45, or 48 minutes). For this test, select two such intervals one for step 1 and one for step 4. Prefer two small values from the list—there is no need to run this test for long durations, A TimeSynchronization-Request is received and checked that it is aligned to the clock; then Time_Synchronization_Interval is changed and verified. Finally Interval_Offset is set to a non-zero value less than Time_Synchronization_Interval and checked, then to a value greater than Interval_Offset and checked.

Configuration Requirements: The Time_Synchronization_Recipients property is configured to contain a single recipient. Time_Synchronization_Interval and Interval_Offset are set to zero; Align_Intervals is set to TRUE. If the Time_Synchronization_Recipients property is not present then this test shall be skipped.

Test Steps:

1.
WRITE Time_Synchronization_Interval = (X1, one of 4, 5, 6, 10, or 12)

2.
BEFORE 2 times X1

RECEIVE TimeSynchronization-Request,

'Time' = T1

3.
CHECK (T1 'minutes' is a multiple of Time_Synchronization_Interval, ±1 minute)

4.
WRITE Time_Synchronization_Interval = (X2, any of the values not chosen in step 1)

5.
BEFORE 2 times X2

RECEIVE TimeSynchronization-Request,

'Time' = T2

6.
CHECK (T2 'minutes' is a multiple of Time_Synchronization_Interval, ±1 minute)

7.
WRITE Interval_Offset = (any value from 2 to Time_Synchronization_Interval-1)

8.
BEFORE 2 times X2

RECEIVE TimeSynchronization-Request,

'Time' = T3

9.
CHECK (T3 'minutes' modulo Time_Synchronization_Interval = Interval_Offset, ±1 minute)

10.
WRITE Interval_Offset = (any value from Time_Synchronization_Interval+1 to (2 * Time_Synchronization_Interval)-1)

11.
BEFORE 2 times X2

RECEIVE TimeSynchronization-Request,

'Time' = T4

12.
CHECK (T4 'minutes' modulo Time_Synchronization_Interval = (Interval_Offset - Time_Synchronization_Interval), ±1 minute)

13.2.7 Align_Intervals and Interval_Offset UTCTimeSynchronization Test

Dependencies: 13.2.3, "UTCTimeSynchronization Recipients Test".

BACnet Reference Clause: 12.11.49 and 12.11.50.

Purpose: To verify that when Align_Intervals is TRUE and that Interval_Offset is a factor of (divides without remainder) an hour or day that UTCTimeSynchronization requests are aligned to the hour or day.

Test Concept: Interval_Offset is set to zero and Align_Intervals is set to TRUE so that alignment of UTCTime_Synchronization_Requests to the clock will occur; this requires a Time_Synchronization_Interval greater than one minute and less than or equal to 60 minutes and also that the interval be an evenly divisible factor of 60 minutes or 1440 minutes (i.e. Time_Synchronization_Interval is 2, 3, 4, 5, 6, 10, 12, 15, 16, 18, 20, 24, 30, 32, 36, 45, or 48 minutes). For this test, select two such intervals one for step 1 and one for step 4. Prefer two small values from the list—there is no need to run this test for long durations, A UTCTimeSynchronization-Request is received and checked that it is aligned to the clock; then Time_Synchronization_Interval is changed and verified. Finally Interval_Offset is set to a non-zero value less than Time_Synchronization_Interval and checked, then to a value greater than Interval_Offset and checked.

Configuration Requirements: The UTC_Time_Synchronization_Recipients property is configured to contain a single recipient. Time_Synchronization_Interval and Interval_Offset are set to zero; Align_Intervals is set to TRUE. If the UTC_Time_Synchronization_Recipients property is not present then this test shall be skipped.

Test Steps:

1.
WRITE Time_Synchronization_Interval = (X1, one of 4, 5, 6, 10, or 12)

2.
BEFORE 2 times X1

RECEIVE UTCTimeSynchronization-Request,

'Time' = T1

3.
CHECK (T1 'minutes' is a multiple of Time_Synchronization_Interval, ±1 minute)

4.
WRITE Time_Synchronization_Interval = (X2, any of the values not chosen in step 1)

5.
BEFORE 2 times X2

RECEIVE UTCTimeSynchronization-Request,

'Time' = T2

6.
CHECK (T2 'minutes' is a multiple of Time_Synchronization_Interval, ±1 minute)

7.
WRITE Interval_Offset = (any value from 2 to Time_Synchronization_Interval-1))

8.
BEFORE 2 times X2

RECEIVE UTCTimeSynchronization-Request,

'Time' = T3

9.
CHECK (T3 'minutes' modulo Time_Synchronization_Interval = Interval_Offset, ±1 minute)

10.
WRITE Interval_Offset = (any value from Time_Synchronization_Interval+1 to (2 * Time_Synchronization_Interval)-1))

11.
BEFORE 2 times X2

RECEIVE UTCTimeSynchronization-Request,

'Time' = T4

12.
CHECK (T4 'minutes' modulo Time_Synchronization_Interval = (Interval_Offset - Time_Synchronization_Interval), ±1 minute).
13.X2 Application State Machine Tests

13.X2.1 APDU Retry and Timeout Test

Reason for Change: No relevant test exists in 135.1. This test is in proposal BDS-047.

Dependencies: None

Purpose: Verify that the IUT will re-send confirmed requests for which no response is received.

Test Concept: Make the IUT initiate a confirmed request to a non-responsive device and verify the request is retried after the APDU timeout.

Configuration Requirements: A reference device, D1, must be bound to the IUT. Once the reference device is bound to the IUT, the reference device must be silenced by removing it from the network or by issuing it a DeviceCommunicationControl. The IUT shall be configured with a non-zero value in its Number_Of_APDU_Retries property and a non-zero value in its APDU_Timeout property.
Test Steps: Steps 1-3 require that D1 does not answer the confirmed request.

1. MAKE (A condition that will cause the IUT to generate a confirmed request)

2. RECEIVE Confirmed Request,

SOURCE =

IUT,

DESTINATION =

D1

3. REPEAT (Number_Of_APDU_Retries)

WAIT (APDU_Timeout)

RECEIVE Confirmed Request

SOURCE =

IUT,

DESTINATION =
D1,

Invoke ID =

Invoke ID from the confirmed request in step 2,

CHECK (Verify time between retries is > APDU_Timeout)
Notes to Tester: Note that when testing over BACnet/IP, it is possible that the IUT's ARP cache is flushed between the time that the IUT binds to D1 and the time at which the test is executed. In this case the IUT may generate fewer confirmed requests than expected. To ensure that this does not occur, either silence the reference device using DeviceCommunicationControl or place the reference device on a remote network.
13.X6 Workstation Scheduling Tests

Reason for change: These tests were added to test the functionality specified by the SCH-AVM-A, SCH-VM-A, and SCH-WS-A BIBBs.

Purpose: This group of tests verifies that the IUT is capable of viewing and modifying existing schedules.

Test Concept: This test consists of high level MAKE and CHECK steps that are expected to be manually executed while monitoring BACnet communications using a BACnet network analyzer.
Test Configuration: The reference device shall be configured to indicate that it supports only the ReadProperty-Request and WriteProperty-Request services in the Protocol_Services_Supported property of its Device object. (Service clients that can use services more complex than ReadProperty-Request, such as ReadPropertyMultiple-Request, shall be able to adapt to a server device that does not support those more complex services.) The reference device will be configured to contain a Schedule and Calendars as specified by S1, S2, C1, and C2. The datatype of the ‘value’ portion of BACnetTimeValue can be varied to test scheduling of different datatypes, but all of the BACnetTimeValue elements shall be consistent within the same Schedule object, and the Present_Value and properties referenced by List_Of_Object_Property_References shall also be of the same datatype. The reference objects S1, S2, C1, and C2 represent the standard test data, but the tester is free to use additional test data for this test with the exception that BACnetDateRanges, including the Effective_Period property, are not allowed to contain any unspecified (wildcard) fields because the behavior of unspecified fields in the BACnetDateRange datatype is not fully specified in the BACnet standard.

Note: The reference Schedule and Calendars contain some data that requires support for Protocol_Revision 4 or later. To convert the Schedule to conform to Protocol_Revision 3 or older, make the following changes:

1) Change month 13 to month 3 in BACnetSpecialEvent[5].

2) Remove the Schedule_Default property.

3) Change month 14 to month 2 in BACnetSpecialEvent[6].

4) Change dayOfWeek from 32 to 28 in BACnetSpecialEvent[6].

5) Change the last two CalendarEntries in the Date_List of Calendar C1 to remove the use of special values indicating all even months, all odd months, and the Last Day of the month.

Reference Schedule S1:

Effective_Period = ((January 5, 2007, Friday)-(December 31, 2009, Thursday))

Schedule_Default: NULL -- Applicable only to IUTs claiming support for Protocol_Revision 4 or greater.

-- Each day of the week contains a slightly different BACnetDailySchedule to test that the IUT assigns the correct -- day of the week to the array indexes.

Weekly_Schedule = {

((00:00:00.00, <value1>), -- Monday

(01:00:00.00, <value2>),

(01:30:00.00, <value3>),

(08:00:00.00, <value4>),

(17:00:17.17, <value5>),

(23:59:59.99, <value6>)),

((00:00:00.00, <value1>),
-- Tuesday

(02:00:00.00, <value2>),

(02:30:00.00, <value3>),

(08:00:00.00, <value4>),

(17:00:17.17, <value5>),

(23:59:59.99, <value6>)),

((02:00:00.00, <value1>),
-- Wednesday

(03:00:00.00, <value2>),
-- First 2 hours of Wednesday and Thursday are unspecified

(03:30:00.00, <value3>),

(08:00:00.00, <value4>),

(17:00:17.17, <value5>),

(21:59:59.99, NULL))
,
-- Last 2 hours of Wednesday and Thursday are set to NULL

((02:00:00.00, <value1>),
-- Thursday

(04:00:00.00, <value2>),

(04:30:00.00, <value3>),

(08:00:00.00, <value4>),

(17:00:17.17, <value5>),

(21:59:59.99, NULL)),

((00:00:00.00, <value1>),
-- Friday

(05:00:00.00, <value2>),

(05:30:00.00, <value3>),

(08:00:00.00, <value4>),

(17:00:17.17, <value5>),

(23:59:59.99, <value6>)),

((00:00:00.00, NULL),
-- Saturday, most of the day is set to NULL

(06:00:00.00, <value2>),

(06:30:00.00, NULL),

(08:00:00.00, <value4>),

(12:00:00.00, <value5>),

(13:00:00.00, NULL)),

((00:00:00.00, NULL),
-- Sunday, most of the day is set to NULL

(07:00:00.00, <value2>),

(07:30:00.00, NULL),

(12:00:00.00, <value4>),

(17:00:00.00, <value5>),

(18:00:00.00, NULL)) }
Exception_Schedule = {

-- 255 BACnetSpecialEvents, most with 6 entries in the listOfTimeValues.

-- The first several BACnetSpecialEvents are designed to interact with the Effective_Period.

(((January 1, 2007, Monday)-(January 2, 2007, Tuesday)),
-- [1] calendarEntry, BACnetDateRange,

-- outside effective period

((01:00:00.00, <value1>),

-- first hour is unspecified

(06:00:00.00, NULL),

-- 6:00-20:00 is relinquished

(20:00:00.00, <value3>),

(21:00:00.00, <value4>),

(21:05:00.00,<value5>),

(21:10:00.00,<value6>),

(21:15:00.00,<value7>),

(21:20:00.00,<value8>),

(21:25:00.00,<value9>),

(21:30:00.00,<value10>),

(22:00:00.00, <value11>),

(22:59:59.99, NULL)),

-- last hour is relinquished

16),

-- eventPriority

(((January 3, 2007, Wednesday)-(January 6, 2007, Saturday)),
-- [2] calendarEntry, BACnetDateRange,

-- period straddling start of effective period

(<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

(((January 8, 2007, Monday)-(January 9, 2007, Tuesday)),
-- [3] calendarEntry, BACnetDateRange,

-- period inside effective period

(<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

((January 11, 2007, Thursday),

-- [4] calendarEntry, Date,

-- period inside effective period

(<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

-- The next section of BACnetSpecialEvents are designed to test variations

-- of the WeekNDay choice of BACnetCalendarEntry

((Odd months, days numbered 15-21, Monday),

-- [5] calendarEntry, BACnetWeekNDay,

-- period is 3rd Monday of each odd month

-- Odd months (13) only supported if

-- Protocol_Revision >= 4
(<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

((Even months, *, Sunday),

-- [6] calendarEntry, BACnetWeekNDay,

-- every Sunday in every even month

-- Even months (14) only supported if

-- Protocol_Revision >= 4
(<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

((*, last 7 days of this month, Tuesday),

-- [7] calendarEntry, BACnetWeekNDay,

-- last Tuesday of each month

 (<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

((February, *, Friday),

-- [8] calendarEntry, BACnetWeekNDay,

-- every Friday in February

 (<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

((*, days numbered 1-7, *),

-- [9] calendarEntry, BACnetWeekNDay,

-- first 7 days of every month

 (<same as above>),

-- listOfTimeValues same as in [1] above

16),

-- eventPriority

-- The next section of BACnetSpecialEvents is designed to test CalendarReferences.

-- There are 2 references to (Calendar, 1), and one reference to (Calendar, 2))

((Calendar, 1),

-- [10] calendarReference,

((08:15:00.00, <value1>),

-- listOfTimeValues

(16:45:00.00, NULL)),

15),

-- eventPriority

-- The second CalendarReference to the same Calendar has a higher event priority

-- than the previous CalendarReference and a different listOfTimeValues.

((Calendar, 1),

-- [11] calendarReference,

((12:00:00.00, <value2>),

-- listOfTimeValues

(13:00:00.00, NULL)),

14),

-- eventPriority

-- The following BACnetSpecialEvent references a different Calendar.

((Calendar, 2),

-- [12] calendarReference,

((14:00:00.00, <value1>),

-- listOfTimeValues

(15:00:00.00, NULL)),

15),

-- eventPriority

-- The next set of BACnetSpecialEvents are designed to test the partial day exception feature added in

-- Protocol_Revision 4. All of the events are specified to occur between 8:00 AM and 5:00 PM, and the

-- higher the priority of the event, the shorter the duration of its period. These data structures are allowed in a

-- device with Protocol_Revision less than 4, but the net effect of the schedule will be different because only

-- the BACnetSpecialEvent with the highest priority will be in effect on the specified date; all of the other

-- BACnetSpecialEvents should be ignored.

