[image: image9.jpg]
BACnet TESTING LABORATORIES

SPECIFIED TESTS

Revised October 24, 2005
(Equivalent to version 0.19)
Table Of Contents
11 Purpose

22 Interim Data Link Layer Tests

22.1 Reference Router Qualification

22.1.1 Reference Router Qualification: Proper NPCI construction to the MS/TP Network.

22.1.2 Reference Router Qualification: Proper NPCI construction from the MS/TP Network.

32.1.3 Reference Router Qualification: Who-Is-Router-To-Network Test.

32.1.4 Reference Router Qualification: Proper MPDU Construction to the ARCNET Network

42.1.5 Reference Router Qualification: Proper NPCI Construction from the ARCNET Network

52.1.6 Reference Router Qualification: Who-Is-Router-To-Network Test.

62.2 MS/TP Data Link Layer Tests

72.2.1 Verify Tpostdrive w/ Oscilloscope

72.2.2 Verify Tframe_gap w/ Oscilloscope

82.2.3 Verify Tturnaround w/ Oscilloscope

82.2.4 Verify Treply_delay w/ Serial Analyzer

92.2.5 Verify Tusage_delay w/ Serial Analyzer

92.2.6 Verify Npoll w/ Serial Analyzer

92.2.7 Verify Tusage_timeout w/ Serial Analyzer

102.2.8 Max_Master test

102.2.9 Max_Info_Frames Test

102.2.10 Master Node Data Frame Test

102.2.11 Poll For Master w/ Serial Analyzer

112.2.12 Slave Node Data Frame Test

112.2.13 Sole Master Test

112.2.14 MS/TP Network Startup Tests (IUT power on Variation)

122.2.15 MS/TP Network Startup Tests (IUTs wire plugged in)

122.2.16 MS/TP Network Startup Tests (IUTs wire unplugged)

132.2.17 MS/TP Network Startup Tests (Reference device joins the MS/TP network)

142.3 ARCNET (twisted pair bus) Data Link Layer Tests

152.3.1 Verify the Failsafe Biasing with an Oscilloscope

162.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope

177 Object Support Tests

177.3.1 Property Tests

177.3.1.11 Acked_Transitions Tests

217.3.1.13 Limit_Enable Test

237.3.1.X1 Active_COV_Subscriptions Test

257.3.1.X2 Event_Type Test

257.3.1.X1 Array Resizing Test

267.3.2 Object Specific Tests

267.3.2.9 Command Object Test

267.3.2.9.8 Action Size Changes Action_Text Size Test

277.3.2.9.9 Action_Text Size Changes Action Size Test

297.3.2.17 Multi-state Input Object Test

297.3.2.17.5 Number_Of_States and State_Text Size Change Test

307.3.2.18 Multi-State Output Object Test

307.3.2.18.6 Number_Of_States and State_Text Size Change Test

307.3.2.19 Multi-State Value Object Test

307.3.2.19.5 Number_Of_States and State_Text Size Change Test

307.3.2.20 Notification Class Object

307.3.2.20.3 Recipient_List Tests

307.3.2.20.3.X Recipient_List Property Supports Device Identifier Recipients

317.3.2.20.3.X1 Recipient_List Property Supports Network Address Recipients

327.3.2.22 Schedule Object Tests

327.3.2.22.9 Exception_Schedule Size Change Test

337.3.2.22.X1 Written Datatypes Test

337.3.2.22.X1.1 Internally Written Datatypes Test, non-NULL values

347.3.2.22.X1.2 Internally Written Datatypes Test, NULL Values and Priority_Arrays

347.3.2.22.X1.3 Externally Written Datatypes Test, non-NULL values

357.3.2.22.X1.4 Externally Written Datatypes Test, NULL values and Priority_Arrays

367.3.2.22.X2 Schedule Object Protocol_Revision 4 Tests

367.3.2.22.X2.1 Revision 4 Effective_Period Test

377.3.2.22.X2.2 Revision 4 Weekly_Schedule Property Test

397.3.2.22.X2.3 Revision 4 Exception_Schedule Property Tests

397.3.2.22.X2.3.1 Revision 4 Calendar Reference Test

397.3.2.22.X2.3.2 Revision 4 Calendar Entry Date Test

407.3.2.22.X2.3.3 Revision 4 Calendar Entry DateRange Test

417.3.2.22.X2.3.4 Revision 4 Calendar Entry WeekNDay Month Test

427.3.2.22.X2.3.5 Revision 4 Calendar Entry WeekNDay Week Of Month Test

427.3.2.22.X2.3.6 Revision 4 Calendar Entry WeekNDay Last Week Of Month Test

437.3.2.22.X2.3.7 Revision 4 Calendar Entry WeekNDay Day Of Week Test

447.3.2.22.X2.3.8 Revision 4Event Priority Test

457.3.2.22.X2.3.9 Revision 4 List of BACnetTimeValue Test

457.3.2.22.X2.3.10 Revision 4 Calendar Entry WeekNDay Odd-Numbered Month Test

467.3.2.22.X2.3.11 Revision 4 Calendar Entry WeekNDay Even-Numbered Month Test

467.3.2.22.X2.3.12 Revision 4 Lower Event Priority Change Test

477.3.2.22.X2.3.13 Revision 4 Schedule_Default Test

487.3.2.22.X2.4 Revision 4 Weekly_Schedule and Exception_Schedule Interaction Test

487.3.2.22.X2.5 Revision 4 Exception_Schedule Restoration Test

487.3.2.22.X2.6 Revision 4 Weekly_Schedule Restoration Test

487.3.2.22.X2.7 Revision 4 List_Of_Object_Property_Reference Internal Test

497.3.2.22.X2.8 Revision 4 List_Of_Object_Property_Reference External Test

507.3.2.22.X3 Revision 4 Midnight Evaluation Test

517.3.2.23 Trend Log Object Tests

517.3.2.23.1 Log_Enable Test

527.3.2.23.3 Stop_Time Test

527.3.2.23.5 COV_Resubscription_Interval Test

547.3.2.23.9 Total_Record_Count Test

557.3.2.23.X1 Log-Status Test

557.3.2.23.X2 Time_Change Test

567.3.2.23.X3 COV-Sampling Verification Test

567.3.2.23.X4 Interval Gathering of External Trends Test

577.3.2.23.X5 Last_Notify_Record Test

587.3.2.23.X6 Records_Since_Notification Test

588 Application Service Initiation Tests

588.4 ConfirmedEventNotification Service Initiation Tests

588.4.7 BUFFER_READY Tests

608.10 SubscribeCOV Service Initiation Tests

608.10.X1 Generates 24 Hour Lifetimes

618.5 UnconfirmedEventNotification Service Initiation Tests

618.5.X1 BUFFER_READY Tests

618.18 ReadProperty Service Initiation Tests

618.18.1 Reading Non-Array Properties

628.18.2 Reading an Array Element

628.18.X1 Reading Whole Array Properties

628.18.X2 Reading an Array Count

638.20 ReadPropertyMultiple Service Initiation Tests

638.20.Y1 Cases In Which ReadProperty Shall Be Used, After ReadPropertyMultiple Fails

638.20.Y1.X1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service

638.20.Y1.X2 The IUT Automatically Sends ReadProperty Requests when the TD Returns a Reject - UNRECOGNIZED_SERVICE Response

648.22 WriteProperty Service Initiation Tests

648.22.X1 Writing An Array Size

648.34 Who-Is Service Initiation Tests

658.34.X1 Who-Is Request with no Device Instance Range

659 Application Service Execution Tests

659.1 AcknowledgeAlarm Service Execution Tests

659.1.1 Positive AcknowledgeAlarm Service Execution Tests

659.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of the 'Time of Acknowledgment' Parameter

679.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of the 'Time of Acknowledgment' Parameter

699.1.1.X1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter

719.1.1.X2 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter

729.1.2 Negative AcknowledgeAlarm Service Execution Tests

729.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Time Stamp' is Too Old

749.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the 'Time Stamp' is Too Old

779.2 ConfirmedCOVNotification Service Execution Tests

779.2.1.1 Change of Value Notification from Analog Objects

779.2.1.X1 Change of Value Notification from Binary Objects

789.2.1.X2 Change of Value Notification from Life Safety Objects

799.2.1.X3 Change of Value Notification from Multi-state Objects

799.3 UnconfirmedCOVNotification Service Execution Tests

799.3.X3 Change of Value Notification from Analog Objects

809.3.X4 Change of Value Notification from Binary Objects

809.3.X5 Change of Value Notification from Life Safety Objects

819.3.X6 Change of Value Notification from Multi-state Objects

829.3.X7 Change of Value Notification from Loop Objects

839.10 SubscribeCOV Service Execution Tests

839.10.1.X1 Ensuring 5 Concurrent COV Subscribers

849.18 ReadProperty Service Execution Tests

849.18.1.X1 Reading Properties Based on Data Type

849.18.2.1 Reading Non-Array Properties with an Array Index

859.20 ReadPropertyMultiple Service Execution Tests

859.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

859.20.1.X1 Reading Properties Based on Data Type

869.20.1.X2 Reading Maximum Multiple properties

879.20.2.2 Reading Multiple Properties with Access Errors for Every Property

889.20.2.X1 Reading Non-Array Properties with an Array Index

889.21 ReadRange Service Execution Tests

899.21.1.2 Reading Items by Position with Positive Count

909.21.1.3 Reading Items by Position with Negative Count

919.21.1.4 Reading Items by Time

929.21.1.4.X1 Reading Items by Time with Negative Count

939.21.1.6.X1 Reading a Range of Items that do not Exist (Using by Sequence)

949.21.1.6.X2 Reading a Range of Items that do Not Exist (Using by Time)

949.21.1.X1 Reading Items by Sequence with Positive Count

959.21.1.X2 Reading Items by Sequence with Negative Count

969.21.1.X3 Data Type verification Test

969.21.1.X4 Status/Failure logging

979.22 WriteProperty Service Execution Tests

979.22.1.X1 Writing an Array Size

979.22.1.X2 Writing to Properties Based on Data Type

989.22.2.3 Writing with a Property Value Having the Wrong Datatype

989.22.2.4 Writing with a Property Value that is Out of Range

999.23 WritePropertyMultiple Service Execution Tests

999.23.1.X1 Writing List Properties

999.23.1.X2 Writing to Properties Based on Data Type

1009.23.1.X4 Writing an Array Size

1009.23.1.X6 Writing Maximum Multiple properties

1019.23.1.X7 Writing with a Property Value Having the Wrong Datatype

1019.23.1.X8 Writing with a Property Value that is Out of Range

1029.24 DeviceCommunicationControl Service Execution Test

1029.24.1 Positive DeviceCommunicationControl Service Execution Tests

1029.24.1.X2 Disable of Service Initiation Restored by Time Duration

1039.24.1.X3 Disable of Service Initiation Restored by DeviceCommunicationControl

1039.32 Who-Has Service Execution Tests

1039.32.1 Execution of Who-Has Service Requests Originating from the Local Network

1039.32.1.X1 Who-Has After Object_Name Changed

1049.32.1.X2 Who-Has After Object_Identifier Changed

1059.39 General Testing of Service Execution

1059.39.1 Unsupported Confirmed Services Test

10610 Network Layer Protocol Tests

10610.2 Router Functionality Tests

10610.2.2 Processing Network Layer Messages

10610.2.2.3 Forward I-Could-Be-Router-To-Network

10610.2.2.7.2 Unknown Network Layer Message Type

10710.2.2.7.3 Unknown Network Layer Message Type For Someone Else

10810.2.3 Routing of Unicast APDUs

10810.2.3.2 Route Message from a Local Device to a Local Device

10910.2.3.5 Route Message from a Router to a Local Device

10910.2.4 Routing of Broadcast APDUs

10910.2.4.4 Remote Broadcast from a Local Device to a Directly-Connected Network

11010.2.4.6 Remote Broadcast from a Remote Device to a Directly-Connected Network

11010.2.4.8 Remote Broadcast that Should Be Ignored

11110.2.6 Network Layer Priority

11210.X Non-Router Functionality Tests

11310.X.1 Static Router Binding

11410.X.2 Router Binding via Application Layer Services

11510.X.3 Router Binding via Who-Is-Router-To-Network

11710.X.4 Router Binding via Broadcast

11810.X.5 Ignore Remote packets

11910.X.6 Ignore Who-Is-Router-To-Network

11910.X.7 Ignore Router Commands

12012 DATA LINK LAYER PROTOCOLS TESTS

12012.1 MS/TP State Machine Tests

12012.1.1 MS/TP Master Tests

12012.1.1.9 Token Usage Tests

12012.1.1.9.x1 Max Info Frame Check

12113 Special Functionality Tests

12113.3 Malformed PDUs

12113.4.3 Invalid Tag

12113.4.4 Missing Required Parameter

12213.4.5 Too Many Arguments

12213.X1 Backup and Restore Procedure Tests

12213.X1.1 Execution of Full Backup and Restore Procedure

12513.X1.2: Initiating a Backup Procedure While Already Performing a Backup Procedure

12613.X1.3: Initiating a Backup Procedure While Already Performing a Restore Procedure

12613.X1.4: Initiating a Restore Procedure While Already Performing a Backup Procedure

12613.X1.5: Initiating a Restore Procedure While Already Performing a Restore Procedure

12713.X1.6: Ending Backup and Restore Procedures via Timeout

12713.X1.7: Ending Backup and Restore Procedures via Abort

12813.X1.8: Initiating a Backup Procedure with an Invalid Password

12813.X1.9: Initiating a Restore Procedure with an Invalid Password

12813.X1.10: Initiating and ending a Backup Procedure when a password is not required

12913.X1.11: Initiating and ending a Restore Procedure when a password is not required

12913.X1.12: System_Status during a Backup Procedure

12913.X1.13: System_Status during a Restore Procedure

13014 BACnet/IP Functionality Tests

13014. 1 Non-BBMD B/IP Device

13014.1.7 Forwarded-NPDU

13014.1.8 Original-Broadcast-NPDU

13014.1.9 Original-Unicast-NPDU

13114.1
BBMD B/IP Device with a Server Application

13214.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)

13214.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)

13314.2.2 Execute Original-Broadcast-NPDU

13314.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)

13314.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)

13414.2.3 Execute Original-Unicast-NPDU

13414.2
Broadcast Distribution Table Operations

13514.3.1 Execute Write-Broadcast-Distribution-Table (Table Growth)

13514.3.2 Execute Write-Broadcast-Distribution-Table (Table Shrinkage)

13614.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous Session

13714.5 BACnet Broadcast Management

13714.5.2 Original-Broadcast-NPDU Message Which Shall Be Forwarded

13714.5.2.1 Original-Broadcast-NPDU Message Which Shall Be Forwarded (One-hop Distribution)

13714.5.2.2 Original-Broadcast-NPDU Message Which Shall Be Forwarded (Two-hop Distribution)

13814.6 Foreign Device Management

13814.6.3 Foreign Device Table Timer Operations

13914.6.5 Delete-Foreign-Device-Table-Entry Which Should Be Rejected

14014.6.6 Execute Delete-Foreign-Device-Table-Entry

14014.7 Broadcast Management (BBMD, Foreign Devices, Local Application)

14114.7.1 Broadcast Message from Directly Connected IP Subnet

14114.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution)

14214.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)

14314.7.2 Broadcast Message Forwarded by a Peer BBMD

14314.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution)

14414.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution)

14514.7.3 Broadcast Message From a Foreign Device

14514.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)

14614.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)

14714.X1 Registering as a Foreign Device

14714.X2 Initiating BVLL Service Requests Conveying an NPDU

14714.X2.1 Distribute-Broadcast-To-Network

14714.X2.2 Initiating An Original-Unicast-NPDU

14814.X2.3 Original-Broadcast-NPDU

1 Purpose

This document contains tests defined by the BTL that are not included in ANSI/ASHRAE Standard 135.1-2003 or are modified versions of tests in 135.1. These tests are used by the BTL testing process and are referenced by the BTL Test Plan document.

Most of the tests defined in this document will be submitted to SSPC 135. Those that are submitted will be removed from future versions of this document as they are accepted/rejected by the SSPC 135 and 135.1 is updated.

Some of the tests are interim tests defined by the BTL because the test tools are not adequate for testing the particular functionality. These tests will be removed once the tests in SSPC 135.1 can be implemented by the BTL. Examples of such tests are the MS/TP tests.

For those tests that will be submitted to the SSPC 135, the test numbering is based on the numbers that the test would have if they were included in 135.1.

2 Interim Data Link Layer Tests

2.2 MS/TP Data Link Layer Tests

Pending the development of a Test Device (TD) that can accurately perform the MS/TP state machine tests specified in 135.1 clause 12.1, the interim test plans described herein shall be used to indirectly test the interoperability of an implementation’s MS/TP data link layer. These tests are temporary until the MS/TP state machine tests in 135.1 can be implemented.

Since the TD is installed on the non-MS/TP side of a reference router, these tests do not cover strict conformance to the MS/TP data link layer. The methodology is to install the IUT on an MS/TP network containing reference devices that are known to conform to BACnet clause 9 and verify that the TD can exchange data with the IUT. A serial analyzer will also be employed on the MS/TP network to verify that the IUT meets the timing requirements of the MS/TP data link layer and does not introduce or cause token-passing anomalies.

These tests require the use of a reference MS/TP router and a reference MS/TP master device. These devices will be selected from a pool of qualified devices that are to be submitted by members of the BMA. The BTL tester is free to select any of the qualified references devices to use during the test, and the identity of the reference devices will not be published. The criteria for qualifying the reference devices is virtually identical to the test plans referenced here, with the addition of a few tests for proper formation of the NPCI by the reference router.

General Test Setup:

Install a reference MS/TP router at MS/TP node address <A>.

Install a reference MS/TP master device at node address <C>.

Install the IUT at node address .

[image: image1.wmf]R

e

f

e

r

e

n

c

e

R

o

u

t

e

r

I

U

T

R

e

f

e

r

e

n

c

e

M

a

s

t

e

r

T

D

N

o

d

e

a

d

d

r

e

s

s

<

B

>

N

o

d

e

a

d

d

r

e

s

s

<

C

>

N

o

d

e

a

d

d

r

e

s

s

<

A

>

M

S

/

T

P

N

e

t

w

o

r

k

The MS/TP node addresses are not critical, but must meet these requirements:

	<A> = as low as possible, 1 is ideal

	 = <A> + 2 or higher (this address changes during testing)

	<C> = + 2 or higher

Recommended Test Tools:

Serial analyzer = Any serial analyzer that meets the following requirements:

1. Each received octet is time stamped with 1msec accuracy.

2. The serial analyzer can support the baud rates being tested. (This may require a clock doubled UART).

3. Captured data can be saved and reloaded, including the time stamp information.

4. The serial analyzer is currently available for purchase.

Other desirable traits:

1. A scripting language that would allow MSTP frames to be decoded, either online or offline.

2. Export a captured session to a text file, including time stamp information. (This would provide the ability for advanced analysis of the data, such as scanning the data for timing anomalies).

Serial Analyzer Measurement Tolerance:

When measuring the silence time between MSTP frames, the desired measurement is the elapsed time from the last bit transmitted of the first frame to the first bit transmitted in the following frame. When using a serial analyzer that applies a time stamp to each octet, taking the difference between the time stamps introduces an error equal to the transmission time of one octet because the difference between the time stamps is actually the elapsed time from the last bit of the last octet of the first frame, to the last bit (not the first bit) of the first octet in the following frame.

Also, since the serial analyzer is only accurate to the nearest millisecond, all measurements are ± 1 millisecond.

As a result of these measurement inaccuracies, all measurements of silence time between frames that must be less than a specified amount are allowed to be as much as 2 msec milliseconds greater than the specified limit, and all measurements of silence time between frames that must be greater than a specified amount are allowed to be as much as 1 millisecond less that the specified limit. The following terms are defined to represent these measurement tolerances:

Tpos_err = 2 milliseconds

Tneg_err = 1 millisecond

Oscilloscope = Agilent 54620 series. This scope has a 2MB sample memory, which is useful for capturing data for an extended time and then zooming in on the details after the capture is complete. It can also “layer” the samples using 32 levels of display intensity, which makes it easier to spot timing anomalies.

2.2.1 Verify Tpostdrive w/ Oscilloscope

Test Concept: Verify that the time between the transmission of the last bit in a frame and the time that the IUT stops driving its 485 transmitter is 15 bit times or less.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:

1. Elicit the transmission of any frame type from the IUT. For IUTs that are master nodes, any token frame or Poll_For_Master frame will be satisfactory. For IUTs that are slave nodes, send any request to the slave node that elicits a response frame from the slave.

2. With an oscilloscope, measure the time interval from the trailing edge of the last stop bit transmitted by the IUT to the time that the EIA-485 voltage level returns to idle. If the IUT employs a “padding” octet of X’FF’ as the last octet of every frame, then the time should be measured from the trailing edge of the stop bit of the octet that precedes the X’FF’ “pad” octet.

3. Fail the IUT if the time interval measured in step 2 is greater than the time intervals shown below for each baud rate.

9600 baud:
fail if interval is greater than 1,562 uSeconds

19200 baud:
fail if interval is greater than 781 uSeconds

38400 baud:
fail if interval is greater than 391 uSeconds

76800 baud:
fail if interval is greater than 195 uSeconds

x baud:

fail if interval is greater than (15/x) seconds

2.2.2 Verify Tframe_gap w/ Oscilloscope

Test Concept: Verify that the maximum idle time between data octets when transmitting a frame is 20 bit times or less.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:
1. Elicit the transmission of any data frame from the IUT.

2. With an oscilloscope, measure the longest EIA-485 idle time that appears between octets within the data frame transmitted by the IUT. If there is no idle time between octets, pass the IUT.

3. Fail the IUT if the time measured in step 2 is greater than the time intervals shown below for each baud rate.

9600 baud:
fail if interval is greater than 2,083 uSeconds

19200 baud:
fail if interval is greater than 1,042 uSeconds

38400 baud:
fail if interval is greater than 521 uSeconds

76800 baud:
fail if interval is greater than 261 uSeconds

x baud:

fail if interval is greater than (20/x) seconds

2.2.3 Verify Tturnaround w/ Oscilloscope

Test Concept: Verify that the IUT waits at least 40 bit times before enabling its 485 transmitter after the reception of the last octet of a frame.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:
1. Elicit the transmission of any frame type from the IUT. For IUTs that are master nodes, any frame sent after the IUT receives a Token frame or a Poll_For_Master frame will be satisfactory. For IUTs that are slave nodes, send any request to the slave node that elicits a response frame from the slave.

2. With an oscilloscope, measure the time interval from the trailing edge of the last stop bit in the frame transmitted by the reference master, to the point where the EIA-485 voltage becomes driven by the IUT at the beginning of the frame transmitted by the IUT. If the reference master employs a “padding” octet of X’FF’ as the last octet of every frame, then the time should be measured starting from the trailing edge of the stop bit of the octet that precedes the X’FF’ “pad” octet in the frame transmitted by the reference master.

3. Fail the IUT if the time measured in step 2 is less than the time intervals shown below for each baud rate.

 9600 baud:
fail if interval is less than 4,167 uSeconds

19200 baud:
fail if interval is less than 2,083 uSeconds

38400 baud:
fail if interval is less than 1,042 uSeconds

76800 baud:
fail if interval is less than 521 uSeconds

x baud:

fail if interval is less than (40/x) seconds

2.2.4 Verify Treply_delay w/ Serial Analyzer

Test Concept: Verify that the time between a DER frame sent to the IUT and the first octet of a reply frame or Reply Postponed frame from the IUT is no longer than 250 milliseconds.
Setup: Run the IUT and a Reference Router on the same MS/TP network.

Note to Tester: The 250 millisecond time limit can be stressed by making a DER request which requires a large packet (a packet size approaching the 501 byte MS/TP limit) to be sent in response. For example an RPM request, if supported, for several properties or for “all” from the device object could require the IUT to construct and issue a large packet in response.

Procedure:

4. Power on a reference router and the IUT on an MSTP segment (wait several seconds). Sniff the link using the serial analyzer.

5. On a VTS machine on the Ethernet side of the router send a read property request to the IUT.

6. Stop the serial analyzer and view the sniffed link created from the setup procedures.

7. If the time difference between the last octet of the Type 5 frame sent by the VTS machine and the first octet of the Type 6 or 7 frame sent by the IUT is greater than 250 msec + Tpos_err, then fail the IUT. (The type 6 or 7 frame should be the next captured frame after the Type 5 frame.)

2.2.5 Verify Tusage_delay w/ Serial Analyzer

Test concept: Verify that the IUT begins using the token within 15 msec. of receiving the last octet of a token frame. (The same 15msec. usage_delay applies when responding to Poll For Master.)

Setup: Run the IUT and a reference master on the same MS/TP network.

Procedure for Token tests:

8. Power on a Reference Master and the IUT on an MS/TP segment (wait several seconds). Sniff the link using the serial analyzer.

9. Sniff the link for 10 seconds then stop the sniff.

10. If the time difference between the last octet of any Type 0 frame (token) sent by the reference master and the first octet transmitted by the IUT is greater than 15 msec + Tpos_err, then fail the IUT.

Procedure for Poll for Master tests: (Considering that the IUT address must be less than or equal to the Max_Master property as set in the reference device and cannot be exactly one greater than the reference device’s address)

11. Power on the IUT on the MSTP segment.

12. Begin sniffing the link. Make sure the IUT is Polling for Master

13. Power on the Reference Master on the MSTP segment. This should generate a Poll for Master from the Reference Master.

14. Continue sniffing the link until the Reference Master sends a poll for master to the IUT and the IUT responds.

15. Note: Some IUTs will not begin Polling for Master if they are the first device booted up on the segment. In which case steps one and two should be skipped and the following procedures should be used. The Reference Master should be booted up then the IUT should be booted up then the Reference Master should be powered down then go to step 3.

16. View the sniffed link from the setup procedures.

17. If the time difference between the last octet of any Poll for Master frame sent to the IUT by the Reference Master and the first octet transmitted by the IUT is greater than 15 msec + Tpos_err, then fail the IUT.

2.2.6 Verify Npoll w/ Serial Analyzer

Test Concept: Verify that the Poll for Master cycle is executed after 52 tokens are received, but not before 50 tokens are received.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:
18. Power on the reference device and IUT on an MS/TP segment (wait several seconds). Sniff the link using the serial analyzer.

19. Separate the addresses of the reference device and the IUT enough so that both devices are able to Poll. The reason for this is because the MS/TP nodes will not begin a Poll for Master cycle if the next device is the device +1.

20. After about 10 seconds, stop the serial analyzer.

21. View the sniffed data created from the setup procedures.

22. Count the number of Type 0 frames transmitted by the IUT on the MS/TP network between the end of one of the IUT’s Poll For Master cycles and the beginning of the next IUT’s Poll For Master cycles. Fail the IUT if this count is greater than 52 or less then 50.

2.2.7 Verify Tusage_timeout w/ Serial Analyzer

Test Concept: Verify that the IUT waits at least 20 milliseconds but no longer than 100 milliseconds for another master node to begin using the token or reply to a Poll_For_Master frame.

Setup: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Procedure:

23. Power on a Reference Master and the IUT on an MSTP segment (wait several seconds). Sniff the link using the serial analyzer.

24. Sniff the link until token passing is established between the IUT and the Reference Master, then power off the reference master.

25. Continue to run the serial analyzer for 10 more seconds, then stop the data capture.

26. Find the place in the data capture where the Reference Master was powered off. The IUT should have sent a type 0 frame to the reference master, and when the reference master did not use the token (because it was powered off), the IUT should have followed the type 0 frame with another type 0 frame (token retry) followed with a series of type 1 frames.

27. If the time difference between the last octet of the type 0 frame sent by the IUT and the first octet of the immediately following type 1 frame transmitted by the IUT is less than 20 msec - Tneg_err or greater than 100 msec + Tpos_err, then fail the IUT.

28. Using the same data capture, measure the time gap (last character to first character) between any two type 1 frames (Poll For Master, or PFM) sent by the IUT. If the time difference is less than 20 msec - Tneg_err or greater than 100 msec + Tpos_err, then fail the IUT.

2.2.8 Max_Master test

29. Verify the existence of the Max_Master property in the Device Object of the IUT using ReadProperty. If Max_Master does not exist, fail the IUT.

30. If the IUT PICS indicates that Max_Master is writable, use WriteProperty to set it to the value 127. (The IUT may require a restart for the new value to take effect).

31. If Max_Master is not writable and is not fixed at 127, fail IUT.

2.2.9 Max_Info_Frames Test

32. Verify the existence of the Max_Info_Frames property in the Device Object of the IUT using ReadProperty. If Max_Info_Frames does not exist, fail the IUT.

33. If the IUT PICS indicates that Max_Info_Frames is writable, use WriteProperty to set it to the value of 2.

34. If the checklist indicates that Max_Info_Frames is configurable make this value 2.

35. If Max_Info_Frames is not configurable and is not fixed at 1, fail IUT.

2.2.10 Master Node Data Frame Test

Test Concept: This test verifies that the IUT can properly receive and transmit decode simple MS/TP data frames.

36. If the IUT supports DM-DDB-B, perform test 135.1 clause 9.30.2.2 (Who-Is, General Inquiry, Remote Broadcast) on the IUT and verify the I-Am response. (This tests for proper reception of MS/TP broadcasts and transmission of MS/TP broadcasts).

37. Perform a ReadProperty of any property (135.1, 9.15.1) to verify correct reception and transmission of unicast messages.

2.2.11 Poll For Master w/ Serial Analyzer

Test Concept: This tests that a master node performs the poll for master sequence properly.

Setup: Run the IUT with the reference router at address <A> and reference master at address <C> on the same MS/TP network. Start to capture data with the serial analyzer.

38. Power off the IUT and set its address () equal to <A> + 2. Make sure is also less than <C> - 1.

39. Power on the IUT.

40. If the IUT does not respond to Poll For Master from <A>, fail the IUT.

41. Verify that IUT periodically transmits Poll For Master frames to nodes + 1 through <C> -1. It should also have transmitted only ONE Poll For Master to node <C>.

42. Power off the IUT, and set its address to <C> - 1. Power on the IUT.

43. Verify that the IUT sends ONE Poll For Master frame to node <C>, and then ceases to transmit any Poll For Master frames.

44. Power off the IUT and the reference master at address <C>. Make sure that address <A> is not zero. Power on the IUT, so that the IUT and reference router are the only nodes on the network.

45. Verify that the IUT periodically transmits Poll For Master frames to nodes + 1 through its own Max_Master setting, and nodes zero through <A> -1. It should also send ONE Poll For Master to node <A>.

46. Power off the IUT. Set its address equal to its own Max_Master setting. Power on the IUT.

47. Verify that the IUT periodically transmits Poll For Master frames to nodes zero through node <A> - 1. It should also send ONE Poll For Master to node <A>.

2.2.12 Slave Node Data Frame Test

Test Concept: This test verifies that the IUT can properly receive and transmit decode simple MS/TP data frames.

48. If the IUT supports DM-TS-B, send a Remote Broadcast TimeSynchronization service and verify the time change in the IUT Device Object. (This tests for proper reception of MS/TP broadcasts in a slave device).

49. Perform a ReadProperty of any property (135.1, 9.15.1) to verify correct reception and transmission of unicast messages.

2.2.13 Sole Master Test

Test Concept: This test verifies that the IUT properly initiates Poll For Master frames when it is the only node installed on the network. This test is only required for routers because non-router master nodes are permitted to “lurk” on the network in the absence of MS/TP traffic. (Lurking is useful for auto-baud detection and detecting different network types, but routers are not permitted to lurk and therefore must begin transmitting Poll For Master frames after startup).

Setup: Power off all of the nodes on the MS/TP network, including the IUT. The node address of the IUT can be set to any address 0 through 127, but it should be less than or equal to its own Max_Master property. The IUT node address will be referred to as address . Start capturing data with the serial analyzer.

50. Power on the IUT.

51. After the IUT initializes (which may take as long as a few minutes, but is not limited), the IUT should start transmitting Poll For Master frames, starting with address +1, through address Max_Master, followed by address 0, through address -1. In other words, a complete circle starting with the node address immediately higher than itself, wrapping around to zero after the Max_Master, and ending with the address immediately below itself. This cycle should repeat indefinitely, but data frames and/or a short delay may appear between the Poll For Master frame sent to -1 and the Poll For Master frame sent to +1. (The IUT can use the token 50 times after each complete Poll For Master cycle, which could appear as a short processing delay if there are no data frames to send, or as many as [50*Max_Info_Frames] data frames).

52. If the IUT does not exhibit the behavior described in step 2, fail the IUT.

2.2.14 MS/TP Network Startup Tests (IUT power on Variation)

Purpose: Verify that the IUT can join a preexisting MS/TP network when the IUT is introduced into the MS/TP network from a power-on scenario.

Test Concept: A network of reference masters is constructed and is turned on with the IUT remaining off. Once the network achieves normal network operation, the IUT is connected to the network and powered on. The network is monitored to verify that the IUT successfully joins the network within a reasonable time period.

This test should be repeated both with a single reference master and multiple reference masters.

Setup: The test starts with an MS/TP network comprised of one or more reference master devices that has achieved normal network operation. Normal network operation should be verified using a serial analyzer. If the IUT does not autobaud, then it shall be configured with the same baud rate of the operating network. The IUT shall be configured with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master in use by the reference masters.

Test Steps:

53. Power on the IUT.

54. CHECK (the IUT does not generate any packets until it receives a PollForMaster frame).

55. CHECK (verify with the serial analyzer that the IUT correctly joins the MS/TP network by answering a PollForMaster destined for its MAC address, accepting a Token, and generating PollForMaster frames and subsequently passing the Token).

Passing Result: Note that the IUT may take a considerable amount of time before accepting Poll For Master Frames. The duration of the CHECK in step 3 must be sufficient duration for the IUT as defined by the vendor.

2.2.15 MS/TP Network Startup Tests (IUTs wire plugged in)

Test Concept: A network of reference masters is constructed and is turned on with the IUT disconnected. Once the network achieves normal network operation, the IUT is powered on. Once the IUT reaches the Sole Master state, the IUT is connected to the network. The network is monitored to verify that the IUT successfully joins the network within a reasonable time period.

This test should be repeated both with a single reference master and multiple reference masters.

Test Configuration: The test starts with an MS/TP network comprised of one or more reference master devices that has achieved normal network operation. Normal network operation shall be verified using a serial analyzer. If the IUT does not autobaud, then it shall be configured with the baud rate of the operating network. The IUT shall be configured with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master as is used by the reference masters.

If the IUT lurks until it detects traffic after power on, then this test shall be skipped. Note that devices that route to/from MS/TP are not allowed to lurk and must pass this test.

The time, Time_to_join, in step 5 is 60 Seconds. This value is selected as a reasonable time that users should expect of BTL listed devices. The exact time is dependant on implementation and the sequence of events that follow the joining of two live networks. The time will be the sum of the time duration of collisions, time to start a PollForMaster cycle, and the time to poll and receive a response from the other master. (This total time cannot be calculated as the standard does not specify how often the master node state machine must be run – only that timers must have a 5ms resolution. As well, it is possible that the master node could be sending out data frames in between each PollForMaster.)

Test Steps:
56. Power on IUT without the MS/TP wire plugged into the IUT.

57. WAIT a vendor specified time (for device startup and/or auto baud completion).

58. CHECK (verify with a serial analyzer that the IUT generates Poll For Master frames).

59. Plug the MS/TP cable into the IUT to join the IUT to the MS/TP network.

60. CHECK (verify with the serial analyzer that the IUT joins the MS/TP network within Time_to_join seconds)

2.2.16 MS/TP Network Startup Tests (IUTs wire unplugged)

Test Concept: A network of reference masters is constructed and is turned on with the IUT connected. Once the network achieves normal network operation, the IUT is disconnected from the network. Once the IUT reaches the Sole Master state, the IUT is re-connected to the network. The network is monitored to verify that the IUT successfully rejoins the network within a reasonable time period.

This test should be repeated both with a single reference master and multiple reference masters.

Test Configuration: The test starts with an MS/TP network comprised of one or more reference master devices and the IUT that has achieved normal network operation. Normal network operation shall be verified using a serial analyzer. If the IUT does not autobaud, then it shall be configured with the baud rate of the operating network. The IUT shall be configured with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master as is used by the reference masters.

The time, Time_to_join, in step 6 is 60 Seconds. This value is selected as a reasonable time that users should expect of BTL listed devices. The exact time is dependant on implementation and the sequence of events that follow the joining of two live networks. The time will be the sum of the time duration of collisions, time to start a PollForMaster cycle, and the time to poll and receive a response from the other master. (This total time cannot be calculated as the standard does not specify how often the master node state machine must be run – only that timers must have a 5ms resolution. As well, it is possible that the master node could be sending out data frames in between each PollForMaster.)

Note that if the IUT possesses the token before step 2, the wait time in step 3 will be significantly less than the time indicated. . The time between step 2 and step 5 should only be long enough to perform step 4 as some devices may revert back to lurking if separated from the network for too long.

Test Steps:

1. CHECK (verify with the serial analyzer that the IUT is actively in the network)

2. Unplug the MS/TP cable from the IUT.

3. WAIT Tno_token + Tslot * TS

4. CHECK (verify with a serial analyzer that the IUT generates Poll For Master frames and therefore declares SoleMaster).

5. Plug the MS/TP cable into the IUT to join the IUT to the MS/TP network

6. CHECK (verify with the serial analyzer that the IUT joins the MS/TP network within Time_to_join seconds)

2.2.17 MS/TP Network Startup Tests (Reference device joins the MS/TP network)

Purpose: Verify that the IUT can allow other devices to be introduced into a preexisting MS/TP network of which the IUT is the SoleMaster.

Setup: An existing MS/TP network shall be comprised of the IUT. Normal network operation shall be verified using a serial analyzer. In this scenario (SoleMaster), the only frames being transmitted should be Poll For Master Frames generated by the IUT. Reference Master A should be configured with a MAC address less than the IUT and a Max_Master greater than the IUT's MAC address. Reference Master B should be configured with a MAC address greater than the IUT and a Max_Master greater than the IUT's MAC address. Reference Master A and B should be configured with the same baud rate as the IUT.

Test Steps:

61. Power on the IUT.

62. CHECK (verify with the serial analyzer that the IUT declares sole master and generates Poll For Master frames at TS+1).

63. Power on Reference Master A.

64. CHECK (verify that the IUT continues to send Poll for Master frames to successive addresses up to and including the Reference Master A MAC Address).

65. WAIT (until the Reference Master A sends a Reply to Poll for Master to the IUT).

66. CHECK (verify that the IUT sends a Token Frame to Reference Master A).

67. WAIT (until the Reference Master A sends a Poll for Master requests to all devices from its TS+1 to IUT).

68. CHECK (verify that the IUT sends a Reply to Poll for Master to Reference Master A).

69. WAIT (until the Reference Master A sends a Token Frame to IUT).

70. Power on Reference Master B.

71. CHECK (verify that IUT sends a Poll for Master to all devices from its TS+1 to Reference Master B).

72. WAIT (until Reference Master B sends a Reply to Poll for Master to IUT).

73. CHECK (verify that IUT sends a Token Frame to Reference Master B).

74. CHECK (verify that IUT is quiet until it receives another Token).

2.3 ARCNET (twisted pair bus) Data Link Layer Tests

The ARCNET twisted pair bus is an alternate configuration of the standard ARCNET coax, and therefore, requires a different setup of electronics and chipset configuration. These tests verify that the setup and configuration has been followed in order to provide interoperability.

Since the TD is installed on the non-ARCNET side of a reference router, these tests do not cover strict conformance to the ARCNET data link layer. The methodology is to install the IUT on an ARCNET network containing reference devices that are known to conform to BACnet clause 8 using the twisted pair bus option and verify that the TD can exchange data with the IUT. An oscilloscope will also be employed on the ARCNET network to verify that the IUT meets the duty cycle and biasing requirements of the alternate ARCNET data link layer, as these items are critical to interoperability of ARCNET twisted pair bus. An ARCNET packet sniffer is useful, but not required.

These tests require the use of a reference ARCNET twisted pair bus router and a reference ARCNET twisted pair bus device. These devices will be selected from a pool of qualified devices that are to be submitted by members of the BMA. The tester is free to select any of the qualified references devices to use during the test, and the identity of the reference devices will not be published. The criteria for qualifying the reference devices is virtually identical to the test plans referenced here, with the addition of a few tests for proper formation of the NPCI by the reference router.

General Test Setup:

Install a reference ARCNET twisted pair bus router at ARCNET node address <A>.

Install a reference ARCNET twisted pair bus device at node address <C>.

Install the IUT at node address .

The ARCNET node addresses are not critical, but must be unique and not zero.

Recommended Test Tools:

ARCNET packet sniffer = Any ARCNET packet sniffer that meets the following requirements:

1. Each packet is time stamped with 1msec accuracy.

2. The packet sniffer can support the baud rates being tested.

3. Captured data can be saved and reloaded, including the time stamp information.

4. The packet sniffer is currently available for purchase.

Other desirable traits:

5. A BACnet aware packet sniffer to allow ARCNET packets to be decoded, either online or offline.

6. Export a captured session to a text file, including time stamp information. (This would provide the ability for advanced analysis of the data, such as scanning the data for timing anomalies).

Oscilloscope = Agilent 54620 series or similar. This scope has a 2MB sample memory, which is useful for capturing data for an extended time and then zooming in on the details after the capture is complete. It can also "layer" the samples using 32 levels of display intensity, which makes it easier to spot timing anomalies.

2.3.1 Verify the Failsafe Biasing with an Oscilloscope

Test Concept: Verify that failsafe biasing (see ARCNET specification 11.4.2, Fail-safe Bias) is at least 200mV. A maximum value is not specified, but the biasing should be such as to not excessively load the EIA-485 transceivers.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1) Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2) With an oscilloscope probe connected across the bus with the correct polarity, measure the Fail-Safe Bias.

3) Fail the IUT if the Fail-Safe Bias is not at least 200mV.

2.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope

Test Concept: The ARCNET chipset has the option of supporting either coax (normal) or twisted pair (differential driver). The differential driver mode utilizes a 50% duty cycle, while the normal method uses a 25% duty cycle for the bits on the wire. Verify that the duty cycle is 50% for ARCNET twisted pair bus.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1) Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2) With an oscilloscope probe connected across the bus with the correct polarity, measure the bit signal duty cycle (pulse width divided by the interpulse period).

3) Fail the IUT if the duty cycle is not 50% (with allowance for acceptable jitter).

7 Object Support Tests

7.3.1 Property Tests

7.3.1.11 Acked_Transitions Tests

Reason for Change: This test has had the timestamp in the ack notifications changed to the current time of the initiating device. These test changes are covered by CN-060.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; AcknowledgeAlarm Service Execution Tests, 9.1; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.24, 12.2.25, 12.3.21, 12.5.23, 12.6.27, 12.7.25, 12.11.11, 12.14.19, 12.15.19, 12.16.34, 12.17.18, 12.18.19, 12.19.19 and 12.23.24.

Purpose: To verify that the Acked_Transitions property tracks whether or not an acknowledgment has been received for a previously issued event notification. It also verifies the interrelationship between Status_Flags and Event_State. This test applies to Event Enrollment objects and Analog Input, Analog Output, Analog Value, Binary Input, Binary Output, Binary Value, Life Safety Point, Life Safety Zone, Loop, Multi-state Input, Multi-state Output, and Multi-state Value objects that support intrinsic reporting.

Test Concept: The IUT is configured such that the Event_Enable property indicates that all event transitions are to trigger an event notification. The Acked_Transitions property shall have the value (TRUE, TRUE, TRUE) indicating that all previous transitions have been acknowledged. Each event transition is triggered and the Acked_Transitions property is monitored to verify that the appropriate bit is cleared when a notification message is transmitted and reset if an acknowledgment is received.

Configuration Requirements: The Event_Enable and Acked_Transitions properties shall be configured with a value of (TRUE, TRUE, TRUE). For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE). The referenced event-triggering property shall be set to a value that results in a NORMAL condition. If a Notification Class object is being used to configure recipient information the value of the Transitions parameter for all recipients shall be (TRUE, TRUE, TRUE).

In the test description below, “X” is used to designate the event-triggering property.

Test Steps:

Test Steps:

1.
WAIT (Time_Delay + Notification Fail Time)

2.
VERIFY Event_State = NORMAL

3.
VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)

4.
VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

5.
IF (X is writable) THEN

WRITE X = (a value that is OFFNORMAL)

ELSE

MAKE (X have a value that is OFFNORMAL)

6.
WAIT (Time_Delay)

7.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-OFFNORMAL transition),

'Event Type' =

(any valid event type),

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

OFFNORMAL,

'Event Values' =

(values appropriate to the event type)

8.
VERIFY Event_State = OFFNORMAL

9.
VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)

10.
VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

11.
IF (X is writable) THEN

WRITE X = (a value that is NORMAL)

ELSE

MAKE (X have a value that is NORMAL)

12.
WAIT (Time_Delay)

13.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

(any valid event type),

'Notify Type' =

EVENT | ALARM,

'AckRequired' =

TRUE | FALSE,

'From State' =

OFNORMAL,

'To State' =

NORMAL,

'Event Values' =

(values appropriate to the event type)

14.
VERIFY Event_State = NORMAL

15.
VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)

16.
VERIFY Status_Flags = (FALSE, FALSE, ?,?)

17.
IF (the event-triggering object can be placed into a fault condition) THEN {

18.

MAKE (the event-triggering object change to a fault condition)

19.

WAIT (Time_Delay)

20.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-FAULT transition),

'Event Type' =

(any valid event type),

'Notify Type' =

EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

FAULT,

'Event Values' =
(values appropriate to the event type)

21.

VERIFY Event_State = FAULT

22.

VERIFY Acked_Transitions = (FALSE, FALSE, FALSE)

23.

VERIFY Status_Flags = (FALSE, TRUE, ?, ?)

24.

MAKE (the event-triggering object change to a normal condition)

25.

WAIT (Time_Delay)

26.

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the event-generating object configured for this test),

'Time Stamp' =
(any valid time stamp),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =

(any valid event type),

'Notify Type' =

EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =

FAULT,

'To State' =

NORMAL,

'Event Values' =
(values appropriate to the event type)

27.

VERIFY Event_State = NORMAL

28.

VERIFY Acked_Transitions = (FALSE, FALSE, FALSE)

29.

VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

30.

TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the value of the 'Process Identifier' in step 20),

'Event Object Identifier' =
(the 'Event Object Identifier' in step 20),

'Event State Acknowledged' =
FAULT,

'Time Stamp' =
(the 'Time Stamp in step 20),

'Time of Acknowledgment' =
(the current time)

31.

RECEIVE BACnet-SimpleACK-PDU

32.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the value of the 'Process Identifier' in step 20),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the 'Event Object Identifier' in step 20),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the 'Notification Class' in step 20),

'Priority' =
(the 'Priority' in step 20),

'Event Type' =
(the 'Event Type' in step 20),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
FAULT

ELSE

.

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the value of the 'Process Identifier' in step 20),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the 'Event Object Identifier' in step 20),

'Time Stamp' =
(the current time or sequence number) ,

'Notification Class' =
(the 'Notification Class' in step 20),

'Priority' =
(the 'Priority' in step 20),

'Event Type' =
(the 'Event Type' in step 20),

'Notify Type' =
ACK_NOTIFICATION

33.

VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)
34.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the value of the 'Process Identifier' in step 26),

'Event Object Identifier' =
(the 'Event Object Identifier' in step 26),

'Event State Acknowledged' =
NORMAL,

'Time Stamp' =
(the 'Time Stamp in step 26),

'Time of Acknowledgment' =
(the current time)

35.
RECEIVE BACnet-SimpleACK-PDU

36.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the value of the 'Process Identifier' in step 2613),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the 'Event Object Identifier' in step 26),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the 'Notification Class' in step 26),

'Priority' =
(the 'Priority' in step 26),

'Event Type' =
(the 'Event Type' in step 26),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
NORMAL

ELSE

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the value of the 'Process Identifier' in step 26),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the 'Event Object Identifier' in step 26),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the 'Notification Class' in step 26),

'Priority' =

(the 'Priority' in step 26),

'Event Type' =

(the 'Event Type' in step 26),

'Notify Type' =

ACK_NOTIFICATION

37.
VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)

38.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the value of the 'Process Identifier' in step 7),

'Event Object Identifier' =
(the 'Event Object Identifier' in step 7),

'Event State Acknowledged' =
OFFNORMAL,

'Time Stamp' =
(the 'Time Stamp in step 7),

'Time of Acknowledgment' =
(the current time)

39.
RECEIVE BACnet-SimpleACK-PDU

40.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the value of the 'Process Identifier' in step 7),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the 'Event Object Identifier' in step 7),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the 'Notification Class' in step 7),

'Priority' =
(the 'Priority' in step 7),

'Event Type' =
(the 'Event Type' in step 7),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
OFFNORMAL

ELSE

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the value of the 'Process Identifier' in step 7),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the 'Event Object Identifier' in step 7),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the 'Notification Class' in step 7),

'Priority' =

(the 'Priority' in step 7),

'Event Type' =

(the 'Event Type' in step 7),

'Notify Type' =

ACK_NOTIFICATION

41.
VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.13 Limit_Enable Test

Reason for Change: This test has been modified to allow for portions of it to be skipped if the Limit_Enable property is not modifiable. No proposal identified.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.22, 12.2.23, and 12.3.19.

Purpose: To verify that the Limit_Enable property correctly enables or disables reporting of out of range events. This test applies to Analog Input, Analog Output, and Analog Value objects that support intrinsic reporting. If the Limit_Enable property is not writable and cannot be reconfigured this test shall be omitted.

Test Concept: The event-triggering property is manipulated to cause both the high limit and the low limit to be exceeded for each possible combination of values for Limit_Enable. The resulting event notification messages are monitored to verify that they are transmitted only for circumstances where the associated event limit is enabled.

Configuration Requirements: If Limit_Enable cannot be changed in the IUT, then only those sections of the following test that apply to the value of Limit_Enable shall be executed. If Limit_Enable is (FALSE, FALSE) then a different object shall be selected. If Limit_Enable is (TRUE, TRUE), then steps 2 through 9 shall be executed. If Limit_Enable is (FALSE, TRUE) then steps 11 through 17 shall be executed. If Limit_Enable is (TRUE, FALSE) then steps 19 through 25 shall be executed.
In the test description below "X" is used to designate the event-triggering property.

Test Steps:

1.
VERIFY Limit_Enable = (TRUE, TRUE)

2.
VERIFY Event_State = NORMAL

3.
WAIT (Time_Delay + Notification Fail Time)

4.
IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

5.
WAIT (Time_Delay)

6.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

NORMAL,

'To State' =

HIGH_LIMIT,

'Event Values' =

(values appropriate to the event type)

7.
IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

8.
WAIT (Time_Delay)

9.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

HIGH_LIMIT,

'To State' =

LOW_LIMIT,

'Event Values' =

(values appropriate to the event type)

10.
WRITE Limit_Enable = (FALSE, TRUE)

11.
VERIFY Limit_Enable = (FALSE, TRUE)

12.
IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

13.
WAIT (Time_Delay)

14.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

LOW_LIMIT,

'To State' =

HIGH_LIMIT,

'Event Values' =

(values appropriate to the event type)

15.
IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

16.
WAIT (Time_Delay + Notification Fail Time)

17.
CHECK (verify that no notification message was transmitted)

18.
WRITE Limit_Enable = (TRUE, FALSE)

19.
VERIFY Limit_Enable = (TRUE, FALSE)

20.
IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

21.
WAIT (Time_Delay + Notification Fail Time)

22.
CHECK (verify that no notification message was transmitted)

23.
IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

24.
WAIT (Time_Delay)

25.
BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
(the object configured for this test),

'Time Stamp' =

(the current local time),

'Notification Class' =
(the class corresponding to the object being tested),

'Priority' =

(the value configured to correspond to a

TO-OFFNORMAL transition),

'Event Type' =

OUT_OF_RANGE,

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

HIGH_LIMIT,

'To State' =

LOW_LIMIT,

'Event Values' =
(values appropriate to the event type)

26.
WRITE Limit_Enable = (FALSE, FALSE)

27.
VERIFY Limit_Enable = (FALSE, FALSE)

28.
IF (X is writable) THEN

WRITE X = (a value that exceeds High_Limit)

ELSE

MAKE (X a value that exceeds High_Limit)

29.
WAIT (Time_Delay + Notification Fail Time)

30.
CHECK (verify that no notification message was transmitted)

31.
IF (X is writable) THEN

WRITE X = (a value that is lower than Low_Limit)

ELSE

MAKE (X a value that is lower than Low_Limit)

32.
WAIT (Time_Delay + Notification Fail Time)

33.
CHECK (verify that no notification message was transmitted)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.X1 Active_COV_Subscriptions Test

Reason for Change: No relevant test in 135.1. This test is covered by proposal CN-066.

Purpose: This test case verifies that the IUT correctly updates the Active_COV_Subscriptions property when COV subscriptions are created, cancelled and timed-out.

Configuration: For this test, the tester shall choose 3 objects, O1, O2, and O3 that the device supports COV for. O1, O2, and O3 need not refer to different objects. The tester shall also choose 3 non-zero unique process identifiers, P1, P2, and P3, and 3 non-zero lifetimes L1, L2 and L3. Lifetime L1 shall be long enough to allow the initial part of the test to run through to step 7. Lifetimes L2 and L3 shall be long enough for the whole test to complete without the lifetime expiring.

The IUT shall start the test with no entries in its Active_COV_Subscriptions property.

Test Steps:

1.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

P1,

'Monitored Object Identifier' =

O1,

'Issue Confirmed Notifications' =

TRUE,

'Lifetime' =

L1

2. RECEIVE BACnet-SimpleACK-PDU

3. RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
P1,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
O1,

'Time Remaining' =
(a value approximately equal to L1),

'List of Values' =
(values appropriate to the object type of the monitored object)

4.
TRANSMIT Simple-Ack

5.
VERIFY Active_COV_Subscriptions = {

{ {IUT, P1}, O1, TRUE, (a value less than L1), (a valid Increment if the property is REAL) }

}

6.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

P2,

'Monitored Object Identifier' =

O2,

'Issue Confirmed Notifications' =

FALSE,

'Lifetime' =

L2

75. 7.
RECEIVE BACnet-SimpleACK-PDU

76. 8.
RECEIVE UnonfirmedCOVNotification-Request,

77.

'Subscriber Process Identifier' =
P2,

78.

'Initiating Device Identifier' =
IUT,

79.

'Monitored Object Identifier' =
O2,

80.

'Time Remaining' =
(a value approximately equal to L2),

81.

'List of Values' =
(values appropriate to the object type of the monitored object)

9.
VERIFY Active_COV_Subscriptions = {

{ {IUT, P1}, O1, TRUE, (a value less than L1), (a valid Increment if the property is REAL) },

{ {IUT, P2}, O2, FALSE, (a value less than L2), (a valid Increment if the property is REAL) }

}

10.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

P3,

'Monitored Object Identifier' =

O3,

'Issue Confirmed Notifications' =

FALSE,

'Lifetime' =

L3

82. 11.
RECEIVE BACnet-SimpleACK-PDU

83. 12.
RECEIVE UnonfirmedCOVNotification-Request,

84.

'Subscriber Process Identifier' =
P3,

85.

'Initiating Device Identifier' =
IUT,

86.

'Monitored Object Identifier' =
O3,

87.

'Time Remaining' =
(a value approximately equal to L2),

88.

'List of Values' =
(values appropriate to the object type of the monitored object)

13.
VERIFY Active_COV_Subscriptions = {

{ {IUT, P1}, O1, TRUE, (a value less than L1), (a valid Increment if the property is REAL) },

{ {IUT, P2}, O2, FALSE, (a value less than L2), (a valid Increment if the property is REAL) },

{ {IUT, P3}, O3, FALSE, (a value less than L3), (a valid Increment if the property is REAL) }

}

89. 14.
WAIT L1 + the IUT's timer granularity

15.
VERIFY Active_COV_Subscriptions = {

{ {IUT, P2}, O2, FALSE, (a value less than L2), (a valid Increment if the property is REAL) },

{ {IUT, P3}, O3, FALSE, (a value less than L3), (a valid Increment if the property is REAL) }

}

16.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

P3,

'Monitored Object Identifier' =

O3

17.
VERIFY Active_COV_Subscriptions = {

{ {IUT, P2}, O2, FALSE, (a value less than L2), (a valid Increment if the property is REAL) },

}

18.
TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =

P2,

'Monitored Object Identifier' =

O2

19.
VERIFY Active_COV_Subscriptions = { }

7.3.1.X2 Event_Type Test
Reason for Change: This test was added to allow for testing of 2001a functionality. The change is not included in any SSPC proposal.

Purpose: This test case verifies that Event_Type property of an Event Enrollment object properly tracks changes to the Event_Parameters property.

Configuration: The IUT shall be configured with an Event Enrollment object, E1, that has a writable Event_Parameters property that will accept a value with a different algorithm choice. The tester shall choose a valid Event_Parameters value, EP1, with a event type value, ET1, that the IUT will accept where the ET1 differs from the Event_Type already existing in E1.

Test Steps:

1.
VERIFY Event_Type <> ET1
2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
(The object identifier of E1),

'Property Identifier' =
Event_Parameters,

'Property Value' =
EP1
3.
RECEIVE Simple-Ack

4.
VERIFY Event_Type = ET1
7.3.1.X3 Array Resizing Test

Reason for Change: This test was added to allow for testing of array sizing rules added in 135-2001a. The change is in WS-066.

The test in this clause shall be applied to resizable arrays in devices claiming Protocol_Revision 4 or higher. They may be applied to resizable arrays in devices claiming Protocol_Revision 3 or lower, but only where conformance to the rules on resizing arrays of Protocol_Revision 4 is claimed.

Dependencies: None

BACnet Reference Clause: 12.

Purpose: To verify that resizable arrays are resized in accordance with the rules set forth in ANSI/ASHRAE Standard 135-2001, Clause 12.

Test Concept: The array is written as a whole to set it to a non-zero size. It is then resized smaller and larger by writing the entire array. It is then resized smaller and larger by writing to element number zero. An attempt is made to increase it with an invalid write. After each operation the array size and array contents are checked. Finally, if it can be resized to have zero elements, it is then written to size zero. If possible, all elements in the arrays should be distinguishable from each other and across write operations.

Test Steps:
1.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Value' =

(array of non-zero size N1)

2.
RECEIVE Simple-ACK-PDU

3.
VERIFY (array is as written in step 1)

4.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Value' =

(array of non-zero size N2, where N2 ≤ N1)

5.
RECEIVE Simple-ACK-PDU

6.
VERIFY (array is as written in step 4)

7.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Value' =

(array of non-zero size N3, where N3 ≥ N1)

8.
RECEIVE Simple-ACK-PDU

9.
VERIFY (array is as written in step 7)

10.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Array Index' =

0,

'Property Value' =

(non-zero N4, where N4 ≤ N1)

11.
RECEIVE Simple-ACK-PDU

12.
VERIFY (array contains first N4 elements of the array written in step 7)

13.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Array Index' =

0,

'Property Value' =

(N5, where N5 ≥ N4)

14.
RECEIVE Simple-ACK-PDU

15.
VERIFY (array contains first N4 elements of the array written in step 7, plus N5 – N4

additional elements, initialized to particular values if specified for the array property

being tested)

16.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the object being tested),

'Property Identifier' =

(the array property being tested),

'Property Array Index' =

(N6, where N6 ≥ N5),

'Property Value' =

(one array element)

17.
RECEIVE BACnet-Error-PDU

Error Class =

PROPERTY,

Error Code =

INVALID_ARRAY_INDEX

18.
VERIFY (array is unchanged from step 15)

19. IF (the array can be resized to have zero elements) THEN

TRANSMIT WriteProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
(the array property being tested),

'Property Value' =
(empty array)

RECEIVE Simple-ACK-PDU

VERIFY (array is empty)

7.3.2 Object Specific Tests

7.3.2.9 Command Object Test
7.3.2.9.8 Action Size Changes Action_Text Size Test

Reason For Change: This test is included in 135.1a.

Dependencies: WriteProperty Service Execution Tests, 9.22
BACnet Reference Clauses: Action, 12.10.8, and Action_Text, 12.10.9

Purpose: This test case verifies that when the size of the Action array is changed, the size of the Action_Text array is changed accordingly, to the same size. If the size of the Action and Action_Text arrays cannot be changed, then this test shall not be performed.

Configuration Requirements: The IUT shall be configured with a Command object with resizable Action and Action_Text arrays.

Test Concept: The Action and Action_Text arrays are set to a certain size. They are then: increased by writing the Action array element 0, decreased by writing the Action array, increased by writing the Action array and decreased by writing the Action array element 0.
1.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action,

'Property Array Index' =

0,

'Property Value' =

2

2.
RECEIVE Simple-ACK-PDU

3.
VERIFY Action = 2, ARRAY INDEX = 0

4.
VERIFY Action_Text = 2, ARRAY INDEX = 0

5.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action,

'Property Array Index' =

0,

'Property Value' =

(some value greater than 2)

6.
RECEIVE Simple-ACK-PDU

7.
VERIFY Action = (the value written in step 5), ARRAY INDEX = 0

8.
VERIFY Action_Text = (the value written in step 5), ARRAY INDEX = 0
9.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action,

'Property Value' =

(Action array of length 2)

10.
RECEIVE Simple-ACK-PDU

11.
VERIFY Action = 2, ARRAY INDEX = 0

12.
VERIFY Action_Text = 2, ARRAY INDEX = 0
13.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action,

'Property Value' =

(Action array of length greater than 2)

14.
RECEIVE Simple-ACK-PDU

15.
VERIFY Action = (the length of the array written in step 13), ARRAY INDEX = 0

16.
VERIFY Action_Text = (the length of the array written in step 13), ARRAY INDEX = 0

17.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action,

'Property Array Index' =

0,
'Property Value' =

2

18.
RECEIVE Simple-ACK-PDU

19.
VERIFY Action = (an array of length 2 consisting of elements 1 & 2 from

the array written in step 13)

20.
VERIFY Action_Text = 2, ARRAY INDEX = 0

7.3.2.9.9 Action_Text Size Changes Action Size Test

Reason For Change: This test is included in 135.1a .