((January 12, 2007, Friday),

-- [13] calendarEntry, Date,

-- Partial day exception, priority 15

((08:15:00.00, <value1>),

-- listOfTimeValues

(16:45:00.00, NULL)),

15),

-- eventPriority

((January 12, 2007, Friday),

-- [14] calendarEntry, Date,

-- Partial day exception, priority 14

((08:30:00.00, <value2>),

-- listOfTimeValues

(16:30:00.00, NULL)),

14),

-- eventPriority

((January 12, 2007, Friday),

-- [15] calendarEntry, Date,

-- Partial day exception, priority 13

((08:45:00.00, <value3>),

-- listOfTimeValues

(16:15:00.00, NULL)),

13),

-- eventPriority

((January 12, 2007, Friday),

-- [16] calendarEntry, Date,

-- Partial day exception, priority 12

((09:00:00.00, <value4>),

-- listOfTimeValues

(16:00:00.00, NULL)),

12),

-- eventPriority

((January 12, 2007, Friday),

-- [17] calendarEntry, Date,

-- Partial day exception, priority 11

((09:15:00.00, <value5>),

-- listOfTimeValues

(15:45:00.00, NULL)),

11),

-- eventPriority

((January 12, 2007, Friday),

-- [18] calendarEntry, Date,

-- Partial day exception, priority 10

((09:30:00.00, <value6>),

-- listOfTimeValues

(15:30:00.00, NULL)),

10),

-- eventPriority

((January 12, 2007, Friday),

-- [19] calendarEntry, Date,

-- Partial day exception, priority 9

((09:45:00.00, <value7>),

-- listOfTimeValues

(15:15:00.00, NULL)),

9),

-- eventPriority

((January 12, 2007, Friday),

-- [20] calendarEntry, Date,

-- Partial day exception, priority 8

((10:00:00.00, <value8>),

-- listOfTimeValues

(15:00:00.00, NULL)),

8),

-- eventPriority

((January 12, 2007, Friday),

-- [21] calendarEntry, Date,

-- Partial day exception, priority 7

((10:15:00.00, <value9>),

-- listOfTimeValues

(14:45:00.00, NULL)),

7),

-- eventPriority

((January 12, 2007, Friday),

-- [22] calendarEntry, Date,

-- Partial day exception, priority 6

((10:30:00.00, <value10>),

-- listOfTimeValues

(14:30:00.00, NULL)),

6),

-- eventPriority

((January 12, 2007, Friday),

-- [23] calendarEntry, Date,

-- Partial day exception, priority 5

((10:45:00.00, <value11>),

-- listOfTimeValues

(14:15:00.00, NULL)),

5),

-- eventPriority

((January 12, 2007, Friday),

-- [24] calendarEntry, Date,

-- Partial day exception, priority 4

((11:00:00.00, <value12>),

-- listOfTimeValues

(14:00:00.00, NULL)),

4),

-- eventPriority

((January 12, 2007, Friday),

-- [25] calendarEntry, Date,

-- Partial day exception, priority 3

((11:15:00.00, <value13>),

-- listOfTimeValues

(13:45:00.00, NULL)),

3),

-- eventPriority

((January 12, 2007, Friday),

-- [26] calendarEntry, Date,

-- Partial day exception, priority 2

((11:30:00.00, <value14>),

-- listOfTimeValues

(13:30:00.00, NULL)),

2),

-- eventPriority

((January 12, 2007, Friday),

-- [27] calendarEntry, Date,

-- Partial day exception, priority 1

((11:45:00.00, <value15>),

-- listOfTimeValues

(13:15:00.00, NULL)),

1),

-- eventPriority

-- The next BACnetSpecialEvent is a test to see if the IUT can handle an event where the times

-- in the listOfTimeValue are not in chronological order.

((January 14, 2007, Sunday),

-- [28] calendarEntry, Date,

((22:00:00.00, <value5>),

-- listOfTimeValues is not in chronological order

(21:00:00.00,<value4>),

(06:00:00.00,NULL),

(20:00:00.00,<value3>),

(01:00:00.00,<value1>),

(22:59:59.99, NULL)),

16),

-- eventPriority

-- The next BACnetSpecialEvent is one that is deleted and then added back during the test steps.

-- The event times and values have no significance.

((January 20, 2007, Saturday),

-- [29] calendarEntry, Date,

((00:00:00.00, NULL),

-- listOfTimeValues

(13:00:00.00,<value1>),

(15:00:00.00,<value2>)),

16),

-- eventPriority

-- The remaining BACnetSpecialEvents are “filler” to create a schedule large enough to test

-- for the SCH-VM-A and SCH-AVM-A capacity requirements.

-- Each BACnetSpecialEvent is a simple “date” choice of

-- BACnetCalendarEntry, with each date being different. It is suggested that all of the dates in this

-- section be set to a different year than the previous BACnetSpecialEvents to avoid confusion.

((January 1, 2008, Tuesday),

-- [30] calendarEntry, Date,

((00:00:00.00, NULL),

-- listOfTimeValues

(11:00:00.00,<value2>),

(11:30:00.00,NULL),

(21:00:00.00,<value4>),

(21:05:00.00,<value5>),

(21:10:00.00,<value6>),

(21:15:00.00,<value7>),

(21:20:00.00,<value8>),

(21:25:00.00,<value9>),

(21:30:00.00,<value10>),

(22:00:00.00,<value11>),

(23:00:00.00,NULL)),

16),

-- eventPriority

-- [31 through 255] are the same as [30], with the date of the calendarEntry changed so that

-- each BACnetSpecialEvent applies to a different date, i.e. January 2, 2008, January 3, 2008, etc.

}

Reference Schedule S2: Identical to schedule S1, except the Exception_Schedule property is absent.

Reference Schedule S3: (A self-inconsistent schedule)

Effective_Period = ((January 5, 2007, Friday)-(December 31, 2009, Thursday))

Schedule_Default: 70.0 --- (REAL)

Weekly_Schedule = {

((00:00:00.00, 71.0), -- Monday contains REAL values and a NULL

(01:00:00.00, 72.0),

(01:30:00.00, 73.0),

(08:00:00.00, 74.0),

(17:00:17.17, 75.0),

(23:59:59.99, NULL)),

((00:00:00.00, 1),
 -- Tuesday contains ENUMERATED values and a NULL

(02:00:00.00, 2),

(02:30:00.00, 3),

(08:00:00.00, 4),

(17:00:17.17, 5),

(23:59:59.99, NULL)),

((02:00:00.00, 4294967201),
-- Wednesday contains Unsigned32 values and a NULL

(03:00:00.00, 4294967202),

(03:30:00.00, 4294967203),

(08:00:00.00, 4294967204),

(17:00:17.17, 4294967205),

(21:59:59.99, NULL))
,

(), -- Thursday is an empty list

(),
 -- Friday is an empty list

(),
 -- Saturday is an empty list

() }
 -- Sunday is an empty list

Exception_Schedule = {

((January 11, 2007, Thursday),

-- [1] calendarEntry, Date,

((01:00:00.00, 61.0),

-- Jan 11 contains REAL values

(06:00:00.00, NULL),

-- 6:00-20:00 is relinquished

(20:00:00.00, 62.0),

(21:00:00.00, 63.0),

(21:05:00.00,64.0),

(21:10:00.00,65.0),

(21:15:00.00,66.0),

(21:20:00.00,67.0),

(21:25:00.00,68.0),

(21:30:00.00,69.0),

(22:00:00.00, 70.0),

(22:59:59.99, NULL)),

-- last hour is relinquished

16),

-- eventPriority

((January 12, 2007, Friday),

-- [2] calendarEntry, Date,

((01:00:00.00, 1),

 -- Jan 12 contains ENUMERATED values

(06:00:00.00, NULL),

-- 6:00-20:00 is relinquished

(20:00:00.00, 2),

(21:00:00.00, 3),

(21:05:00.00,4),

(21:10:00.00,5),

(21:15:00.00,6),

(21:20:00.00,7),

(21:25:00.00,8),

(21:30:00.00,9),

(22:00:00.00, 10),

(22:59:59.99, NULL)),

-- last hour is relinquished

16),

-- eventPriority

((January 13, 2007, Saturday),

-- [3] calendarEntry, Date,

((01:00:00.00, 4294967201),
-- Jan 13 contains Unsigned32 values

(06:00:00.00, NULL),

-- 6:00-20:00 is relinquished

(20:00:00.00, 4294967202),

(21:00:00.00, 4294967203),

(21:05:00.00, 4294967204),

(21:10:00.00, 4294967205),

(21:15:00.00, 4294967206),

(21:20:00.00, 4294967207),

(21:25:00.00, 4294967208),

(21:30:00.00, 4294967209),

(22:00:00.00, 4294967210),

(22:59:59.99, NULL)),

-- last hour is relinquished

16),

-- eventPriority

}

-- The List_Of_Object_Property_References contains references to properties of differing datatypes.

List_Of_Object_Property_References = {

((Analog Output, Instance 1), Present_Value), -- REAL

((Binary Output, Instance 1), Present_Value), -- BACnetBinary PV

((Multi-state Output, Instance 1), Present_Value) -- Unsigned

}

Reference Calendar C1:

-- The Date_List of this Calendar contains 32 CalendarEntries to test for the capacity requirements

-- specified by SCH-SVM-A. All of the CalendarEntries are Date entries except for one DateRange.

-- The entries for 2009 & 2010 are “filler” to test the BIBB capacity limits, and to test some

-- wildcard Date entries.

Object_Identifier= (Calendar, 1)

Object_Name= “2007 Holidays”

Description= “Holidays for 2007”

Date_List=

-- 32 entries

((January 1, 2007, Monday),

(April 6, 2007, Friday),

(May 28, 2007, Monday),

(July 4, 2007, Wednesday),

(September 3, 2007, Monday),

((November 22, 2007, Thursday) – (November 23, 2007, Friday)),

(December 24, 2007, Monday),

(December 31, 2007, Monday),

(October, 1, 2009, Thursday),

(October, 2, 2009, Friday),

(October, 3, 2009, Saturday),

(October, 4, 2009, Sunday),

(October, 5, 2009, Monday),

(October, 6, 2009, Tuesday),

(October, 7, 2009, Wednesday),

(October, 8, 2009, Thursday),

(October, 9, 2009, Friday),

(October, 10, 2009, Saturday),

Date: October, 11, 2009, Sunday

Date: October, 12, 2009, Monday

Date: October, 13, 2009, Tuesday

Date: October, 14, 2009, Wednesday

Date: October, 15, 2009, Thursday

Date: October, 16, 2009, Friday

Date: October, 17, 2009, Saturday

Date: October, 18, 2009, Sunday

Date: October, 19, 2009, Monday

Date: (3rd of every month in 2010)

{year: 110,

 month: X’FF,

 day of month: 3,

 day of week: X’FF}

Date: (Every Sunday in January 2010)

{year: 110,

 month: 1,

 day of month: X’FF’,

 day of week: 7}

Date: (Leap year day, February 29, every year that it occurs)

{year: X’FF’,

 month: 2,

 day of month: 29,

 day of week: X’FF’}

Date: (The last day of every odd month in 2010, only supported if Protocol_Revision >= 4)

{year: 110,

 month: 13,

 day of month: 32,

 day of week: X’FF’}

Date: (The 30th of every even month in 2010, only supported if Protocol_Revision >= 4)

{year: 110,

 month: 14,

 day of month: 30,

 day of week: X’FF’}

Reference Calendar C2:

Object_Identifier: (Calendar, 2)

Object_Name: “Pax Romanus”

Description: “Dates of Roman significance, for the most part…”

Date_List (18 entries):

WeekNDay:

month: X’FF’

weekOfMonth: 1

dayOfWeek: 1

WeekNDay:

month: 3

weekOfMonth: 3

dayOfWeek: 1

WeekNDay:

month: 5

weekOfMonth: 3

dayOfWeek: 1

WeekNDay:

month: 7

weekOfMonth: 3

dayOfWeek: 1

WeekNDay:

month: 10

weekOfMonth: 3

dayOfWeek: 1

WeekNDay:

month: 1

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 2

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 4

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 6

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 8

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 9

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 11

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 12

weekOfMonth: 2

dayOfWeek: 6

WeekNDay:

month: 4

weekOfMonth: X’FF’

dayOfWeek: 1

WeekNDay:

month: 12

weekOfMonth: 3

dayOfWeek: X’FF’

WeekNDay:

month: X’FF’

weekOfMonth: X’FF’

dayOfWeek: 3

WeekNDay:

month: X’FF’

weekOfMonth: 6

dayOfWeek: X’FF’

WeekNDay:

month: 11

weekOfMonth: X’FF’

dayOfWeek: X’FF’

WeekNDay:

month: 13

weekOfMonth: X’FF’

dayOfWeek: X’FF’

WeekNDay:

month: 14

weekOfMonth: X’FF’

dayOfWeek: X’FF’

13.X6.1 Read and Present a Weekly_Schedule
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT reads and presents the Weekly_Schedule property of a Schedule object.

Test Configuration: A reference device contains Schedule object S1.

Test Steps:

1) MAKE (The IUT read and present the data represented by the Weekly_Schedule of S1.)

2) CHECK (Did the IUT properly present the data represented by the Weekly_Schedule?)

13.X6.2 Modify a Weekly_Schedule
This clause is used to verify that the IUT allows the user to modify any Weekly_Schedule located within a server device and does so appropriately.

13.X6.2.1 Modify a Weekly_Schedule by Changing the Time of a BACnetTimeValue
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate the IUT can modify a Weekly_Schedule by changing the Time of a BACnetTimeValue that already exists in the schedule.

Test Configuration: A reference device contains Schedule object S1.

Test Steps:

1) MAKE (The IUT modify the Weekly_Schedule of S1 by changing the time of a BACnetTimeValue without changing the value.)

2) CHECK (Did the IUT write the change to the Weekly_Schedule correctly?)

Notes to Tester: For example, modify the Friday 5:30:00.00 entry to Friday 5:45:00.00 with the same value, <value3>.

13.X6.2.2 Modify a Weekly_Schedule by Changing the Value of a BACnetTimeValue
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate the IUT can modify a Weekly_Schedule by changing the Value of a BACnetTimeValue that already exists in the schedule.

Test Configuration: A reference device contains Schedule object S1.

Test Steps:

1) MAKE (The IUT modify the Weekly_Schedule of S1 by changing the value of a BACnetTimeValue without changing the time.)

2) CHECK (Did the IUT write the change to the Weekly_Schedule correctly?)

13.X6.2.3 Modify a Weekly_Schedule by Deleting a BACnetTimeValue
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate the IUT can modify a Weekly_Schedule by deleting an existing BACnetTimeValue.

Test Configuration: A reference device contains Schedule object S1.

Test Steps:

1) MAKE (The IUT delete a BACnetTimeValue from one of the days in the Weekly_Schedule of S1.)

2) CHECK (Did the IUT write the modified Weekly_Schedule correctly?)

13.X6.2.4 Modify a Weekly_Schedule by Adding a BACnetTimeValue
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate the IUT can modify a Weekly_Schedule by adding a new BACnetTimeValue to the schedule.

Test Configuration: A reference device contains Schedule object S1.

Test Steps:

1) MAKE (The IUT add a BACnetTimeValue to one of the days in the Weekly_Schedule of S1.)

2) CHECK (Did the IUT write the modified Weekly_Schedule correctly?)

Notes to Tester: For example, add an entry of Friday 5:30:00.00 with a value of NULL.

13.X6.3 Read and Present a Complex Schedule
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT reads and presents a complex reference schedule intended to test the capacity limits of the IUT as well as support for all choices of data structures.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT read and present the data represented by S1, C1, and C2.)

2) CHECK (Did the IUT properly present the data represented by the reference objects, including all aspects of the properties?)

13.X6.4 Modify an Exception_Schedule
This clause is used to verify that the IUT allows the user to modify any Exception_Schedule located within a server device and does so appropriately.

13.X6.4.1 Modify an Exception_Schedule by changing the time of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarEntry
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by changing the time of a BACnetTimeValue pair in the BACnetSpecialEvent of the schedule with a period of choice calendarEntry.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT modify the time of a BACnetTimeValue of a calendarEntry in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Notes to Tester: For example, modify the January 11, 2007 calendarEntry such that the event at 20:00:00.00 is changed to occur at 19:00:00.00.

13.X6.4.2 Modify an Exception_Schedule by changing the value of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarEntry

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by changing the value of a BACnetTimeValue pair in the BACnetSpecialEvent of the schedule with a period of choice calendarEntry.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT modify the value of a BACnetTimeValue of a calendarEntry in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Notes to Tester: For example, modify the January 11, 2007 calendarEntry such that the event at 22:00:00.00 is set for a value of NULL instead of <value11>.