Dependencies: WriteProperty Service Execution Tests, 9.22
BACnet Reference Clauses: Action, 12.10.8, and Action_Text, 12.10.9

Purpose: This test case verifies that when the size of the Action_Text array is changed, the size of the Action array is changed accordingly, to the same size. If the size of the Action and Action_Text arrays cannot be changed, then this test shall not be performed.

Configuration Requirements: The IUT shall be configured with a Command object with resizable Action and Action_Text arrays.

Test Concept: The Action and Action_Text arrays are set to a certain size. They are then: increased by writing the Action_Text array element 0, decreased by writing the Action_Text array, increased by writing the Action_Text array and decreased by writing the Action_Text array element 0.
1.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action_Text,

'Property Array Index' =

0,

'Property Value' =

2

2.
RECEIVE Simple-ACK-PDU

3.
VERIFY Action_Text = 2, ARRAY INDEX = 0

4.
VERIFY Action = 2, ARRAY INDEX = 0

5.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action_Text,

'Property Array Index' =

0,

'Property Value' =

(some value greater than 2)

6.
RECEIVE Simple-ACK-PDU

7.
VERIFY Action_Text = (the value written in step 5), ARRAY INDEX = 0

8.
VERIFY Action = (the value written in step 5), ARRAY INDEX = 0
9.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action_Text,

'Property Value' =

(Action_Text array of length 2)

10.
RECEIVE Simple-ACK-PDU

11.
VERIFY Action_Text = 2, ARRAY INDEX = 0

12.
VERIFY Action = 2, ARRAY INDEX = 0
13.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action_Text,

'Property Value' =

(Action_Text array of length greater than 2)

14.
RECEIVE Simple-ACK-PDU

15.
VERIFY Action_Text = (the length of the array written in step 13), ARRAY INDEX = 0

16.
VERIFY Action = (the length of the array written in step 13), ARRAY INDEX = 0

17.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Command object being tested),

'Property Identifier' =

Action_Text,

'Property Array Index' =

0,

'Property Value' =

2

18.
RECEIVE Simple-ACK-PDU

19.
VERIFY Action_Text = (an array of length 2 consisting of elements 1 & 2 from

the array written in step 13)

20.
VERIFY Action = 2, ARRAY INDEX = 0
7.3.2.17 Multi-state Input Object Test
7.3.2.17.5 Number_Of_States and State_Text Size Change Test

Reason For Change: This test is included in 135.1a.

Dependencies: WriteProperty Service Execution Tests, 9.22
BACnet Reference Clauses: Number_Of_States, 12.18.11, and State_Text, 12.18.12

Purpose: This test case verifies that when the value of the Number_Of_States property is changed, the size of the State_Text array is changed accordingly, to the same size. If the Number_Of_States and the size of the State_Text arrays cannot be changed, then this test shall not be performed.

Configuration Requirements: The IUT shall be configured with a Multi-state Input object with writable Number_Of_States and resizable State_Text arrays.

Test Concept: Number_Of_States and the State_Text array are set to a certain size. They are then: increased by writing the Number_Of_States, decreased by writing the State_Text array, increased by writing the State_Text array and decreased by writing Number_Of_States.
1.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Multi-state Input object being tested),

'Property Identifier' =

Number_Of_States,

'Property Value' =

2

2.
RECEIVE Simple-ACK-PDU

3.
VERIFY Number_Of_States = 2

4.
VERIFY State_Text = 2, ARRAY INDEX = 0

5.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Multi-state Input object being tested),

'Property Identifier' =

Number_Of_States,

'Property Value' =

(some value greater than 2)

6.
RECEIVE Simple-ACK-PDU

7.
VERIFY Number_Of_States = (the value written in step 5)

8.
VERIFY State_Text = (the value written in step 5), ARRAY INDEX = 0
9.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Multi-state Input object being tested),

'Property Identifier' =

State_Text,

'Property Value' =

(State_Text array of length 2)

10.
RECEIVE Simple-ACK-PDU

11.
VERIFY Number_Of_States = 2

12.
VERIFY State_Text = 2, ARRAY INDEX = 0
13.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Multi-state Input object being tested),

'Property Identifier' =

State_Text,

'Property Value' =

(State_Text array of length greater than 2)

14.
RECEIVE Simple-ACK-PDU

15.
VERIFY Number_Of_States = (the length of the array written in step 13)

16.
VERIFY State_Text = (the length of the array written in step 13), ARRAY INDEX = 0

17.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Multi-state Input object being tested),

'Property Identifier' =

Number_Of_States,

'Property Value' =

2

18.
RECEIVE Simple-ACK-PDU

19.
VERIFY State_Text = (an array of length 2 consisting of elements 1 & 2 from

the array written in step 13)

20.
VERIFY Number_Of_States = 2
7.3.2.18 Multi-State Output Object Test
7.3.2.18.6 Number_Of_States and State_Text Size Change Test

Reason For Change: This test is included in 135.1a.

Dependencies: WriteProperty Service Execution Tests, 9.22
BACnet Reference Clauses: Number_Of_States, 12.19.11, and State_Text, 12.19.12

Tests to verify the Number_Of_States value and State_Text array size of Multi-state Output objects are defined in 7.3.2.15.5. Run the tests using a Multi-state Output object.
7.3.2.19 Multi-State Value Object Test
7.3.2.19.5 Number_Of_States and State_Text Size Change Test

Reason For Change: This test is included in 135.1a.

Dependencies: WriteProperty Service Execution Tests, 9.22
BACnet Reference Clauses: Number_Of_States, 12.20.10, and State_Text, 12.20.11

Tests to verify the Number_Of_States value and State_Text array size of Multi-state Value objects are defined in 7.3.2.15.5. Run the tests using a Multi-state Value object.
7.3.2.20 Notification Class Object

7.3.2.20.3 Recipient_List Tests

7.3.2.20.3.X Recipient_List Property Supports Device Identifier Recipients

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

BACnet Reference Clauses: 12.??

Purpose: To verify that the Recipient_List property of the Notification Class object supports entries Recipient portions that contain Device Identifiers and that the IUT is able to associate a MAC address with the Device Identifier using the WhoIs service. The intent is to ensure that the IUT is able to locate the specified alarm recipient and send notification to the specified recipient.

Test Concept: The tester shall select a single event generating object E in the IUT that references Notification Class object N. The tester shall add an entry into the Recipient_List of the associated Notification Class object which specifies a device identifierI D, preferably one for a device that the IUT is not already aware of.

Test Steps:

1.
WRITE N.RecipientList = ({all days, all times, D, any process ID, FALSE, all transitions})
2.
MAKE (the event generating object, E, transition)

3.
BEFORE Notification Fail Time

RECEIVE

DESTINATION = GLOBAL BROADCAST

SOURCE = IUT

Who-Is-Request

'Device Instance Range Low Limit' =(D's instance),

'Device Instance Range High Limit' =(D's instance)

TRANSMIT I-Am-Request

I-Am-Request,

'I Am Device Identifier' =

(D),

'Max APDU Length Accepted' =
(any valid value),

'Segmentation Supported' =
(any valid value),

'Vendor Identifier' =

(any valid value)

RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' =

(the valid process ID from step 1),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
E,

'Time Stamp' =

(the current local time),

'Notification Class' =

(N's instance),

'Priority' =

(any valid priority),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(any valid event state),

'To State' =

(any valid event state),

'Event Values' =

(values appropriate to the event type)

Passing Result: The IUT may transmit the Who-Is request before the event is transitioned. The IUT may specify a larger range that is shown in step 3, although the range shown in step 3 is the preferred range assuming that the IUT is not also looking for other devices. The IUT shall not leave the range out of the Who-Is request.

7.3.2.20.3.X1 Recipient_List Property Supports Network Address Recipients

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

BACnet Reference Clauses: 12.??

Purpose: To verify that the Recipient_List property of the Notification Class object supports Recipient portions that contain a network address (network number + MAC address). The intent is to ensure that the IUT is able to send notifications to the specified recipient.

Test Concept: The tester shall select a single event generating object E in the IUT that references Notification Class object N. The tester shall add an entry into the Recipient_List of the associated Notification Class object which specifies a BACnetAddress A, where A is a unicast or a broadcast address.
Test Steps:

1.
WRITE N.RecipientList = ({all days, all times, A, any process ID, FALSE, all transitions})
2.
MAKE (the event generating object, E, transition)

3.
BEFORE Notification Fail Time

RECEIVE DESTINATION = A,

UnconfirmedEventNotification-Request,

'Process Identifier' =

(the valid process ID from step 1),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
E,

'Time Stamp' =

(the current local time),

'Notification Class' =

(N's instance),

'Priority' =

(any valid priority),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(any valid event state),

'To State' =

(any valid event state),

'Event Values' =

(values appropriate to the event type)
7.3.2.22 Schedule Object Tests

7.3.2.22.9 Exception_Schedule Size Change Test

Reason For Change: This test is included in 135.1a.

Dependencies: WriteProperty Service Execution Tests, 9.22
BACnet Reference Clauses: Exception_Schedule, 12.24.8

Purpose: This test case verifies that when the size of the Exception_Schedule is changed by writing to the array index the size of the array changes accordingly and any new entries contain an empty List of BACnetTimeValue. If the size of the Exception_Schedule array cannot be changed, then this test shall not be performed.

Configuration Requirements: The IUT shall be configured with a Schedule object with a resizable Exception_Schedule array.

Test Concept: The Exception_Schedule array is set to a certain size. It is then: increased by writing the array size, decreased by writing the array, increased by writing the array and decreased by writing the array size.
1.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Schedule object being tested),

'Property Identifier' =

Exception_Schedule,

'Property Value' =

(Exception_Schedule array of length 2)

2.
RECEIVE Simple-ACK-PDU

3.
VERIFY Exception_Schedule = (the value written in step 1)

4.
VERIFY Exception_Schedule = 2, ARRAY INDEX = 0

5.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Schedule object being tested),

'Property Identifier' =

Exception_Schedule,

'Property Array Index' =

0,

'Property Value' =

(some value greater than 2)

6.
RECEIVE Simple-ACK-PDU

7.
VERIFY Exception_Schedule = (the value written in step 1 with new entries containing

empty Lists of BACnetTimeValue))

8.
VERIFY Exception_Schedule = (the value written in step 5), ARRAY INDEX = 0
9.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Schedule object being tested),

'Property Identifier' =

Exception_Schedule,

'Property Value' =

(Exception_Schedule array of length 2)

10.
RECEIVE Simple-ACK-PDU

11.
VERIFY Exception_Schedule = (the value written in step 9)

12.
VERIFY Exception_Schedule = 2, ARRAY INDEX = 0
13.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Schedule object being tested),

'Property Identifier' =

Exception_Schedule

'Property Value' =

(Exception_Schedule array of length greater than 2)

14.
RECEIVE Simple-ACK-PDU

15.
VERIFY Exception_Schedule = (the value written in step 13)

16.
VERIFY Exception_Schedule = (the length of the array written in step 13), ARRAY INDEX = 0

17.
TRANSMIT WriteProperty-Request,

'Object Identifier' =

(the Schedule object being tested),

'Property Identifier' =

Exception_Schedule,

'Property Array Index' =

0,

'Property Value' =

2

18.
RECEIVE Simple-ACK-PDU

19.
VERIFY Exception_Schedule = (an array of length 2 consisting of elements 1 & 2 from

the array written in step 13)

20.
VERIFY Exception_Schedule = 2, ARRAY INDEX = 0

7.3.2.22.X1 Written Datatypes Test

The following tests verify that all supported internally-written and required externally-written datatypes are actually written by the Schedule object.

7.3.2.22.X1.1 Internally Written Datatypes Test, non-NULL values

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: TimeSynchronization Service Execution Tests, 9.26

BACnet Reference Clauses: 12.22, 12.22.9

Purpose: This test verifies that a Schedule object writes to properties within the same device with all datatypes claimed for its internal write operation. If the IUT supports Schedule objects that have differences in supported datatypes, this test should be performed on at least one example of each type.

Test Concept: Two Date values are chosen by the TD based on the criteria in Table 7-X such that D1 is sufficiently different from current time to cause a Schedule evaluation (per the restoration behavior in 12.22 of ANSI/ASHRAE 135-2001) when the time is changed to D1, and setting the time to D2 from D1 will cause a Schedule evaluation that will cause it to write value V2. These values may be chosen based on the Schedule object’s existing configuration, or the Schedule object may be configured with such values.

Configuration Requirements: The IUT shall be configured with a Schedule object such that the time periods defined in Table 7-X can be configured with uniquely scheduled values. The Schedule object shall be configured with a List_Of_Object_Property_References including at least one reference to a writable property within the device. If the IUT cannot be configured to these requirements then this test shall be omitted.

Table 7-X. Criteria for Test Date and Times

	Date and Time:
	Value:

	D1
	V1

	D2
	V2 different from V1.

Test Steps:

1.
REPEAT Y = (the list of datatypes supported by this Schedule object for internal writes,

except NULL) DO {

MAKE (values V1 and V2 to be appropriate to datatype Y)

MAKE (all entries in List_Of_Object_Property_References refer to

properties of datatype Y)

(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| MAKE (the local date and time = D1)

VERIFY the Schedule object’s Present_Value = V1

VERIFY (an internally referenced property = V1)

(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| MAKE (the local date and time = D2)

VERIFY the Schedule object’s Present_Value = V2

VERIFY (an internally referenced property = V2)

}

7.3.2.22.X1.2 Internally Written Datatypes Test, NULL Values and Priority_Arrays

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: TimeSynchronization Service Execution Tests, 9.30

BACnet Reference Clauses: 12.22, 12.22.9

Purpose: This test verifies that the Schedule object writes NULLs to priority arrays (via Present_Value) within the same device.

Test Concept: Two Date values are chosen by the TD based on the criteria in Table 7-X such that D1 is sufficiently different from current time to cause a Schedule evaluation (per the restoration behavior in 12.22 of ANSI/ASHRAE 135-2001) when the time is changed to D1, and setting the time to D2 from D1 will cause a Schedule evaluation that will cause it to write value V2. These values may be chosen based on the Schedule object’s existing configuration, or the Schedule object may be configured with such values, and either V1 or V2, but not both, has datatype NULL. The values are written to a Present_Value property with the priority designated by the Schedule object’s Priority_For_Writing property.

Configuration Requirements: The IUT shall be configured with a Schedule object such that the time periods defined in Table 7-X can be configured with uniquely scheduled values. The Schedule object shall be configured with a List_Of_Object_Property_References including at least one reference within the device to a Present_Value property in an object containing a Priority_Array property. If the IUT cannot be configured to these requirements then this test shall be omitted.

Table 7-X. Criteria for Test Date and Times

	Date and Time:
	Value:

	D1
	V1

	D2
	V2 different from V1.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

2.
VERIFY the Schedule object’s Present_Value = V1
3.
VERIFY (referenced object’s designated Priority_Array element = V1)

4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

5.
VERIFY the Schedule object’s Present_Value = V2
6.
VERIFY (referenced object’s designated Priority_Array element = V2)

7.3.2.22.X1.3 Externally Written Datatypes Test, non-NULL values

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: TimeSynchronization Service Execution Tests, 9.26

BACnet Reference Clauses: 12.22, 12.22.9

Purpose: This test verifies that the Schedule object writes to properties in other devices with all datatypes required and claimed for the external write operation. If the IUT supports Schedule objects that have differences in supported datatypes, this test should be performed on at least one example of each type.

Test Concept: Two Date values are chosen by the TD based on the criteria in Table 7-X such that D1 is sufficiently different from current time to cause a Schedule evaluation (per the restoration behavior in 12.22 of ANSI/ASHRAE 135-2001) when the time is changed to D1, and setting the time to D2 from D1 will cause a Schedule evaluation that will cause it to write value V2. These values may be chosen based on the Schedule object’s existing configuration, or the Schedule object may be configured with such values.

Configuration Requirements: The TD shall be configured to support the WriteProperty-Request service but not WritePropertyMultiple-Request in the Protocol_Services_Supported property of its Device object. The IUT shall be configured with a Schedule object such that the time periods defined in Table 7-X can be configured with uniquely scheduled values. The Schedule object shall be configured with a List_Of_Object_Property_Reference property including at least one reference to a property in the TD.

Table 7-X. Criteria for Test Date and Times

	Date and Time:
	Value:

	D1
	V1

	D2
	V2 different from V1.

Test Steps:

1.
REPEAT Y = (the list of datatypes required and claimed for external writes, except NULL) DO {

2.

MAKE (values V1 and V2 to be appropriate to datatype Y)

3.

MAKE (all entries in List_Of_Object_Property_References refer to properties of

datatype Y)

4.

(TRANSMIT TimeSynchronization-Request, 'Time' = D1)

| MAKE (the local date and time = D1)

5.

REPEAT X = (every reference to the TD in List_Of_Object_Property_References) DO {

RECEIVE WriteProperty-Request,

'Object Identifier' =
(the object identifier of X),

'Property Identifier' =
(the property of X),

'Property Value' =
V1

}

6.

VERIFY the Schedule object’s Present_Value = V1
7.

(TRANSMIT TimeSynchronization-Request, 'Time' = D2)

| MAKE (the local date and time = D2)

8.

REPEAT X = (every reference to the TD in List_Of_Object_Property_References) DO {

RECEIVE WriteProperty-Request,

'Object Identifier' =
(the object identifier of X),

'Property Identifier' =
(the property of X),

'Property Value' =
V2

}

9.

VERIFY the Schedule object’s Present_Value = V2
7.3.2.22.X1.4 Externally Written Datatypes Test, NULL values and Priority_Arrays

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: TimeSynchronization Service Execution Tests, 9.26

BACnet Reference Clauses: 12.22, 12.22.9

Purpose: This test verifies that the Schedule object writes NULLs to priority arrays (via Present_Value) in other devices.

Test Concept: Two Date values are chosen by the TD based on the criteria in Table 7-X such that D1 is sufficiently different from current time to cause a Schedule evaluation (per the restoration behavior in 12.22 of ANSI/ASHRAE 135-2001) when the time is changed to D1, and setting the time to D2 from D1 will cause a Schedule evaluation that will cause it to write value V2. These values may be chosen based on the Schedule object’s existing configuration, or the Schedule object may be configured with such values, and either V1 or V2, but not both, has datatype NULL. The values are written to a Present_Value property with the priority designated by the Schedule object’s Priority_For_Writing property.

Configuration Requirements: The TD shall be configured to support the WriteProperty-Request service but not WritePropertyMultiple-Request in the Protocol_Services_Supported property of its Device object. The IUT shall be configured with a Schedule object such that the time periods defined in Table 7-X can be configured with uniquely scheduled values. The Schedule object shall be configured with a Priority_For_Writing value other than 16, and with a List_Of_Object_Property_References including at least one reference to a Present_Value property in an object in the TD containing a Priority_Array property.

Table 7-X. Criteria for Test Date and Times

	Date and Time:
	Value:

	D1
	V1

	D2
	V2 different from V1.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

2.
REPEAT X = (every reference to the TD in List_Of_Object_Property_References) DO {

RECEIVE WriteProperty-Request,

'Object Identifier' =
(the object identifier of X),

'Property Identifier' =
(the property of X),

'Property Value' =
V1,

'Priority' =

(the value of the Schedule object’s

Priority_For_Writing property)

}

3.
VERIFY the Schedule object’s Present_Value = V1
4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

5.
REPEAT X = (every reference to the TD in List_Of_Object_Property_References) DO {

RECEIVE WriteProperty-Request,

'Object Identifier' =
(the object identifier of X),

'Property Identifier' =
(the property of X),

'Property Value' =
V2,

'Priority' =

(the value of the Schedule object’s

Priority_For_Writing property)

}

6.
VERIFY the Schedule object’s Present_Value = V2
7.3.2.22.X2 Schedule Object Protocol_Revision 4 Tests

The Schedule object was revised in Addendum a to ANSI/ASHRAE 135-2001, which increased Protocol_Revision to 4. Although the basic structure of the Schedule object changed little, its operations are sufficiently different that the existing tests for the original Schedule object need revision in some cases and complete replacement in others, and new tests for some additional changes were needed. This clause presents specific tests to be run for Schedule objects in devices that claim Protocol_Revision 4 or higher.

The Schedule object has no properties required to be writable or otherwise configurable. The following tests are designed to be performed on such a Schedule object. However, if the Schedule object is in any way configurable it shall be configured to accommodate as many of the following tests as is possible for the implementation. If it is impossible to configure the IUT in the manner required for a particular test that test shall be omitted. If the IUT supports Schedule objects that can write outside the device this shall be demonstrated in one of the Schedule tests.

Tests of the Schedule object center upon observing the write operations scheduled to occur at specific dates and times, verified by reading the Schedule object's Present_Value property. For the test to be performed in a reasonable amount of time it is necessary to be able to alter settings of the device's clock and calendar.

For each test, a date and (as required) time ("Date") for the test is determined beforehand. Tables 7-1 through 7-10 give the criteria for the Date, designated D1, D2, and so on, to be used in the tests. Dates meeting these criteria may be chosen from existing schedules, or a schedule may be developed by the manufacturer to meet these criteria.

Associated with each Date Dn defining the time of a schedule write operation is a value Vn, which is the value associated with the time member of Date in the BACnetTimeValue pair. Vn may take on any primitive datatype.

7.3.2.22.X2.1 Revision 4 Effective_Period Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.6.

Purpose: To verify that Effective_Period controls the range of dates during which the Schedule object is active.
Test Concept: Two Date values are chosen by the TD based on the criteria in Table 7-1 such that one is outside of the Effective_Period and the other corresponds to a known scheduled state inside the Effective_Period. The IUT's local date and time are changed between these dates and a property referenced by the List_Of_Object_Property_References property is monitored to verify that write operations occur only within the Effective_Period.

Configuration Requirements: The IUT shall be configured with a schedule object such that the time periods defined in Table 7-1 have uniquely scheduled values. The local date and time shall be set such that the Present_Value property has a value other than V1. The List_Of_Object_Property_References property shall contain at least one reference either to a property within the IUT alterable by the Schedule object or a writable property in another device (in either case: the '"referenced property"); if the List_Of_Object_Property_References property cannot be thus configured this test shall be skipped.

Table 7-1. Criteria for Effective_Period Test Dates and Values

	Date:
	Criteria:
	Value:

	D1
	1. Date occurs during Effective_Period, and

2. Date appears either in Weekly_Schedule or Exception_Schedule.
	V1

	D2
	1. Date does not occur during Effective_Period, and

2. Date appears either in Weekly_Schedule or Exception_Schedule.
	V2 different from V1.

Test Steps:

1.
VERIFY "referenced property" = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY "referenced property" = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY "referenced property" = V1
7.3.2.22.X2.2 Revision 4 Weekly_Schedule Property Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clauses: 12.24.4, 12.24.7.

Purpose: To verify that Weekly_Schedule contains distinguishable schedules for each day of the week, and that a day's entire schedule can be executed.

Test Concept: The IUT's local date and time are changed sequentially to represent each day of the week as shown in Table 7-2. The Present_Value property is monitored to verify that write operations occur for each separately scheduled day.

Configuration Requirements: The IUT shall be configured with a schedule object containing a weekly schedule with seven distinguishable daily schedules meeting the requirements of Table 7-2. The local date and time shall be set such that the Present_Value property has a value other than V1. If no schedule exists that meets these requirements and none can be configured, this test shall be omitted. An "active period" is defined as a period of time when the Exception_Schedule determines the value appearing in Present_Value.

Table 7-2. Criteria for Weekly_Schedule Test Dates and Values

	Date:
	Criteria:
	Value:

	D1
	1. Date occurs during Effective_Period,

2. Date occurs on a Monday, and

3. Date does not occur during an active period in Exception_Schedule.
	V1

	D2
	1. Date occurs during Effective_Period,

2. Date occurs on a Tuesday, and

3. Date does not occur during an active period in Exception_Schedule.
	V2 is different from V1.

	D3
	1. Date occurs during Effective_Period,

2. Date occurs on a Wednesday, and

3. Date does not occur during an active period in Exception_Schedule.
	V3 is different from V2.

	D4
	1. Date occurs during Effective_Period,

2. Date occurs on a Thursday, and

3. Date does not occur during an active period Exception_Schedule.
	V4 is different from V3.

	D5
	1. Date occurs during Effective_Period,

2. Date occurs on a Friday, and

3. Date does not occur during an active period in Exception_Schedule.
	V5 is different from V4.

	D6
	1. Date occurs during Effective_Period,

2. Date occurs on a Saturday, and

3. Date does not occur during an active period in Exception_Schedule.
	V6 is different from V5.

	D7
	1. Date occurs during Effective_Period,

2. Date occurs on a Sunday, and

3. Date does not occur during an active period in Exception_Schedule.
	V7 is different from V6.

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY Present_Value = V2
8.
(TRANSMIT TimeSynchronization-Request, 'Time' = D3) | MAKE (the local date and time = D3)

9.
WAIT Schedule Evaluation Fail Time
10.
VERIFY Present_Value = V3

11.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4) | MAKE (the local date and time = D4)

12.
WAIT Schedule Evaluation Fail Time

13.
VERIFY Present_Value = V4

14.
(TRANSMIT TimeSynchronization-Request, 'Time' = D5) | MAKE (the local date and time = D5)

15.
WAIT Schedule Evaluation Fail Time
16.
VERIFY Present_Value = V5

17.
(TRANSMIT TimeSynchronization-Request, 'Time' = D6) | MAKE (the local date and time = D6)

18.
WAIT Schedule Evaluation Fail Time

19.
VERIFY Present_Value = V6
20.
(TRANSMIT TimeSynchronization-Request, 'Time' = D7) | MAKE (the local date and time = D7)

21.
WAIT Schedule Evaluation Fail Time

22.
VERIFY Present_Value = V7
23.
REPEAT X = (the time portion of the BACnetTimeValue entries for one of the daily schedules in

 Table 7-2) DO {

(TRANSMIT TimeSynchronization-Request, 'Time' = X) |

 MAKE (the local date and time = X)

WAIT Schedule Evaluation Fail Time

VERIFY Present_Value = (the scheduled value corresponding to time X)

}

7.3.2.22.X2.3 Revision 4 Exception_Schedule Property Tests

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

If the IUT cannot be configured to perform one or more of the tests in this clause it shall be omitted. The inability to make such a configuration may be due to an absent or immutable Exception_Schedule property, to limited numbers of available BACnetSpecialEvents in the Exception_Schedule, or to the unavailability of Calendar objects.

7.3.2.22.X2.3.1 Revision 4 Calendar Reference Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date appearing in a referenced Calendar object enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-3. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object that references a Calendar object with a non-empty Date_List. The criteria for the dates used are given in Table 7-3. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-3. Criteria for Calendar Reference Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent references Calendar object via calendarReference,

2B. Date appears in that Calendar's Date_List property, and

2C. Higher eventPriority than any other coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period, and

2. Date does not appear in any BACnetSpecialEvents, and

3. Date occurs on the same date as, but with time following, an entry in a BACnetDailySchedule in the referencing Schedule object.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.2 Revision 4 Calendar Entry Date Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a specified date appearing in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-4. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a specific date. The criteria for the dates used in the test are given in Table 7-4. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-4. Criteria for Calendar Entry Date Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: Date,

2B. Date matches calendarEntry: Date, and

2C. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period, and

2. Date does not appear in any BACnetSpecialEvents, and

3. Date occurs on the same date as, but with time following, an entry in a

 BACnetDailySchedule in the referencing Schedule object.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.3 Revision 4 Calendar Entry DateRange Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date appearing in an Exception_Schedule's date range enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-5. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a date range. The criteria for the dates used in the test are given in Table 7-5. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-5. Criteria for Calendar Entry DateRange Test Dates and Values
	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: DateRange,

2B. Date matches BACnetCalendarEntry: DateRange, and

2C. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period, and

2. Date does not appear in any BACnetSpecialEvents, and

3. Date occurs on the same date as, but with time following, an entry in a

 BACnetDailySchedule in the referencing Schedule object.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.4 Revision 4 Calendar Entry WeekNDay Month Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's Month field, specifying a specific month, in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-6. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying a specific month, from January (1) to December (12). The criteria for the dates used in the test are given in Table 7-6. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-6. Criteria for Calendar Entry WeekNDay Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay: specifies Month,

2C. Date matches calendarEntry: WeekNDay: Month, and

2.D. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period, and

2. Date does not appear in any BACnetSpecialEvents, and

3. Date occurs on the same date as, but with time following, an entry in a

 BACnetDailySchedule in the referencing Schedule object.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.5 Revision 4 Calendar Entry WeekNDay Week Of Month Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's WeekOfMonth field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-8. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying a week of the month. The criteria for the dates used in the test are given in Table 7-8. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-8. Criteria for Calendar Entry WeekNDay Week Of Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth is in the range 1..5,

2D. Date matches calendarEntry: WeekNDay: WeekOfMonth, and

2E Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth is in the range 1..5, and

2D. Date does not match calendarEntry: WeekNDay: WeekOfMonth.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.6 Revision 4 Calendar Entry WeekNDay Last Week Of Month Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's WeekOfMonth field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-9. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying the last week of the month. The criteria for the dates used in the test are given in Table 7-9. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-9. Criteria for Calendar Entry WeekNDay Last Week Of Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6,

2D. Date is in the last week of the month, and

2E. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6, and

2D. Date is not in the last week of the month.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.7 Revision 4 Calendar Entry WeekNDay Day Of Week Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's DayOfWeek field in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-10. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying the day of the week. The criteria for the dates used in the test are given in Table 7-10. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-10. Criteria for Calendar Entry WeekNDay Day of Week Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies only DayOfWeek,

2C. Date falls on the specified day of the week, and

2D. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies only DayOfWeek, and

2C. Date does not fall on the specified day of the week.
	

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time

4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time

7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.8 Revision 4Event Priority Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority when both are active at the same time, and that it relinquishes to the lower priority.

Configuration Requirements: The IUT shall be configured with a Schedule object containing two or more BACnetSpecialEvents, all active on the same date, with different eventPriority values (if possible, all 16 priority levels should be represented), and with overlapping BACnetTimeValue entries distributed thus: the entry with the lowest priority shall have the earliest time-value pair (D1) with a non-NULL value, and the last time-value pair (DN) with a NULL value; the next higher priority shall have a time-value pair D2 occurring after D1 with a different non-NULL value, and a time-value pair DN-1 with a NULL value and occurring before DN; and so on. The result is that the time-value pairs shall be ordered chronologically thus: D1, D2, D3, ..., DN-1, DN. An example of such a configuration testing five priority levels is shown in Table 7-11.

Table 7-11. Example of event and value prioritization

	Event
	
	
	
	
	Time:
	
	
	
	

	 Priority:
	D1
	D2
	D3
	D4
	D5
	D6
	D7
	D8
	D9

	1
	-
	-
	-
	-
	V5
	NULL
	-
	-
	-

	2
	-
	-
	-
	V4
	-
	-
	NULL
	-
	-

	3
	-
	-
	V3
	-
	-
	-
	-
	NULL
	-

	4
	-
	V2
	-
	-
	-
	-
	-
	-
	NULL

	5
	V1
	-
	-
	-
	-
	-
	-
	-
	-

	Present_Value:
	V1
	V2
	V3
	V4
	V5
	V4
	V3
	V2
	V1

Test Steps:

1. REPEAT D = (the times in the configured time-value pairs with non-NULL values) DO

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D) | MAKE (the local date and time = D)

3.
WAIT Schedule Evaluation Fail Time

4.
VERIFY Present_Value = (the value corresponding to the time D)

5. REPEAT D = (the times in the configured time-value pairs with NULL values,

except the final DN) DO

6.
(TRANSMIT TimeSynchronization-Request, 'Time' = D) | MAKE (the local date and time = D)

7.
WAIT Schedule Evaluation Fail Time

8.
VERIFY Present_Value = (the non-NULL value corresponding to the priority lower than that

associated with D)

7.3.2.22.X2.3.9 Revision 4 List of BACnetTimeValue Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a Special_Event's entire schedule can be executed.

Test Concept: A special event is scheduled that contains multiple BACnetTimeValue entries with distinguishable non-NULL values. The local date and time are changed to values that match each of the BACnetTimeValue entries and the Present_Value property is read to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured with a Schedule object containing a BACnetSpecialEvents with two or more BACnetTimeValue entries. Each BACnetTimeValue entry shall have a distinguishable value.

Test Steps:

1.
REPEAT Di = (the times used in the BACnetTimeValue pairs of the special event) DO {

(TRANSMIT TimeSynchronization-Request, 'Time' = Di) |

MAKE (the local date and time = Di)

WAIT Schedule Evaluation Fail Time

VERIFY Present_Value = (the value corresponding to the special event with the highest

 eventPriority)

}

7.3.2.22.X2.3.10 Revision 4 Calendar Entry WeekNDay Odd-Numbered Month Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's Month field, specifying odd-numbered months (BACnetWeekNDay month enumeration value 13), in an Exception_Schedule enables the referencing Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table 7-7. The value of the Present_Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception_Schedule containing a BACnetCalendarEntry with a WeekNDay entry specifying an odd-numbered month and a second, lower priority, BACnetCalendarEntry with a WeekNDay entry specifying one particular odd-numbered month. The criteria for the dates used in the test are given in Table 7-7. The local date and time shall be set such that the Present_Value property has a value other than V1.

Table 7-7. Criteria for Calendar Entry WeekNDay Month Test Dates and Values

	Date
	Criteria
	Value

	D1
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay: specifies odd-numbered months,

2C. Date matches calendarEntry: WeekNDay: odd-numbered months, and

2D. Higher eventPriority than any coincident BACnetSpecialEvents.
	V1

	D2
	1. Date occurs during Effective_Period,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay:Month specifies one odd-numbered month,

2C. Date matches calendarEntry: WeekNDay: Month, and

2D. Lower eventPriority than that used for D1.
	Other than V1

Test Steps:

1.
VERIFY Present_Value = (any value other than V1)

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = (any value other than V1)

7.3.2.22.X2.3.11 Revision 4 Calendar Entry WeekNDay Even-Numbered Month Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

This test is identical to 7.3.2.22.X2.3.10, except that even-numbered months (BACnetWeekNDay month enumeration value 14), are used instead of odd-numbered months.

7.3.2.22.X2.3.12 Revision 4 Lower Event Priority Change Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that when a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority, that a change in the lower priority level is not observed in Present_Value until control is relinquished to it.

Configuration Requirements: A Schedule object is configured with two BACnetSpecial Events, thus: the first event is at lower priority than the second and contains two time-value pairs: the first, D1, has a non-NULL value V1 and the second, D3, has a different non-NULL value V3. The second event contains three time-value pairs: the first, D2, occurs after D1 and before D3, and has a non-NULL value V2 different from the value associated with D1; the second, D4, occurs after D3 and has a non-NULL value V4 different from the value associated with D3; the third, D5 occurs after D4 and has a NULL value. (This arrangement of events facilitates testing Schedule objects that schedule only BOOLEAN or two-state enumerations.) Table 7-12 illustrates the time and value pairs in this test.

Table 7-12. Event and value prioritization test times and value

	
	
	
	Time:
	
	

	Event Priority:
	D1
	D2
	D3
	D4
	D5

	Higher
	-
	V2
	V3
	-
	NULL

	Lower
	V1
	-
	-
	V4
	-

	Present_Value:
	V1
	V2
	V3
	V3
	V4

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

2.
VERIFY Present_Value = V1
3.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

4.
VERIFY Present_Value = V2
5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D3) | MAKE (the local date and time = D3)

6.
VERIFY Present_Value = V3
7.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4) | MAKE (the local date and time = D4)

8.
VERIFY Present_Value = V3 (not V4)

9.
(TRANSMIT TimeSynchronization-Request, 'Time' = D5) | MAKE (the local date and time = D5)

10.
VERIFY Present_Value = V4
7.3.2.22.X2.3.13 Revision 4 Schedule_Default Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.9.

Purpose: To verify that the value in Schedule_Default is applied when no weekly or exception schedule is in effect.

Configuration Requirements: The IUT shall be configured with a Schedule object with a Schedule_Default value Vdefault, and containing at least one of, and if possible both (non-overlapping):

- a Weekly_Schedule containing a time-value pair at time D1 with a non-NULL value V1 different from Vdefault, and a subsequent time-value pair with a NULL value at time D2.

- an Exception_Schedule with no overlap with the time frame D1 to D2, a time-value pair at time D3 with a non-NULL value V3 different from Vdefault,and a subsequent time-value pair with a NULL value at time D4.

Test Steps:

1. IF (the Schedule object is configured with a Weekly_Schedule) THEN

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = Vdefault
8. IF (the Schedule object is configured with an Exception_Schedule) THEN

9.
(TRANSMIT TimeSynchronization-Request, 'Time' = D3) | MAKE (the local date and time = D3)

10.
WAIT Schedule Evaluation Fail Time
11.
VERIFY Present_Value = V3

12.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4) | MAKE (the local date and time = D4)

13.
WAIT Schedule Evaluation Fail Time
14.
VERIFY Present_Value = Vdefault
7.3.2.22.X2.4 Revision 4 Weekly_Schedule and Exception_Schedule Interaction Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clauses: 12.24.7, 12.24.8.

Purpose: To verify that an Exception_Schedule takes precedent over a coincident BACnetDailySchedule.

Test Concept: The IUT is configured with a Weekly_Schedule and an Exception_Schedule that apply to the same time. The local date and time are changed to the time when the Exception-Schedule is supposed to take control and the Present_Value is read to verify that the scheduled write operation occurs. The local date and time are changed again to a value that would cause another change if the Weekly_Schedule were in control. The Present_Value is read to verify the Exception_Schedule is still controlling.

Configuration Requirements: The IUT shall be configured with a Schedule object containing a Weekly_Schedule and an Exception_Schedule that apply to the same dates. The BACnetSpecialEvents in the Exception_Schedule shall have a higher EventPriority than any other coincident BACnetSpecialEvent. The BACnetTimeValue pairs shall be assigned values such that the values written by the Weekly_Schedule are distinguishable from the values written by the Exception_Schedule. Let D1 represent the date and time when the Exception_Schedule is configured to take control and write value V1. There shall be at least one BACnetTimeValue pair in the Weekly_Schedule that specifies a time, D2, that is after D1 but before the Exception_Schedule expires. The Weekly_Schedule is configured to write value V2 at time D2.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = D1) | MAKE (the local date and time = D1)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

5.
WAIT Schedule Evaluation Fail Time
6.
VERIFY Present_Value = V1
7.3.2.22.X2.5 Revision 4 Exception_Schedule Restoration Test

No test required.

7.3.2.22.X2.6 Revision 4 Weekly_Schedule Restoration Test

No Test required.

7.3.2.22.X2.7 Revision 4 List_Of_Object_Property_Reference Internal Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.9.

Purpose: To verify that the Schedule object writes to objects and properties contained within the IUT.

Test Concept: The Schedule object is configured to write to a property of another object within the same device. The IUT's clock is then set to a time between a pair of scheduled write operations, and verification of the first write operation's data value is performed. The time is advanced to the second time, the Schedule object's Present_Value is checked, and verifications of the write operations are performed. If the IUT does not support writing to object properties within the IUT, then this test shall not be performed.

Configuration Requirements: The IUT is configured with a Schedule object containing a List_Of_Object_Property_ References property that references, if possible, at least one property in another object within the IUT. The Schedule object is configured with either a Weekly_Schedule or an active Exception_Schedule, during a period where Effective_Period is active, with at least two consecutive entries with distinguishable values in the List of BACnetTimeValues. D1 represents the date and time of the first of these two BACnetTimeValues, with corresponding value V1, while D2 and V2 (a value distinguishable from V1) represent the second BACnetTimeValue. A time Dt is defined to occur between D1 and D2.
Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = Dt) | MAKE (the local date and time = Dt)

2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
VERIFY (value of referenced property in IUT) = V1

5.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = V2

8.
VERIFY (value of referenced property in IUT) = V2

7.3.2.22.X2.8 Revision 4 List_Of_Object_Property_Reference External Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.9.

Purpose: To verify that the Schedule object writes to object properties contained in a device other than the IUT.

Test Concept: The Schedule object is configured to write to a property of another object in the same device and a property of an object in the TD. The IUT's clock is then set to a time between a pair of scheduled write operations, and verification of the first write operation's data value is performed. The time is advanced to the second time, the Schedule object's Present_Value is checked, and verifications of the write operation are performed. If the IUT does not support writes to object properties contained in a device other than the IUT, then this test shall not be performed.

Configuration Requirements: The TD is configured to indicate that it supports the WriteProperty-Request service but not WritePropertyMultiple-Request. The IUT is configured with a Schedule object containing a List_Of_Object_Property_ References property that references a property of an object contained in the TD. The Schedule object is configured with either a Weekly_Schedule or an active Exception_Schedule, during a period where Effective_Period is active, with at least two consecutive entries with distinguishable values in the List of BACnetTimeValues. D1 represents the date and time of the first of these two BACnetTimeValues, with corresponding value V1, while D2 and V2 (a value distinguishable from V1) represent the second BACnetTimeValue. A time Dt is defined to occur between D1 and D2.

Test Steps:

1.
(TRANSMIT TimeSynchronization-Request, 'Time' = Dt) | MAKE (the local date and time = Dt)
2.
WAIT Schedule Evaluation Fail Time
3.
VERIFY Present_Value = V1

4.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)
5.
BEFORE Schedule Evaluation Fail Time

RECEIVE WriteProperty-Request,

'Object Identifier' =
(the referenced object in the TD),

'Property Identifier' =
(the referenced property in the TD),

'Property Value' =
V2
6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = V2

7.3.2.22.X3 Revision 4 Midnight Evaluation Test

Reason for Change: No tests existed for revision 4 functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.4.

Purpose: To verify that the Schedule object evaluates its schedule as it passes through midnight (00:00).

Configuration Requirements: The IUT shall be configured with a Schedule object with a Schedule_Default value Vdefault, and containing at least one of, and if possible both (non-overlapping):

- a Weekly_Schedule containing a time-value pair at time D1 (not 00:00) with a non-NULL value V1 different from Vdefault, and no scheduled write operations during the day after D1, and none on the day following.

- an Exception_Schedule with an event occurring on a day different from D1, containing a time-value pair at time D3 with a non-NULL value V3 different from Vdefault , and no scheduled write operations during the day after D3, and none on the day following.

Two additional times, used in the execution of the test, are defined as follows:

- D2 occuring on the same day as D1, after D1 and before midnight.

- D4 occuring on the same day as D3, after D3 and before midnight.

It is recommended that to minimize testing time, D1 through D4 be chosen to be close to midnight. However, all times used in this test shall be separated by at least Schedule Evaluation Fail Time.

An illustration of the test times and values configured and observed is shown in Table 7-13.

Table 7-13. Test times and value

	Time:
	D1
	D2
	00:00
	D3
	D4
	00:00

	Exception_Schedule:
	-
	-
	-
	V3
	-
	-

	Weekly_Schedule:
	V1
	-
	-
	-
	-
	-

	Present_Value:
	
	V1
	Vdefault
	
	V3
	Vdefault

Test Steps:

1. IF (the Schedule object is configured with a Weekly_Schedule) THEN

2.
(TRANSMIT TimeSynchronization-Request, 'Time' = D2) | MAKE (the local date and time = D2)

3.
WAIT Schedule Evaluation Fail Time
4.
VERIFY Present_Value = V1

5.
WAIT (until 00:00)

6.
WAIT Schedule Evaluation Fail Time
7.
VERIFY Present_Value = Vdefault
8. IF (the Schedule object is configured with an Exception_Schedule) THEN

9.
(TRANSMIT TimeSynchronization-Request, 'Time' = D4) | MAKE (the local date and time = D4)

10.
WAIT Schedule Evaluation Fail Time
11.
VERIFY Present_Value = V3

12.
WAIT (until 00:00)

13.
WAIT Schedule Evaluation Fail Time
14.
VERIFY Present_Value = Vdefault
7.3.2.23 Trend Log Object Tests

7.3.2.23.1 Log_Enable Test

Reason for Change: Log_Enable was being set to TRUE too early such that step 10 could pass incorrectly. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.5.

Purpose: To verify that the Log_Enable property enables and disables the logging of data by the Trend Log object.

Test Concept: The Trend Log is configured to acquire data by each means (polling and COV subscription) available to the implementation. Log_Enable is enabled and the collection of one or more records in the Log_Buffer is confirmed. Log_Enable is then disabled and non-collection of records is confirmed.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with a time that will occur after the completion of the test. Stop_When_Full, if configurable, shall be set to FALSE.

Test Steps:

1. WRITE Log_Enable = FALSE

2. WRITE Record_Count = 0

3. WAIT Internal Processing Fail Time
4. WRITE Log_Enable = TRUE

5. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

6. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

7. WAIT Internal Processing Fail Time
8. IF (COV subscription in use) THEN

MAKE (monitored value change more than Client_COV_Increment)

 ELSE

WAIT (Log_Interval)

9. WAIT (Notification Fail Time + Internal Processing Fail Time)

10. VERIFY Total_Record_Count > (value X returned in step 5)

11. WRITE Log_Enable = FALSE

12. WAIT Internal Processing Fail Time

13. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

14. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

15. IF (COV subscription in use) THEN

MAKE (monitored value change more than Client_COV_Increment)

 ELSE

WAIT (Log_Interval)

16. WAIT (Notification Fail Time + Internal Processing Fail Time)

17. VERIFY Total_Record_Count = (value X returned in step 14)

7.3.2.23.3 Stop_Time Test

Reason for Change: Log_Enable was being set to TRUE too early such that step 10 could pass incorrectly. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.7.

Purpose: To verify that logging is disabled at the time specified by Stop_Time.

Test Concept: The Trend Log is configured to acquire data by each means (polling and COV subscription) available to the implementation. The test is begun at some time prior to the time specified in Stop_Time and collection of records is confirmed. Non-collection of records after the time specified by Stop_Time is then confirmed.

Configuration Requirements: Stop_Time shall be configured with a date and time such that steps 1 through 9 will be concluded before that time. Start_Time, if present shall be configured with date and time preceding the initiation of the test. Stop_When_Full, if configurable, shall be set to FALSE.

Test Steps:

1. WRITE Log_Enable = FALSE

2. WAIT Internal Processing Fail Time

3. WRITE Record_Count = 0

4. WRITE Log_Enable = TRUE.

5. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

6. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

7. WAIT Internal Processing Fail Time

8. IF (COV subscription in use) THEN

MAKE (monitored value change more than Client_COV_Increment)

 ELSE

WAIT (Log_Interval)

9. WAIT (Notification Fail Time + Internal Processing Fail Time)

10. VERIFY Total_Record_Count > (value X returned in step 5)

11. WHILE (IUT clock is earlier than Stop_Time) DO {}

12. WAIT (Notification Fail Time + Internal Processing Fail Time)

13. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

14. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

'Property Value' =
(any valid value, X)

15. IF (COV subscription in use) THEN

MAKE (monitored value change more than Client_COV_Increment)

 ELSE

WAIT (Log_Interval)

16. WAIT (Notification Fail Time + Internal Processing Fail Time)

17. VERIFY Total_Record_Count = (value X returned in step 14)

7.3.2.23.5 COV_Resubscription_Interval Test

Dependencies: Confirmed Notifications Subscription, 8.10.1.
BACnet Reference Clause: 12.23.10.

Purpose: To verify that a Trend Log acquiring data via COV notification reissues its subscription at the interval set by COV_Resubscription_Interval.

Test Concept: The Trend Log is configured to acquire data from the TD by COV notification. The TD verifies the resubscription interval. Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Stop_When_Full, if configurable, shall be set to FALSE. Log_Enable shall be set to TRUE. Non-zero values shall be chosen for COV_Resubscription_Interval in accordance with the range and resolution specified by the manufacturer for this property.

Test Steps:

1. IF (the IUT uses SubscribeCOV) THEN

RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any value),

'Monitored Object Identifier' =
(the object to be monitored),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =
(any value >= COV_Resubscription_Interval)

 ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' =
(any value),

'Monitored Object Identifier' =
(the object to be monitored),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =
(any value >= COV_Resubscription_Interval),

'Monitored Property Identifier' =
(the property to be monitored),

'COV Increment' =
(Client_COV_Increment -- optional)

2. TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Initiating Object Identifier' =
(Device object identifier of the TD),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(corresponding value in step 1),

'Time Remaining' =
(any value <= the LifeTime from step 1),

'List of Values' =
(appropriate BACnetPropertyValue(s))

5. BEFORE (the lesser of COV_Resubscription_Interval + Re-subscription Interval Tolerance and

 LifeTime from step 1)

IF (the IUT uses SubscribeCOV)

RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =

(any value >= COV_Resubscription_Interval)

ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =

(any value >= COV_Resubscription_Interval),

'Monitored Property Identifier' =
(corresponding value in step 1),

'COV Increment' =

(corresponding value in step 1)

6. TRANSMIT BACnet-SimpleACK-PDU

7. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Initiating Object Identifier' =
(Device object identifier of the TD),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(corresponding value in step 1),

'Time Remaining' =

(any value <= the LifeTime from step 5),

'List of Values' =

(appropriate BACnetPropertyValue(s))

8. WAIT (COV_Resubscription_Interval - Re-subscription Interval Tolerance)

9. BEFORE (2 * Re-subscription Interval Tolerance)

IF (the IUT uses SubscribeCOV)

RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =
(corresponding value in step 1)

ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' =
(corresponding value in step 1),

'Monitored Object Identifier' =
(corresponding value in step 1),

'Issue Confirmed Notifications' =
(TRUE),

'Lifetime' =

(corresponding value in step 1),

'Monitored Property Identifier' =
(corresponding value in step 1),

'COV Increment' =

(corresponding value in step 1)

10. TRANSMIT BACnet-SimpleACK-PDU

Passing Result: Where the Lifetime parameter of a SubscribeCOV request is less than COV_Resubscription_Interval + Re-subscription Interval Tolerance, the IUT must send the subsequent SubscribeCOV request within Lifetime seconds even though this is a smaller time window than defined by the test. If the IUT does not meet this stricter time window, then the IUT shall fail the test.

7.3.2.23.9 Total_Record_Count Test

Reason for Change: It is not clear whether or not log records should be added to a Trend Log when Record_Count is set to 0 and the Trend Log is disabled. As such the test steps were re-ordered to ignore this issue. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.16.

Purpose: To verify that the Total_Record_Count property increments for each record added to the Log_Buffer, even after Buffer_Size records have been added. (Note: it is not reasonable to test for the requirement of BACnet 12.23.16 that the value wrap from 232-1 to 0; even if a record was collected every 100th of a second it could take more than 497 days to complete the test.)

Test Concept: The Trend Log is configured to acquire data by whatever means. Record_Count is set to zero and Total_Record_Count is read. Collection of data proceeds until Record_Count changes, collection is halted and Total_Record_Count is checked that it has incremented by Record_Count. If, for whatever reason, the IUT cannot be configured such that the TD is able to halt collection before Buffer_Size records are collected this test shall not be performed.

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the test. Log_Enable shall be set to FALSE.

Test Steps:

1. WRITE Record_Count = 0

2. WAIT Internal Processing Fail Time

3. WRITE Log_Enable = TRUE

4. TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count

5. RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Total_Record_Count,

'Property Value' =
(any valid value, X)

6. WHILE (Record_Count = 2) DO { }

7. WRITE Log_Enable = FALSE

8. WAIT Internal Processing Fail Time
9. IF (Total_Record_Count != Record_Count+(value X returned in step 4)) THEN

ERROR “Total_Record_Count has incorrect value.”

7.3.2.23.X1 Log-Status Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: ReadRange Service Execution Tests, 9.21; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.23.14.

Purpose: To verify proper logging of log-disabled and buffer-purged events.

Test Concept: The buffer is cleared. Then The Log_Enable property is changed and it is verified that the Record_Count property is changed and it is verified that the status entry is made correctly in the Log_Buffer. The Record_Count is also set to zero while the Log_Enable property is FALSE and it is verified that the buffer-purged event is recorded into the Log_Buffer

Test Configuration: The Trend Log is configured to acquire data by whatever means available. Configure the logging such that the entire test may be run without the trend buffer overflowing.

Test Steps:

1.
WRITE Log_Enable = FALSE

2.
WRITE Record_Count = 0

3.
VERIFY (Log_Buffer contains 1 entries, and it is the buffer-purged event)

4.
WRITE Log_Enable = TRUE

5.
WRITE Log_Enable = FALSE

6.
VERIFY (Record_Count => 3 and the first entry is the buffer-purged event, the second entry is

the log-enable TRUE event and the last entry is the log-enable FALSE event)

7.3.2.23.X2 Time_Change Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: ReadRange Service Execution Tests, 9.21; (TimeSynchronization Service Execution Tests, 9.30 or UTCTimeSynchronization Service Execution Tests, 9.31)

This test may be skipped if the device does not support the Local_Time property in the device object or there is no way to change the time in the device.

BACnet Reference Clause: 12.23.14.

Purpose: To verify proper logging of time-change events in the log buffer

Test Concept: Change the clock in the device and verify that a record is logged indicating the number of seconds that the clock changed by or zero if unknown.

Test Configuration: The Trend Log is configured to acquire data by whatever means available. The Log_Buffer should be cleared, such that the Record_Count is 0. Configure the logging such that the entire test may be run without the trend buffer overflowing.

Test Steps:

1.
WRITE Log_Enable = FALSE

2.
WRITE Record_Count = 0

3.
VERIFY (Log_Buffer contains no entries)

4.
TRANSMIT ReadProperty-Request,

‘Object Identifier’ = (device that contains Trend Log)

‘Property Identifier’ = Local_Time

5.
RECEIVE ReadProperty-Ack,

‘Object Identifier’ = (device that contains Trend Log)

‘Property Identifier’ = Local_Time

‘Property Value’ = (currentTime)

6.
WRITE Log_Enable = TRUE

7.
MAKE the time change on the device by a reasonable amount (deltaTime) (change by one hour or

more)

8.
WRITE Log_Enable = FALSE

9.
VERIFY (Record_Count => 4)

10.
VERIFY (Log_Buffer contains a status entry of time-change)

11.
IF time-change amount is not zero, THEN

VERIFY (time-change value ~= deltaTime)

12.
VERIFY (TimeStamp on the time-change entry ~= (currentTime + deltaTime)

7.3.2.23.X3 COV-Sampling Verification Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: Confirmed Notification, 8.6.1; Unconfirmed Notification, 8.6.2; ReadRange Service Execution, 9.21;

BACnet Reference Clause: 12.23.10-11; 13.1

Purpose: To verify logged samples are based on COV rather than by interval.

Test Concept: The trend log is configured to log based on COV increment. Logging is enabled. After a period of time the buffer is checked to verify the data in the buffer is based on the COV values and not on the set interval.

Configuration Requirements: The IUT shall be configured such that the monitored object has COV configured or the Client_COV_Increment shall be configured or it is not monitoring a REAL property.

Test Steps:

1.
WRITE Log-Enable = FALSE

2.
WRITE Record_Count = 0

3.
WRITE Log_Interval = 0

4.
WRITE Log_Enable = TRUE

5.
MAKE monitored property change its value

6.
WAIT (60 seconds)

7.
MAKE monitored property change its value

8.
WAIT (90 seconds)

9.
MAKE monitored property change its value

10.
WAIT (40 seconds)

11.
VERIFY (Log_Buffer contains 3 or 4 data entries, and time between each sample is not equal)

7.3.2.23.X4 Interval Gathering of External Trends Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify the IUT uses ReadProperty to pull external data at the specified intervals.

Test Concept: The Trend Log is configured to acquire data from the TD using polling. The TD verifies the receipt of ReadProperty requests are at the Log_Interval set.

Configuration Requirements: The Trend Log shall be configured to be polling for external trends during the entire time of this test. The Stop_When_Full property, if configurable, shall be set to FALSE. Log_Enable shall be set to TRUE. The TD should be configured to not support ReadPropertyMultiple.

Test Steps:

1.
BEFORE Log_Interval RECEIVE ReadProperty-Request,

‘Object Identifier’ =
(Object that contains the monitored property)

‘Property Identifier’ =
(external property that is being trended)

2.
TRANSMIT ReadProperty-Ack

‘Object Identifier’ =
 (Object that contains the monitored property)

‘Property Identifier’ =
(property being monitored)

‘Property Value’ =
(any value)

3.
WAIT (Log_Interval)

4.
RECEIVE ReadProperty-Request

‘Object Identifier’ =
(Object that contains the monitored property)

‘Property Identifier’ =
(external property that is being trended)

5.
TRANSMIT ReadProperty-Ack,

‘Object Identifier’ =
 (Object that contains the monitored property)

‘Property Identifier’ =
(property being monitored)

‘Property Value’ =
(any value)

7.3.2.23.X5 Last_Notify_Record Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.23.19, and 12.23.26

Purpose: To verify that the Last_Notify_Record property reflects the values sent in the most recent notification.

Test Concept: The Trend Log is configured to acquire data by whatever means. Record_Count is set to zero. Collection of data proceeds until one notification is seen, collection is halted and the value of the Last_Notify_Record is checked.

Test Steps:

1.
WRITE Log_Enable = TRUE

2.
MAKE (Trend Log object collect number of records specified by Notification_Threshold)

3.
RECEIVE ConfirmedEventNotification-Request,

‘Process Identifier’
= (ANY)

‘Initiating Device Identifier’= IUT,

‘Event Object Identifier’
= (Trend Log object being tested),

‘Time Stamp’

= (Any appropriate BACnetTimeStamp value),

‘Notification Class’
= (configured notification class),

‘Priority’

= (value configured to correspond to a TO-NORMAL),

‘Event Type’

= BUFFER_READY,

‘Notify Type’

= EVENT | ALARM,

‘AckRequired’

= TRUE | FALSE,

‘FromState’

 = NORMAL,

‘To State’

= NORMAL,

‘Event Values’

= (BACnetDeviceObjectPropertyReference, IUT’s Device

object),

(unsigned, previous notification),

(unsigned, current notification)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
WRITE Log_Enable = FALSE

6.
VERIFY (Last_Notify_Record = current notification)

7.3.2.23.X6 Records_Since_Notification Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.23.19, and 12.23.26

Purpose: To verify that the Records_Since_Notification property reflects the number of records received in Trend Log that have not been sent to IUT.

Test Concept: The Trend Log is configured to acquire data by whatever means. Record_Count is set to zero. Collection of data proceeds and is Halted before a notification is seen. The value of the Records_Since_Notification is checked.

Test Steps:

1.
WRITE Log_Enable = TRUE

2.
MAKE (Trend Log object collect a sufficient number of records in order to trigger a notification)

3.
RECEIVE ConfirmedEventNotification-Request,

‘Process Identifier’
= (ANY)

‘Initiating Device Identifier’= IUT,

‘Event Object Identifier’
= (Trend Log object being tested),

‘Time Stamp’

= (Any appropriate BACnetTimeStamp value),

‘Notification Class’
= (configured notification class),

‘Priority’

= (value configured to correspond to a TO-NORMAL),

‘Event Type’

= BUFFER_READY,

‘Notify Type’

= EVENT | ALARM,

‘AckRequired’

= TRUE | FALSE,

‘FromState’

 = NORMAL,

‘To State’

= NORMAL,

‘Event Values’

= (BACnetDeviceObjectPropertyReference, IUT’s Device

object),

(unsigned, previous notification),

(unsigned, current notification, C1)

4.
TRANSMIT BACnet-SimpleACK-PDU

5.
MAKE (Trend Log object collect N records, such that N < Notification_Threshold-1)

6.
WRITE Log_Enable = FALSE

7.
READ (Records_Since_Notification, R1)

8.
READ (Total_Record_Count, T2)

9.
VERIFY (T2-C1 = R1)

8 Application Service Initiation Tests

8.4 ConfirmedEventNotification Service Initiation Tests

8.4.7 BUFFER_READY Tests

Reason for Change: The test was updated to match the 2001b version of the BACnet Trend Log, and was generalized to allow the test to be applied to any type of object that supports the algorithm. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.11, 12.23, 13.2, 13.3.7, and 13.8.

Purpose: To verify the correct operation of the BUFFER_READY event algorithm.

Test Concept: The object that performs the notification (“the notifying object”) begins the test in a NORMAL state, with no records stored in the object containing the buffer (“the buffer object”). The buffer object acquires the number of records specified by Records_Since_Notification, at which time the notifying object performs a TO-NORMAL transition and sends BUFFER_READY notifications.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-NORMAL transition. The notifying object shall be in a NORMAL state at the start of the test.

Test Steps:

1. VERIFY Event_State = NORMAL

2. MAKE (buffer object collect number of records specified by Notification_Threshold)

3. RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the Event

Enrollment object being tested),

'Time Stamp' =
(any appropriate BACnetTimeStamp value),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
BUFFER_READY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
NORMAL,

' Event Values' =
(BACnetDeviceObjectPropertyReference– referring to the buffer property),

(previous-notification),

(current-notification, CN1)

4. TRANSMIT BACnet-SimpleACK-PDU

5. MAKE (buffer object collect number of records specified by Notification_Threshold)

6. RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(any valid process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the intrinsic reporting object being tested or the object referenced by the Event

Enrollment object being tested),

'Time Stamp' =
(any appropriate BACnetTimeStamp value),

'Notification Class' =
(the configured notification class),

'Priority' =
(the value configured to correspond to a TO-NORMAL transition),

'Event Type' =
BUFFER_READY,

'Notify Type' =
EVENT | ALARM,

'AckRequired' =
TRUE | FALSE,

'From State' =
NORMAL,

'To State' =
NORMAL,

' Event Values' =
(BACnetDeviceObjectPropertyReference– referring to the buffer property),

CN1,

(current-notification)

7.
TRANSMIT BACnet-SimpleACK-PDU

8.10 SubscribeCOV Service Initiation Tests

8.10.X1 Generates 24 Hour Lifetimes

Reason for Change: The 24 hour limitation is a restriction placed on the device by the BTL and not by the standard. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate a SubscribeCOV service request with a lifetime less than or equal to 24 hrs (86400 seconds).

Test Steps:

1.
RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any identifier for a standard object type for which COV reporting is defined),

'Issue Confirmed Notifications' =
TRUE | FALSE,

'Lifetime' =
(any non-zero value less than or equal to 86400)

2.
TRANSMIT BACnet-SimpleACK-PDU

8.5 UnconfirmedEventNotification Service Initiation Tests

8.5.X1 BUFFER_READY Tests

Reason for Change: This is a generalized version of the 135.1 test 8.5.7. This test is not in any SSPC proposal.

Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clauses: 12.11, 12.23, 13.2, 13.3.7, and 13.8.

Purpose: To verify the correct operation of the BUFFER_READY event algorithm.