13.X6.4.3 Modify an Exception_Schedule by deleting a BACnetTimeValue from the listofTimeValues of a BACnetSpecialEvent with period of choice calendarEntry
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by deleting a BACnetTimeValue pair in the BACnetSpecialEvent of the schedule with a period of choice calendarEntry.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT delete a BACnetTimeValue from the listOfTimeValues of a BACnetSpecialEvent with period of choice calendarEntry in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Notes to Tester: For example, delete the 21:00:00.00 event from the January 11, 2007 CalendarEntry of the Exception_Schedule of S1.

13.X6.4.4 Modify an Exception_Schedule by adding a BACnetTimeValue to the listOfTimeValues of a BACnetSpecialEvent with period of choice calendarEntry
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by adding a BACnetTimeValue pair to the BACnetSpecialEvent of the schedule with a period of choice calendarEntry.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT add a BACnetTimeValue to the listOfTimeValues of a BACnetSpecialEvent with period of choice calendarEntry in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

13.X6.4.5 Modify an Exception_Schedule by changing the eventPriority of a BACnetSpecialEvent with period of choice calendarEntry
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by changing the eventPriority of the BACnetSpecialEvent of the schedule with a period of choice calendarEntry.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT modify the eventPriority of a BACnetSpecialEvent with period of choice calendarEntry.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Notes to Tester: For example, try changing the priority of some of the BACnetSpecialEvents on January 12, 2007.

13.X6.4.6 Modify an Exception_Schedule by deleting a BACnetSpecialEvent with period of choice calendarEntry
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by deleting a BACnetSpecialEvent of the schedule with a period of choice calendarEntry.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT delete an entire BACnetSpecialEvent with period of choice calendarEntry from the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

13.X6.4.7 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarEntry of choice Date
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by adding a BACnetSpecialEvent of the schedule with the calendarEntry of type Date.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT add an entire BACnetSpecialEvent with period of choice calendarEntry of choice Date to the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Notes to Tester: For example, try different Date representations that leave one or more of each of the following fields unspecified: year, month, dayOfMonth, dayOfWeek. If the IUT supports devices with Protocol_Revision >= 4, try using the special values for month of 13 (all odd) and 14 (all even) , and the special value of 32 (last day) for the dayOfMonth.

13.X6.4.8 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarEntry of choice DateRange
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by adding a BACnetSpecialEvent of the schedule with the calendarEntry of type DateRange.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT add an entire BACnetSpecialEvent with period of choice calendarEntry of choice DateRange to the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Note to Tester: It is not required that the IUT be capable of creating DateRanges with wildcard fields.

13.X6.4.9 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarEntry of choice WeekNDay
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by adding a BACnetSpecialEvent of the schedule with the calendarEntry of type WeekNDay.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT add an entire BACnetSpecialEvent with period of choice calendarEntry of choice WeekNDay to the Exception_Schedule of S1).

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Notes to Tester: For example, try different WeekNDay representations that leave one or more of each of the following fields unspecified: month, weekOfMonth, dayOfWeek. If the IUT supports devices with Protocol_Revision >= 4, try using the special values for month of 13 (all odd) and 14 (all even).
13.X6.4.10 Modify an Exception_Schedule by adding a BACnetSpecialEvent with period of choice calendarReference
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by adding a BACnetSpecialEvent of the schedule with the calendarEntry of type calendarReference.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT add an entire BACnetSpecialEvent with period of choice calendarReference to the Exception_Schedule of S1.)
2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

Notes to Tester: For example, add a BACnetSpecialEvent that is another CalendarReference to C2.

13.X6.4.11 Modify an Exception_Schedule by changing the time of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by changing the time of a BACnetTimeValue of a BACnetSpecialEvent of the schedule.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT modify the time of a BACnetTimeValue of a calendarReference in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

13.X6.4.12 Modify an Exception_Schedule by changing the value of a BACnetTimeValue in the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by changing the value of a BACnetTimeValue of a BACnetSpecialEvent of the schedule.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT modify the value of a BACnetTimeValue of a calendarReference in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

13.X6.4.13 Modify an Exception_Schedule by deleting a BACnetTimeValue from the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by deleting a BACnetTimeValue of a BACnetSpecialEvent of the schedule.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT delete a BACnetTimeValue from the listOfTimeValues of a calendarReference in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

13.X6.4.14 Modify an Exception_Schedule by adding a BACnetTimeValue to the listofTimeValues of a BACnetSpecialEvent with period of choice calendarReference
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by adding a BACnetTimeValue of a BACnetSpecialEvent of the schedule with period of choice calendarReference.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT add a BACnetTimeValue to the listOfTimeValues of a calendarReference in the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)

13.X6.4.15 Modify an Exception_Schedule by deleting a BACnetSpecialEvent with period of choice calendarReference
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and modify the Exception_Schedule by deleting a BACnetSpecialEvent of the schedule with a period of choice calendarReference.

Test Configuration: A reference device contains reference objects S1, C1, and C2.

Test Steps:

1) MAKE (The IUT delete an entire BACnetSpecialEvent with period of choice calendarReference from the Exception_Schedule of S1.)

2) CHECK (Did the IUT write the modified Exception_Schedule correctly?)
13.X6.5 Modify a Calendar Object
This clause is used to verify that the IUT can modify a Calendar object in a server device appropriately.

13.X6.5.1 Modify a Calendar by deleting a BACnetCalendarEntry from the Date_List
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and use it to delete a BACnetCalendarEntry from the Date_List.

Test Configuration: A reference device contains reference object C1.

Test Steps:

1) MAKE (The IUT delete a BACnetCalendarEntry from the Date_List of Calendar C1.)

2) CHECK (Did the IUT write the modified Date_List correctly?)

13.X6.5.2 Modify a Calendar by adding a BACnetCalendarEntry of choice Date to the Date_List
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and use it to add a BACnetCalendarEntry of choice Date to the Date_List.

Test Configuration: A reference device contains reference object C1.

Test Steps:

1) MAKE (The IUT add a BACnetCalendarEntry of type Date to the Date_List of C1.)

2) CHECK (Did the IUT write the modified Date_List correctly?) The size of the Date_List should be increased.

Notes to Tester: For example, try different Date representations that leave one or more of each of the following fields unspecified: year, month, dayOfMonth, dayOfWeek. If the IUT supports devices with Protocol_Revision >= 4, try using the special values for month of 13 (all odd) and 14 (all even), and the special value of 32 (last day) for the dayOfMonth.

13.X6.5.3 Modify a Calendar by adding a BACnetCalendarEntry of choice DateRange to the Date_List
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and use it to add a BACnetCalendarEntry of choice DateRange to the Date_List.

Test Configuration: A reference device contains reference object C1.

Test Steps:

1) MAKE (The IUT add a BACnetCalendarEntry of type DateRange to the Date_List of C1.)

2) CHECK (Did the IUT write the modified Date_List correctly?)

Notes to Tester: It is not required that the IUT be capable of creating DateRanges with wildcard fields.

13.X6.5.4 Modify a Calendar by adding a BACnetCalendarEntry of choice WeekNDay to the Date_List
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can accept user input and use it to add a BACnetCalendarEntry of choice WeekNDay to the Date_List.

Test Configuration: A reference device contains reference object C1.

Test Steps:

1) MAKE (The IUT add a BACnetCalendarEntry of type WeekNDay to the Date_List of C1).

2) CHECK (Did the Did the IUT write the modified Date_List correctly?)

Notes to Tester: For example, try different WeekNDay representations that leave one or more of each of the following fields unspecified: month, weekOfMonth, dayOfWeek. If the IUT supports devices with Protocol_Revision >= 4, try using the special values for month of 13 (all odd) and 14 (all even).

13.X6.6 Modify a Self-inconsistent Schedule to be Consistent
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Demonstrate that the IUT can read a Schedule that is self-inconsistent with regard to the scheduled datatype, and modify it to be consistent. This capability is required in order to be able to fix Schedule objects that may be left in a self-inconsistent state if the process of changing the scheduled datatype of a Schedule object is interrupted.

Test Configuration: A reference device contains reference object S3.

Test Steps:

1) MAKE (The IUT modify reference schedule S3 so that the scheduled datatype is consistent).

2) CHECK (Did the IUT write a consistent schedule?)

Notes to tester: A consistent schedule is one that meets all of these criteria:

· All of the values in the BACnetTimeValue pairs within the Weekly_Schedule and the Exception_Schedule properties shall be of the same datatype or NULL.

· The value of the Schedule_Default property shall be of the same datatype as the non-NULL values in the BACnetTimeValue pairs within the Weekly_Schedule and Exception_Schedule properties, or it shall be NULL.

· All of the standard properties referenced in the List_Of_Object_Property_References shall be of the same datatype as the non-NULL values in the BACnetTimeValue pairs.

The IUT is not required to present schedule S3 while it is self-inconsistent, only that the IUT write out a consistent schedule after the modification. Ideally, the IUT should involve the user in the process of modifying the schedule to be consistent, presenting the full data of the schedule and allowing the user to edit the data to correct the inconsistencies. If the IUT modifies the schedule automatically to make it consistent, it should at least notify the user that the schedule has been modified. It is not acceptable for the IUT to modify the schedule without any indication to the user that this was done.

13.X6.7 Is able to change the datatype that a Schedule object schedules
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Verify that the IUT can alter the scheduled datatype of an existing Schedule object.

Test Configuration: A reference device contains any valid Schedule object that supports modifying the datatype of the schedule.

Test Steps:

1) MAKE (The IUT modify the reference schedule so that the scheduled datatype is different than the original scheduled datatype).

2) CHECK (Did the IUT write the modified properties correctly?)

Notes to tester: It is acceptable that the IUT modify the datatype of the reference schedule one property at a time, so there may be a time period when the reference schedule is in a self-inconsistent state during reconfiguration.

K.1 Data Sharing BIBBs

Reason for change: ReadRange applies to all list properties but the existing BIBBs are limited to object types that contain the Log_Buffer property.

K.1.X1 BIBB - Data Sharing - ReadRange-A (DS-RR-A)

The A device is a user of list data from device B.

	BACnet Service
	Initiate
	Execute
	

	ReadRange
	x
	

K.1.X2 BIBB - Data Sharing-ReadRange-B (DS-RR-B)

The B device is a provider of list data to device A.

	BACnet Service
	Initiate
	Execute

	ReadRange
	
	x

	Version
	Date
	Author
	Change

	0.07
	5-Aug-2004
	Carl Neilson
	Updates based on Nashville meeting comments on Round 3 updates.

	0.08
	24-Aug-2004
	Carl Neilson
	· Removed 9.24.4.X1, 9.24.4.X2. Now exist in 135.1.

· Modified the purpose of 14.5.3.

· Modified the purpose of 14.2.2

· Added 10.2.4.4

	0.09
	
	Roland Laird
	· Modified all Clause 14 tests

	0.10
	26-Oct-2004
	Roland Laird
	· Continuation of BACnet/IP modifications - changes highlighted inline

	0.11
	27-Oct-2004
	Carl Neilson
	· Added 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1, 9.1.2.5. The specification of the expected Time Stamp in the ack notifications was changed. - changes still highlighted inline

	0.12
	29-Oct-2004
	Carl Neilson
	· Changes to 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1, 9.1.2.5 based on group feedback.

· Changes to BACnet/IP based on group feedback

	0.13
	23-Nov-2004
	Carl Neilson
	· Added 9.24.1.X2 and 9.24.1.X3

· Added "Reason For Change" to all tests.

· Added passing result text to 9.1.2.5 (missed in version 12)

· A few minor typos

	0.14
	20-Dec-2004
	Carl Neilson
	· Added tests 10.2.2.3, 10.2.2.7.2, 10.2.2.7.3, 10.2.3.2, 10.2.3.5, 10.2.4.6, 10.2.4.8, 10.2.6 from P3-Routing-14.

· Modified 10.2.4.4 as per P3-Routing-14.

· Added tests 9.20.2.1 into RPM-B

· Added 7.3.2.9.8, 7.3.2.9.9, 7.3.2.17.5, 7.3.2.18.6, 7.3.2.19.5, 7.3.2.22.9 into WP-B.

· Added 9.23.1.X7, 9.23.1.X8 into WPM-B

· Added 7.3.1.X2

	0.15
	15-Jun-2005
	Carl Neilson,

Roland Laird
	· Modified 7.3.2.9.8's & 7.3.2.9.9's reason for change comments as 135.1a now incorporates the complete change.

· Added 8.34.X1

· 13.X.1 fixed test step reference in steps 8 & 18

· 13.4.3 changed 2 < x < 254 to 2 < x <= 254

· Change 9.20.2.1 to 9.20.2.X1 as the test is new and there is already a 9.20.2.1 in 135.1
· Added scheduling tests 7.3.2.22.X2 and 7.3.2.22.X3 from ShedProtRev4Tests-9. Test numbers were changed to correspond with the equivalent pre-revision 4 tests.

	0.16
	19-Jul-2005
	Carl Neilson
	· Added WhoHas tests 9.32.1.X1, 9.32.1.X2

	0.17
	05-Oct-2005
	Jim Butler

Carl Neilson

	· Added Recipient List Test 7.3.2.20.3.X1,

· Added MS/TP restart tests 2.2.14...2.2.17

· Added RP fallback tests 8.20.Y1.X1, 8.20.Y1.X2

· Added AckAlarm tests 9.1.1.X1, 9.1.1.X2
· Changed 2.2.7 as per CLB-001

· Changed 2.2.6 as per CLB-002

· Changed 2.2.5 as per CLB-003

· Changed 2.2.4 as per CLB-004

· Added changes to 7.3.2.23.5

	0.18
	24-Oct-2005
	Carl Neilson
	· Added ARCNET tests & re-arranged section 2.

· Added 7.3.1.X3 Array Sizing Test

· Added 13.X2.1 APDU Retry and Timeout

	0.19
	27-Oct-2005
	Carl Neilson
	· Removed router qualification tests.

· Added reason for change to 13.X2.1 & modified note to tester

· Fixed incorrect numbering of BACnet/IP sections

· Deleted old comment as end of 7.3.2.20.3.X1

	0.20
	17-Jan-2006
	Carl Neilson
	· Added 8.8.1 & 8.8.2 that include transmission of final BACnet-ComplexACK-PDUs

	4.0.0
	13-Sep-2006
	Carl Neilson
	· Changed revision numbering

	4.0.1
	04-Apr-2007
	Carl Neilson
	· Round 4 changes (excl SCHED)

	4.0.2
	02-May-2007
	Carl Neilson
	· Added 9.10.1.X2

	4.0.3
	11-Jun-2007
	Lori Tribble
	· Updated document per CRR-0005, CRR-0008, CRR-0009, CRR-0011, CRR-0014

· Updated document per CRR-0015, CRR-0017, CRR-0020
· Updated document per CRR-0021, CRR0022

	4.0.4
	23-Jul-2007
	Lori Tribble
	· Updated the Reason For Change.

· Highlighted new items for Round 4 in Green

· Highlighted items to be deleted in Yellow. Waiting on approval of round 3 documents before we delete.

· Highlighted items with questions in Purple. Waiting on approval of round 3 documents before changing.

· See BTL Specified Tests 3.1.4 change log for details.

	4.0.5
	10-Oct-2007
	Lori Tribble
	· Removed tests previously highlighted in yellow. These tests are now in 135.1.

· Added changes to tests 7.3.2.22.X1.1,2,3,4 per CRR-0030.

· Added changes to test 7.3.2.22.X2.3.12 per CRR-0035.

· Added changes to tests per WSPLab suggestions.

	4.0.6
	25-Oct-2007
	Lori Tribble
	· Removed some of the highlighting.

· Updated tests per mtg 10/15/2007

	4.0.7
	18-Dec-2007
	Lori Tribble
	· Added Virtual Routing tests

· Added List Manipulation Tests

	4.0.8
	22-Feb-2008
	Lori Tribble
	· Fixed BTL-7.3.1.11 per TGTC-18.

	4.0.9
	01-Apr-2008
	Lori Tribble
	· Updated page header format.

	4.0.10
	16-Apr-2008
	Lori Tribble
	· Applied the following:
TGTC-05 - Adds UTCTimeSync to all schedule tests.

TGTC-08 - Adds 9.1.2.3 and 9.1.2.6 to this document.
TGTC-13 - changes already existed in this document.

TGTC-14 - Modified 7.3.2.23.9, added 7.3.2.23.10, modified 7.3.2.23.X2.
TGTC-16 - Modified 7.3.1.13
TGTC-17 - 7.3.2.23.10 has already been modified by TGTC-14

TGTC-18 - Added 7.3.1.10.X1,

TGTC-19 - Modified 9.21.1.4

TGTC-21 - Modified 7.3.2.22.X1.2 and 7.3.2.22.X1.4
TGTC-35 - Added 7.3.1.3.

TGTC-36 - Added 7.3.1.10

TGTC-37 - Modified 7.3.1.11
TGTC-40 - Added 9.22.2.4

TGTC-41 - Modified 7.3.2.23.6.1

TGTC-43 - Added 8.22.1, 8.22.2. Modified 8.22.X2.
BTL-CRR-0018 - Modified 9.10.2.1
BTL-CRR-0050 - Modified 7.2.1.10

BTL-CRR-0051 - Modified 13.X1.3, 13.X1.6, 13.X1.7

· Updated reason for change on several tests.

· Updated tests for Rev 5 and 6

Added 9.1.1.X3

Added 9.1.2.3, 9.1.2.4, 9.1.2.7

· Added 13.X5.1, 13.X5.2, 13.X5.3, 13.X5.5, 13.X5.6 for Backup and Restore Initiation testing.

	4.0.11
	April 16, 2008
	Lori Tribble
	· Accepted Changes made above
· Updated table of contents

· Added Reason for Change to tests that did not have it.

· Marked test 9.10.2.1 for further review

	4.0.13
	May 21, 2008
	Lori Tribble
	· Added test correction for 9.33.2.3 per BTL-CRR-0055.
· Added test corrections for 9.14.2.3 and 9.15.2.2 per WS-038-4.

· Added test corrections for 8.4.1, 8.4.2, 8.4.3.1, 8.4.3.2, 8.4.4, 8.4.5, 8.4.6 per BTL-CRR-0017.
· Corrected reason for change on several tests.

· Removed : from test numbers

	4.0.14
	June 20, 2008
	Lori Tribble
	· Updated tests 7.3.2.22.X1 and 7.3.2.22.X2.3.1 to match recent changes made in TI-WG on SED-004 and SED-006.

· Updated all tests which use the UTCTimeSynchronization service to indicate using a UTC date.

· Updated non-router tests per CN-092-04

· Question about test 8.4.6 correction to be answered. See comment.

	4.0.15
	September 9, 2008
	Lori Tribble
	· Applied BTL-CRR-0056 Time Master changes

· Applied BTL-CRR-0064 NonRouterNetworkCommands
· Updated document to reference 135.1-2007 section numbers.
· Added 7.3.2.8.1 and 7.3.2.8.3. These required updates for UTCTimeSynchronization.

· Added 7.3.2.21.3.1 and 7.3.2.21.3.2. These required updates to include UTCTimeSynchronization.

· Added 7.3.2.23.1 and 7.3.2.23.2. These required updates to include UTCTimeSynchronization.

· Added 7.3.2.23.3.1 - 9 and 7.3.2.23.4 - 8. These tests required updates to include UTCTimeSynchronization.

	4.0.16
	September 17, 2008
	Lori Tribble
	· Accepted all changes made previously.

· Made format changes.

	4.0.18
	Oct 21, 2008
	Lori Tribble
	· Updated Reason For Change for all tests that now have SSPC proposals.

· Added client side schedule tests

· Removed test 9.23.1.X

· Changed COV test from 24 hour lifetime to 8 hour lifetime.

	5.0.1
	Oct 21, 2008
	Lori Tribble
	· Accepted all changes made above. Changed version to 5.0.1

· Updated Reason For Change for tests that now have SSPC proposals.

·

	5.0.2
	Feb 24, 2009
	Lori Tribble
	· Added place holder for new test BTL-8.22.X4 Writing Array properties as a Whole array.

· Renumbered test steps for 7.3.2.21.3.2

· TGTC-57: Updated Configuration Requirements for test 7.3.2.23.X2.3.12 Revision 4 Lower Event Priority Change Test.

· TGTC-58: Updated test 7.3.2.23.X2.3.10 Revision 4 Calendar Entry WeekNDay Odd-Numbered Month Test.
· TGTC-59: Updated test 7.3.2.24.1 Log_Enable Test.
· TGTC-60: Updated test 8.4.2 CHANGE_OF_STATE Tests

· TGTC-79: Updated tests 8.2.1 through 8.2.8 to include BEFORE Notification Fail Time before each notification.

· TGTC-80: added tests 9.10.1.1 through 9.10.1.3 to wait Notification Fail Time before each notification.

· TGTC-81: Added test 7.2.2.

· TGTC-84: Updated test 7.3.2.24.10 Notification_Threshold Test
· TGTC-85: Updated test 8.4.7 BUFFER_READY Tests
· BDS-001: Updated tests 7.3.2.23.5 Exception_Schedule Restoration Test and 7.3.2.23.6 Weekly_Schedule Restoration Test
· BTL-CRR-0069: Updated test 10.X.1 Static Router Binding, 10.X.2 Router Binding via Application Layer Services, 10.X.3 Router Binding via Who-Is-Router-To-Network, and 10.X.4 Router Binding via Broadcast.
· BTL-CRR-JN3: Updated test 2.2.7.
· Added database_revision tests from 135.1-2007f.

	5.0.4
	27-Mar-2009
	Lori Tribble
	· Changed test 9.2.1.X8 to be 9.3.X9. The test doesn't exist yet but is supposed to be the unconfirmed version of the 9.2.1.X4 test which is also not written.

· Added place holder for 8.4.X2 Extended Algorithm Tests (ConfirmedEventNotification) and 8.5.X3 Extended Algorithm Tests (UnconfirmedEventNotification).

· Renumbered 9.23.2.X7 to 9.23.2.6 (as defined in 135.1-2007)

· Renumbered 9.23.1.X8 to 9.23.2.7 (as defined in 135.1-2007)

· Updated tests 9.14.2.3 and 9.23.2.6 per BTL-CRR-0072

· Updated tests 9.1.1.1 and 9.1.1.4 per TGTC-111
· Updated test 7.3.2.23.X2.3.9 per TGTC-127
· Updated test 7.3.2.21.3.X per TGTC-128
· Updated test 9.22.1.X2 per TGTC-133

· Added test 7.3.2.24.8 per BTL-CRR-0070

· Added Chapter 6 sections that are changed or new to 135.1 and whose contents are being used within some of the tests (i.e. READ) (Described in CN-093)
· Added section 7.2.1.3 to document to show proposed change to text. (FR-??)

	5.0.5
	6-Apr-2009
	Lori Tribble
	· Added reason for change to chapter 6 section and for test 7.2.2.

· Modified text for 7.2.1.3 and added reason for change.

· Added reason for change for the Record_Count test (7.3.2.24.8)

	5.0.6
	9-Apr-2009
	Lori Tribble
	· Added test 9.2.20.1 Reading a Single, Unsupported Property from a Single Object. per CRR-0039.

· Fixed spelling error in Configuration Requirements of Stop_When_Full TRUE Test (7.3.2.24.6.1).

· Updated Create and Delete Tests per proposal provided to BTL-WG and approved on 4/9/2009. Tests modified are: 8.16.2, 8.16.3, 8.16.4, 9.16.1.1, 9.16.1.2, 9.16.1.3, 9.16.1.4, 9.16.2.1, 9.16.2.2, 9.16.2.3, 9.16.2.4, 9.16.2.5, 9.16.2.6, 9.17.1.1. Also removed test 9.16.1.X1 per this document.

	5.0.7
	8-Jun-2009
	Lori Tribble
	· Added to 9.20.2.1 that this change is included in CN-121.

· Changed test 7.3.1.1 per BTL-CRR-0074 and DJH-001-3.

	5.0.8
	22-Jun-2009
	Lori Tribble
	· Removed test 9.23.1.7 Writing Maximum Multiple Properties test.
· Updated test 7.3.1.11 to update the configuration requirements to include initial configuration of the ACK_Required property.

· Test 7.3.2.23.X1.1 - updated configuration requirements

· Updated tests 7.3.2.23.7, 7.3.2.23.8, 7.3.23.X2.8, 7.3.23.X2.7 step 1 to correctly reference Dt not D1
· Updated test 7.3.1.10 configuration requirements. Changed 'read-only' to 'not configurable'.

· Removed all highlighting

· Updated TOC.

	5.0.final
	26-Jun-2009
	Lori Tribble
	· Accepted all changes per acceptance by BTL-WG 6/18/2008.

	6.0.1
	26-Jan-2011
	Duffy O’Craven
	· Corrected: ‘inside’ for ‘outside’ in step 4 of test 7.3.2.8.2, based upon BTL-CRR-0172_7.3.2.8.2_inside_outside.doc

· Put section 7.3.2.10 in order, before 7.3.2.21

· Revised test 7.3.2.23.X2.4 Revision 4 Weekly_Schedule and Exception_Schedule Interaction Test , based upon KV-001-03_7.3.2.23.X2.4.doc
· Adjusted heading on test instead of section, so that test 7.3.2.24.6.1 appears in Table of Contents.

· Added tests 9.1.1.X4 and 9.1.1.X5 to ACK-B, based upon BTL Specified Tests-Add135-2004m-4-ReAckAlarms-3.doc
· Removed test 9.1.2.6, as the correct version is now in 135.1-2009, per BTL-CRR-0125_9.1.2.6.doc

· Added test 9.21.1.X5 Reading Items with Negative Count and MOREITEMS
· Derived tests from 135.1-2009 in DCC-A and RD-A, adding proper password treatment based upon BTL-CRR-0078 DeviceCommunicationControl_Password.doc
· Revised tests 9.24.21, 9.24.2.2, 9.27.1.1 and 9.27.1.3, and added tests 9.24.2.X3, 9.27.2.X3 and 9.27.2.X4 in DCC-B and RD-B, based upon 135-2004m-8 r2 Clarify DeviceCommunicationControll and ReinitializeDevice interactions.doc

	9.0.3
	7-Apr-2011
	Duffy O’Craven
	· Incorporated BTL - 7.3-MO_V9.doc including new test 7.3.2.24.X7

· Derived BTL – 7.3.1.12 with modifications in consequence of BTL-CRR-0171_7.3.1.12_TO-NORMAL.doc
· Incorporated changes to genericize tests for logging objects in BTL - 8.21-MO V8.doc and BTL - 9.21-MO V7.doc
· Incorporated DO-016-08_Verify_Notification_Logging.doc as tests 7.3.2.26.X1, 7.3.2.26.X2, 7.3.2.26.X3, and 7.3.2.26.X4

· Incorporated 135-2004b-5 - Restart Parameters_v2.doc in test 8.3.X1

	9.0.4
	26-May-2011
	Duffy O’Craven
	· Incorporated BTL-CRR-0082_ReadOnlyTest.doc in test 7.2.2.1

· Incorporated BTL-CRR-0083_nonDocumentedProperty.doc in test 7.2.2.X2

· Added test 2.2.18 Verify Tno_token w/ Serial Analyzer in consequence of BTL-CRR-0085-NewMSTPTest.doc

· Specified Protocol_Revision ≥ 7 in test 13.2 in consequence of BTL-CRR-0087_TimeMasterTest.doc
· Added modified test 9.7.1.1, in consequence of BTL-CRR-0089_9.7.1.1.doc

	9.0.5
	31-May-2011
	Duffy O’Craven
	· Modified tests 8.2.2, 8.2.4, 8.2.6, and 8.2.8 in consequence of BTL-CRR-0095_changeable_Status_Flags.doc
· Modified tests 8.4.4, 8.4.5, 8.4.6, and 8.4.7 in consequence of BTL-CRR-0096_object_referenced_by_EE.doc
· Specified Protocol_Revision < 10, in consequence of BTL-CRR-0104_correcting_9.10.2.1.doc
· Corrected Test Concept: from TD to IUT in 10.X.3 in consequence of BTL-CRR-0106_10.X.3_TestingHints.doc
· Corrected Test Configuration: of test 7.3.2.24.4 in consequence of BTL-CRR-0116_Log_Interval_read-only.doc
· Corrected expected result in test 9.14.2.2 in consequence of BTL-CRR-0117_9.14.2.2_First_Failed_Element.doc
· Corrected the name of test 9.30.1.1, and added BTL Specified Tests versions of 9.30.1.2, 9.31.1.1 and 9.31.1.2 derived from 135.1 - 2007 as specified in BTL-CRR-0113_9.31.1.1_diverge_dissimilar_tests.doc

	9.0.6
	09-Jun-2011
	Duffy O’Craven
	· Added tests 7.3.2.29.X1 and 7.3.2.29.X2 for Structured View in consequence of Structured View Test Plan v6.doc

	9.0.7
	12-Jun-2011
	Duffy O’Craven
	· Revised test 7.2.2.X2 to restrict the test to standard object types, in consequence of BTL-CRR-0130_7.2.2.X2.doc and making it identical to the revision in 135.1-2009n-1

· Further revised test 7.2.2.X2, in consequence of BTL-CRR-0180_P_C_C.doc
· Further revised test 7.2.2, in consequence of BTL-CRR-0178_allowed-values_REAL.doc
· Modified test 10.X.5 to ensure that the packet actually reaches the IUT, and that the test uses an address which resembles the actual address of IUT, in consequence of BTL-CRR-0138_10.X.5_same_DADR.doc
· Removed test 7.3.2.21.3.X, as the version in 135.1-2009g-6 replaces it, in consequence of BTL-CRR-0141_7.3.2.21.3.X_DDB_without_range.doc.