Test Concept: The object that performs the notification (“the notifying object”) begins the test in a NORMAL state, with no records stored in the object containing the buffer (“the buffer object”). The buffer object acquires the number of records specified by Records_Since_Notification, at which time the notifying object performs a TO-NORMAL transition and sends BUFFER_READY notifications.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the TO-NORMAL transition. The notifying object shall be in a NORMAL state at the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.7 except that the event notifications shall be conveyed using the UnconfirmedEventNotification service request and the TD does not acknowledge receiving the notifications.

8.18 ReadProperty Service Initiation Tests

8.18.1 Reading Non-Array Properties

Reason for Change: This changed version of the test adds in the TD sending an acknowledgement and the tester checking for vendor specified results. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate a ReadProperty service request that does not contain the 'Property Array Index' parameter, and can correctly process the response.
Test Steps:

1.
RECEIVE ReadProperty-Request,

'Object Identifier' =
(any object),

'Property Identifier' =
(any valid non-array property of the specified object)

2.
TRANSMIT BACnet-ComplexACK-PDU,

'Object Identifier'
=
(object identifier from step 1),

'Property Identifier' =
(property identifier from step 1),

'Property Value' =
(any valid value for the property)

3.
VERIFY (that the IUT exhibits the vendor defined results)

8.18.2 Reading an Array Element

Reason for Change: This changed version of the test adds in the TD sending an acknowledgement and the tester checking for vendor specified results. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate a ReadProperty service request that references a specific element of an array property, and can correctly process the response.
Test Steps:

1.
RECEIVE ReadProperty-Request,

'Object Identifier' =
(any object),

'Property Identifier' =
(any valid array property of the specified object),

'Array Index' =

 (any valid array index for the specified property)

2.
TRANSMIT BACnet-ComplexACK-PDU,

'Object Identifier'
=
(object identifier from step 1),

'Property Identifier' =
(property identifier from step 1),

Array Index' =

(array index from step 1),

'Property Value' =
(any valid value for the property)

3.
VERIFY (that the IUT exhibits the vendor defined results)

8.18.X1 Reading Whole Array Properties

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate a ReadProperty service request that does not contain the 'Property Array Index' parameter for an array property, and can correctly process the response.
Test Steps:

1.
RECEIVE ReadProperty-Request,

'Object Identifier' = (any object),

'Property Identifier' = (any valid array property of the specified object)

2.
TRANSMIT BACnet-ComplexACK-PDU,

'Object Identifier'
=
(object identifier from step 1),

'Property Identifier' =
(property identifier from step 1),

'Property Value' =
(any valid list of values for the property)

3.
VERIFY (that the IUT exhibits the vendor defined results)
8.18.X2 Reading an Array Count

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate a ReadProperty service request that references a specific element of an array property, and can correctly process the response.
Test Steps:

1.
RECEIVE ReadProperty-Request,

'Object Identifier' =
 (any object),

'Property Identifier' =
(any valid array property of the specified object),

'Array Index' =

0

2.
TRANSMIT BACnet-ComplexACK-PDU,

'Object Identifier'
=
(object identifier from step 1),

'Property Identifier' =
(property identifier from step 1),

Array Index' =

0,

'Property Value' =
(any valid value for the property)

3.
VERIFY (that the IUT exhibits the vendor defined results)

8.20 ReadPropertyMultiple Service Initiation Tests

Purpose: This clause defines the tests necessary to demonstrate support for initiating ReadPropertyMultiple service requests. At least one of the combinations defined in 8.20.2 through 8.20.4 needs to be supported in order to claim the ability to initiate the ReadPropertyMultiple service.

8.20.Y1 Cases In Which ReadProperty Shall Be Used, After ReadPropertyMultiple Fails

The tests defined in this clause are used to verify that the IUT is able to obtain external property values via the ReadProperty service when interoperating with a device that does not support. the ReadPropertyMultiple service.

8.20.Y1.X1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

BACnet Reference Clauses: 15.5 and 15.7

Purpose: Verifies the IUT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty when the IUT determines the TD does not support the ReadPropertyMultiple service.

Test Concept: The IUT is configured in a manner that would normally cause it to access one or more properties in the TD via the ReadPropertyMultiple service. Prior to sending a ReadPropertyMultiple request, however, the IUT determines that the TD does not support the ReadPropertyMultiple service. The IUT instead attempts to access the TD's property values via the ReadProperty service (it is assumed that the IUT will make this determination by reading the TD's Protocol_Services_Supported property, but this test specifically does not attempt to verify this behavior).

Configuration Requirements: The TD's Protocol_Services_Supported property is configured such that the bit corresponding to the ReadPropertyMultiple service is FALSE. The IUT is configured such that it is capable of accessing one or more properties of a single object in the TD via the ReadProperty and ReadPropertyMultiple services. If the IUT cannot be configured in these ways then this test shall be omitted.

Test Steps:

1. MAKE (a condition in the IUT that would normally cause it to send a ReadPropertyMultiple request to the TD to access one or more properties values of a single object)

2. WAIT (a time interval specified by the vendor, sufficient for the IUT to determine that the TD does not support the ReadPropertyMultiple service)

3. REPEAT X = (the properties that the IUT is to read) DO {

RECEIVE ReadProperty-Request,

'Object Identifier' =

(object identifier referenced by X),

'Property Identifier' =

(property identifier referenced by X)

TRANSMIT ReadProperty-Ack,

'Object Identifier' =

(object identifier referenced by X),

'Property Identifier' =

(property identifier referenced by X),

'Property Value' =

(any valid value)

}

8.20.Y1.X2 The IUT Automatically Sends ReadProperty Requests when the TD Returns a Reject - UNRECOGNIZED_SERVICE Response

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

BACnet Reference Clauses: 15.5 and 15.7
Purpose: Verifies the IUT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty when the TD returns a Reject-PDU and a Reject Reason of UNRECOGNIZED_SERVICE.

Test Concept: The IUT is configured to send the TD a ReadPropertyMultiple request to access one or more properties of a single object. The TD responds with a Reject-PDU and a Reject Reason of UNRECOGNIZED_SERVICE. With no additional configuration, the IUT sends one or more ReadProperty requests to the TD, where each ReadProperty request specifies a individual property from the original ReadPropertyMultiple request.

Configuration Requirements: The TD is configured such that it will return a Reject-PDU and a Reject Reason of UNRECOGNIZED_SERVICE when it receives a ReadPropertyMultiple request from the IUT. The IUT is configured such that it is capable of accessing the TD's property values via the ReadProperty and ReadPropertyMultiple services. If the IUT cannot be configured in these ways then this test shall be omitted.

Test Steps:

1. RECEIVE ReadPropertyMultiple-Request,

'Object Identifier' =

(object identifier of the specified object),

'List of Property References' =
(one or more properties of the specified object)

2. TRANSMIT BACnet-Reject-PDU,

'Reject Reason' =

UNRECOGNIZED_SERVICE

3. REPEAT X =
(the properties from Step 1) DO {

RECEIVE ReadProperty-Request,

'Object Identifier' =
(object identifier referenced by X),

'Property Identifier' =
(property identifier referenced by X)

TRANSMIT ReadProperty-Ack,

'Object Identifier' =
(object identifier referenced by X),

'Property Identifier' =
(property identifier referenced by X),

'Property Value' =
(any valid value)

}

8.22 WriteProperty Service Initiation Tests

8.22.X1 Writing An Array Size

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate WriteProperty service requests that modify the size of an array.

Test Steps:

1.
RECEIVE WriteProperty-Request,

'Object Identifier' =

(any valid object identifier),

'Property Identifier' =

(any valid array property of the specified object),

‘Array Index’ =

0

'Property Value' =
(any unsigned value)

8.34 Who-Is Service Initiation Tests

This clause defines the tests necessary to demonstrate support for initiating Who-Is service requests. At least one of the forms of the service defined in 8.34.1 and 8.34.2 needs to be supported in order to claim the ability to initiate the Who-Is service.

Dependencies: None.

BACnet Reference Clause: 16.10.

8.34.X1 Who-Is Request with no Device Instance Range

Reason for Change: The existing test 8.34.1 specifically checks for broadcast messages. The BTL-WG felt that there is a sufficient need to discourage the use of Who-Is broadcasts that do not contain range parameters so they separated the unicast and broadcast tests and check list entries.

Purpose: To verify that the IUT can initiate unicast Who-Is service requests with no device instance range. If the IUT cannot be caused to issue a Who-Is request of this form, then this test shall be omitted.

Test Steps:

1.
RECEIVE Who-Is-Request

9 Application Service Execution Tests

9.1 AcknowledgeAlarm Service Execution Tests

9.1.1 Positive AcknowledgeAlarm Service Execution Tests

9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of the 'Time of Acknowledgment' Parameter

Reason for Change: This test has had errors in the timestamps that the test expected, and also a number of typographical errors. These test changes are covered by CN-060.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including notification of other workstations and updating of the Acked_Transitions status. The Time form of the 'Time of Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

Test Steps:

1.
MAKE (a change that triggers the detection of an alarm event in the IUT)

2.
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

3.
RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

4.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'011'

5.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the value of the 'Process Identifier' parameter in the

event notification),

'Event Object Identifier' =
(the 'Event Object Identifier' from the event

notification),

'Event State Acknowledged' =
(the state specified in the 'To State' parameter of the

notification),

'Time Stamp' =
(the time stamp conveyed in the notification),

'Time of Acknowledgment' =
(the TD's current time using a Time format)

6.
RECEIVE BACnet-Simple-ACK-PDU

7.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event),

'Event Type' =
(the event type included in step 2),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 3)

ELSE

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event),

'Event Type' =
(the event type included in step 2),

'Notify Type' =
ACK_NOTIFICATION
8.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event),

'Event Type' =
(the event type included in step 2),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 3)

ELSE

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event),

'Event Type' =
(the event type included in step 2),

'Notify Type' =
ACK_NOTIFICATION

9.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'111'

Notes to Tester: The destination address used for the acknowledgment notification in step 8 shall be the same address used in step 3. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol revision 1. Implementations that precede this version will not include this parameter. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant.

9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of the 'Time of Acknowledgment' Parameter

Reason for Change: This test has had errors in the timestamps that the test expected, and also a number of typographical errors. These test changes are covered by CN-060.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including notification of other workstations and updating of the Acked_Transitions status. The Time form of the 'Time of Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

1.
MAKE (a change that triggers the detection of an alarm event in the IUT)

2.
RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

3.
IF (the notification in step 2 was not a broadcast) THEN

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

4.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'011'

5.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the value of the 'Process Identifier' parameter in the

event notification),

'Event Object Identifier' =
(the 'Event Object Identifier' from the event

notification),

'Event State Acknowledged' =
(the state specified in the 'To State' parameter of the

notification),

'Time Stamp' =
(the time stamp conveyed in the notification),

'Time of Acknowledgment' =
(the TD's current time using a Time format)

6.
RECEIVE BACnet-Simple-ACK-PDU

7.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE

DESTINATION =
LOCAL BROADCAST | GLOBAL BROADCAST |
TD,

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 2 or 3)

ELSE

RECEIVE

DESTINATION =
LOCAL BROADCAST | GLOBAL BROADCAST | TD,

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION

8.
IF (the notification in step 7 was not broadcast) THEN

IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 2 or 3)

ELSE

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION
9.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'111'

Notes to Tester: The destination address used for the acknowledgment notification in step 7 shall be the same address used in step 2. The destination address used for the acknowledgment notification in step 8 shall be the same address used in step 3. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol revision 1. Implementations that precede this version will not include this parameter. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant.

9.1.1.X1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter
Reason for Change: No test exists for this functionality. This test is included in BDS-032.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, when the acknowledgement contains a mismatched or unmatched 'Acknowledging Process Identifier' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm with a mismatched 'Acknowledging Process Identifier' (the Process Identifier associated with another recipient), or unmatched (a Process Identifier not associated with any recipient), and verifies that the acknowledgment is properly noted by the IUT. This test should be performed twice, once with a mismatched Process Identifier and once with an unmatched Process Identifier.

Configuration Requirements: The IUT shall be configured with at least one object, Object1, that can detect alarm conditions and send confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification, configured to receive different Process Identifiers.

Test Steps:

1.
VERIFY (Object1), Acked_Transitions = B'111'

2.
MAKE (a change that triggers the detection of an alarm event in the IUT)

3.
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

Object1,

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the Notification Class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM or EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)

4.
TRANSMIT BACnet-Simple-ACK-PDU

5.
RECEIVE

DESTINATION =

(at least one device other than the TD),

SOURCE =

IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

Object1,

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the notification class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)
6.
TRANSMIT

DESTINATION =

IUT,

SOURCE =

(DESTINATION in step 5),

BACnet-Simple-ACK-PDU

7.
VERIFY (Object1), Acked_Transitions = B'011' | B'101' | B'110'

8.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (Any mismatched or unmatched value),

'Event Object Identifier' =

Object1,

'Event State Acknowledged' =
(the state specified in the 'To State'

parameter of the notification),

'Time Stamp' =

(the timestamp conveyed in the notification),

'Time of Acknowledgment' =
(the current timestamp)

9.
RECEIVE BACnet-Simple-ACK-PDU

10.
VERIFY (Object1), Acked_Transitions = B'111'

9.1.1.X2 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an Unknown 'Acknowledging Process Identifier' Parameter
Reason for Change: No test exists for this functionality. This test is included in BDS-032.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, when the acknowledgement contains a mismatched or unmatched 'Acknowledging Process Identifier' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm with a mismatched 'Acknowledging Process Identifier' (the Process Identifier associated with another recipient), or unmatched (a Process Identifier not associated with any recipient), and verifies that the acknowledgment is properly noted by the IUT. This test should be performed twice, once with a mismatched Process Identifier and once with an unmatched Process Identifier.

Configuration Requirements: The IUT shall be configured with at least one object, Object1, that can detect alarm conditions and send unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification, configured to receive different Process Identifiers.

Test Steps:

1.
VERIFY (Object1), Acked_Transitions = B'111'

2.
RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

Object1,

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the Notification Class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM or EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)

3.
RECEIVE

DESTINATION =

(at least one device other than the TD),

SOURCE =

IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =

(any Process ID),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

(the object detecting the alarm),

'Time Stamp' =

(the current time or sequence number),

'Notification Class' =

(the notification class configured for this

event),

'Priority' =

(the priority configured for this event),

'Event Type' =

(any valid event type),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE,

'From State' =

(any appropriate event state),

'To State' =

(any appropriate event state),

'Event Values' =

(values appropriate to the event type)

4.
VERIFY (Object1), Acked_Transitions = B'011' | B'101' | B'110'

5.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (Any mismatched or unmatched value),

'Event Object Identifier' =

Object1,

'Event State Acknowledged' =
(the state specified in the 'To State'

parameter of the notification),

'Time Stamp' =

(the timestamp conveyed in the notification),

'Time of Acknowledgment' =
(the current timestamp)

6.
RECEIVE BACnet-Simple-ACK-PDU

7.
VERIFY (Object1), Acked_Transitions = B'111'
9.1.2 Negative AcknowledgeAlarm Service Execution Tests

9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Time Stamp' is Too Old

Reason for Change: This test has had errors in the timestamps that the test expected, and also a number of typographical errors. These test changes are covered by CN-060.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the most recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper time stamp and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

1.
MAKE (a change that triggers the detection of an alarm event in the IUT)

2.
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

3.
RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

4.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'011'

5.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the value of the 'Process Identifier' parameter in the

 event notification),

'Event Object Identifier' =
(the 'Event Object Identifier' from the event

 notification),

'Event State Acknowledged' =
(the state specified in the 'To State' parameter of the

notification),

'Time Stamp' =
(a time stamp older than the one conveyed in the

 notification),

'Time of Acknowledgment' =
(the current time using a Time format)

6.
RECEIVE BACnet-Error-PDU

Error Class =
SERVICES,

Error Code =
INVALID_TIME_STAMP

7.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'011'

8.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the process identifier configured for this event),

'Event Object Identifier' =
(the 'Event Object Identifier' from the event

notification),

'Event State Acknowledged' =
(the state specified in the 'To State' parameter of the

notification),

'Time Stamp' =
(the time stamp conveyed in the notification),

'Time of Acknowledgment' =
(the current time using a Time format)

9.
RECEIVE BACnet-Simple-ACK-PDU

10.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 2 or 3)

ELSE

RECEIVE

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION

11.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 2 or 3)

ELSE

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
any valid event type),

'Notify Type' =
ACK_NOTIFICATION

12.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'111'

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used in step 3. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant.

9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the 'Time Stamp' is Too Old

Reason for Change: This test has had errors in the timestamps that the test expected (steps 5, 8, 10 & 11). These test changes are covered by CN-060.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the most recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD acknowledges the alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper time stamp and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send unconfirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have been acknowledged. The TD and at least one other BACnet device shall be recipients of the alarm notification.

1.
MAKE (a change that triggers the detection of an alarm event in the IUT)

2.
RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

3.
IF (the notification in step 2 was not a broadcast) THEN

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ALARM,

'AckRequired' =
TRUE,

'From State' =
NORMAL,

'To State' =
(any appropriate non-normal event state),

'Event Values' =
(the values appropriate to the event type)

4.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'011'

5.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the value of the 'Process Identifier' parameter in the

event notification),

'Event Object Identifier' =
(the 'Event Object Identifier' from the event

notification),

'Event State Acknowledged' =
(the state specified in the 'To State' parameter of the

notification),

'Time Stamp' =
(a time stamp older than the one conveyed in the

notification),

'Time of Acknowledgment' =
(the TD's current time using a Time format)

6.
RECEIVE BACnet-Error-PDU

Error Class =
SERVICES,

Error Code =
INVALID_TIME_STAMP

7.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'011'

8.
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' =
(the process identifier configured for this event),

'Event Object Identifier' =
(the 'Event Object Identifier' from the event

notification),

'Event State Acknowledged' =
(the state specified in the 'To State' parameter of the

notification),

'Time Stamp' =
(the time stamp conveyed in the notification),

'Time of Acknowledgment' =
(the TD's current time using a Time format)

9.
RECEIVE BACnet-Simple-ACK-PDU

10.
IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE

DESTINATION =
LOCAL BROADCAST | GLOBAL BROADCAST | TD,

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 2 or 3)

ELSE

RECEIVE

DESTINATION =
LOCAL BROADCAST | GLOBAL BROADCAST | TD,

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION

11.
IF (the notification in step 10 was not broadcast) THEN

IF (Protocol_Revision is present and Protocol_Revision (1) THEN

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION,

'To State' =
(the 'To State' used in step 2 or 3)

ELSE

RECEIVE

DESTINATION =
(at least one device other than the TD),

SOURCE =
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
(the process identifier configured for this event),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =
(the object detecting the alarm),

'Time Stamp' =
(the current time or sequence number),

'Notification Class' =
(the notification class configured for this event),

'Priority' =
(the priority configured for this event type),

'Event Type' =
(any valid event type),

'Notify Type' =
ACK_NOTIFICATION

12.
VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B'111'

Notes to Tester: The destination address used for the acknowledgment notification in step 10 shall be the same address used in step 2. The destination address used for the acknowledgment notification in step 11 shall be the same address used in step 3. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant.

9.2 ConfirmedCOVNotification Service Execution Tests

9.2.1.1 Change of Value Notification from Analog Objects

Reason For Change: The existing 9.2.1.1 test was split into test representing the different datatypes that can have COV applied to them. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Analog Input, Analog Output, and Analog Value objects. Since the ability to subscribe to analog data COV notifications is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from analog, binary, and multi-state objects.

Test Steps:

REPEAT X = (one object of each type in the set {Analog Input, Analog Output, Analog Value}) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
TRUE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags

appropriate to object X)

4.

RECEIVE BACnet-SimpleACK-PDU

5.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as

 displaying information on a workstation screen are carried out)

}

9.2.1.X1 Change of Value Notification from Binary Objects

Reason For Change: The existing 9.2.1.1 test was split into test representing the different datatypes that can have COV applied to them. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Binary Input, Binary Output, and Binary Value objects. Since the ability to subscribe to COV notifications for binary data is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from analog, binary, and multi-state objects.

Test Steps:

REPEAT X = (one object of each type in the set { Binary Input, Binary Output, Binary Value) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
TRUE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags

appropriate to object X)

4.

RECEIVE BACnet-SimpleACK-PDU

5.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as

displaying information on a workstation screen are carried out)

}

9.2.1.X2 Change of Value Notification from Life Safety Objects

Reason For Change: The existing 9.2.1.1 test was split into test representing the different datatypes that can have COV applied to them. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Life Safety Point, and Life Safety Zone objects. Since the ability to subscribe to COV notifications for unsigned data is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from analog, binary, and multi-state objects.

Test Steps:

REPEAT X = (one object of each type in the set {Life Safety Point, Life Safety Zone) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
TRUE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags

appropriate to object X)

4.

RECEIVE BACnet-SimpleACK-PDU

5.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as

displaying information on a workstation screen are carried out)

}

9.2.1.X3 Change of Value Notification from Multi-state Objects

Reason For Change: The existing 9.2.1.1 test was split into test representing the different datatypes that can have COV applied to them. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Multi-state Input, Multi-state Output, and Multi-state Value objects. Since the ability to subscribe to COV notifications for unsigned data is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from analog, binary, and multi-state objects.

Test Steps:

REPEAT X = (one object of each type in the set { Multi-state Input, Multi-state Output, Multi-state Value) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
TRUE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags

appropriate to object X)

4.

RECEIVE BACnet-SimpleACK-PDU

5.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as

displaying information on a workstation screen are carried out)

}

9.3 UnconfirmedCOVNotification Service Execution Tests

9.3.X3 Change of Value Notification from Analog Objects

No test exists for this functionality. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Analog Input, Analog Output, and Analog Value objects. Since the ability to subscribe to analog data COV notifications is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from analog objects.

Test Steps:

REPEAT X = (one object of each type in the set {Analog Input, Analog Output, Analog Value}) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
FALSE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags appropriate to object X)

4.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying

information on a workstation screen are carried out)

}

9.3.X4 Change of Value Notification from Binary Objects

Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Binary Input, Binary Output, and Binary Value objects. Since the ability to subscribe to COV notifications for binary data is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from analog, binary, and multi-state objects.

Test Steps:

REPEAT X = (one object of each type in the set { Binary Input, Binary Output, Binary Value) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
FALSE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags appropriate to object X)

4.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying

information on a workstation screen are carried out)

}

9.3.X5 Change of Value Notification from Life Safety Objects

Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Life Safety Point, and Life Safety Zone objects. Since the ability to subscribe to COV notifications for unsigned data is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from analog, binary, and multi-state objects.

Test Steps:

REPEAT X = (one object of each type in the set {Life Safety Point, Life Safety Zone) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
FALSE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags appropriate to object X)

4.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying

information on a workstation screen are carried out)

}

9.3.X6 Change of Value Notification from Multi-state Objects

Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

COV notifications convey the value of the Present_Value and Status_Flags properties when initiated by Multi-state Input, Multi-state Output, and Multi-state Value objects. Since the ability to subscribe to COV notifications for unsigned data is general and can be applied to any of these object types, the IUT shall demonstrate that it correctly responds to COV notifications from objects representing each of these object types. The test procedure defined in this subclause shall be applied once for each object type.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from analog, binary, and multi-state objects.

Test Steps:

REPEAT X = (one object of each type in the set { Multi-state Input, Multi-state Output, Multi-state Value) DO {

1.

RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
X,

'Issue Confirmed Notifications ' =
FALSE,

'Lifetime' =

(a value greater than one minute)

2.

TRANSMIT BACnet-SimpleACK-PDU

3.

TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value and Status_Flags appropriate to object X)

4.

CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying

information on a workstation screen are carried out)

}

9.3.X7 Change of Value Notification from Loop Objects

Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from loop objects.

Test Steps:

1.
RECEIVE SubscribeCOV,

'Subscriber Process Identifier' =
(any valid process identifier),

'Monitored Object Identifier' =
(any Loop object, X),

'Issue Confirmed Notifications ' =
FALSE,

'Lifetime' =

(a value greater than one minute)

2.
TRANSMIT BACnet-SimpleACK-PDU

3.
TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
(the process identifier used in step 2),

'Initiating Device Identifier' =
TD,

'Monitored Object Identifier' =
X,

'Time Remaining' =

(the time remaining in the subscription),

'List of Values' =

(Present_Value, Status_Flags, Setpoint, and

Controlled_Variable_Value appropriate to object X)

4.
CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying

information on a workstation screen are carried out)
9.10 SubscribeCOV Service Execution Tests

9.10.1.X1 Ensuring 5 Concurrent COV Subscribers

Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can support 5 concurrent subscriptions.

Test Concept: Have the TD subscribe with 5 different process identifiers, V1 through V5, and then check to ensure that 5 notifications are sent when the monitored object changes.

Test Steps

1.
REPEAT (X=V1 to V5) DO {

TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' =
X,

'Monitored Object Identifier' =
(any object supporting COV notifications),

'Issue Confirmed Notifications' =
FALSE,

'Lifetime' =
(any valid value that will allow the subscription to outlast the test)

RECEIVE BACnet-SimpleACK-PDU

WAIT Notification Fail Time

IF (if confirmed notifications were requested) THEN

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =
(any valid value),

'List of Values' =
(the initial Present_Value and initial Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU

ELSE

RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =
(any valid value),

'List of Values' =
(the initial Present_Value and initial Status_Flags)

}

2. MAKE (Present_Value = any value that differs from "initial Present_Value" such that a COV notification would be generated)

3. REPEAT (X=V1 to V5) DO {

IF (if confirmed notifications were requested) THEN

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

‘Time Remaining' =
(any valid value),

'List of Values' =
(the new Present_Value and Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU

ELSE

RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
X,

'Initiating Device Identifier' =
IUT,

'Monitored Object Identifier' =
(the same object used in the subscription),

'Time Remaining' =

(any valid value),

'List of Values' =

(the new Present_Value and Status_Flags)

}

Passing Result: The notification in step 3 can be received in any order by the TD.

9.18 ReadProperty Service Execution Tests
9.18.1.X1 Reading Properties Based on Data Type

Reason For Change: A general ReadProperty test is not supplied by 135.1 that can be used in a variety of situations. This test was covered by CN-039 but the SSPC rejected the test due to the testing of this functionality by the read-all-properties tests.

Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of the supported base data types.

Test Concept: This test is repeated once for each base data type that the IUT supports. For each execution of the test a property, P1, shall be selected that is of the data type being tested and the object containing P1 is designated Object1 in the test description.

Test Steps:

1.
VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

Passing Result: The IUT shall respond as indicated conveying the value specified in the EPICS.

9.18.2.1 Reading Non-Array Properties with an Array Index

Reason For Change: To expand the set of errors that can be issued by a device. This test is included in 135.1a, but does not have the protocol revision check in 135.1a.

Purpose: This test case verifies that the IUT can execute ReadProperty service requests when the requested property value is not an array but an array index is included in the service request.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
Vendor_Name,

'Array Index' =

1

2.
IF (Protocol_Revision < 4)

RECEIVE

(BACnet-Reject-PDU,

'Reject Reason' =
INCONSISTENT_PARAMETERS) |

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
INVALID_ARRAY_INDEX) |

(BACnet-Error-PDU,

Error Class =
SERVICES,

Error Code =
INCONSISTENT_PARAMETERS) |

(BACnet-Reject-PDU,

‘Reject Reason’ = INVALID_TAG)

ELSE

RECEIVE

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
PROPERTY_IS_NOT_AN_ARRAY)
9.20 ReadPropertyMultiple Service Execution Tests

9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

Reason For Change: The BTL decided that, depending on the parameters of the test, the IUT could also return UNSUPPORTED_OBJECT_TYPE for properties in Object 2. This test is not in any SSPC proposal.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read Access Specifications' contains specifications for multiple unsupported properties.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Identifier' =
P2,

'Property Identifier' =
(any property, P3, not supported in this object),

'Property Identifier' =
(any property, P4, not supported in this object),

'Object Identifier' =
(any object, Object2, not supported in the IUT)

'Property Identifier' =
P5,

'Property Identifier' =
P6

2.
RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(the value of P1 specified in the EPICS),

'Property Identifier' =
P2,

'Property Value' =
(the value of P2 specified in the EPICS),

'Property Identifier' =
P3,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Property Identifier' =
P4,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Object Identifier' =
Object2,

'Property Identifier' =
P5,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT|UNSUPPORTED_OBJECT_TYPE),

'Property Identifier' =
P6,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT|UNSUPPORTED_OBJECT_TYPE)

9.20.1.X1 Reading Properties Based on Data Type

Reason For Change: A general ReadPropertyMultiple test is not supplied by 135.1 that can be used in a variety of situations. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of the supported base data types.

Test Concept: The test 9.18.1.X Reading Properties Based on Data Type is repeated using ReadPropertyMultiple instead of ReadProperty.

9.20.1.X2 Reading Maximum Multiple properties

Reason For Change: No test exists that ensures that devices allow ReadPropertyMultiple requests/responses that take up the number of advertised segments. The tests are included in 135.1a.

Purpose: This test case verifies that IUT does not arbitrarily restrict the number of properties that can be read using a single ReadPropertyMultiple request.

Test Concept: The object-identifier is read from the device object as many times as can be conveyed in the largest request accepted by the IUT or as can be returned in the largest response generatable by the IUT. The calculation of the maximum request/response size shall be based on the IUTs MaxAPDU size and maximum segments per request/response.

The formula to determine the number of object-identifiers to use is:

MaxAPDU = IUT’s maximum APDU size

MaxRxSegs = IUT’s maximum segments accepted per request

MaxTxSegs = IUT’s maximum segments generated per response

NonSegRqstHdrSize = size of (non-segmented BACnetConfirmed-RequestPDU header) = 4

SegRqstHdrSize = size of (segmented BACnetConfirmed-RequestPDU header) = 6

NonSegRespHdrSize = size of (non-segmented BACnet-ComplexACK-PDU header) = 3

SegRespHdrSize = size of (segmented BACnet-ComplexACK-PDU header) = 5

ObjIdSize = size of (an Object-Identifier) = 5

TagsSize = size of (an open and a close tag) = 2

PropIdSize = size of (‘Object-Identifier’ property Id) = 2

If the IUT does not support receiving segmented requests :

MaxPropsPerRqst =

(MaxAPDU – NonSegRqstHdrSize – ObjIdSize – TagsSize) / PropIdSize =

(MaxAPDU – 4 – 5 – 2) / 2 =

(MaxAPDU – 11) / 2

If the IUT does support receiving segmented requests:

MaxPropsPerRqst =

(((MaxAPDU – SegRqstHdrSize) * MaxRxSegs) – ObjIdSize – TagsSize) / PropIdSize =

((MaxAPDU – 6) * MaxSegs – 5 – 2) / 2 =

((MaxAPDU – 6) * MaxSegs – 7) / 2

If the IUT does not support sending segmented responses:

MaxPropsPerResp =

(MaxAPDU – NonSegRespHdrSize – ObjIdSize – TagsSize) / (PropIdSize + TagsSize + ObjIdSize) =

(MaxAPDU – 3 – 5 – 2) / (2 + 2 + 5) =

(MaxAPDU – 10) / 9

If the IUT does support sending segmented responses:

MaxPropsPerResp =

((MaxAPDU – SegRespHdrSize * MaxTxSegs – ObjIdSize – TagsSize) / (PropIdSize + TagsSize + ObjIdSize) =

((MaxAPDU – 5) * MaxSegs – 5 – 2) / (2 + 2 + 5) =

((MaxAPDU – 5) * MaxSegs – 7) / 9

NumPropertiesToUse = min(MaxPropsPerRqst, MaxPropsPerResp)

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
(the IUT’s device object),

'Property Identifier' =
Object-Identifier,

'Property Identifier' =
Object-Identifier,

'Property Identifier' =
Object-Identifier,

…

'Property Identifier' =
Object-Identifier

2.
RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
(the IUT’s device object),

'Property Identifier' =
Object-Identifier,

'Property Value' =
(the IUT’s device object),

'Property Identifier' =
Object-Identifier,

'Property Value' =
(the IUT’s device object),

'Property Identifier' =
Object-Identifier,

'Property Value' =
(the IUT’s device object),

…

'Property Identifier' =
Object-Identifier,

'Property Value' =
(the IUT’s device object)

9.20.2.2 Reading Multiple Properties with Access Errors for Every Property

Reason For Change: The BTL wanted the ability to loosen the requirement that a ReadPropertyMultiple request in which no properties were successfully read, that a single error must be returned. These test changes are covered by CN-017.