· Removed tests 8.22.1 and 8.22.2, as 135.1-2009i-7 ratified the Notes to Tester: addition that had caused these revised tests to supercede the 135.1 - 2003 - 8.22.1 and 135.1 - 2003 - 8.22.2 versions.
· Removed test 8.22.X1, as the version in 135.1-2009i-8 replaces it.
· Added qualifying language in Notes to Tester: of tests 7.3.2.23.X1.3, 7.3.2.23.X1.4, and 7.3.2.23.X2.8 in consequence of BTL-CRR-0158_Sch_Object_Writes.doc
· Revised test 10.X.2 in consequence of BTL-CRR-0149_non-BROADCAST.doc

· Removed test 14.1.7 in consequence of BTL-CRR-0152_eliminating_14.1.7.doc

· Added to the Configuration Requirements: of test 7.3.2.24.X3, in consequence of BTL-CRR-0151_7.3.2.24.X3.doc
· Adds a Notes to Tester: to test 7.3.2.24.X1, in consequence of BTL-CRR-0160_Log-interrupted.doc
· Further revised test 7.3.2.24.8 in consequence of BTL-CRR-0169_7.3.2.24.7_Not_all_at_once.doc
· Derives with modifications, and adds a Notes to Tester: to create test BTL - 7.3.2.24.12, in consequence of BTL-CRR-0165_7.3.2.24.12.doc
· Added ‘Server’ = TRUE, to test 7.1 and derived a BTL Specified Test 13.1.12.1 with that change, in consequence of BTL-CRR-0177_server_in_Abort-PDU.doc

· Further revised test 9.1.2.3, and derived test BTL - 9.1.2.6 in consequence of BTL-CRR-0195_9.1.2.3_and_9.1.2.6.doc
· Further revised tests 9.10.1.1 and 9.10.1.2, in consequence of BTL-CRR-0182_9.10.1.2.doc
· Further revised test 9.10.1.1, and derived test BTL - 9.10.1.7, in consequence of BTL-CRR-0194_ACK_in_9.10.1.1_and_9.10.1.7.doc
· Further derived 9.10.1.7, in consequence of BTL-CRR-0184-9.10.1.7.doc and BTL-CRR-0200-9.10.1.7.doc
· Removed test 9.21.1.4 as 135.1-2009g-16 replaced it, in consequence of BTL-CRR-0201_9.21.1.4.doc

	9.0.8
	22-Jun-2011
	Duffy O’Craven
	· Referred from BTL 7.2.2.X2 to test 7.1.x and from BTL 7.2.2.1 to test 7.2.x in 135.1-2009i-22, which is the first occurrence of this test in a ratified addendum., but with slightly different content.
· Added qualifying language in Notes to Tester: of tests7.3.2.23.8 in consequence of BTL-CRR-0158_Sch_Object_Writes.doc

· Changed test numbers for tests 7.3.2.23.X2.1 through 7.3.2.23.X2.8 (now 7.3.2.23.X.1 through 7.3.2.23.X.8), 7.3.2.23.X2.3.1 through 7.3.2.23.X2.3.13 (now 7.3.2.23.X.3.1 through 7.3.2.23.X.3.13), and 7.3.2.23.X1 through 7.3.2.23.X4 (now 7.3.2.23.Y.1 through 7.3.2.23.Y.4) and 7.3.2.23.X3 (now 7.3.2.23.Y) to the 135.1-2009j-17 test number used for BUFFER_READY tests.

· Changed test number for 8.5.X1 to the 8.5.7 used in 135.1-2009l.

· Added more qualifying language in Notes to Tester: of tests 7.3.2.23.X1.3, 7.3.2.23.X1.4, and 7.3.2.23.8 incorporating from the versions in 135.1-2009g-17, 135.1-2009g-21 and 135.1-2009i-7
· Added mention of the version in 135.1-2009j-14, in test 7.3.2.24.4 The BTL Specified Test takes precedence.

· Added references to the version in 135.1-2009i-14, in tests 7.3.2.24.X1, 7.3.2.24.X2, and 7.3.2.24.X3 The BTL Specified Tests take precedence.
· Added references to the version in 135.1-2009i-14, in tests 7.3.2.24.X4, 7.3.2.24.X6, and 7.3.2.24.X7 The versions of these tests are identical with those in BTL Specified Tests.
· Replaced test 7.3.2.24.5 with exactly the 135.1-2009g-16 version, adjusting only some capitalization typos, with no semantic difference.

· Added mention of the version in 135.1-2009j-10, in tests 7.3.2.24.6.1, and 7.3.2.24.6.2 The versions of these tests are quite different.

· Replaced tests 7.3.2.24.7, and 7.3.2.24.8 with exactly the 135.1-2009j-13 and 135.1-209j-14 PPR1_DRAFT versions, with no semantic difference.

· Added references to the versions in 135.1-2009h-3, in tests 8.2.1 through 8.2.8

· Added reference to the version in 135.1-2009i-3, in test 8.2.x1 which is identical with the version in BTL Specified Tests.

· Replaced tests 8.18.1, 8.18.2, 8.18.X1, and 8.18.X2 with exactly the 135.1-2009i-4 versions, which compared with the prior BTL Specified version means adjusting a syntactically incorrect VERIFY to CHECK, with no semantic difference.

· Specified (BACnetDeviceObjectPropertyReference– referring to the buffer property of the log object) as the first part of Event_Values in every ConfirmedEventNotification of BUFFER_READY event type.

	9.0.9
	6-Jul-2011
	Duffy O’Craven
	· Removed tests 7.3.2.10.X3, 7.3.2.10.X4, 7.3.2.10.X5 as these are identical to the versions in 135.1-2009f-2.

· Renumbered test 7.3.2.10.X6 to 7.3.2.10.X4 to match the , number of the corresponding test which is in 135.1-2009f-2, and which is identical, except for an errata, with the version in BTL Specified Tests.

	9.0.10
	1-Aug-2011
	Duffy O’Craven
	· Fixed a type “end” for “and”, in test 13.1.X6

· Fixed step number reference in step 14 of tests 9.1.1.X4 and 9.1.1.X5 per BTL-CRR-0214_9.1.1.X4_and_9.1.1.X5.doc

	9.0.11
	28-Sep-2011
	Duffy O’Craven
	· Incorporated DO-014-01_TimeMaster.doc as tests 13.2.1 through 13.2.7

· Eliminated Chapter 6 Conventions for Specifying BACnet Conformance Tests, since that content is now completely expressed in 135.1-2009

· Corrected the missing underscore typo in Record_Count in test 7.3.2.24.X7, and renumbered the steps to be consecutive.

	9.0.12
	30-Sep-2011
	Duffy O’Craven
	· Deleted tests 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1 and 9.1.2.5, as the versions from 135.1-2009f-1take precedence.
· Deleted tests 10.2.2.3, 10.2.2.7.2, 10.2.3.2, 10.2.3.5, 10.2.4.4, 10.2.4.6, 10.2.4.8, and 10.2.6 as the versions from 135.1-2009g-3 take precedence.

· Deleted tests 9.1.1.X1 and 9.1.1.X2 as the versions in 135.1-2009g-4 take precedence.

· Deleted test 12.1.1.9.X1 because it is identical to test 12.1.1.9.X in 135.1-2009g-5

· Deleted tests 9.24.1.X2 and 9.24.1.X3 as the versions in 135.1-2009g-8 with numbers 9.24.1.X1 and 9.24.1.X2 take precedence.

· Deleted test 7.3.1.1 as the version in 135.1-2009g-9 takes precedence.

· Deleted tests 10.X.1, 10.X.2, 10.X.3, and 10.X.4 as the versions in 135.1-2009g-10 - 10.Y.1, 10.Y.2, 10.Y.3, and 10.Y.4 take precedence.

· Deleted tests 10.X.5, 10.X.6, and 10.X.7 as the versions in 135.1-2009g-10 - 10.X.1, 10.X.2, and 10.X.3 take precedence.

· Added tests 7.3.2.21.1, 7.3.2.21.3.4, and 8.4.8.14 as the versions in 135.1-2009g-11 only portrayed the intended revision with a context-diff, so the entirety of the revised tests is rendered here.
· Modified test 8.4.2 with the change in 135.1-2009g-11
· Deleted tests 8.18.X3, 8.22.X2, and 8.22.X3 as the versions in 135.1-2009g-14 - 8.18.3, 8.22.4, and 8.22.5 take precedence.

· Deleted tests 9.4.X1, 9.4.X2, 9.5.X1, and 9.5.X2 as the versions in 135.1-2009g-15 - 9.4.5, 9.4.6, 9.5.1, and 9.5.2 take precedence.

	9.0.13
	10-Oct-2011
	Duffy O’Craven
	· Deleted test 7.3.2.24.9 as the version in 135.1-2009g-16 takes precedence.

· Deleted tests 7.3.2.23.3.1, 7.3.2.23.X.3.1, 7.3.2.23.X.3.2, 7.3.2.23.X.3.3, 7.3.2.23.X.3.4, 7.3.2.23.X.3.5, 7.3.2.23.X.3.6 as the versions in 135.1-2009g-17 take precedence. Note that the test numbers used in 135.1-2009g-17 each specify X rather than the X2 used in Test Plan-5.0.final and BTL Specified Test-5.0.final.
· Deleted tests 13.X3 and 13.X4 as the 13.X1 and 13.X2 versions in 135.1-2009g-19 take precedence.

· Deleted tests 8.3.X1 and 9.3.X8 as the versions 8.3.X and 9.3.1 in 135.1-2009g-20 take precedence.

· Deleted tests 7.3.2.23.Y.1, 7.3.2.23.Y.2, 7.3.2.23.Y.3, and 7.3.2.23.Y.4 as the versions in 135.1-2009g-21 take precedence. Note that the test numbers used in 135,1-2009g-21 each specify Y rather than the X1 used in Test Plan-5.0.final and BTL Specified Test-5.0.final.
· Corrected COLDSTART to WARMSTART in test 7.3.2.23.5 in accordance with 135.1-2009i-1

· Deleted tests 8.8.1 and 8.8.2 as the versions in 135.1-2009i-5 take precedence.

· Deleted tests 8.20.Y1.1 and 8.20.Y1.2 as the versions in 135.1-2009i-6 take precedence.

	9.0.14
	14-Nov-2011
	Duffy O’Craven
	· Fixed the number on test 9.16.1.2 (was inadvertently 16.1.1.2 in BTL Specified Tests-5.0.final.)

· Put test 13.X6.5.1 in the Table of contents, by giving it Header 4 style.

· Removed the Notes to tester: section of test 7.3.1.11 which had had the rest of the test removed in revision 9.0.12.

· Separated the Purpose and Test Concept of test 7.3.1.13.

· Fixed the indentation of step 14. in test 7.3.1.13

· Removed test 7.3.1.X1 as it is identical to the version in 135.1- 2009d-2 - 7.3.2.10.1

· Added Reason for change (to correct a cut&paste&forgot-to-revise typo in the Test Concept) to test 7.3.2.10.X4

· Added Reason for change (the version in 135.1-2009g-11 only portrays the intended revision with a context-diff, so the entirety of the revised test is rendered here) to test 7.3.2.21.3.4

· Removed test 7.3.1.X2 as it is identical to the version in 135.1- 2009i-15 - 7.3.2.11.X

· Removed test 7.3.2.21.X1 as it is identical to the version in 135.1- 2009g-7 - 7.3.2.20.X (note that is the second test in that addenda with that same number, there is another in g-6).

· Removed tests 9.1.1.X1 and 9.1.1.X2 as the versions in 135.1-2009g-4 take precedence.

	9.0.15
	23-Nov-2011
	Duffy O’Craven
	· Removed test 8.34.X1 as it is identical to the version in 135.1- 2009i-12.

· Removed tests 9.1.1.X4 and 9.1.1.X5 as the versions in 135.1-2009i-17 take precedence.

· Removed test 9.10.1.X2 as the version in 135.1-2009d-1 - 9.10.X takes precedence.

· Added Notes to tester: to tests 9.14.2.2 and 9.14.2.3 in consequence of BTL-CRR-0232_9.14.2.2_addl_error_codes.doc, and also applied Protocol_Revision conditional from the version in 135.1-2009i-10 to test 9.14.2.3.

· Removed test 8.16.2 because the correction has already been applied in 135.1-2007.

· Removed tests 8.16.3, 8.16.4, 9.16.1.1, 9.16.1.3, 9.16.2.2, 9.16.2.3, 9.16.2.4, and 9.16.2.5 because the versions in 135.1-2009f-3 take precedence. Note that BTL - 9.16.1.4 is preserved for it contains a more accurate restriction of “...any unique object identifier of a type that is creatable and an instance number that is creatable” .

· Removed tests 9.21.1.1, 9.21.1.2, 9.21.1.3, 9.21.1.4.X1, 9.21.1.6.X1, 9.21.1.6.X2, 9.21.1.X1, 9.21.1.X2, and 9.21.2.X4 because the versions in 135.1-2009i-14 take precedence. Note that BTL - 9.21.1.X3 is preserved for it contains a more accurate list: “Qualifying tests are: 9.21.1.1, 9.21.1.2, 9.21.1.3, 9.21.1.4, 9.21.1.4.X1, 9.21.1.X1 or 9.21.1.X2.”

· Removed test 9.23.2.6 as the version in 135.1-2009i-10 takes precedence.
· Removed test 9.20.2.1 as the version in 135.1-2009i-11 takes precedence.

· Removed tests 13.X3 and 13.X4 as the versions in 135.1-2009g-19 take precedence.

· Test WARMSTART with no Password is made 9.27.1.3, in correspondence with 135.1-2007 numbering.

· Removed entire Chapter 14, replicated in 135-2009e-1

	9.0.final
	01-Dec-2011
	Duffy O’Craven
	· Updated from 9.0.15 to 9.0.final, accepting all change tracking

	12.0.1
	25-Jul-2012
	Lori Tribble
	· Applied Errata 9.0 7/19/2012

· Applied Addendum 9.0-a

· Applied Addendum 9.0-b

· Applied Addendum 9.0-c

· Applied Errata 12.0 7/23/2012

	12.0.2
	02-Aug-2012
	Lori Tribble
	· Applied Errata-BTL Test Package 9.0 plus addenda 8/02/2012 (includes above Errata which was not published)

	12.0.final
	02-Aug-2012
	Lori Tribble
	· Accepted all changes and Changed Name

Reference Router

Node Address <A>

ARCNET twisted pair bus

Node Address

Node Address <C>

IUT

Reference Device

TD

Va-Vb

Fail-Safe Bias

0 Volts

Va-Vb

Interpulse Period

0 Volts

Pulse Width

� EMBED Visio.Drawing.5 ���

PAGE
BACnet is a registered trademark of ASHRAE. ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed products to the requirements of ASHRAE Standard 135 is the responsibility of BACnet International (BI). BTL is a registered trademark of BI.