Purpose: This test case verifies the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read Access Specifications' contains specifications for only unsupported properties.

Test Concept: The selections for objects and properties for this test shall consist of either objects that are not supported, properties that are not supported for the selected objects, or a combination of the two such that there are no object, property combinations that represent a supported property.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Identifier' =
P2,

'Property Identifier' =
P3,

'Object Identifier' =
Object2,

'Property Identifier' =
P4,

'Property Identifier' =
P5,

'Property Identifier' =
P6

2.
(RECEIVE BACnet-Error-PDU,

'Error Class' =
OBJECT | PROPERTY,

'Error Code' =
(any valid error code for the returned error class))

|

(RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Error Class' =

OBJECT | PROPERTY,

'Error Code' =

(any valid error code for the returned error class),

'Property Identifier' =
P2,

'Error Class' =

OBJECT | PROPERTY,

'Error Code' =

(any valid error code for the returned error class),

'Property Identifier' =
P3,

'Error Class' =

OBJECT | PROPERTY,

'Error Code' =

(any valid error code for the returned error class),

'Object Identifier' =
Object2,

'Property Identifier' =
P4,

'Error Class' =

OBJECT | PROPERTY,

'Error Code' =

(any valid error code for the returned error class),

'Property Identifier' =
P5,

'Error Class' =

OBJECT | PROPERTY,

'Error Code' =

(any valid error code for the returned error class),

'Property Identifier' =
P6,

'Error Class' =

OBJECT | PROPERTY,

'Error Code' =

(any valid error code for the returned error class))

9.20.2.X1 Reading Non-Array Properties with an Array Index

Reason for Change: To expand the set of errors that may be issued by a device and to take into account changes in 2001a. This test is not in any SSPC proposal. This is a new test but is based on the existing test of the same name for ReadProperty.

Purpose: This test case verifies that the IUT can execute ReadPropertyMultiple service requests when the requested property value is not an array but an array index is included in the service request.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
(Device, X),

'Property Identifier' =
Vendor_Name,

'Array Index' =

1

2.
IF (Protocol_Revision < 4)

RECEIVE

(BACnet-Reject-PDU,

'Reject Reason' =
INCONSISTENT_PARAMETERS) |

(ReadPropertyMultiple-Error,

Error Class =
PROPERTY,

Error Code =
INVALID_ARRAY_INDEX) |

(ReadPropertyMultiple-ACK,

'Object Identifier' =(Device, X),

'Property Identifier' = Vendor_Name,

'Array Index' =
1

Error Class =
PROPERTY,

Error Code =
INVALID_ARRAY_INDEX

) |

(BACnet-Error-PDU,

Error Class =
SERVICES,

Error Code =
INCONSISTENT_PARAMETERS) |

(BACnet-Reject-PDU,

‘Reject Reason’ = INVALID_TAG)

ELSE

RECEIVE

(BACnet-Error-PDU,

Error Class =
PROPERTY,

Error Code =
PROPERTY_IS_NOT_AN_ARRAY) |

(ReadPropertyMultiple-ACK,

'Object Identifier' =(Device, X),

'Property Identifier' = Vendor_Name,

'Array Index' =
1

'Error Class' =
PROPERTY,

'Error Code' =
PROPERTY_IS_NOT_AN_ARRAY)

9.21 ReadRange Service Execution Tests

Sample buffer to be used as explanation for the tests in this section.

	Sample Log_Buffer, (Trend Log, Instance 1)

	Arbitrary
Record
Designation
	Position
(index)
	Implied
Sequence #
	Timestamp (Date excluded for clarity)
	LogDatum

	a
	1
	16
	13:01:00.00
	log-status, buffer-purged

	b
	2
	17
	13:02:00.00
	log-status, log-disabled = FALSE

	c
	3
	18
	13:05:00.00
	real-value = 5.0

	d
	4
	19
	13:10:00.00
	real-value = 10.0

	e
	5
	20
	13:15:00.00
	real-value = 15.0

	f
	6
	21
	13:16:00.00
	log-status, log-disabled = TRUE

	g
	7
	22
	13:21:00.00
	log-status, log-disabled = FALSE

	h
	8
	23
	13:25:00.00
	real-value = 25.0

	I
	9
	24
	13:30:00.00
	real-value = 30.0

	j
	10
	25
	13:35:00.00
	real-value = 35.0

	k
	11
	26
	13:36:00.00
	log-status, log-disabled = TRUE

9.21.1.2 Reading Items by Position with Positive Count

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a position and the number of items after that position to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This range is specified using the 'By Position' option and a positive value for 'Count'. The 'Reference Index' and 'Count' are selected so that the results can be conveyed in a single acknowledgment.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Reference Index'

= (any value x: 1 (x ((the number of trend records in the

buffer – y + 1)),

'Count'

= (any value y: 0 < y ((the number of trend records in the

buffer – x + 1))

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?, FALSE},

'Item Count'

= y,

'Item Data'

= (all of the specified trend records in order of increasing

position. The items specified include the item at the index

specified by x, plus (y-1) items following.)

Test Example (using the sample buffer at beginning of section) :

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Reference Index'

= 3,

'Count'

= 7

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {FALSE, FALSE, FALSE},

'Item Count'

= 7,

'Item Data'

= Records < c, d, e, f, g, h, i > in that order.

[image: image2.wmf]1

2

3

4

5

6

7

8

9

10

11

Position

a

b

c

d

e

f

g

h

i

j

k

Indicates records returned in 'item data'

9.21.1.3 Reading Items by Position with Negative Count

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a position and the number of items before that position to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This range is specified using the 'By Position' option and a negative value for 'Count'. The 'Reference Index' and 'Count' are selected so that the results can be conveyed in a single acknowledgement.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Reference Index'

= (any value x: 2 (x (the number of trend records in the

buffer),

'Count'

= (any value y: y < 0 AND |y| (x)

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {FALSE, ?, FALSE},

'Item Count'

= |y|,

'Item Data'

= (all of the specified trend records in order of increasing

position. The items specified include the item at the index

specified by x, plus |y|-1 items preceding.)

Test Example (using the sample buffer at beginning of section):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Reference Index'

= 8,

'Count'

= -8

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {TRUE, FALSE, FALSE},

'Item Count'

= 8

'Item Data'

= Records < a, b, c, d, e, f, g, h > in that order.

[image: image3.wmf]Sample

1

2

3

4

5

6

7

8

9

10

11

Position

a

b

c

d

e

f

g

h

i

j

k

Indicates records returned in 'item data'

9.21.1.4 Reading Items by Time

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a time and the number of items after that time to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This range is specified using the 'By Time' option and a positive value for 'Count'. The 'Reference Index' and 'Count' are selected so that the results can be conveyed in a single acknowledgement.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'

= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Reference Time'

= (any value x: x is older than (of earlier time) the last time in

the buffer),

'Count'

= (any value y: (0 < y < number of records in buffer)

AND (y ≤ Total_Record_Count – ‘First Sequence Number’)

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?, ?, FALSE},

'Item Count'

= y,

'Item Data'

= (All of the specified trend records in order of increasing

sequence number. The items specified include the first item

with a timestamp newer than x, plus (y-1) items following.),

‘First Sequence Number’
= (Total_Record_Count – y + 1)

Notes to Tester: The first item returned shall be the entry in the Log_Buffer with a timestamp newer (later time) than the time specified by the 'Reference Time' parameter. If there is an entry in the Log_Buffer with a timestamp that exactly matches the ‘Reference Time’ parameter, that entry should not be included in the ‘Item Data’.

Test Example (using sample buffer at beginning of section):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Reference Time'

= 13:21:00.00

'Count'

= 4

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Result Flags'

 = {FALSE, TRUE, FALSE},

'Item Count'

= 4,

'Item Data'

= Records < h, i, j, k > in that order.

‘First Sequence Number’
= 23 (26 – 4 + 1)

[image: image4.wmf]16

17

18

19

20

21

22

23

24

25

26

Seq No.

a

b

c

d

e

f

g

h

i

j

k

Indicates records returned in 'item data'

9.21.1.4.X1 Reading Items by Time with Negative Count

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a time and the number of items after that time to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This range is specified using the 'By Time' option and a negative value for 'Count'. The ‘Reference Time’ selected, x, should be newer than the last time in the buffer. The 'Reference Time' and 'Count' are selected so that the results can be conveyed in a single acknowledgement.

Test Configuration: Configure the TD such that no time change requests occur. Configure the TD such that it contains at least 3 items in the Log_Buffer.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Reference Time'

= (x, selected as described above),

'Count'

= (any value y: 0 < |y| ≤ number of records in the buffer)

 2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?, TRUE, FALSE},

'Item Count'

= |y|,

'Item Data'

= (All of the specified trend records in order of increasing

sequence number. The items specified include the last item

with a timestamp older than x, plus |y|-1 items preceding.)

‘First Sequence Number’
= (Total_Record_Count- |y| + 1)

Notes to Tester: All items returned shall contain a timestamp older than the time specified by reference time parameter. The items returned shall be the last ‘count’ items from the log buffer. If there is an entry in the Log_Buffer with a timestamp that exactly matches the ‘Reference Time’ parameter, that entry should not be included in the ‘Item Data’.

Test Example (using the sample buffer at beginning of section):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'

= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Reference Time'

= 13:40:00.00,

'Count'

= -10

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {FALSE, TRUE, FALSE},

'Item Count'

= 10,

'Item Data'

= Records < b, c, d, e, f, g, h, i, j, k > in that order.

‘First Sequence Number’
= 17

[image: image5.wmf]16

17

18

19

20

21

22

23

24

25

26

Seq No.

a

b

c

d

e

f

g

h

i

j

k

Indicates records returned in 'item data'

9.21.1.6.X1 Reading a Range of Items that do not Exist (Using by Sequence)

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request when there are no items within the specified criteria.

Test Concept: A ReadRange request is transmitted by the TD requesting a specified sequence number and count of items known not to be in the Log_Buffer. The IUT shall respond by returning an empty list.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

‘Reference Sequence Number’ = (any value that will result in no items being present)

‘Count’

= (any non-zero number)

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result flags'

= {FALSE, FALSE, FALSE},

'Item Count'

= 0,

'Item Data'

= (an empty list)

‘First Sequence Number’
= (should be absent)

Test Example (using sample buffer at beginning of section):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

‘Reference Sequence Number’ = 34

‘Count’

= 4

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Result flags'

= {FALSE, FALSE, FALSE},

'Item Count'

= 0,

'Item Data'

= No Data

9.21.1.6.X2 Reading a Range of Items that do Not Exist (Using by Time)

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request when there are no items within the specified criteria.

Test Concept: A ReadRange request is transmitted by the TD requesting a specified reference time and count of items known not to be in the Log_Buffer. The IUT shall respond by returning an empty list.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

‘Reference Time’
= (any value that will result in no items being present)

‘Count’

= (any non-zero number)

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result flags'

= {FALSE, FALSE, FALSE},

'Item Count'

= 0,

'Item Data'

= (an empty list)

‘First Sequence Number’ = (should be absent)

Test Example (using sample buffer at beginning of section):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

‘Reference Time’
= 12:00:00.00

‘Count’

= -10

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (Trend Log, Instance 1),

'Property Identifier'
= Log_Buffer,

'Result flags'

= {FALSE, FALSE, FALSE},

'Item Count'

= 0,

'Item Data'

= No Data

9.21.1.X1 Reading Items by Sequence with Positive Count

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a sequence number and the number of items after that sequence to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This range is specified using the 'By Sequence' option and a positive value for 'Count'. The 'Reference Sequence Number' and 'Count' are selected so that the results can be conveyed in a single acknowledgment.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Reference Sequence Number' = (any value x: (Total_Record_Count – Record_Count

+ 1) (x ((Total_Record_Count – y + 1)),

'Count'

= (any value y: 0 < y (Record_Count)

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?, ?, FALSE},

'Item Count'

= y,

'Item Data'

= (All of the specified trend records in the order of increasing

sequence number. The items specified are all items with the

sequence number in the range of x through (x+y-1) in that

order).

'First Sequence Number' = x

Test Example (using sample buffer at beginning of section):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= 20:1,

'Property Identifier'
= Log_Buffer,

'Reference Sequence Number' = 16,

'Count'

= 11

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= 20:1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {TRUE, TRUE, FALSE},

'Item Count'

= 11,

'Item Data'

= Records < a, b, c, d, e, f, g, h, i, j, k > in that order.

'First Sequence Number'
= 16

[image: image6.wmf]16

17

18

19

20

21

22

23

24

25

26

Seq No.

a

b

c

d

e

f

g

h

i

j

k

Indicates records returned in 'item data'

9.21.1.X2 Reading Items by Sequence with Negative Count

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a ReadRange service request to return items specified by indicating a sequence number and the number of items after that sequence to return.

Test Concept: A ReadRange request is transmitted by the TD requesting a range of items known to be in the Log_Buffer. This range is specified using the 'By Sequence' option and a negative value for 'Count'. The 'Reference Sequence Number' and 'Count' are selected so that the results can be conveyed in a single acknowledgment.

Test Steps:

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Reference Sequence Number' =

 (any value x: (Total_Record_Count - Record_Count+2) < x (Total_Record_Count),

'Count' = (any value y: 0 < |y| < (Record_Count - (Total_Record_Count – x) + 1)

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= (the Trend Log object configured for this test),

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?, ?, FALSE},

'Item Count'

= y,

'Item Data'

= (All of the specified trend records in order of increasing

sequence number. The items specified are all items in the

range of (x-|y|+1) through x in that order.)

'First Sequence Number' = (x - |y| + 1)

Test Example (using sample buffer at beginning of section):

1.
TRANSMIT ReadRange-Request,

'Object Identifier'
= 20:1,

'Property Identifier'
= Log_Buffer,

'Reference Sequence Number' = 24,

'Count'

= -6

2.
RECEIVE ReadRange-ACK,

'Object Identifier'
= 20:1,

'Property Identifier'
= Log_Buffer,

'Result Flags'
= {FALSE, FALSE, FALSE},

'Item Count'
= 6,

'Item Data'
= Records < d, e, f, g, h, i > in that order.

'First Sequence Number' = 19

[image: image7.wmf]16

17

18

19

20

21

22

23

24

25

26

Seq No.

a

b

c

d

e

f

g

h

i

j

k

Indicates records returned in 'item data'

9.21.1.X3 Data Type verification Test

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that the ReadRange service performs properly for each data type supported.

Test Concept: Set Log_DeviceObjectProperty to an external property and verify that ReadRange performs properly after data has been acquired.

Test Configuration: Set Log_DeviceObjectProperty to an external property of type (REAL, UNSIGNED, INTEGER, BOOLEAN, BIT STRING, ENUMERATED). Make the IUT collect samples. Then use one of the qualifying 9.21.1 tests to verify the operation of the ReadRange-Request and ReadRange-Ack. Qualifying tests are: 9.21.1.1, 9.21.1.2, 9.21.1.3, 9.21.1.4, 9.21.1.4.X1, 9.21.1.X1 or 9.21.1.X2.

9.21.1.X4 Status/Failure logging

Reason For Change: Updated tests to test 2001b ReadRange changes. This test is not in any SSPC proposal.

Purpose: To verify that a failure is logged when an error is encountered in an attempt to read a data value from the monitored object. If the error is conveyed by an error response from a remote device, verify that the Error Class and Error Code in the response is logged.

Test Concept: Make the monitored object fail and respond with an error, by setting the log_deviceObjectProperty to an invalid device or object. Wait a until the IUT attempts to read a sample for the Log_Buffer. Then check the Log_Buffer to verify that there is a failure entry that consists of the ErrorClass and ErrorCode of the error.

Test Steps:

1.
WRITE (Invalid object into the Log_DeviceObjectProperty of the trend log object)

2.
WAIT (until IUT attempts to read a sample for the Log_Buffer).

3.
VERIFY (Log_Buffer contains a failure entry of unknown object).

9.22 WriteProperty Service Execution Tests
9.22.1.X1 Writing an Array Size

Reason For Change: No test exists for this functionality. This test was covered by CN-039 but the SSPC rejected the test in favour of the tests outlined in WS-030.

Purpose: This test case verifies that the IUT can execute WriteProperty service requests to the array size of a writable, non-fixed size array property.

Test Concept: The TD shall select an object in the IUT that contains a writable array property of a non-fixed size. This property is designated P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writable non-fixed size array properties it shall be configured with at least one writable non-fixed size array property that can be used for this test.

Test Steps:

1.
VERIFY (Object1), P1[0] = (the array size defined for this array property in the EPICS)

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

‘Array Index’ = 0

'Property Value' =
(any valid array size defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,

except the value verified in step 1)

3.
RECEIVE Simple-ACK-PDU

4.
VERIFY (Object1), P1[0] = (the value used in step 2)

9.22.1.X2 Writing to Properties Based on Data Type

Reason For Change: No test exists for this functionality. This test was covered by CN-039 but the SSPC rejected the test in favour of the write-all-properties test.

Purpose: This test case verifies that the IUT can execute WriteProperty service requests to each writable base data type supported by the IUT.

Test Concept: For the specified base data type, the TD shall select an object in the IUT that contains a writable property of that data type. This property is designated P1. If no suitable object can be found, then this test shall be omitted. Repeat the test for all supported writable data types.

Configuration Requirements: For each writable data type that the IUT supports it shall be configured with at least one writable property of the data type that can be used for this test. If the IUT cannot be configured in such a manner, then multiple versions of the IUT, or multiple versions of the IUTs configuration, shall be provided so as to provide a property of each writable data type.

Test Steps:

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,

except the value verified in step 1)

3.
RECEIVE Simple-ACK-PDU

4.
VERIFY (Object1), P1 =
(the value used in step 2)

9.22.2.3 Writing with a Property Value Having the Wrong Datatype

Reason For Change: No test exists for this functionality. This test is included in 135.1a without the protocol revision check.

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be made to write to this property using an invalid datatype. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any value with an invalid datatype)

3.
IF (Protocol_Revision < 4)

RECEIVE

(BACnet-Error PDU,

'Error Class' =
PROPERTY,

'Error Code' =
INVALID_DATATYPE) |

(BACnet-Reject-PDU

'Reject Reason' =
INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

'Reject Reason' = INVALID_TAG)

ELSE

RECEIVE

(BACnet-Error PDU,

'Error Class' =
PROPERTY,

'Error Code' =
INVALID_DATATYPE)
4.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

9.22.2.4 Writing with a Property Value that is Out of Range

Reason for Change: This test is contained in 135.1a but without the protocol revision check.

Purpose: To verify that the IUT can execute WriteProperty service requests when an attempt is made to write a value that is outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range.

Test Steps:

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS),

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
(Object1, any object with writable properties),

'Property Identifier' =
(P1, any property with a restricted range of values),

'Property Value' =
(any value that is outside the supported range)

3.
IF (Protocol_Revision < 4)

RECEIVE

(BACnet-Error-PDU,

'Error Class' = PROPERTY,

'Error Code' = VALUE_OUT_OF_RANGE) |

(BACnet-Reject-PDU,

'Reject Reason' =
PARAMETER_OUT_OF_RANGE)

ELSE

RECEIVE

(BACnet-Error-PDU,

'Error Class' =
PROPERTY,

'Error Code' =
VALUE_OUT_OF_RANGE)

4.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

9.23 WritePropertyMultiple Service Execution Tests
9.23.1.X1 Writing List Properties

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the property is a list.

Test Concept: Repeat test 9.22.1.X Writing List Properties using WritePropertyMultiple instead of WriteProperty.

9.23.1.X2 Writing to Properties Based on Data Type

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests to each writable base data type supported by the IUT.

Test Concept: For the specified base data type, the TD shall select an object in the IUT that contains a writable property of that data type. This property is designated P1. If no suitable object can be found, then this test shall be omitted. Repeat the test for all supported writable data types.

Configuration Requirements: For each writable data type that the IUT supports it shall be configured with at least one writable property of the data type that can be used for this test. If the IUT cannot be configured in such a manner, then multiple versions of the IUT, or multiple versions of the IUTs configuration, shall be provided so as to provide a property of each writable data type.

Test Steps:

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,

except the value verified in step 1)

3.
RECEIVE Simple-ACK-PDU

4.
VERIFY (Object1), P1 =
(the value used in step 2)

9.23.1.X4 Writing an Array Size

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests to the array size of a writable, non-fixed size array property.

Test Concept: Repeat test 9.22.1.X Writing an Array Size using WritePropertyMultiple instead of WriteProperty.

9.23.1.X6 Writing Maximum Multiple properties

Reason For Change: No test exists that ensures that devices allow WritePropertyMultiple requests that take up the number of advertised segments. The tests are included in 135.1a.

Purpose: This test case verifies that IUT does not arbitrarily restrict the number of properties that can be written to it using a single WritePropertyMultiple request.

Test Concept: A writable property is written to an object in the IUT as many times as can be conveyed in the largest request accepted by the IUT. The calculation of the maximum request size shall be based on the IUT’ MaxAPDU size and maximum segments per request.

The formula to determine the number of values to use is:

MaxAPDU = IUT’s maximum APDU size

MaxRxSegs = IUT’s maximum segments accepted per request

MaxTxSegs = IUT’s maximum segments generated per response

NonSegRqstHdrSize = size of (non-segmented BACnetConfirmed-RequestPDU header) = 4

SegRqstHdrSize = size of (segmented BACnetConfirmed-RequestPDU header) = 6

ObjIdSize = size of (an Object-Identifier) = 5

TagsSize = size of (an open and a close tag) = 2

PropIdSize = size of (chosen property Id) = depends on property ID and includes array index and priority size if required

ValueSize = size of (chosen property value) = depends on value property and value chosen

If the IUT does not support receiving segmented requests :

NumPropertiesToWrite =

(MaxAPDU – NonSegRqstHdrSize – ObjIdSize – TagsSize) / (PropIdSize + TagsSize + ValueSize) =

(MaxAPDU – 4 – 5 – 2) / (PropIdSize + 2 + ValueSize) =

(MaxAPDU – 11) / (PropIdSize + 2 + ValueSize)

If the IUT does support receiving segmented requests :

NumPropertiesToWrite =

((MaxAPDU – SegRqstHdrSize * MaxRxSegs – ObjIdSize – TagsSize) / PropIdSize =

((MaxAPDU – 6) * MaxSegs – 5 – 2) / 2 =

((MaxAPDU – 6) * MaxSegs – 7) / 2

Test Steps:

1.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
(the IUT’s device object),

'Property Identifier' =
P1,

‘Array Index’ =

A1,
-- only if required

‘Priority’ =

PRIO
-- only if required

'Property Value' =
V1,

…

'Property Identifier' =
P1,

‘Array Index’ =

A1,
-- only if required

‘Priority’ =

PRIO
-- only if required

'Property Value' =
V1

2.
RECEIVE Simple-ACK

3. VERIFY(P1 = V1)

9.23.1.X7 Writing with a Property Value Having the Wrong Datatype

Reason for Change: To expand the set of errors that can be issued by a device. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be made to write to this property using an invalid datatype. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any value with an invalid datatype)

3.
IF (Protocol_Revision < 4)

RECEIVE

(WritePropertyMultiple-Error,

'Error Class' =
PROPERTY,

'Error Code' =
INVALID_DATATYPE

'Object Identifier' = Object1

'Property Identifier' = P1) |

(BACnet-Reject-PDU

'Reject Reason' =
INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

'Reject Reason' = INVALID_TAG)

ELSE

RECEIVE

(WritePropertyMultiple-Error,

'Error Class' =
PROPERTY,

'Error Code' =
INVALID_DATATYPE

'Object Identifier' = Object1

'Property Identifier' = P1)
4.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

9.23.1.X8 Writing with a Property Value that is Out of Range

Reason for Change: This test was added to allow for testing of 2001a functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can execute WritePropertyMultiple service requests when an attempt is made to write a value that is outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range.

Test Steps:

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS),

2.
TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' =
(Object1, any object with writable properties),

'Property Identifier' =
(P1, any property with a restricted range of values),

'Property Value' =
(any value that is outside the supported range)

3.
IF (Protocol_Revision < 4)

RECEIVE

(WritePropertyMultiple-Error,

'Error Class' =

PROPERTY,

'Error Code' =

VALUE_OUT_OF_RANGE,

'Object Identifier' =
Object1,

'Property Identifier' =
P1) |

(BACnet-Reject-PDU,

'Reject Reason' =
PARAMETER_OUT_OF_RANGE)

ELSE

RECEIVE

WritePropertyMultiple-Error,

'Error Class' =

PROPERTY,

'Error Code' =

VALUE_OUT_OF_RANGE,

'Object Identifier' =
Object1,

'Property Identifier' =
P1

9.24 DeviceCommunicationControl Service Execution Test

9.24.1 Positive DeviceCommunicationControl Service Execution Tests

9.24.1.X2 Disable of Service Initiation Restored by Time Duration

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

BACnet Reference Clause: 16.1.1.1.2.

Purpose: To verify the correct execution of the DeviceCommunicationControl service when DISABLE_INITIATION is requested for a finite time duration. Communication is restored when the DeviceCommunicationControl ‘Time Duration’ parameter expires.

Configuration Requirements: The IUT shall be configured to initiate client requests.

Test Steps:

1.
MAKE (condition that would normally cause the IUT to initiate requests)

2.
CHECK (the IUT is initiating requests)

3.
TRANSMIT DeviceCommunicationControl-Request,

'Time Duration' =
(a value T > 1, in minutes, selected by the tester),

'Enable/Disable' =
DISABLE_INITIATION,

'Password' = (any appropriate password if required)

4.
RECEIVE BACnet-SimpleACK-PDU

5.
MAKE (condition that would normally cause the IUT to initiate requests)

6.
CHECK (the IUT has stopped initiating requests)

7.
VERIFY (Device, X), (any required non-array property) = (the value for this property

specified in the EPICS)

8.
TRANSMIT Who-Is-Request

9.
RECEIVE I-Am-Request

10.
WAIT (T)

11.
MAKE (condition that would normally cause the IUT to initiate requests)

12.
CHECK (the IUT is initiating requests)

Notes to Tester: Steps 2 through 8 must be executed within time T.

9.24.1.X3 Disable of Service Initiation Restored by DeviceCommunicationControl

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

BACnet Reference Clause: 16.1.1.1.2.

Purpose: To verify the correct execution of the DeviceCommunicationControl service when DISABLE_INITIATION is requested for a finite time duration. Communication is restored using the DeviceCommunicationControl service.

Configuration Requirements: The IUT shall be configured to initiate client requests.

Test Steps:

1.
MAKE (condition that would normally cause the IUT to initiate requests)

2.
CHECK (the IUT is initiating requests)

3.
TRANSMIT DeviceCommunicationControl-Request,

'Time Duration' = (a value in minutes > time required to execute all test steps),

'Enable/Disable' = DISABLE_INITIATION,

'Password' = (any appropriate password if required)

4.
RECEIVE BACnet-SimpleACK-PDU

5.
MAKE (condition that would normally cause IUT to initiate requests)

6.
CHECK (the IUT has stopped initiating requests)

7.
VERIFY (Device, X), (any required non-array property) = (the value for this property

specified in the EPICS)

8.
TRANSMIT Who-Is-Request

9.
RECEIVE I-Am-Request

10.
TRANSMIT DeviceCommunicationControl-Request,

'Enable/Disable' = ENABLE,

'Password' = (any appropriate password if required)

11.
MAKE (condition that would normally cause the IUT to initiate requests)

12.
CHECK (the IUT is initiating requests)

9.32 Who-Has Service Execution Tests

The purpose of this test group is to verify the correct execution of the Who-Has service request.

Dependencies: None.

BACnet Reference Clause: 16.9.

9.32.1 Execution of Who-Has Service Requests Originating from the Local Network

The purpose of this test group is to verify the correct execution of the Who-Has request service procedure for messages originating from the local network.

9.32.1.X1 Who-Has After Object_Name Changed

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Dependencies: Who-Has Service Execution Tests, 9.32.1.2

BACnet Reference Clause: 16.9

Purpose: Verifies correct responses to Who-Has service requests after an object's Object_Name property is changed.

Test Concept: The Object_Name property of the referenced object is verified to contain the value (V1), where V1 is the value specified for that property in the EPICS. The Object_Name property is then changed to a different value (V2), which is not already used by a different object in the IUT. The test then verifies correct responses to Who-Has requests that include an 'Object Name' parameter, using the values V1 and V2.

Configuration: An object (Object1) exists within the IUT that has an Object_Name property that can be changed. If no such object exists in the IUT then this test shall be omitted.

Test Steps:

1. TRANSMIT ReadProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = Object_Name

2. RECEIVE ReadProperty-ACK,

'Object Identifier' = Object1,

'Property Identifier' = Object_Name

'Property Value' = V1

3. MAKE (Object1, Object_Name = V2)

4. TRANSMIT

Who-Has-Request,

DA= LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

'Object Name' = V1

5. CHECK (the IUT does not respond with an I-Have request with an 'Object Name' of V1)

6. TRANSMIT

Who-Has-Request,

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

'Object Name' = V2

7. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier'
= Object1,

'Object Name' = V2

9.32.1.X2 Who-Has After Object_Identifier Changed

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Dependencies: Who-Has Service Execution Tests, 9.32.1.1

BACnet Reference Clause: 16.9

Purpose: Verifies correct responses to Who-Has service requests after an object's Object_Identifier property is changed.

Test Concept: The Object_ Identifier property of the referenced object is verified to contain the value (V1), where V1 is the value specified for that property in the EPICS. The Object_ Identifier property is then changed to a different value (V2), which is not already used by a different object in the IUT. The test then verifies correct responses to Who-Has requests that include an 'Object Identifier' parameter, using the values V1 and V2.

Configuration: An object (Object1) exists within the IUT that has an Object_ Identifier property that can be changed. If no such object exists in the IUT then this test shall be omitted.