_1054066781.txt
EDGE Diagram File

Version 3.0

Globals Section:

X -106

Y -78

Scale 80

PosterRows 1

PosterCols 1

Color1 255,255,255

Color2 192,192,192

Color3 130,130,130

Color4 0,0,0

Color5 0,255,255

Color6 0,0,255

Color7 0,0,160

Color8 128,0,128

Color9 255,128,0

Color10 255,0,0

Color11 128,0,64

Color12 128,64,0

Color13 0,255,0

Color14 0,128,0

Color15 128,128,255

Color16 255,255,0

GridX 32

GridY 32

SnapX 16

SnapY 16

ShadowColor 4,4,4

ShadowX 7

ShadowY 7

ShowGrid TRUE

AlignToGrid TRUE

SmartConnect TRUE

SBarWidth 128

SBarFigCols 2

SBarLblCols 1

SBarConCols 1

SBarFigHeight 32

SBarLblHeight 32

SBarConHeight 20

Parent ""

TranspBMPs TRUE

TranspColor 255,255,255

LastEnd "block"

LastEndLen 36

DevMode 488

{

 4E 45 43 20 53 75 70 65 72 53 63 72 69 70 74 20

 38 36 30 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 04 00 03 94 00 54 01 03 F7 00 00 01 00 01 00

 EA 0A 6F 08 64 00 01 00 02 00 58 02 01 00 01 00

 58 02 02 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 FC 12 00 00

 D8 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 03 44 02 00 00 00 00 00 00 01 00

 03 00 58 02 58 02 01 00 02 00 00 00 01 00 00 14

 41 46 4C 4F 57 00 52 45 00 00 00 00 00 00 C0 00

 80 80 01 00 01 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 02 00 00 00 00 01 41 72 69 61 6C 00 72 20

 4E 65 77 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 20 03 90 01 00 00 02 00

 E0 00 02 00 04 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 09 00 00 00 00 00 4C 50

 54 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4E 45

 43 38 36 30 00 00 00 00

}

DevNames 60

{

 08 00 11 00 25 00 01 00 77 69 6E 73 70 6F 6F 6C

 00 4E 45 43 20 53 75 70 65 72 53 63 72 69 70 74

 20 38 36 30 00 4C 50 54 31 3A 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00

}

Preview 14968

{

 42 4D 76 3A 00 00 00 00 00 00 36 04 00 00 28 00

 00 00 70 00 00 00 7C 00 00 00 01 00 08 00 00 00

 00 00 00 00 00 00 CD 0E 00 00 CD 0E 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 40 00 00 00 80 00

 00 00 FF 00 00 00 00 20 00 00 40 20 00 00 80 20

 00 00 FF 20 00 00 00 40 00 00 40 40 00 00 80 40

 00 00 FF 40 00 00 00 60 00 00 40 60 00 00 80 60

 00 00 FF 60 00 00 00 80 00 00 40 80 00 00 80 80

 00 00 FF 80 00 00 00 A0 00 00 40 A0 00 00 80 A0

 00 00 FF A0 00 00 00 C0 00 00 40 C0 00 00 80 C0

 00 00 FF C0 00 00 00 FF 00 00 40 FF 00 00 80 FF

 00 00 FF FF 00 00 00 00 20 00 40 00 20 00 80 00

 20 00 FF 00 20 00 00 20 20 00 40 20 20 00 80 20

 20 00 FF 20 20 00 00 40 20 00 40 40 20 00 80 40

 20 00 FF 40 20 00 00 60 20 00 40 60 20 00 80 60

 20 00 FF 60 20 00 00 80 20 00 40 80 20 00 80 80

 20 00 FF 80 20 00 00 A0 20 00 40 A0 20 00 80 A0

 20 00 FF A0 20 00 00 C0 20 00 40 C0 20 00 80 C0

 20 00 FF C0 20 00 00 FF 20 00 40 FF 20 00 80 FF

 20 00 FF FF 20 00 00 00 40 00 40 00 40 00 80 00

 40 00 FF 00 40 00 00 20 40 00 40 20 40 00 80 20

 40 00 FF 20 40 00 00 40 40 00 40 40 40 00 80 40

 40 00 FF 40 40 00 00 60 40 00 40 60 40 00 80 60

 40 00 FF 60 40 00 00 80 40 00 40 80 40 00 80 80

 40 00 FF 80 40 00 00 A0 40 00 40 A0 40 00 80 A0

 40 00 FF A0 40 00 00 C0 40 00 40 C0 40 00 80 C0

 40 00 FF C0 40 00 00 FF 40 00 40 FF 40 00 80 FF

 40 00 FF FF 40 00 00 00 60 00 40 00 60 00 80 00

 60 00 FF 00 60 00 00 20 60 00 40 20 60 00 80 20

 60 00 FF 20 60 00 00 40 60 00 40 40 60 00 80 40

 60 00 FF 40 60 00 00 60 60 00 40 60 60 00 80 60

 60 00 FF 60 60 00 00 80 60 00 40 80 60 00 80 80

 60 00 FF 80 60 00 00 A0 60 00 40 A0 60 00 80 A0

 60 00 FF A0 60 00 00 C0 60 00 40 C0 60 00 80 C0

 60 00 FF C0 60 00 00 FF 60 00 40 FF 60 00 80 FF

 60 00 FF FF 60 00 00 00 80 00 40 00 80 00 80 00

 80 00 FF 00 80 00 00 20 80 00 40 20 80 00 80 20

 80 00 FF 20 80 00 00 40 80 00 40 40 80 00 80 40

 80 00 FF 40 80 00 00 60 80 00 40 60 80 00 80 60

 80 00 FF 60 80 00 00 80 80 00 40 80 80 00 80 80

 80 00 FF 80 80 00 00 A0 80 00 40 A0 80 00 80 A0

 80 00 FF A0 80 00 00 C0 80 00 40 C0 80 00 80 C0

 80 00 FF C0 80 00 00 FF 80 00 40 FF 80 00 80 FF

 80 00 FF FF 80 00 00 00 A0 00 40 00 A0 00 80 00

 A0 00 FF 00 A0 00 00 20 A0 00 40 20 A0 00 80 20

 A0 00 FF 20 A0 00 00 40 A0 00 40 40 A0 00 80 40

 A0 00 FF 40 A0 00 00 60 A0 00 40 60 A0 00 80 60

 A0 00 FF 60 A0 00 00 80 A0 00 40 80 A0 00 80 80

 A0 00 FF 80 A0 00 00 A0 A0 00 40 A0 A0 00 80 A0

 A0 00 FF A0 A0 00 00 C0 A0 00 40 C0 A0 00 80 C0

 A0 00 FF C0 A0 00 00 FF A0 00 40 FF A0 00 80 FF

 A0 00 FF FF A0 00 00 00 C0 00 40 00 C0 00 80 00

 C0 00 FF 00 C0 00 00 20 C0 00 40 20 C0 00 80 20

 C0 00 FF 20 C0 00 00 40 C0 00 40 40 C0 00 80 40

 C0 00 FF 40 C0 00 00 60 C0 00 40 60 C0 00 80 60

 C0 00 FF 60 C0 00 00 80 C0 00 40 80 C0 00 80 80

 C0 00 FF 80 C0 00 00 A0 C0 00 40 A0 C0 00 80 A0

 C0 00 FF A0 C0 00 00 C0 C0 00 40 C0 C0 00 80 C0

 C0 00 FF C0 C0 00 00 FF C0 00 40 FF C0 00 80 FF

 C0 00 FF FF C0 00 00 00 FF 00 40 00 FF 00 80 00

 FF 00 FF 00 FF 00 00 20 FF 00 40 20 FF 00 80 20

 FF 00 FF 20 FF 00 00 40 FF 00 40 40 FF 00 80 40

 FF 00 FF 40 FF 00 00 60 FF 00 40 60 FF 00 80 60

 FF 00 FF 60 FF 00 00 80 FF 00 40 80 FF 00 80 80

 FF 00 FF 80 FF 00 00 A0 FF 00 40 A0 FF 00 80 A0

 FF 00 FF A0 FF 00 00 C0 FF 00 40 C0 FF 00 80 C0

 FF 00 FF C0 FF 00 00 FF FF 00 40 FF FF 00 80 FF

 FF 00 FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 92 B6

 92 92 92 92 6D 92 92 FF 92 92 92 6D 92 6D B6 92

 92 B6 92 B6 92 FF FF B6 92 B6 B6 B6 FF FF FF FF

 FF FF FF FF FF FF 92 B6 92 92 92 92 6D 92 92 FF

 92 92 92 6D 92 6D B6 92 92 B6 92 B6 92 FF FF B6

 92 B6 92 B6 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 92 92

 B6 92 92 92 6D 92 6D FF B6 6D 92 6D 92 6D 92 92

 6D 92 92 92 92 FF 92 B6 6D 92 B6 B6 6D FF FF FF

 FF FF FF FF FF FF 92 92 B6 92 92 92 6D 92 6D FF

 B6 6D 92 6D 92 6D 92 92 6D 92 92 92 92 FF 92 B6

 B6 FF FF B6 6D FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 92 FF

 B6 FF FF FF 92 FF FF FF FF FF FF 92 FF 92 FF FF

 FF FF FF FF FF FF FF B6 92 B6 B6 B6 FF FF FF FF

 FF FF FF FF FF FF 92 FF B6 FF FF FF 92 FF FF FF

 FF FF FF 92 FF 92 FF FF FF FF FF FF FF FF FF B6

 B6 92 B6 B6 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF

 FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF FF FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF 00 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 FF 00 FF FF FF FF FF FF FF FF

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF 92 92 B6 92 FF 92 FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF 92 FF 92 92 92 92 92 92 B6 92 92 B6 92

 92 92 92 92 FF 92 92 B6 92 92 B6 92 92 92 92 B6

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF 92 92 FF B6 FF 92 FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF 92 92 B6 92 6D 6D 92 6D 92 92 6D 92 92

 92 B6 92 6D FF 92 B6 92 B6 6D 92 92 6D 92 6D 92

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF 92 92 FF B6 B6 92 FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF 92 B6 B6 FF FF 92 FF FF FF FF FF FF FF

 FF FF FF FF FF 92 FF 92 FF FF FF FF B6 FF FF FF

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF

 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 92 92 B6 92 B6 B6 B6 FF 92 92

 FF FF FF 92 B6 92 92 92 92 92 92 B6 92 92 B6 92

 92 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 92 B6 92 B6 92 B6 B6 FF 92 92

 B6 B6 FF 92 92 B6 92 6D 6D 92 92 B6 92 92 92 6D

 92 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 92 FF 92 92 92 B6 B6 B6 92 92

 B6 B6 FF 92 FF B6 FF FF B6 FF FF FF FF FF FF 92

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF B6 92 6D B6

 B6 6D B6 B6 6D B6 B6 B6 92 B6 6D B6 FF B6 92 92

 B6 92 B6 B6 6D B6 B6 FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF 92 B6 92 92 92 92 6D 92 92 FF 92 92

 FF 92 6D 92 6D B6 92 92 B6 92 B6 92 FF FF B6 92

 B6 92 B6 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF 92 92 B6 B6

 92 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 FF 92 92 B6

 B6 B6 B6 92 B6 B6 B6 FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF 92 92 B6 92 92 92 6D 92 6D FF B6 6D

 FF 92 6D 92 6D 92 92 6D 92 92 92 92 FF 92 B6 92

 92 FF B6 6D FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF 00 00 00 FF B6 B6 FF FF

 B6 FF FF FF FF FF FF FF FF FF FF FF FF B6 B6 FF

 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF 92 FF B6 FF FF FF 92 FF FF FF FF FF

 FF FF 92 FF 92 FF FF FF FF FF FF FF FF FF B6 FF

 92 FF B6 FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF 00 00 00 FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF FF 00 00 FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF 00 FF FF FF FF FF FF FF

 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF FF 92 92 B6 B6 FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF FF 92 92 FF 92 FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF B6 92 92 B6 B6 FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00

 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

 FF FF FF FF FF FF 00 00

}

Figure Symbols Section:

FigureSymbol "computer4"

{

 FixedAspect TRUE

 Height 128

 Width 128

 TextBox 125,125,875,625

 Fill

 {

 Polygon 13 0,0 1000,0 1000,750 750,750 750,850 1000,850 1000,1000 0,1000-

 0,850 250,850 250,750 0,750 0,0

 }

 Outline

 {

 Polyline 13 0,0 1000,0 1000,750 750,750 750,850 1000,850 1000,1000 0,1000-

 0,850 250,850 250,750 0,750 0,0

 Line 250,750 750,750

 Line 250,850 750,850

 Rect 100,100,900,650

 Rect 125,925,250,950

 Rect 900,700,925,725

 }

 Hot 13 0,0 1000,0 1000,750 750,750 750,850 1000,850 1000,1000 0,1000-

 0,850 250,850 250,750 0,750 0,0

}

FigureSymbol "printer4"

{

 FixedAspect TRUE

 Height 128

 Width 192

 Fill

 {

 Polygon 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-

 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-

 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0

 }

 Outline

 {

 Polyline 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-

 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-

 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0

 Line 0,300 100,300

 Line 700,500 700,750

 Line 100,950 200,950

 Line 500,950 600,950

 Rect 80,375,575,425

 Rect 200,575,475,650

 Rect 200,725,475,800

 }

 Hot 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-

 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-

 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0

}

FigureSymbol "printer2"

{

 FixedAspect TRUE

 Height 48

 Width 192

 Fill

 {

 Polygon 15 0,0 770,0 840,300 770,300 770,450 1000,450 1000,600 770,650-

 770,850 720,850 720,1000 50,1000 50,850 0,850 0,0

 }

 Outline

 {

 Polyline 15 0,0 770,0 840,300 770,300 770,450 1000,450 1000,600 770,650-

 770,850 720,850 720,1000 50,1000 50,850 0,850 0,0

 Line 720,850 50,850

 Line 650,0 650,850

 Line 0,150 650,150

 }

 Hot 15 0,0 770,0 840,300 770,300 770,450 1000,450 1000,600 770,650-

 770,850 720,850 720,1000 50,1000 50,850 0,850 0,0

}

FigureSymbol "hub1"

{

 FixedAspect TRUE

 Height 48

 Width 200

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 0,150 1000,150

 Rect 50,475,100,650

 Rect 900,475,950,650

 Rect 825,475,875,650

 Rect 750,475,800,650

 Rect 675,475,725,650

 Rect 600,475,650,650

 Rect 525,475,575,650

 Rect 450,475,500,650

 Rect 375,475,425,650

 }

}

FigureSymbol "hub2"

{

 FixedAspect TRUE

 Height 80

 Width 256

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 35,150 35,850

 Line 965,150 965,850

 Rect 70,100,930,400

 Rect 70,450,930,750

 Rect 850,175,900,325

 Rect 775,175,825,325

 Rect 700,175,750,325

 Rect 625,175,675,325

 Rect 550,175,600,325

 Rect 475,175,525,325

 Rect 400,175,450,325

 Rect 325,175,375,325

 Rect 250,175,300,325

 Rect 175,175,225,325

 Rect 100,175,150,325

 Rect 850,525,900,675

 Rect 775,525,825,675

 Rect 700,525,750,675

 Rect 625,525,675,675

 Rect 550,525,600,675

 Rect 475,525,525,675

 Rect 400,525,450,675

 Rect 325,525,375,675

 Rect 250,525,300,675

 Rect 175,525,225,675

 Rect 100,525,150,675

 Rect 900,850,930,950

 Rect 840,850,870,950

 Rect 780,850,810,950

 }

}

FigureSymbol "device1"

{

 FixedAspect TRUE

 Height 50

 Width 200

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Rect 50,200,100,350

 Rect 50,600,700,800

 Line 775,150 775,850

 Line 850,150 850,850

 Line 925,150 925,850

 }

}

FigureSymbol "server5"

{

 FixedAspect TRUE

 Height 67

 Width 230

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 0,100 1000,100

 Rect 900,150,950,400

 Rect 650,500,950,900

 Rect 745,660,855,740

 Line 690,700 910,700

 Rect 50,250,75,900

 Rect 100,250,125,900

 Rect 150,250,175,900

 Rect 200,250,225,900

 Rect 250,250,275,900

 Rect 300,250,325,900

 Rect 350,250,375,900

 }

}

FigureSymbol "server2"

{

 FixedAspect TRUE

 Height 204

 Width 102

 TextBox 150,675,850,925

 Fill

 {

 Polygon 9 0,0 1000,0 1000,950 925,950 925,1000 75,1000 75,950 0,950-

 0,0

 }

 Outline

 {

 Polyline 9 0,0 1000,0 1000,950 925,950 925,1000 75,1000 75,950 0,950-

 0,0

 Line 100,950 900,950

 Line 0,100 1000,100

 Rect 150,175,850,575

 Rect 750,600,850,650

 Rect 550,600,650,650

 Rect 150,600,450,650

 Line 150,275 850,275

 Line 150,375 850,375

 Line 150,475 850,475

 }

 Hot 9 0,0 1000,0 1000,950 925,950 925,1000 75,1000 75,950 0,950-

 0,0

}

FigureSymbol "mainframe1"

{

 FixedAspect TRUE

 Height 204

 Width 455

 Fill

 {

 Rect 0,0,1000,975

 }

 Outline

 {

 Rect 0,0,1000,975

 Rect 10,975,40,1000

 Rect 960,975,990,1000

 Rect 406,975,436,1000

 Rect 590,975,620,1000

 Line 0,50 1000,50

 Line 184,50 184,975

 Line 421,50 421,975

 Line 605,50 605,975

 Line 816,50 816,975

 Line 184,125 421,125

 Line 184,875 421,875

 Line 605,125 816,125

 Line 605,875 816,875

 Rect 481,175,545,300

 Polyline 4 605,350 640,350 640,550 605,550

 }

 Hot 5 0,0 0,975 1000,975 1000,0 0,0

}

FigureSymbol "modem3"

{

 FixedAspect TRUE

 Height 56

 Width 128

 Fill

 {

 RoundRect 0,0,1000,1000 300,300

 Polygon 4 0,550 200,0 800,0 1000,550

 }

 Outline

 {

 RoundRect 0,500,1000,1000 300,300

 Polyline 4 0,550 200,0 800,0 1000,550

 Rect 100,600,200,700

 Rect 100,800,450,900

 Rect 500,800,900,900

 }

 Hot 7 0,1000 0,550 200,0 800,0 1000,550 1000,1000 0,1000

}

FigureSymbol "mini2"

{

 FixedAspect TRUE

 Height 204

 Width 256

 Fill

 {

 Polygon 10 0,1000 0,50 100,50 100,0 100,0 850,0 850,50 1000,50-

 1000,1000 0,1000

 }

 Outline

 {

 Polyline 10 0,1000 0,50 100,50 100,0 100,0 850,0 850,50 1000,50-

 1000,1000 0,1000

 Line 100,50 100,1000

 Line 850,50 850,1000

 Line 0,950 100,950

 Line 850,950 1000,950

 Rect 675,150,750,250

 Rect 675,350,750,550

 Line 150,0 150,1000

 Line 500,0 500,1000

 Line 150,100 500,100

 Line 150,200 500,200

 Line 150,300 500,300

 Line 150,400 500,400

 Line 150,500 500,500

 Line 150,600 500,600

 Line 150,700 500,700

 Line 150,800 500,800

 Line 150,900 500,900

 }

 Hot 10 0,1000 0,50 100,50 100,0 100,0 850,0 850,50 1000,50-

 1000,1000 0,1000

}

FigureSymbol "phone1"

{

 FixedAspect TRUE

 Height 96

 Width 128

 Fill

 {

 Polygon 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-

 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-

 0,400

 Polygon 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-

 675,250 675,400 850,750 850,1000 150,1000

 }

 Outline

 {

 Polyline 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-

 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-

 0,400

 Polyline 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-

 675,250 675,400 850,750 850,1000 150,1000

 Rect 375,550,425,625

 Rect 475,550,525,625

 Rect 575,550,625,625

 Rect 375,675,425,750

 Rect 475,675,525,750

 Rect 575,675,625,750

 Rect 375,800,425,875

 Rect 475,800,525,875

 Rect 575,800,625,875

 }

 Hot 15 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-

 675,400 850,750 850,1000 150,1000 150,750 325,400 0,400

}

FigureSymbol "phone2"

{

 FixedAspect TRUE

 Height 128

 Width 130

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 400,0 400,1000

 Line 152,180 96,140

 Line 248,180 304,140

 Arc 75,90,325,370 248,370 152,370

 Rect 152,180,248,800

 Arc 75,630,325,910 152,630 248,630

 Line 152,820 96,860

 Line 248,820 304,860

 Line 400,150 1000,150

 Rect 500,500,900,900

 Line 500,600 900,600

 Line 500,700 900,700

 Line 500,800 900,800

 Line 600,500 600,900

 Line 700,500 700,900

 Line 800,500 800,900

 }

}

FigureSymbol "phone3"

{

 FixedAspect TRUE

 Height 128

 Width 180

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 290,0 290,1000

 Line 290,150 1000,150

 Line 105,180 65,140

 Line 175,180 215,140

 Arc 50,90,230,370 175,370 105,370

 Rect 105,180,175,820

 Arc 50,630,230,910 105,630 175,630

 Line 105,820 65,860

 Line 175,820 215,860

 Rect 350,500,650,900

 Line 350,600 650,600

 Line 350,700 650,700

 Line 350,800 650,800

 Line 425,500 425,900

 Line 500,500 500,900

 Line 575,500 575,900

 Rect 725,200,925,900

 Line 825,200 825,900

 Line 725,300 925,300

 Line 725,400 925,400

 Line 725,500 925,500

 Line 725,600 925,600

 Line 725,700 925,700

 Line 725,800 925,800

 }

}

FigureSymbol "fax"

{

 FixedAspect TRUE

 Height 160

 Width 225

 TextBox 382,50,850,275

 Fill

 {

 Polygon 9 0,1000 0,200 332,200 332,0 900,0 900,200 1000,200 1000,1000-

 0,1000

 }

 Outline

 {

 Polyline 9 0,1000 0,200 332,200 332,0 900,0 900,200 1000,200 1000,1000-

 0,1000

 Polyline 4 332,200 332,325 900,325 900,200

 Line 232,250 332,250

 Line 900,250 1000,250

 Line 232,200 232,1000

 Line 300,75 300,250

 Line 300,163 332,163

 Line 932,75 932,250

 Line 900,163 932,163

 Rect 302,400,930,750

 Line 302,450 930,450

 Line 302,700 930,700

 Line 380,400 380,750

 Line 460,400 460,750

 Line 540,400 540,750

 Line 620,400 620,750

 Line 700,400 700,750

 Line 780,400 780,750

 Line 860,400 860,750

 Rect 302,830,500,930

 Rect 700,830,930,930

 Line 860,830 860,930

 Line 780,830 780,930

 Line 84,344 52,312

 Line 140,344 172,312

 Arc 40,272,184,496 140,496 84,496

 Rect 84,344,140,856

 Arc 40,704,184,928 84,704 140,704

 Line 84,856 52,888

 Line 140,856 172,888

 }

 Hot 9 0,1000 0,200 332,200 332,0 900,0 900,200 1000,200 1000,1000-

 0,1000

}

FigureSymbol "mainframe4"

{

 FixedAspect TRUE

 Height 204

 Width 279

 Fill

 {

 Polygon 7 0,1000 0,100 100,0 900,0 1000,100 1000,1000 0,1000

 }

 Outline

 {

 Polyline 7 0,1000 0,100 100,0 900,0 1000,100 1000,1000 0,1000

 Line 0,100 1000,100

 Line 0,175 1000,175

 Line 333,175 333,1000

 Line 666,175 666,1000

 Rect 25,125,220,155

 Line 0,750 1000,750

 Line 0,775 1000,775

 Line 0,800 1000,800

 Line 0,825 1000,825

 }

 Hot 7 0,1000 0,100 100,0 900,0 1000,100 1000,1000 0,1000

}

FigureSymbol "server3"

{

 FixedAspect TRUE

 Height 204

 Width 128

 Fill

 {

 Rect 250,0,750,1000

 }

 Outline

 {

 Rect 250,0,750,1000

 Polyline 3 250,960 0,1000 250,1000

 Polyline 3 750,960 1000,1000 750,1000

 Rect 325,50,675,650

 Line 325,60 675,60

 Rect 440,95,560,125

 Line 380,112 620,112

 Line 325,160 675,160

 Rect 575,275,625,300

 Line 325,325 675,325

 }

 Hot 5 250,0 750,0 750,1000 250,1000 250,0

}

FigureSymbol "cloud"

{

 FixedAspect FALSE

 Height 0

 Width 0

 TextBox 200,200,800,800

 Fill

 {

 Ellipse 84,114,672,702

 Ellipse 421,89,859,527

 Ellipse 573,286,995,708

 Ellipse 263,492,721,950

 Ellipse 0,528,423,952

 }

 Outline

 {

 Arc 84,114,672,702 500,140 120,550

 Arc 421,89,859,527 860,300 500,140

 Arc 573,286,995,708 720,700 860,300

 Arc 263,492,721,950 350,900 720,700

 Arc 0,528,423,952 120,550 350,900

 }

 Hot 40 350,900 363,915 447,950 538,950 622,915 686,851 721,767 720,700-

 743,708 826,708 904,676 963,617 995,539 995,456 963,378 904,319-

 860,300 859,265 826,185 764,123 684,90 597,90 517,123 500,140-

 436,115 321,115 212,160 130,242 85,351 85,466 120,550 92,561-

 33,621 1,699 1,782 33,860 92,920 170,952 253,952 350,900

}

FigureSymbol "server4"

{

 FixedAspect TRUE

 Height 67

 Width 230

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Rect 650,100,950,500

 Rect 745,260,855,340

 Line 690,300 910,300

 Rect 650,500,950,900

 Rect 745,660,855,740

 Line 690,700 910,700

 Rect 50,150,100,400

 Rect 150,150,200,400

 Rect 250,150,300,400

 }

}

FigureSymbol "computer5"

{

 FixedAspect TRUE

 Height 100

 Width 128

 Fill

 {

 RoundRect 150,0,850,650 150,150

 Rect 0,700,1000,1000

 }

 Outline

 {

 RoundRect 150,0,850,650 150,150

 Rect 225,70,775,575

 Rect 0,700,1000,1000

 Rect 775,600,800,625

 Rect 75,750,100,950

 Rect 150,750,175,950

 Rect 225,750,250,950

 Rect 300,750,325,950

 Rect 375,750,400,950

 Rect 450,750,475,950

 Rect 650,800,950,950

 Rect 750,850,850,900

 Line 650,875 950,875

 }

 Hot 9 150,0 850,0 850,700 1000,700 1000,1000 0,1000 0,700 150,700-

 150,0

}

FigureSymbol "hub3"

{

 FixedAspect TRUE

 Height 32

 Width 256

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Rect 32,225,96,775

 Rect 128,225,192,775

 Rect 224,225,288,775

 Rect 320,225,384,775

 Rect 416,225,480,775

 Rect 512,225,576,775

 Rect 608,225,672,775

 Rect 704,225,768,775

 Rect 800,225,864,775

 Rect 896,225,960,775

 }

}

FigureSymbol "process"

{

 FixedAspect FALSE

 Height 0

 Width 0

 TextBox >100,>100,<900,<900

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 }

}

FigureSymbol "mainframe3"

{

 FixedAspect TRUE

 Height 204

 Width 158

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 0,25 1000,25

 Line 0,50 1000,50

 Line 0,75 1000,75

 Line 0,100 1000,100

 Line 333,100 333,1000

 Line 0,750 333,750

 Rect 63,250,260,350

 Line 90,250 90,350

 Rect 63,375,260,475

 Line 90,375 90,475

 Line 227,375 227,475

 Rect 63,575,260,675

 Line 90,575 90,675

 Line 227,575 227,675

 Line 63,475 63,575

 Line 260,475 260,575

 Rect 135,500,182,550

 Line 158,475 158,500

 Line 158,550 158,575

 Rect 400,175,850,400

 Rect 400,425,850,650

 Rect 450,210,700,285

 Rect 450,285,700,360

 Rect 750,320,800,360

 }

}

FigureSymbol "computer6"

{

 FixedAspect TRUE

 Height 130

 Width 200

 Fill

 {

 Polygon 9 280,0 800,0 800,677 1000,930 1000,1000 480,1000 0,660 0,255-

 280,0

 }

 Outline

 {

 Polyline 9 280,0 800,0 800,677 1000,930 1000,1000 480,1000 0,660 0,255-

 280,0

 Rect 355,70,725,607

 Polyline 4 280,0 280,677 480,930 480,1000

 Line 480,930 1000,930

 Line 280,677 800,677

 }

 Hot 9 280,0 800,0 800,677 1000,930 1000,1000 480,1000 0,660 0,255-

 280,0

}

FigureSymbol "rounded box 2"

{

 FixedAspect FALSE

 Height 128

 Width 192

 TextBox >100,>100,<900,<900

 Fill

 {

 Rect >150,0,<850,1000

 Rect 0,>150,1000,<850

 Ellipse 0,0,>300,>300

 Ellipse <700,0,1000,>300

 Ellipse <700,<700,1000,1000

 Ellipse 0,<700,>300,1000

 }

 Outline

 {

 Arc 0,0,>300,>300 >150,0 0,>150

 Line >150,0 <850,0

 Arc <700,0,1000,>300 1000,>150 <850,0

 Line 1000,>150 1000,<850

 Arc <700,<700,1000,1000 <850,1000 1000,<850

 Line >150,1000 <850,1000

 Arc 0,<700,>300,1000 0,<850 >150,1000

 Line 0,>150 0,<850

 }

 MiniOutline

 {

 Arc 0,0,>500,>500 >250,0 0,>250

 Line >250,0 <750,0

 Arc <500,0,1000,>500 1000,>250 <750,0

 Line 1000,>250 1000,<750

 Arc <500,<500,1000,1000 <750,1000 1000,<750

 Line >250,1000 <750,1000

 Arc 0,<500,>500,1000 0,<750 >250,1000

 Line 0,>250 0,<750

 }

 Hot 21 <874,1000 <919,<985 <957,<957 <985,<919 1000,<874 1000,>127 <985,>82 <957,>44-

 <919,>16 <874,0 >127,0 >82,>16 >44,>44 >16,>82 0,>127 0,<874-

 >16,<919 >44,<957 >82,<985 >127,1000 <874,1000

}

FigureSymbol "arrow left/right 1"

{

 FixedAspect FALSE

 Height 96

 Width 256

 TextBox >300,>250,<700,<750

 Fill

 {

 Polygon 11 0,500 >300,0 >300,>200 <700,>200 <700,0 1000,500 <700,1000 <700,<800-

 >300,<800 >300,1000 0,500

 }

 Outline

 {

 Polyline 11 0,500 >300,0 >300,>200 <700,>200 <700,0 1000,500 <700,1000 <700,<800-

 >300,<800 >300,1000 0,500

 }

 Hot 11 0,500 >300,0 >300,>200 <700,>200 <700,0 1000,500 <700,1000 <700,<800-

 >300,<800 >300,1000 0,500

}

FigureSymbol "box 3d"

{

 FixedAspect FALSE

 Height 0

 Width 0

 TextBox >100,>100,<850,<850

 Fill

 {

 Rect 0,0,<900,<900

 Rect >100,>100,1000,1000

 Polygon 4 <900,0 1000,>100 <900,>100 <900,0

 Polygon 4 0,<900 >100,1000 >100,<900 0,<900

 }

 Outline

 {

 Rect 0,0,<900,<900

 Polyline 5 <900,0 1000,>100 1000,1000 >100,1000 0,<900

 Line <900,<900 1000,1000

 }

 MiniOutline

 {

 Rect 0,0,<800,<800

 Polyline 5 <800,0 1000,>200 1000,1000 >200,1000 0,<800

 Line <800,<800 1000,1000

 }

 Hot 7 0,0 <900,0 1000,>100 1000,1000 >100,1000 0,<900 0,0

}

FigureSymbol "wireless2"

{

 FixedAspect FALSE

 Height 115

 Width 192

 TextBox 50,500,950,950

 Fill

 {

 Rect 0,450,1000,1000

 }

 Outline

 {

 Rect 0,450,1000,1000

 Ellipse 125,100,175,200

 Line 150,200 150,450

 Arc 75,0,225,300 225,300 185,25

 Arc 75,0,225,300 115,25 75,300

 Arc 150,0,295,380 285,300 245,0

 Arc 5,0,150,380 55,0 25,300

 }

 Hot 5 0,450 1000,450 1000,1000 0,1000 0,450

}

FigureSymbol "computer3"