Test Steps:

1. TRANSMIT ReadProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = Object_Identifier

2. RECEIVE ReadProperty-ACK

'Object Identifier' = Object1,

'Property Identifier' = Object_Identifier

'Property Value' = V1

3. MAKE (Object1, Object_Identifier = V2)

4. TRANSMIT

DA= LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

Who-Has-Request,

'Object Identifier' = V1

5. CHECK (the IUT does not respond with an I-Have request with an 'Object Identifier' V1)

6. TRANSMIT

Who-Has-Request,

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = TD,

'Object Identifier' = V2

7. RECEIVE

DA = LOCAL BROADCAST | GLOBAL BROADCAST,

SA = IUT,

I-Have-Request,

'Device Identifier' = (the IUT's Device object),

'Object Identifier' = V2

'Object Name' = (Object1, Object_Name)

9.39 General Testing of Service Execution

This subclause defines the tests necessary to demonstrate that a device can peacefully coexist on a BACnet internetwork. These are general tests that are not associated with any particular network service.

9.39.1 Unsupported Confirmed Services Test

Reason For Change: No test exists for this functionality. This test is included in Addenda 135.1a.

Dependencies: None

BACnet Reference Clause: UNRECOGNIZED_SERVICE, 18.8.9

Purpose: This test case verifies that the IUT will reject any confirmed services that it does not support.

Test Steps:

1.
REPEAT X = (all confirmed services that the IUT does not execute) DO {

TRANSMIT X

RECEIVE BACnet-Reject-PDU,

'Reject Reason' =
 UNRECOGNIZED_SERVICE

Passing Result: The device responds correctly for each unsupported confirmed service.

10 Network Layer Protocol Tests

10.2 Router Functionality Tests

10.2.2 Processing Network Layer Messages

10.2.2.3 Forward I-Could-Be-Router-To-Network

Reason For Change: The 135.1 test has errors in the destination, source and hop count requirements. This test is not contained in any SSPC proposal.

BACnet Reference Clause: 6.6.3.4.

Purpose: To verify that the IUT will forward a received I-Could-Be-Router-To-Network message to the intended recipient.

Test Steps:

1.
TRANSMIT PORT B,

DA = IUT,

SA = HR2-4,

DNET = 1,

DADR = D1A,

Hop Count = 255,

I-Could-Be-Router-To-Network,

Network Number = 4,

Performance Index = 6

2.
RECEIVE PORT A,

DA = D1A,

SA = IUT,

SNET = 2,

SADR = HR2-4,

I-Could-Be-Router-To-Network,

Network Number = 4,

Performance Index = 6

10.2.2.7.2 Unknown Network Layer Message Type

Reason For Change: The 135.1 test contains addressing errors, and incorrect DNET requirements in the expected response. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT will reject a network layer message directed to the IUT that contains an unknown message type that is in the range of message types reserved for use by ASHRAE.

Test Steps:

1.
TRANSMIT PORT A,

DESTINATION = IUT,

SOURCE = TD,

Message Type = (any value in the range reserved for use by ASHRAE)

2.
RECEIVE PORT A,

DESTINATION = D1A TD,

SOURCE = IUT,

Reject-Message-To-Network,

Reject Reason = 3 (unknown network layer message type),

DNET = any value

10.2.2.7.3 Unknown Network Layer Message Type For Someone Else

Reason For Change: This test is included in this document as it is in 135.1a and not yet in 135.1.

Purpose: This test case verifies that the IUT will not reject a network layer message with an unknown message type when it is destined elsewhere. This test shall not be run if the value of the IUT’s Protocol_Revision is less than 4.

BACnet Reference Clause: 6.6.3.5

Test Steps:

1.
TRANSMIT PORT A, DA = IUT, SA = D1A,

DNET = 2,

DADR = D2C,

Hop Count = 255,

Message Type = (any value in the range reserved for use by ASHRAE)

2.
RECEIVE Port B, DA = D2C, SA = IUT,

SNET = 1,

SADR = D1A,

Message Type = (value from step 1)

3.
TRANSMIT PORT A, DA = LOCAL BROADCAST, SA = D1A,

DNET = GLOBAL BROADCAST,

DLEN = 0,

Hop Count = 255,

Message Type = (any value in the range reserved for use by ASHRAE)

4.
RECEIVE PORT B, DA = LOCAL BROADCAST, SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = D1A,

Hop Count = 254,

Message Type = (value from step 3)

5.
TRANSMIT PORT A, DA = IUT, SA = D1A,

DNET = 2,

DADR = D2C,

Hop Count = 255,

Message Type = (any value in the range available for vendor proprietary messages),

Vendor ID = (any value other than the IUT’s Vendor_Identifier)

6.
RECEIVE Port B, DA = D2C, SA = IUT,

SNET = 1,

SADR = D1A,

Message Type = (value from step 5),

Vendor ID = (value from step 5)

7.
TRANSMIT PORT A, DA = LOCAL BROADCAST, SA = D1A,

DNET = GLOBAL BROADCAST,

DLEN = 0,

Hop Count = 255,

Message Type = (any value in the range available for vendor proprietary messages),

Vendor ID = (any value other than the IUT’s Vendor_Identifier)

8.
RECEIVE PORT B, DA = LOCAL BROADCAST, SA = IUT,

DNET = GLOBAL BROADCAST,

DLEN = 0,

SNET = 1,

SADR = D1A,

Hop Count = 254,

Message Type = (value from step 7),

Vendor ID = (value from step 7)

Note to tester: The Vendor_Identifier is the vendor identification code assigned to the vendor of the IUT by ASHRAE.

10.2.3 Routing of Unicast APDUs

10.2.3.2 Route Message from a Local Device to a Local Device

Reason For Change: The 135.1 test contains errors in the Source, Destination and Hop Count requirements. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT can route a unicast message from a local device on Network 1 to a device on Network 2.

Test Steps:

1.
TRANSMIT PORT A,

DA = IUT,

SA = D1A,

DNET = 2,

DADR = D2C,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

2.
RECEIVE PORT B,

DA = D2C,

SA = IUT,

SNET = 1,

SADR = D1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 1),

'Property Identifier' =
(the property identifier used in step 1)

3.
TRANSMIT PORT B,

DA = IUT,

SA = D2C,

DNET = 1,

DADR = D1A,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

4.
RECEIVE PORT A,

DA = D1A,

SA = IUT,

SNET = 2,

SADR = D2C,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 1),

'Property Identifier' =
(the property identifier used in step 1)

10.2.3.5 Route Message from a Router to a Local Device

Reason For Change: The 135.1 test contains errors in the Source, Destination and Hop Count requirements. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT can route a unicast message from a peer router to the destination device on a local network.

Test Steps:

1.
TRANSMIT PORT A,

DA = IUT,

SA = R1-5,

DNET = 2,

DADR = D2C,

SNET = 5,

SADR = D5F,

Hop Count = 254,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

2.
RECEIVE PORT B,

DA = D2C,

SA = IUT,

SNET = 5,

SADR = D5F,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 1),

'Property Identifier' =
(the property identifier used in step 1)

10.2.4 Routing of Broadcast APDUs

10.2.4.4 Remote Broadcast from a Local Device to a Directly-Connected Network

Reason For Change: The 135.1 test contains errors in the Source, Destination and Hop Count requirements. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT properly forwards remote broadcast messages that originate on a local network and are directed to another local network.

Test Steps:

1.
TRANSMIT PORT B,

DA = LOCAL BROADCAST,

SA = D2C,

DNET = 1,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' = Who-Is

2.
RECEIVE PORT A,

DA = LOCAL BROADCAST,

SA = IUT,

SNET = 2,

SADR = D2C,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' = Who-Is

10.2.4.6 Remote Broadcast from a Remote Device to a Directly-Connected Network

Reason For Change: The 135.1 test contains errors in the Source, Destination and Hop Count requirements. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT properly forwards remote broadcast messages that originate on a remote network and are directed to a directly-connected network.

Test Steps:

1.
TRANSMIT PORT B,

DA = IUT,

SA = R2-3,

DNET = 1,

DLEN = 0,

SNET = 3,

SADR = D3D,

Hop Count = 254,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' = Who-Is

2.
RECEIVE PORT A,

DA = LOCAL BROADCAST,

SA = IUT,

SNET = 3,

SADR = D3D,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' = Who-Is

10.2.4.8 Remote Broadcast that Should Be Ignored

Reason For Change: The 135.1 test contains errors in the Source, Destination and DADR requirements. It also used a confirmed service which cannot be remotely broadcast. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT ignores broadcast messages that are intended for a remote network that is reachable through the same port that the message was received from.

Test Steps:

1.
TRANSMIT PORT B,

DA = LOCAL BROADCAST,

SA = D2C,

DNET = 3,

DLEN = 0,

Hop Count = 255,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' = Who-Is

2.
CHECK (verify that the IUT does not forwarded this message)

10.2.6 Network Layer Priority

Reason For Change: The 135.1 test contains errors in the Source, Destination and Hop Count requirements. This test is not contained in any SSPC proposal.

BACnet Reference Clauses: 6.1, 6.2.2, and 6.5.4.

Purpose: To verify that the IUT can process and forward messages with all network priorities.

Test Steps:

1.
TRANSMIT PORT A,

DA = IUT,

SA = D1A,

Priority = B'00',

DNET = 2,

DADR = D2C,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

2.
RECEIVE PORT B,

DA = D2C,

SA = IUT,

Priority = B'00',

SNET = 1,

SDR = D1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 1),

'Property Identifier' =
(the property identifier used in step 1)

3.
TRANSMIT PORT A,

DA = IUT,

SA = D1A,

Priority = B'01',

DNET = 2,

DADR = D2C,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

4.
RECEIVE PORT B,

DA = D2C,

SA = IUT,

Priority = B'01',

SNET = 1,

SDR = D1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 3),

'Property Identifier' =
(the property identifier used in step 3)

5.
TRANSMIT PORT A,

DA = IUT,

SA = D1A,

Priority = B'10',

DNET = 2,

DADR = D2C,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

6.
RECEIVE PORT B,

DA = D2C,

SA = IUT,

Priority = B'10',

SNET = 1,

SDR = D1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 5),

'Property Identifier' =
(the property identifier used in step 5)

7.
TRANSMIT PORT A,

DA = IUT,

SA = D1A,

Priority = B'11',

DNET = 2,

DADR = D2C,

Hop Count = 255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(any object identifier),

'Property Identifier' =
(any property of the specified object)

8.
RECEIVE PORT B,

DA = D2C,

SA = IUT,

Priority = B'11',

SNET = 1,

SDR = D1A,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
(the object identifier used in step 7),

'Property Identifier' =
(the property identifier used in step 7)

10.X Non-Router Functionality Tests

This subclause defines the tests necessary to demonstrate BACnet Network Layer functionality in nodes which are not routers. These tests include verifying that a node can bind correctly to routers to enable it to communicate with devices on remote networks, and verifying that the node correctly ignores messages which are reserved for routers. If the IUT is a BACnet router then these tests are to be omitted.

The test assumes that the IUT is located on network DNET1 and the TD appears to be a router to network DNET2. The value DNET3 is assigned a unique network number. If the IUT can initiate requests, it will be configured to send those requests to a device (D2A) on network DNET2. The IUT will also be expected to respond to requests from device D2A. The test descriptions assume that the TD will mimic device D2A.

Note: Clauses 6.5.1 and 6.5.3 indicate that there are only two ways for a non-router to transmit a request (on the local network and destined for a remote network), neither of which include network layer source routing information. If the IUT emits any NPDU with SNET/SADR fields during the tests in this subclause, then it fails.

Note: Clauses 6.6 and 6.6.3.3 define BACnet routers and the network layer services reserved for routers. If the IUT emits any I-Am-Router-To-Network or I-Could-Be-Router-To-Network NPDUs during the tests in this subclause (including during test 10.X.6), then it fails.

10.X.1 Static Router Binding

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Dependencies: ReadProperty Service Initiation Tests, 8.15, ReadProperty Service Execution Tests, 9.15

BACnet Reference Clause: 6.5.3

Purpose: To verify that the IUT can initiate requests to a remote network and respond to requests from a remote network when the IUT has been statically configured with the MAC address of the router to that remote network.

Test Concept: The IUT transmits a request to a device on the remote network and responds to a request from the remote network without performing any form of dynamic router binding. If the IUT does not support static router binding or if the IUT cannot initiate a request then this test shall be omitted. If the IUT cannot initiate a ReadProperty request then another service can be substituted.

Test Steps:

1. MAKE (IUT transmit a ReadProperty request to the D2A device on the remote network)

2. RECEIVE

DESTINATION =
TD,

SOURCE =

IUT,

DNET =

DNET2,

DADR=

D2A,

Hop Count =

255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
O1 (any BACnet standard object in D2A),

'Property Identifier' =
P1 (any required property of the specified object)

3. TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =
ReadProperty-ACK,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value)

4. TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
O2 (any BACnet standard object in IUT),

'Property Identifier' =
P2 (any required property of the specified object)

5. RECEIVE

DESTINATION =
TD,

SOURCE =

IUT,

DNET =

DNET2,

DADR =

D2A,

Hop Count =

255,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =
ReadProperty-ACK,

'Object Identifier' =
O2,

'Property Identifier' =
P2,

'Property Value' =
(any valid value)

10.X.2 Router Binding via Application Layer Services

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Dependencies: ReadProperty Service Initiation Tests, 8.18, ReadProperty Service Execution Tests, 9.18, Who-Is Service Initiation Tests, 8.34

BACnet Reference Clause: 6.5.3

Purpose: To verify that the IUT can initiate requests to a remote network and respond to requests from a remote network after the IUT uses the Who-Is and I-Am Application Layer services to discover the MAC address of the router to that remote network.

Test Concept: The IUT broadcasts a Who-Is request to discover device D2A and notes the MAC address of the intervening router in the corresponding I-Am reply. The TD transmits a request to a device on the remote network and responds to a request from the remote network without performing any further form of dynamic router binding. If the IUT does not support application layer router binding or if the IUT cannot initiate a request other than Who-Is, then this test shall be omitted. If the IUT cannot initiate a ReadProperty request then another service can be substituted. The IUT may use the deviceInstanceRange form of Who-Is.

Note that Clause 6.5.3 specifically mentions router binding via Who-Is, and does not mention router binding by initiating other application layer services (such as Who-Has) or lurking and noting the router MAC addresses for incoming application layer requests.

Test Steps:

1. MAKE (IUT transmit Who-Is to discover the device on the remote network)

2. RECEIVE

DESTINATION =
BROADCAST,

SOURCE =

IUT,

DNET =

GLOBAL BROADCAST,

Hop Count =

255,

BACnet-Unconfirmed-Request-PDU,

‘Service Choice’ =
who-Is

 |
DESTINATION =
BROADCAST,

SOURCE =

IUT,

DNET =

DNET2,

DADR=

BROADCAST,

Hop Count =

255,

BACnet-Unconfirmed-Request-PDU,

‘Service Choice’ =
who-Is

3. TRANSMIT

DESTINATION =

BROADCAST,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Unconfirmed-Request-PDU,

‘Service Choice’ =

I-Am,

'I Am Device Identifier' =

(device object, instance number of D2A),

'Max APDU Length Accepted ' = (any valid value),

‘segmentationSupported’
=
(any value value),

'Vendor ID ' =

(any valid value)

4.
MAKE (IUT transmit a ReadProperty request to the D2A device on the remote network)

5.
RECEIVE

DESTINATION =
TD,

SOURCE =

IUT,

DNET =

DNET2,

DADR=

D2A,

Hop Count =

255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
O1 (any BACnet standard object in D2A),

'Property Identifier' =
P1 (any required property of the specified object)

6.
TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =
ReadProperty-ACK,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value)

7.
TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
O2 (any BACnet standard object in IUT),

'Property Identifier' =
P2 (any required property of the specified object)

8.
RECEIVE

DESTINATION =
TD,

SOURCE =

IUT,

DNET =

DNET2,

DADR =

D2A,

Hop Count =

255,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =
ReadProperty-ACK,

'Object Identifier' =
O2,

'Property Identifier' =
P2,

'Property Value' =
(any valid value)

10.X.3 Router Binding via Who-Is-Router-To-Network

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Dependencies: ReadProperty Service Initiation Tests, 8.15, ReadProperty Service Execution Tests, 9.15, Locating Routers, 10.5.1

BACnet Reference Clause: 6.5.3

Purpose: To verify that the IUT can initiate requests to a remote network and respond to requests from a remote network after the IUT uses the Who-Is-Router-To-Network Network Layer service to discover the MAC address of the router to that remote network.

Test Concept: The IUT broadcasts a Who-Is-Router-To-Network request to discover the router to the desired network. The TD transmits a request to a device on the remote network and responds to a request from the remote network without performing any further form of dynamic router binding. If the IUT does not support who-is-router-to-network router binding or if the IUT cannot initiate a request, then this test shall be omitted. If the IUT cannot initiate a ReadProperty request then another service can be substituted. The IUT may use either the general query or specific network number query form of the Who-Is-Router-To-Network service.

Note that Clause 6.5.3 specifically mentions router binding via Who-Is-Router-To-Network, and does not mention router binding by lurking and noting unsolicited I-Am-Router-To-Network messages.

Test Steps:

1.
MAKE (IUT transmit Who-Is-Router-To-Network to discover the router to DNET2)

2.
RECEIVE

DESTINATION =

BROADCAST,

SOURCE =

IUT,

Who-Is-Router-To-Network,

|
DESTINATION =

BROADCAST,

SOURCE =

IUT,

Who-Is-Router-To-Network,

DNET =

DNET2

3.
TRANSMIT

DESTINATION =

BROADCAST,

SOURCE =

TD,

I-Am-Router-To-Network,

Network Numbers =

DNET2

4.
MAKE (IUT transmit a ReadProperty request to the D2A device on the remote network)

5.
RECEIVE

DESTINATION =

TD,

SOURCE =

IUT,

DNET =

DNET2,

DADR=

D2A,

Hop Count =

255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =

ReadProperty-Request,

'Object Identifier' =

O1 (any BACnet standard object in D2A),

'Property Identifier' =

P1 (any required property of the specified object)

6.
TRANSMIT

DESTINATION =

IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =

ReadProperty-ACK,

'Object Identifier' =

O1,

'Property Identifier' =

P1,

'Property Value' =

(any valid value)

7.
TRANSMIT

DESTINATION =

IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Confirmed-Request-PDU,

'Service Choice' =

ReadProperty-Request,

'Object Identifier' =

O2 (any BACnet standard object in IUT),

'Property Identifier' =

P2 (any required property of the specified object)

8.
RECEIVE

DESTINATION =

TD,

SOURCE =

IUT,

DNET =

DNET2,

DADR =

D2A,

Hop Count =

255,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =

ReadProperty-ACK,

'Object Identifier' =

O2,

'Property Identifier' =

P2,

'Property Value' =

(any valid value)

10.X.4 Router Binding via Broadcast

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Dependencies: ReadProperty Service Initiation Tests, 8.15, ReadProperty Service Execution Tests, 9.15

BACnet Reference Clause: 6.5.3

Purpose: To verify that the IUT can initiate requests to a remote network and respond to requests from a remote network when the IUT uses an initial broadcast to discover the MAC address of the router to that remote network.

Test Concept: The IUT broadcasts a request to a device on the remote network and notes the MAC address of the intervening router in the reply. The IUT responds to a request from the remote network without performing any further form of dynamic router binding. If the IUT does not support router binding via broadcast or if the IUT cannot initiate a request then this test shall be omitted. If the IUT cannot initiate a ReadProperty request then another service can be substituted.

Test Steps:

1. MAKE (IUT transmit a ReadProperty request to the D2A device on the remote network)

2. RECEIVE

DESTINATION =
BROADCAST,

SOURCE =

IUT,

DNET =

DNET2,

DADR=

D2A,

Hop Count =

255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
O1 (any BACnet standard object in D2A),

'Property Identifier' =
P1 (any required property of the specified object)

3. TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =
ReadProperty-ACK,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(any valid value)

4. TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

SNET =

DNET2,

SADR =

D2A,

Hop Count =

254,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
O2 (any BACnet standard object in IUT),

'Property Identifier' =
P2 (any required property of the specified object)

5. RECEIVE

DESTINATION =
TD,

SOURCE =

IUT,

DNET =

DNET2,

DADR =

D2A,

Hop Count =

255,

BACnet-Complex-Ack-PDU,

‘Service ACK Choice’ =
ReadProperty-ACK,

'Object Identifier' =
O2,

'Property Identifier' =
P2,

'Property Value' =
(any valid value)

10.X.5 Ignore Remote packets

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

BACnet Reference Clause: 6.5.2.1, 6.5.4

Purpose: This test case verifies that the non-router IUT will quietly accept and discard packets destined for remote networks.

Test Concept: The TD transmits both broadcast and directed requests to the IUT with DNET (not equal to x’FFFF’) and DADR in the Network Layer header. The IUT is required to silently drop the requests because it is not a router.

Test Steps:

1.
TRANSMIT

DESTINATION =
BROADCAST,

SOURCE =

TD,

DNET =

DNET3,

DADR=

BROADCAST,

Hop Count =

255,

BACnet-Unconfirmed-Request-PDU,

‘Service Choice’ =
who-Is

2.
WAIT Internal Processing Fail Time

3.
CHECK(that the IUT did not reset and that the IUT did not send any packets)

4.
TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

DNET =

DNET3,

DADR =

D2A,

Hop Count =

255,

BACnet-Confirmed-Request-PDU,

'Service Choice' =
ReadProperty-Request,

'Object Identifier' =
O2 (any BACnet standard object in IUT),

'Property Identifier' =
P2 (any required property of the specified object)

5.
WAIT Internal Processing Fail Time
6.
CHECK(that the IUT did not reset and that the IUT did not send any packets)

10.X.6 Ignore Who-Is-Router-To-Network

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

BACnet Reference Clause: 6.6, 6.6.3.2

Purpose: This test case verifies that the non-router IUT will quietly accept and discard the Who-Is-Router-To-Network service.

Test Concept: The TD transmits both the general query or specific network number query form of the Who-Is-Router-To-Network service. The IUT is required to silently drop the requests because it is not a router.

Test Steps:

1.
TRANSMIT

DESTINATION =
BROADCAST,

SOURCE =

TD,

Who-Is-Router-To-Network,

DNET =

DNET2

2.
WAIT Internal Processing Fail Time

3.
CHECK(that the IUT did not reset and that the IUT did not send any packets)

4.
TRANSMIT

DESTINATION =
BROADCAST,

SOURCE =

TD,

Who-Is-Router-To-Network

5.
WAIT Internal Processing Fail Time

6.
CHECK(that the IUT did not reset and that the IUT did not send any packets)

10.X.7 Ignore Router Commands

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

BACnet Reference Clause: 6.6, 6.6.3.8, 6.6.3.10, 6.6.3.11

Purpose: This test case verifies that the non-router IUT will quietly accept and discard network layer router services.

Test Concept: The TD transmits the Initialize-Routing-Table, Establish-Connection-To-Network, and Disconnect-Connection-To-Network services. The IUT is required to silently drop the requests because it is not a router.

Test Steps:

1.
TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

Initialize-Routing-Table

Number of Ports =
0

2.
WAIT Internal Processing Fail Time
3.
CHECK(that the IUT did not reset and that the IUT did not send any packets)

4.
TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

Establish-Connection-To-Network

DNET =

DNET3

Termination Time Value = 0

5.
WAIT Internal Processing Fail Time
6.
CHECK(that the IUT did not reset and that the IUT did not send any packets)

7.
TRANSMIT

DESTINATION =
IUT,

SOURCE =

TD,

Disconnect-Connection-To-Network

DNET =

DNET3

8.
WAIT Internal Processing Fail Time

9. CHECK(that the IUT did not reset and that the IUT did not send any packets)

12 DATA LINK LAYER PROTOCOLS TESTS

12.1 MS/TP State Machine Tests

12.1.1 MS/TP Master Tests

12.1.1.9 Token Usage Tests

12.1.1.9.x1 Max Info Frame Check
Dependencies: None

BACnet Reference Clauses: 9.5.3 and 9.5.6.5

Purpose: This check verifies that the MS/TP Master Node State Machine does not issue more than Nmax_info_frames information frames between the time the IUT receives a Token and either the time it passes the Token or initiates a Poll For Master. Unlike tests, checks are not constructed of test steps, but rather conditions that must hold true through the complete testing process. As such, checks are periodically verified during or after the execution of tests.
Configuration Recommendations: If the Max_Info_Frames property of the Device object is configurable, it is recommended that this property be set to its minimum setting for the performance of at least some tests involving the MS/TP port being tested.

Check conditions: Monitor the MS/TP LAN during operations where the IUT would be expected to issue a number of information frames; if the IUT emits more information frames than:

a)
the configured value for Max_Info_Frames in the interval between receiving and passing the Token (with multiple masters on the LAN), or

b)
the configured value for Max_Info_Frames in the interval between receiving the Token and issuing PFM (with multiple masters on the LAN), or

c)
the configured value for Max_Info_Frames in the interval between any two consecutive Poll For Master frames except the interval between the issuance of a Poll For Master to (TS-1) modulo Max_Master and a Poll For Master to (TS+1) modulo Max_Master, (with the IUT as the only master on the LAN), or

d)
52 times the configured value for Max_Info_Frames in the interval between a Poll For Master frame issued to (TS-1) modulo Max_Master, and the subsequent Poll For Master frame to (TS+1) modulo Max_Master (with the IUT as the only master on the LAN),

then the IUT shall fail this check.

Note: The value 52 is used in d) because an error in the MS/TP state machine defined in Standard 135-1995 caused the Token to be passed 52 times between Poll For Master cyles, instead of 50 times.
13 Special Functionality Tests

13.3 Malformed PDUs

13.4.3 Invalid Tag

Reason For Change: The 135.1 test does not account for all of the reject reasons that might reasonably be returned. This test is included in 135.1a.

Purpose: This test case verifies that the IUT correctly responds to a message containing an invalid data tag.

Test Concept: The TD transmits a ReadProperty service request that has an invalid tag for the 'Property_Identifier' parameter.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object_Identifier' =
(any object in the IUT's database),

'Property_Identifier' =
(any valid property for the object, but the tag

 shall have a number x: 2 < x < 254)

2.
RECEIVE

 (BACnet-Reject-PDU,

Reject Reason =
INVALID_TAG) |

(BACnet-Reject-PDU,

Reject Reason =
INCONSISTENT_PARAMETERS) |

(BACnet-Reject-PDU,

Reject Reason =
INVALID_PARAMETER_DATA_TYPE) |

(BACnet-Reject-PDU,

Reject Reason =
MISSING_REQUIRED_PARAMETER) |

(BACnet-Reject-PDU,

Reject Reason =
TOO_MANY_ARGUMENTS)

13.4.4 Missing Required Parameter

Reason For Change: The 135.1 test does not account for all of the reject reasons that might reasonably be returned. This test is included in 135.1a.

Purpose: This test case verifies that the IUT correctly responds to a message that is missing a required parameter.

Test Concept: The TD transmits a ReadProperty service request that does not include a 'Property Identifier' parameter.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object_Identifier' =
(any object in the IUT's database),

2.
RECEIVE
(BACnet-Reject-PDU,

Reject Reason =
MISSING_REQUIRED_PARAMETER) |

(BACnet-Reject-PDU,

Reject Reason =
INVALID_TAG)

13.4.5 Too Many Arguments

Reason For Change: The 135.1 test does not account for all of the reject reasons that might reasonably be returned. This test is included in 135.1a.

Purpose: This test case verifies that the IUT correctly responds to a message that conveys too many arguments.

Test Concept: The TD transmits a ReadProperty service request that conveys an extra property identifier.

Test Steps:

1.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(any supported object),

'Property Identifier =
(any valid property identifier for the specified object),

'Property Identifier' =
(any valid property identifier for the specified object but not used in the previous parameter)

2.
RECEIVE
(BACnet-Reject-PDU,

Reject Reason =
TOO_MANY_ARGUMENTS) |

(BACnet-Reject-PDU,

Reject Reason =
INVALID_TAG)
13.X1 Backup and Restore Procedure Tests

13.X1.1 Execution of Full Backup and Restore Procedure

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute a full Backup and Restore procedure.

Test Concept: This test takes the IUT through a full Backup and Restore procedure. The Database_Revision and Last_Restore_Time properties are noted before the procedure begins for later comparison. The IUT is then commanded to enter the Backup state; all the files are read, and the IUT is commanded to end the backup. The Database_Revision is checked to insure that it incremented correctly, then the IUT is commanded to enter the Restore state. If the file objects do not exist on the IUT, the IUT is commanded to create them. The files are then truncated to size 0. The file contents are then written to the IUT, and the IUT is commanded to end the restore. The Database_Revision and Last_Restore_Time properties are checked to insure that they incremented or advanced correctly.

For IUTs that use Stream Access when performing the AtomicReadFile and AtomicWriteFile services, a Maximum Requested Octet Count and a Maximum Write Data Length must be calculated before starting the test. These values will be used during the test. The Maximum Requested Octet Count shall be sixteen (16) less than the minimum of the TD’s Max_APDU_Length_Accepted and the IUT’s maximum transmittable APDU length. The Maximum Write Data Length shall be twenty one (21) less than the minimum of the TD’s maximum transmittable APDU length and the IUT’s Max_APDU_Length_Accepted.

Configuration Requirements: At the start of the test, the device configuration must match the epics.