{

 FixedAspect TRUE

 Height 92

 Width 128

 TextBox 250,95,750,550

 Fill

 {

 Rect 150,0,850,650

 Polygon 7 0,1000 0,950 150,700 850,700 1000,950 1000,1000 0,1000

 }

 Outline

 {

 Rect 150,0,850,650

 RoundRect 225,70,775,575 150,150

 Polyline 7 0,1000 0,950 150,700 850,700 1000,950 1000,1000 0,1000

 Line 0,950 1000,950

 Polyline 5 100,900 200,750 600,750 600,900 100,900

 Polyline 5 675,900 675,750 800,750 900,900 675,900

 }

 Hot 9 0,1000 0,950 150,700 150,0 850,0 850,700 1000,950 1000,1000-

 0,1000

}

FigureSymbol "device1a"

{

 FixedAspect TRUE

 Height 50

 Width 200

 TextBox 150,50,750,950

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Rect 50,200,100,350

 Line 775,150 775,850

 Line 850,150 850,850

 Line 925,150 925,850

 }

}

FigureSymbol "hub1a"

{

 FixedAspect TRUE

 Height 48

 Width 200

 TextBox 150,200,950,950

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 0,150 1000,150

 Rect 50,475,100,650

 }

}

FigureSymbol "hub2a"

{

 FixedAspect TRUE

 Height 80

 Width 256

 TextBox 85,50,915,800

 Fill

 {

 Rect 0,0,1000,1000

 }

 Outline

 {

 Rect 0,0,1000,1000

 Line 35,150 35,850

 Line 965,150 965,850

 Rect 900,850,930,950

 Rect 840,850,870,950

 Rect 780,850,810,950

 }

}

FigureSymbol "phone1a"

{

 FixedAspect TRUE

 Height 96

 Width 128

 TextBox 200,550,800,950

 Fill

 {

 Polygon 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-

 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-

 0,400

 Polygon 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-

 675,250 675,400 850,750 850,1000 150,1000

 }

 Outline

 {

 Polyline 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-

 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-

 0,400

 Polyline 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-

 675,250 675,400 850,750 850,1000 150,1000

 }

 Hot 15 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-

 675,400 850,750 850,1000 150,1000 150,750 325,400 0,400

}

FigureSymbol "printer4a"

{

 FixedAspect TRUE

 Height 128

 Width 192

 TextBox 50,350,650,900

 Fill

 {

 Polygon 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-

 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-

 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0

 }

 Outline

 {

 Polyline 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-

 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-

 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0

 Line 0,300 100,300

 Line 700,500 700,750

 Line 100,950 200,950

 Line 500,950 600,950

 }

 Hot 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-

 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-

 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0

}

End Symbols Section:

Figure Styles Section:

FigureStyle "Title"

{

 Label TRUE

 Height 172

 Width 256

 BindToStyle FALSE

 TextFormat 0x0042

 Behavior 0x000251E2

 Symbol "lbl"

 TypeSize 14

 TypeWeight 700

}

FigureStyle "Box"

{

 Height 128

 Width 192

 BorderWidth 3

 TextFormat 0x0022

 Behavior 0x00024E12

 Symbol "process"

}

FigureStyle "Box 2"

{

 Height 128

 Width 192

 BorderWidth 3

 TextFormat 0x0022

 Behavior 0x00024E12

 Symbol "rounded box 2"

}

FigureStyle "Misc Box"

{

 Height 89

 Width 192

 Description "Miscellaneous hardware"

 BorderWidth 3

 TextFormat 0x0022

 Behavior 0x00024E12

 Symbol "box 3d"

}

FigureStyle "External Entity"

{

 Height 160

 Width 320

 BorderWidth 3

 Shadow TRUE

 TextFormat 0x0022

 Behavior 0x00024012

 Symbol "cloud"

}

FigureStyle "Workstation"

{

 HasButton TRUE

 Height 128

 Width 128

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "computer4"

}

FigureStyle "Workstation 2"

{

 HasButton TRUE

 Height 100

 Width 128

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "computer5"

}

FigureStyle "Server"

{

 HasButton TRUE

 Height 204

 Width 102

 Description "Network File/Application Server"

 DefaultText "Server"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "server2"

 TypeWeight 400

}

FigureStyle "Server 2"

{

 HasButton TRUE

 Height 204

 Width 128

 Description "Network File/Application Server"

 DefaultText "Server"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "server3"

 TypeWeight 400

}

FigureStyle "Printer"

{

 InMenu FALSE

 Height 128

 Width 192

 DefaultText "Network\line Printer"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "printer4"

 TypeWeight 400

}

FigureStyle "Printer 2"

{

 HasButton TRUE

 Height 48

 Width 192

 DefaultText "Printer"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "printer2"

 TypeWeight 400

}

FigureStyle "Printer 3"

{

 HasButton TRUE

 Height 128

 Width 192

 DefaultText "Network\line Printer"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "printer4a"

 TypeWeight 400

}

FigureStyle "Hub"

{

 InMenu FALSE

 Height 48

 Width 200

 Description "Standard hub (10Mb/s)"

 DefaultText "Hub - 10 mb/s"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "hub1"

 TypeWeight 400

}

FigureStyle "100 Hub"

{

 InMenu FALSE

 Height 48

 Width 153

 Description "100 Mb/s Hub"

 DefaultText "Hub"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "hub2"

 TypeWeight 400

}

FigureStyle "Hub 2"

{

 HasButton TRUE

 Height 48

 Width 200

 Description "Standard hub (10Mb/s)"

 DefaultText "Hub - 10 mb/s"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "hub1a"

 TypeSize 7

 TypeWeight 400

}

FigureStyle "100 Hub 2"

{

 HasButton TRUE

 Height 48

 Width 153

 Description "100 Mb/s Hub"

 DefaultText "Hub - 100 Mb/s"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "hub2a"

 TypeSize 7

 TypeWeight 400

}

FigureStyle "Mainframe"

{

 HasButton TRUE

 Height 204

 Width 455

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "mainframe1"

}

FigureStyle "PBX Phone System"

{

 HasButton TRUE

 Height 204

 Width 256

 Description "Phone Switch (PBX)"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "mini2"

}

FigureStyle "MiniComputer"

{

 Height 204

 Width 158

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "mainframe3"

}

FigureStyle "Router"

{

 InMenu FALSE

 Height 48

 Width 192

 Description "Router/firewall"

 DefaultText "Router"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "device1"

 TypeWeight 400

}

FigureStyle "Router2"

{

 HasButton TRUE

 Height 46

 Width 192

 Description "Router/firewall"

 DefaultText "Router"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "device1a"

 TypeSize 7

 TypeWeight 400

}

FigureStyle "Gateway"

{

 HasButton TRUE

 Height 48

 Width 164

 DefaultText "Gateway"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "server5"

 TypeWeight 400

}

FigureStyle "Encoder"

{

 Height 128

 Width 192

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "hub3"

}

FigureStyle "Bridge"

{

 HasButton TRUE

 Height 67

 Width 230

 DefaultText "Bridge"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "server4"

 TypeWeight 400

}

FigureStyle "Modem"

{

 HasButton TRUE

 Height 56

 Width 128

 DefaultText "Modem"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "modem3"

 TypeWeight 400

}

FigureStyle "Phone POT"

{

 InMenu FALSE

 Height 96

 Width 128

 Description "Analog telephone instrument"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "phone1"

}

FigureStyle "Phone Dig1"

{

 HasButton TRUE

 Height 128

 Width 130

 Description "Digital telephone instrument"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "phone2"

}

FigureStyle "Phone Dig2"

{

 Height 128

 Width 180

 Description "Digital telephone instrument"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "phone3"

}

FigureStyle "FAX"

{

 HasButton TRUE

 Height 160

 Width 225

 Description "Facsimile Machine"

 DefaultText "FAX"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "fax"

 TypeWeight 400

}

FigureStyle "Mainframe2"

{

 Height 204

 Width 279

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "mainframe4"

}

FigureStyle "Workstation 3"

{

 Height 130

 Width 200

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "computer6"

}

FigureStyle "WAN"

{

 Height 96

 Width 256

 Description "WAN, ISDN, Frame relay, packet switch"

 DefaultText "WAN"

 BorderWidth 3

 TextFormat 0x0022

 Behavior 0x00024212

 Symbol "arrow left/right 1"

 TypeWeight 400

}

FigureStyle "Wireless"

{

 Height 81

 Width 135

 BorderWidth 3

 TextFormat 0x0022

 Behavior 0x00024E12

 Symbol "wireless2"

 TypeWeight 400

}

FigureStyle "Workstation 4"

{

 Height 92

 Width 128

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "computer3"

}

FigureStyle "Label"

{

 Label TRUE

 Height 0

 Width 0

 BorderWidth 3

 BindToStyle FALSE

 TextFormat 0x0044

 Behavior 0x002241E1

 Symbol "lbl"

 TypeWeight 400

}

FigureStyle "Label 2 "

{

 Label TRUE

 Height 0

 Width 0

 BorderWidth 3

 BindToStyle FALSE

 TextFormat 0x0044

 Behavior 0x002241E1

 Symbol "lbl"

 TypeWeight 400

 TypeItalic TRUE

}

FigureStyle "Phone POT 2"

{

 Height 96

 Width 128

 Description "Analog telephone instrument"

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "phone1a"

 TypeSize 7

 TypeWeight 400

}

Connector Styles Section:

ConnectorStyle "Standard"

{

 HasButton TRUE

 Description "Serial, parallel, or other computer cable"

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 LineWidth 2

 Behavior 0x00000000

}

ConnectorStyle "Cat 3"

{

 HasButton TRUE

 Description "IBM type3/cat3 10 Mbs"

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 PenStyle 5

 Behavior 0x00000000

 FIType "FI_CIRCLE"

 FISize 7

 FIBdrWidth 1

 FISpacing 14

 FIBdrClr 4,4,4

 FIFillClr 4,4,4

}

ConnectorStyle "Cat 5"

{

 HasButton TRUE

 Description "Cat5 100 Mbs"

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 PenStyle 5

 LineWidth 2

 Behavior 0x00000000

 FIType "FI_CIRCLE"

 FISize 7

 FIBdrWidth 1

 FISpacing 21

 FIBdrClr 4,4,4

 FIFillClr 4,4,4

}

ConnectorStyle "Fiber"

{

 HasButton TRUE

 Description "fiberoptic"

 End1 "null"

 End2 "null"

 End1Length 43

 End2Length 43

 LineWidth 2

 EndBorderWidth 0

 Behavior 0x00000000

 FIType "FI_STICKARW"

 FISize 11

 FIBdrWidth 2

 FISpacing 57

 FIBdrClr 0,0,0

 FIFillClr 4,4,4

}

ConnectorStyle "Thincoax"

{

 HasButton TRUE

 Description "thin ethernet coax"

 End1 "null"

 End2 "null"

 End1Length 36

 End2Length 36

 PenStyle 1

 LineWidth 2

 Behavior 0x00000004

}

ConnectorStyle "Thicknet"

{

 HasButton TRUE

 Description '1/2" thick ethernet coax'

 End1 "null"

 End2 "null"

 End1Length 36

 End2Length 36

 PenStyle 2

 LineWidth 4

 Behavior 0x00000004

}

ConnectorStyle "PSTN"

{

 HasButton TRUE

 Description "Public Telephone Lines"

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 PenStyle 2

 LineWidth 2

 Behavior 0x00000000

}

Figures & Connectors Section:

Figure 1

{

 Style "Router2"

 Text "Reference Router"

 Bounds 224,288,544,384

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "device1a"

 TypeSize 7

 TypeWeight 400

}

Figure 2

{

 Style "Misc Box"

 Text "IUT"

 Bounds 512,467,704,557

 BorderWidth 3

 TextFormat 0x0022

 Behavior 0x00024E12

 Symbol "box 3d"

}

Figure 3

{

 Style "Misc Box"

 Text "Reference Master"

 Bounds 768,464,1024,560

 BorderWidth 3

 TextFormat 0x0022

 Behavior 0x00024E12

 Symbol "box 3d"

}

Figure 4

{

 Style "Workstation"

 Text "TD"

 Bounds 320,96,448,224

 BorderWidth 2

 TextFormat 0x0022

 Behavior 0x00450E12

 Symbol "computer4"

}

Figure 5

{

 Text ""

 Bounds 377,425,392,440

 FillColor 0,0,0

 BorderWidth 0

 BindToStyle FALSE

 TextFormat 0x0000

 Behavior 0x00327A12

 Symbol "null"

}

Connector 6

{

 Style "Standard"

 Figure1 1

 Figure2 5

 EndPoint1 384,384

 EndPoint2 384,432

 SuppressEnd1 FALSE

 SuppressEnd2 TRUE

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 LineWidth 2

 Behavior 0x00000000

}

Figure 7

{

 Text ""

 Bounds 889,425,904,440

 FillColor 0,0,0

 BorderWidth 0

 BindToStyle FALSE

 TextFormat 0x0000

 Behavior 0x00327A12

 Symbol "null"

}

Connector 8

{

 Style "Standard"

 Figure1 7

 Figure2 3

 EndPoint1 896,432

 EndPoint2 896,464

 SuppressEnd1 TRUE

 SuppressEnd2 FALSE

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 LineWidth 2

 Behavior 0x00000000

}

Figure 9

{

 Text ""

 Bounds 601,425,616,440

 FillColor 0,0,0

 BorderWidth 0

 BindToStyle FALSE

 TextFormat 0x0000

 Behavior 0x00327A12

 Symbol "null"

}

Connector 10

{

 Style "Standard"

 Figure1 5

 Figure2 9

 EndPoint1 384,432

 EndPoint2 608,432

 SuppressEnd1 TRUE

 SuppressEnd2 TRUE

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 LineWidth 2

 Behavior 0x00000000

}

Connector 11

{

 Style "Standard"

 Figure1 9

 Figure2 7

 EndPoint1 608,432

 EndPoint2 896,432

 SuppressEnd1 TRUE

 SuppressEnd2 TRUE

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 LineWidth 2

 Behavior 0x00000000

}

Connector 12

{

 Style "Standard"

 Figure1 2

 Figure2 9

 EndPoint1 608,467

 EndPoint2 608,432

 SuppressEnd1 FALSE

 SuppressEnd2 FALSE

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 LineWidth 2

 Behavior 0x00000000

}

Connector 13

{

 Style "Standard"

 Figure1 4

 Figure2 1

 EndPoint1 384,223

 EndPoint2 384,288

 SuppressEnd1 FALSE

 SuppressEnd2 FALSE

 End1 "null"

 End2 "null"

 End1Length 32

 End2Length 32

 LineWidth 2

 Behavior 0x00000000

}

Figure 14

{

 Label TRUE

 Style "Label"

 Text "Node address "

 Bounds 516,573,749,606

 BorderWidth 3

 BindToStyle FALSE

 TextFormat 0x0044

 Behavior 0x002241E1

 Symbol "lbl"

 TypeWeight 400

}

Figure 15

{

 Label TRUE

 Style "Label"

 Text "Node address <C>"

 Bounds 810,572,1044,605

 BorderWidth 3

 BindToStyle FALSE

 TextFormat 0x0044

 Behavior 0x002241E1

 Symbol "lbl"

 TypeWeight 400

}

Figure 16

{

 Label TRUE

 Style "Label"

 Text "Node address <A>"

 Bounds 564,314,797,347

 BorderWidth 3

 BindToStyle FALSE

 TextFormat 0x0044

 Behavior 0x002241E1

 Symbol "lbl"

 TypeWeight 400

}

Figure 17

{

 Label TRUE

 Style "Label"

 Text "MS/TP Network"

 Bounds 579,387,773,420

 BorderWidth 3

 BindToStyle FALSE

 TextFormat 0x0044

 Behavior 0x002241E1

 Symbol "lbl"

 TypeWeight 400

}

Staples Section:

_1223375277.vsd
IUT

(R1-2)

Virtual Network 1

R2-3

VD1B

VD1A

D2C

D3D

Network 2

TD

Network 3