Test Steps:

1. TRANSMIT ReadProperty-Request,

‘Object Identifier’ = (The IUT’s Device object)

‘Property Identifier’ = Database_Revision

2. RECEIVE ReadProperty-ACK

‘Object Identifier’ = (The IUT’s Device object)

‘Property Identifier’ = Database_Revision

‘Property Value’ = (any value)

3. TRANSMIT ReadProperty-Request,

‘Object Identifier’ = (The IUT’s Device object)

‘Property Identifier’ = Last_Restore_Time

4. RECEIVE ReadProperty-ACK

‘Object Identifier’ = (The IUT’s Device object)

‘Property Identifier’ = Last_Restore_Time

‘Property Value’ = (any value)

5. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
STARTBACKUP,

‘Password’ = (any valid password)

6. RECEIVE BACnet-Simple-ACK-PDU

7. VERIFY (the IUT’s Device object), Configuration_Files = (any non-empty array of

 BACnetObjectIdentifiers)

8. REPEAT X = (BACnetObjectIdentifiers obtained from step 7) DO {

TRANSMIT ReadProperty-Request,

‘Object Identifier’ = X,

‘Property Identifier’ = File_Access_Method,

RECEIVE ReadProperty-ACK

‘Object Identifier’ = X,

‘Property Identifier’ = File_Access_Method,

‘Property Value’ = Y, where Y = RECORD_ACCESS or Y = STREAM_ACCESS

IF (Y = RECORD_ACCESS)

TRANSMIT ReadProperty-Request,

‘Object Identifier’ = X,

‘Property Identifier’ = Record_Count

RECEIVE ReadProperty-ACK

‘Object Identifier’ = X,

‘Property Identifier’ = Record_Count

‘Property Value’ = R (any number)

REPEAT Z = (each record in the file) DO {

TRANSMIT AtomicReadFile-Request,

‘Object Identifier’ = X,

‘File Start Record’ = Z,

‘Requested Record Count’ = 1

RECEIVE AtomicReadFile-ACK,

‘Object Identifier’ = X,

‘File Start Record’ = Z,

‘Requested Record Count’ = 1

‘Returned Data’ = (File contents)

}

ELSE

TRANSMIT ReadProperty-Request,

‘Object Identifier’ = X,

‘Property Identifier’ = File_Size,

RECEIVE ReadProperty-ACK

‘Object Identifier’ = X,

‘Property Identifier’ = File_Size,

‘Property Value’ = S (any number)

WHILE (There is more file to be read as determined by the value of File_Size

 returned in step 8) DO {

TRANSMIT AtomicReadFile-Request,

‘Object Identifier’ = X,

‘File Start Position’ = (The next unread octet),

‘Requested Octet Count’ = (The Maximum Requested Octet Count as

determined prior to start of test)

RECEIVE AtomicReadFile -ACK,

‘Object Identifier’ = X,

‘File Start Position’ = (The next unread octet),

‘Requested Octet Count’ = (The Maximum Requested Octet Count as

determined prior to start of test)

‘File Data’ = (File contents)

}

}

9. TRANSMIT ReinitializeDevice-Request,

‘Reinitialize State Of Device’ = ENDBACKUP,

‘Password’ = (any valid password)

10. RECEIVE BACnet-Simple-ACK-PDU

11. VERIFY (the IUT’s Device object), System_Status != BACKUP_IN_PROGRESS

12. MAKE (the configuration in the IUT different, such that the Database_Revision property

increments)

13. VERIFY (the IUT’s Device object), Database_Revision = (any value not equal to the value

obtained in step 2)

14. TRANSMIT ReinitializeDevice-Request,

‘Reinitialize State Of Device’ = STARTRESTORE,

‘Password’ = (any valid password)

15. RECEIVE BACnet-Simple-ACK-PDU

16. TRANSMIT ReadProperty-Request,

‘Object Identifier’ = (The IUT’s Device object)

‘Property Identifier’ = Object_List

17. RECEIVE ReadProperty-ACK

18. REPEAT X = (BACnetObjectIdentifiers obtained from step 7) DO {

IF (Object_List obtained in step 10 does not contain X)

TRANSMIT CreateObject-Request

‘Object Identifier’ = X

RECEIVE CreateObject-ACK

‘Object Identifier’ = X

TRANSMIT ReadProperty-Request

‘Object Identifier’ = X

‘Property Identifier’ = File_Size

RECEIVE ReadProperty-ACK

‘Object Identifier = X

‘Property Identifier’ = File_Size

‘Property Value’ = (any value)

IF (File_Size is not equal to the size of the backed up file)

TRANSMIT WriteProperty-Request

‘Object Identifier’ = X

‘Property Identifier’ = File_Size

‘Property Value’ = 0

RECEIVE BACnet-Simple-ACK-PDU

IF (Y = RECORD_ACCESS)

TRANSMIT AtomicWriteFile-Request

‘File Identifier’ = X

‘File Start Record’ = 0

‘Record Data’ = (file content for first record obtained in step 6)

RECEIVE AtomicWriteFile-ACK

‘File Start Record’ = 0

FOR Z = (number of records obtained in step 6 - 1) {

TRANSMIT AtomicWriteFile-Request

‘File Identifier’ = X

‘File Start Record’ = -1

‘Record Count’ = 1

‘Record Data’ = (file contents for this record obtained in step 6)

RECEIVE AtomicWriteFile-ACK

‘File Start Record’ = -1

}

ELSE

WHILE (There is still octets to be written for this file) DO {

TRANSMIT AtomicWriteFile-Request

‘File Identifier’ = X

‘File Start Position’ = (The next unwritten octet, starting at 0)

‘Record Data’ = (file contents obtained in step 6, the number of octets

being equal to the minimum of the number of octets

left to write, and the Maximum Write Data Length

determined prior to the start of the test)

RECEIVE AtomicWriteFile-ACK

‘File Start Position’ = (The next unwritten octet, starting at 0)

}

19. TRANSMIT ReinitializeDevice-Request,

‘Reinitialize State Of Device’ = ENDRESTORE,

‘Password’ = (any valid password)

20. RECEIVE BACnet-Simple-ACK-PDU

21. VERIFY (the IUT’s Device object), Database_Revision = (any value not equal to the values

obtained in steps 2 and 13)

22. VERIFY (the IUT’s Device object), Last_Restore_Time = (any value later than value obtained in

 step 4)

23. VERIFY (the IUT’s Device object), Object_List = (the value defined for this property in the

EPICS)

24. REPEAT X = (all objects in the IUT’s database) DO {

VERIFY (X), Object_Name = (the value defined for this property in the EPICS)

}

13.X1.2: Initiating a Backup Procedure While Already Performing a Backup Procedure

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT correctly rejects a command to start a Backup Procedure while already performing a Backup Procedure

Test Concept: The IUT is commanded to start a Backup Procedure from one client, and then is commanded to start a Backup Procedure from a different client.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

 'Reinitialized State of Device' = STARTBACKUP,

 'Property Identifier' = (any valid password)

2. RECEIVE Simple-ACK-PDU

3. TRANSMIT

SNET = (any remote network number),

SADR = (any MAC address valid for the specified network),

ReinitializeDevice-Request,

'Reinitialized State of Device' = STARTBACKUP,

'Property Identifier' = (any valid password),

4. RECEIVE BACnet-Error PDU,

DNET = (DNET from step 3)

DADR = (SADR from step 3)

Error Class = DEVICE,

Error Code = CONFIGURATION_IN_PROGRESS

13.X1.3: Initiating a Backup Procedure While Already Performing a Restore Procedure

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT correctly rejects a command to start a Backup Procedure while already performing a Restore Procedure

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' = STARTRESTORE,

'Property Identifier' = (any valid password)

2. RECEIVE Simple-ACK-PDU

3. TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' = STARTBACKUP,

'Property Identifier' = (any valid password),

4. RECEIVE BACnet-Error PDU,

Error Class = DEVICE,

Error Code = CONFIGURATION_IN_PROGRESS

13.X1.4: Initiating a Restore Procedure While Already Performing a Backup Procedure

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT correctly rejects a command to start a Restore Procedure while already performing a Backup Procedure

Test Concept: The IUT is commanded to start a Restore Procedure from one client, and then is commanded to start a Restore Procedure from a different client.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' = STARTBACKUP,

'Property Identifier' = (any valid password)

2. RECEIVE Simple-ACK-PDU

3. TRANSMIT

SNET = (any remote network number),

SADR = (any MAC address valid for the specified network),

ReinitializeDevice-Request,

'Reinitialized State of Device' = STARTRESTORE,

'Property Identifier' = (any valid password),

4. RECEIVE BACnet-Error PDU,

DNET = (DNET from step 3)

DADR = (SADR from step 3)

Error Class = DEVICE,

Error Code = CONFIGURATION_IN_PROGRESS

13.X1.5: Initiating a Restore Procedure While Already Performing a Restore Procedure

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT correctly rejects a command to start a Restore Procedure while already performing a Restore Procedure

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' = STARTRESTORE,

'Property Identifier' = (any valid password)

2. RECEIVE Simple-ACK-PDU

3. TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' = STARTRESTORE,

'Property Identifier' = (any valid password),

4. RECEIVE BACnet-Error PDU,

Error Class = DEVICE,

Error Code = CONFIGURATION_IN_PROGRESS

13.X1.6: Ending Backup and Restore Procedures via Timeout

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT will and a Backup Procedure and a Restore Procedure after not receiving any messages related to the Backup or Restore Procedure for longer than Backup_Failure_Timeout, and that the Backup_Failure_Timeout property is writeable.

Test Steps:

1. TRANSMIT WriteProperty-Request

‘Object Identifier’ = (the IUT’s Device object)

‘Property Identifier’ = Backup_Failure_Timeout

‘Property Value’ = 30

2. VERIFY (the IUT’s Device object), Backup_Failure_Timeout = 30

3. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
STARTBACKUP,

‘Password’ = (any valid password)

4. RECEIVE BACnet-Simple ACK-PDU

5. WAIT (40 seconds)

6. VERIFY (the IUT’s Device object) System_Status != BACKUP_IN_PROGRESS

7. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
STARTRESTORE,

‘Password’ = (any valid password)

8. RECEIVE BACnet-Simple ACK-PDU

9. WAIT (40 seconds)

10. VERIFY (the IUT’s Device object) System_Status != DOWNLOAD_IN_PROGRESS

13.X1.7: Ending Backup and Restore Procedures via Abort

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT will leave the BACKUP_IN_PROGRESS and DOWNLOAD_IN_PROGRESS states upon a command to abort.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
STARTBACKUP,

‘Password’ = (any valid password)

2. RECEIVE BACnet-Simple ACK-PDU

3. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
ENDBACKUP,

‘Password’ = (any valid password)

4. RECEIVE BACnet-Simple ACK-PDU

5. VERIFY (the IUT’s Device object) System_Status != BACKUP_IN_PROGRESS

6. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
STARTRESTORE,

‘Password’ = (any valid password)

7. RECEIVE BACnet-Simple ACK-PDU

8. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
ABORTRESTORE,

‘Password’ = (any valid password)

9. RECEIVE BACnet-Simple ACK-PDU

10. VERIFY (the IUT’s Device object) System_Status != DOWNLOAD_IN_PROGRESS

13.X1.8: Initiating a Backup Procedure with an Invalid Password

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: To verify the correct execution of the Backup procedure when an invalid password is provided. If the IUT can not be made to deny a ReinitializeDevice <STARTBACKUP > service request that does not contain a valid password, this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ = STARTBACKUP,

‘Password’ = (any invalid password)

2. RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,

Error Code = PASSWORD_FAILURE

13.X1.9: Initiating a Restore Procedure with an Invalid Password

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: To verify the correct execution of the Restore procedure when an invalid password is provided. . If the IUT can not be made to deny a ReinitializeDevice <STARTRESTORE > service request that does not contain a valid password, this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ = STARTRESTORE,

‘Password’ = (any invalid password)

2. RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,

Error Code = PASSWORD_FAILURE

13.X1.10: Initiating and ending a Backup Procedure when a password is not required

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT ignores the password. If the IUT can not be made to accept a ReinitializeDevice service request that contains any or no password, this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
STARTBACKUP,

‘Password’ = (any non-zero length password)

2. RECEIVE BACnet-Simple ACK-PDU

3. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
ENDBACKUP,

‘Password’ = (any non-zero length password)

4. RECEIVE BACnet-Simple ACK-PDU

5. VERIFY (the IUT’s Device object), System_Status != BACKUP_IN_PROGRESS

13.X1.11: Initiating and ending a Restore Procedure when a password is not required

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT ignores the password. If the IUT can not be made to accept a ReinitializeDevice service request that contains any or no password, this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
STARTRESTORE,

‘Password’ = (any non-zero length password)

2. RECEIVE BACnet-Simple ACK-PDU

3. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ =
ENDRESTORE,

‘Password’ = (any non-zero length password)

4. RECEIVE BACnet-Simple ACK-PDU

5. VERIFY (the IUT’s Device object), System_Status != DOWNLOAD_IN_PROGRESS

13.X1.12: System_Status during a Backup Procedure

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT correctly sets its System_Status during a Backup procedure. If the IUT does not change its operational behavior during a Backup Procedure, this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ = STARTBACKUP,

‘Password’ = (any valid password)

2. RECEIVE BACnet-Simple ACK-PDU

3. VERIFY (the IUT’s Device object), System_Status = BACKUP_IN_PROGRESS

13.X1.13: System_Status during a Restore Procedure

Reason for Change: No relevant test exists in 135.1. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT correctly sets its System_Status during a Restore procedure. If the IUT does not change its operational behavior during a Restore Procedure, this test shall be omitted.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

‘Reinitialized State of Device’ = STARTRESTORE,

‘Password’ = (any valid password)

2. RECEIVE BACnet-Simple ACK-PDU

3. VERIFY (the IUT’s Device object), System_Status = DOWNLOAD_IN_PROGRESS

13.X2 Application State Machine Tests

13.X2.1 APDU Retry and Timeout Test

Reason for Change: No relevant test exists in 135.1. This test is in proposal BDS-047.

Dependencies: None

Purpose: Verify that the IUT will re-send confirmed requests for which no response is received.

Test Concept: Make the IUT initiate a confirmed request to a non-responsive device and verify the request is retried after the APDU timeout.

Configuration Requirements: A reference device, D1, must be bound to the IUT. Once the reference device is bound to the IUT, the reference device must be silenced by removing it from the network or by issuing it a DeviceCommunicationControl. The IUT shall be configured with a non-zero value in its Number_Of_APDU_Retries property and a non-zero value in its APDU_Timeout property.
Test Steps: Steps 1-3 require that D1 does not answer the confirmed request.

1. MAKE (A condition that will cause the IUT to generate a confirmed request)

2. RECEIVE Confirmed Request,

SOURCE =

IUT,

DESTINATION =

D1

3. REPEAT (Number_Of_APDU_Retries)

WAIT (APDU_Timeout)

RECEIVE Confirmed Request

SOURCE =

IUT,

DESTINATION =
D1,

Invoke ID =

Invoke ID from the confirmed request in step 2,

CHECK (Verify time between retries is > APDU_Timeout)
Notes to Tester: Note that when testing over BACnet/IP, it is possible that the IUT's ARP cache is flushed between the time that the IUT binds to D1 and the time at which the test is executed. In this case the IUT may generate fewer confirmed requests than expected. To ensure that this does not occur, either silence the reference device using DeviceCommunicationControl or place the reference device on a remote network.
14 BACnet/IP Functionality Tests

14. 1 Non-BBMD B/IP Device

14.1.7 Forwarded-NPDU

Reason for Change: The original test specified a unicast message in step 1, which is incorrect for a Forwarded-NPDU on an IP subnet. Also, step 3 now specifies clearly what the IUT is not to do. This test is not contained in any SSPC proposal.

Purpose: To verify that an IUT, not configured as a BBMD, will process a Forwarded-NPDU message.

1. TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = TD,

Forwarded-NPDU,

Originating-Device = TD,

NPDU = Who-Is

2. RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

14.1.8 Original-Broadcast-NPDU

Reason for Change: The original test specified a unicast message in step 1, which is incorrect for a Original-Broadcast-NPDU on an IP subnet. Also, step 3 now specifies clearly what the IUT is not to do. This test is not contained in any SSPC proposal.

Purpose: To verify that an IUT, not configured as a BBMD, will process an Original-Broadcast-NPDU message.

Test Steps:

1. TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = TD,

Original-Broadcast-NPDU,

NPDU = Who-Is

2. RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

14.1.9 Original-Unicast-NPDU

Reason for Change: The original test specified the source as D1 in step 1. D1 is not defined. This test is not contained in any SSPC proposal.

Purpose: To verify that an IUT, not configured as a BBMD, will process an Original-Unicast-NPDU message.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = TD,

Original-Unicast-NPDU,

NPDU = BACnet ReadProperty-Request

2. RECEIVE DESTINATION = TD, SOURCE = IUT,

Original-Unicast-NPDU,

NPDU = ReadProperty-ACK

14.2 BBMD B/IP Device with a Server Application

Reason for Change: Originally these tests were for non-BBMD Devices. It was recognized that a test for a BBMD device with a server application was also needed, so these tests were expanded to include both non-BBMD devices and BBMD devices. Because the non-BBMD tests in this section duplicate the tests 14.1.7, 14.1.8, and 14.1.9, they were removed from this section. This resulted in these tests being exclusively for BBMD devices. BBMD tests were modified to reference diagram 14-1. This was done to enable the tester to choose IP address and subnet mask settings as appropriate and to clarify the role of the TD in each test. These tests are not contained in any SSPC proposal.
This group of tests verifies that a BBMD B/IP device with a server application will correctly process NPDU's conveyed in the NPDU portion of Forwarded-NPDU, Original-Broadcast-NPDU and Original-Unicast-NPDU messages.

Configuration Requirements: A server application shall be running in the IUT. For one-hop distribution tests the Internet Routers in Figure 14-1 must be configured to forward directed broadcasts.

Notes to Tester: Figure 14-1 shows the logical network configuration for tests 14.2 – 14.7. The complete network is not required for the tests, so long as the IUT can receive packets formed as though they arrived from the specified device. The role of the TD when executing the TRANSMIT statement in each test is specified. The TD must also monitor the IUT’s subnet throughout all tests and RECEIVE shall mean from the IUT’s subnet. To accomplish this the TD may be multi-homed or another TD can be used to monitor the IUT’s subnet.

The term Local IP Broadcast means that the host portion of the destination IP addresses is all 1’s and the MAC layer destination address is also a broadcast. The term Directed IP Broadcast means that the host portion of the destination IP address is all 1’s and the MAC layer destination address is equal to the routers MAC address. The host portion of the IP address is those bits that are 0 in the subnet mask. The tester shall choose appropriate IP addresses and subnet masks for each of the devices.

[image: image8.wmf]IUT

BBMD1

I

P

S

u

b

n

e

t

3

BBMD2

BBMD3

FD1

Internet

FD2

D1

I

P

S

u

b

n

e

t

4

I

P

S

u

b

n

e

t

5

I

P

S

u

b

n

e

t

6

I

P

S

u

b

n

e

t

2

I

P

S

u

b

n

e

t

1

BACnet Device

Internet Router

BBMD

Foreign Device

D2

Figure 14-1. Logical network configuration for BBMD tests.

14.2.1 Execute Forwarded-NPDU

Reason For Change: See 14.2. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT will pass a Forwarded-NPDU message to its Application Entity.

Configuration Requirements: The TD shall take the role of BBMD1. DNET/DADR and SNET/SADR fields in the Network Layer header shall not be present in step 1.

This test is broken into separate tests for one-hop distribution and two-hop distribution.

14.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)

Reason For Change: See 14.2. This test is not contained in any SSPC proposal.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	IP Subnet 1 subnet mask

	BBMD1
	IP Subnet 2 subnet mask

Test Steps:

1. TRANSMIT DESTINATION = Directed IP Broadcast to IP Subnet 1, SOURCE = BBMD1,

Forwarded-NPDU,

Originating-Device = BBMD1,

NPDU = Who-Is

2. RECEIVE DESTINATION = Local IP Broadcast on IP Subnet 1, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

3. RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

4. CHECK (The IUT does not forward or resend the Who-Is packet out the port on which it was received)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)

Reason For Change: See 14.2. This test is not contained in any SSPC proposal.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	255.255.255.255

	BBMD1
	255.255.255.255

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = BBMD1,

Forwarded-NPDU,

Originating-Device = BBMD1,

NPDU = Who-Is

2. RECEIVE DESTINATION = Local IP Broadcast on IP Subnet 1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = BBMD1,

NPDU = Who-Is

3. RECEIVE DESTINATION = Local IP Broadcast on IP Subnet 1, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

4. RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.2.2 Execute Original-Broadcast-NPDU

Reason For Change: See 14.2. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT will pass an Original-Broadcast-NPDU message to its Application Entity.

Configuration Requirements: The TD shall take the role of device D1. DNET/DADR and SNET/SADR fields in the Network Layer header shall not be present in step 1.

This test is broken into separate tests for one-hop distribution and two-hop distribution.

14.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)

Reason For Change: See 14.2. This test is not contained in any SSPC proposal.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	IP Subnet 1 subnet mask

	BBMD1
	IP Subnet 2 subnet mask

Test Steps:

1. TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = D1,

Original-Broadcast-NPDU,

NPDU = Who-Is

2. RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

3. RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

4. RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)

Reason For Change: See 14.2. This test is not contained in any SSPC proposal.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	255.255.255.255

	BBMD1
	255.255.255.255

 Test Steps:

1. TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = D1,

Original-Broadcast-NPDU,

NPDU = Who-Is

2. RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

3. RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

4. RECEIVE DESTINATION=BBMD1, SOURCE=IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.2.3 Execute Original-Unicast-NPDU

Reason For Change: See 14.2. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT will pass an Original-Unicast-NPDU message to its Application Entity.

Configuration Requirements: The TD shall take the role of device D1. DNET/DADR and SNET/SADR fields in the Network Layer header shall not be present in step 1. The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	255.255.255.255

	BBMD1
	255.255.255.255

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = D1,

Original-Unicast-NPDU,

NPDU = Read-Property

2. RECEIVE DESTINATION = D1, SOURCE = IUT,

Original-Unicast-NPDU,

NPDU = Read-Property-Ack

3. CHECK (The IUT does not forward to BBMD1 either packet from step 1 or step 2)

14.3 Broadcast Distribution Table Operations

Reason for Change: The original tests were designed for one-hop distribution. As the BTL made one-hop distribution optional, these tests were modified for two-hop distribution. The tests were modified to reference figure 14-1 to be consistent with all the BBMD tests. These tests are not contained in any SSPC proposal.

This group of tests verifies that a BACnet Broadcast Management Device will correctly perform BDT operations.

Configuration Requirements: The TD shall take the role of device D1. The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	255.255.255.255

	BBMD1
	255.255.255.255

The IUT shall be made to go through its start-up procedure.

14.3.1 Execute Write-Broadcast-Distribution-Table (Table Growth)

Reason For Change: See 14.3. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT, configured as a BBMD, will execute Write-Broadcast-Distribution-Table request when new table is greater than the current one.

Configuration Requirements: The IUT is configured as required in 14.3.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = D1,

Write-Broadcast-Distribution-Table,

(List of BDT Entries consisting of

	PRIVATE
BBMD1
	255.255.255.255

	BBMD2
	255.255.255.255

	BBMD3
	255.255.255.255

	IUT
	255.255.255.255

)

2. RECEIVE DESTINATION = D1, SOURCE = IUT,

BVLC-Result message,

'Result Code' = Successful completion

3. TRANSMIT DESTINATION = IUT, SOURCE = TD,

Read-Broadcast-Distribution-Table

4. RECEIVE DESTINATION = TD, SOURCE = IUT,

Read-Broadcast-Distribution-Table-Ack,

List of BDT Entries

5. CHECK (List of BDT Entries consisting of four entries (order unspecified)

	PRIVATE
BBMD1
	255.255.255.255

	BBMD2
	255.255.255.255

	BBMD3
	255.255.255.255

	IUT
	255.255.255.255

)

14.3.2 Execute Write-Broadcast-Distribution-Table (Table Shrinkage)

Reason For Change: See 14.3. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT, configured as a BBMD, will execute Write-Broadcast-Distribution-Table request when new table is smaller than the current table. Also, this test verifies that IUT will correctly identify itself in the table being written.

Configuration Requirements: The IUT’s BDT has a minimum of four entries.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = D1,

Write-Broadcast-Distribution-Table,

(List of BDT entries consisting of three entries

	PRIVATE
BBMD2
	255.255.255.255

	BBMD3
	255.255.255.255

	IUT
	255.255.255.255

)

2. RECEIVE DESTINATION = D1, SOURCE = IUT,

BVLC-Result,

'Result Code' = Successful completion

3. TRANSMIT DESTINATION = IUT, SOURCE = D1,

Read-Broadcast-Distribution-Table

4. RECEIVE DESTINATION = TD, SOURCE = IUT,

Read-Broadcast-Distribution-Table-Ack,

List of BDT entries

5. CHECK (List of BDT entries consisting of three entries (order unspecified)

	BBMD2PRIVATE

	255.255.255.255

	BBMD3
	255.255.255.255

	IUT
	255.255.255.255

)

14.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous Session

Reason For Change: See 14.3. This test is not contained in any SSPC proposal.

Purpose: To verify that a BBMD will update the BDT in the local configuration database and initialize it at startup.

Configuration Requirements: The IUT’s BDT does not consist of the same entries as are written in step 1.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = D1,

Write-Broadcast-Distribution-Table,

(List of BDT entries consisting of three entries

	PRIVATE
IUT
	255.255.255.255

	BBMD1
	255.255.255.255

	BBMD2
	255.255.255.255

)

2. RECEIVE DESTINATION = D1, SOURCE = IUT,

BVLC-Result,

'Result Code' = Successful completion

3. WAIT (Vendor specified period for BDT to be saved in non-volatile memory)

4. MAKE (the IUT reset)

5. TRANSMIT DESTINATION = IUT, SOURCE = D1,

Read-Broadcast-Distribution-Table

6. RECEIVE DESTINATION = D1, SOURCE = IUT,

Read-Broadcast-Distribution-Table-Ack,

List of BDT Entries

7. CHECK (List of BDT Entries consisting of three entries (order unspecified)

	PRIVATE
IUT
	255.255.255.255

	BBMD1
	255.255.255.255

	BBMD2
	255.255.255.255

)

14.5 BACnet Broadcast Management

14.5.2 Original-Broadcast-NPDU Message Which Shall Be Forwarded

Reason for Change: The original tests were designed for one-hop distribution. A two-hop distribution version of the test was added. The test was modified to include a BDT with 4 entries, rather than 3, as this is the minimum the BTL requires. The tests were modified to reference figure 14-1 to be consistent with all the BBMD tests. These tests are not contained in any SSPC proposal.

Purpose: To verify that the IUT, configured as a BBMD without an FDT or with an empty FDT, will handle an Original-Broadcast-NPDU message.

Configuration Requirements: The TD shall take the role of device D1 on the IUT’s subnet. DNET/DADR and SNET/SADR fields in the Network Layer header shall not be present in step 1.

This test is broken into separate tests for one-hop distribution and two-hop distribution.

14.5.2.1 Original-Broadcast-NPDU Message Which Shall Be Forwarded (One-hop Distribution)

Reason For Change: See 14.5. This test is not contained in any SSPC proposal.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	IP Subnet 1 subnet mask

	BBMD1
	IP Subnet 2 subnet mask

	BBMD2
	IP Subnet 3 subnet mask

	BBMD3
	IP Subnet 4 subnet mask

Test Steps:

1. TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = D1,

Original-Broadcast-NPDU,

NPDU = Who-Is

2. RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

3. RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 3, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

4. RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 4, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.5.2.2 Original-Broadcast-NPDU Message Which Shall Be Forwarded (Two-hop Distribution)

Reason For Change: See 14.5. This test is not contained in any SSPC proposal.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	255.255.255.255

	BBMD1
	255.255.255.255

	BBMD2
	255.255.255.255

	BBMD3
	255.255.255.255

Test Steps:

1. TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = D1,

Original-Broadcast-NPDU,

NPDU = Who-Is

2. RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

3. RECEIVE DESTINATION = BBMD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

4. RECEIVE DESTINATION = BBMD3, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.6 Foreign Device Management

14.6.3 Foreign Device Table Timer Operations

Reason for Change: References to Foreign Device registration for an indefinite time period were eliminated from the test. The test was modified to reference figure 14-1 to be consistent with all the BBMD tests. (The standard is unclear on whether the 30 second grace period is reflected in the Remaining-Time parameter of the Read-Foreign-Device-Table-Ack message, so the time periods in the test reflect both possibilities: that it is and that it isn’t. The time periods also assume a granularity of the timer’s resolution no greater than 10 seconds.) This test is contained in JB-010 but this is a newer version than in the proposal.

Purpose: To verify that the IUT will handle FDT timer operations: finite time Foreign Device registration, re-registration while registered, and FDT entry clearing upon timer expiration. (The standard is unclear on whether the 30 second grace period is reflected in the Remaining-Time parameter of the Read-Foreign-Device-Table-Ack message, so the time periods in the test reflect both possibilities: that it is and that it isn’t. The time periods also assume a granularity of the timer’s resolution no greater than 10 seconds.)

Configuration Requirements: The TD shall take the role of foreign device FD2. The IUT’s FDT must be empty.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = FD2,

Register-Foreign-Device,

'Time-To-Live' = 60

2. RECEIVE DESTINATION = FD2, SOURCE = IUT,

BVLC-Result,

'Result Code' = Successful completion

3. WAIT(15 seconds)

4. TRANSMIT DESTINATION = IUT, SOURCE = FD2,

Read-Foreign-Device-Table

5. RECEIVE, DESTINATION = FD2, SOURCE = IUT,

Read-Foreign-Device-Table-Ack,

	PRIVATE
B/IP address of FD2,
	Time-To-Live = 60,
	Remaining-Time in the range 35 to 55, or 65 to 85..

6. TRANSMIT DESTINATION = IUT, SOURCE = FD2,

Register-Foreign-Device,

Time-To-Live' = 40

7. RECEIVE DESTINATION = FD2, SOURCE = IUT,

BVLC-Result,

'Result Code' = Successful completion

8. WAIT(15 seconds)

9. TRANSMIT DESTINATION = IUT, SOURCE = FD2,

Read-Foreign-Device-Table

10. RECEIVE, DESTINATION = FD2, SOURCE = IUT,

Read-Foreign-Device-Table-Ack,

	PRIVATE
B/IP address of FD2,
	Time-To-Live = 40,
	Remaining-Time in the range 15 to 35, or in the range 45 to 65.

11. WAIT(70 seconds)

12. TRANSMIT DESTINATION = IUT, SOURCE = FD2,

Read-Foreign-Device-Table

13. RECEIVE, DESTINATION = FD2, SOURCE = IUT,

Read-Foreign-Device-Table-Ack,

No FDT entries

14.6.5 Delete-Foreign-Device-Table-Entry Which Should Be Rejected

Reason for Change: The test was modified to reference figure 14-1 to be consistent with all the BBMD tests. This test is contained in JB-010 but this is a newer version than in the proposal.

Purpose: To verify that the IUT will handle a Delete-Foreign-Device-Table-Entry message when an invalid FDT entry is supplied.

 Configuration Requirements: The TD shall take the role of foreign device FD1. The IUT’s FDT must be empty.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Register-Foreign-Device,

'Time-To-Live' = 120

2. RECEIVE DESTINATION = FD1, SOURCE = IUT,

BVLC-Result,

'Result Code' = Successful completion

3. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Read-Foreign-Device-Table

4. RECEIVE, DESTINATION = FD1, SOURCE = IUT,

Read-Foreign-Device-Table-Ack,

	PRIVATE
B/IP address of FD1,
	Time-To-Live = 120,
	Remaining-Time = ?

5. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Delete-Foreign-Device-Table-Entry,

'FDT Entry' = FD2

6. RECEIVE, DESTINATION = FD1, SOURCE = IUT,

BVLC-Result,

'Result Code' = Delete-Foreign-Device NAK

7. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Read-Foreign-Device-Table

8. RECEIVE, DESTINATION = FD1, SOURCE = IUT,

Read-Foreign-Device-Table-Ack,

	PRIVATE
B/IP address of FD1,
	Time-To-Live = 120,
	Remaining-Time = ?

14.6.6 Execute Delete-Foreign-Device-Table-Entry

Reason for Change: The test was modified to reference figure 14-1 to be consistent with all the BBMD tests. This test is contained in JB-010 but this is a newer version than in the proposal.

Purpose: To verify that the IUT will handle a Delete-Foreign-Device-Table-Entry message when a valid FDT entry is supplied.

Configuration Requirements: The TD shall take the role of foreign device FD1. The IUT’s FDT must be empty.

Test Steps:

1. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Register-Foreign-Device,

'Time-To-Live' = 120

2. RECEIVE DESTINATION = FD1, SOURCE = IUT,

BVLC-Result,

'Result Code' = Successful completion

3. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Read-Foreign-Device-Table

4. RECEIVE, DESTINATION = FD1, SOURCE = IUT,

Read-Foreign-Device-Table-Ack,

	PRIVATE
B/IP address of FD1,
	Time-To-Live = 120,
	Remaining-Time = ?

5. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Delete-Foreign-Device-Table-Entry,

'FDT Entry' = FD1

6. RECEIVE, DESTINATION = FD1, SOURCE = IUT,

BVLC-Result,

'Result Code' = Successful completion

7. TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Read-Foreign-Device-Table

8. RECEIVE, DESTINATION = FD1, SOURCE = IUT,

Read-Foreign-Device-Table-Ack,

No FDT Entries

14.7 Broadcast Management (BBMD, Foreign Devices, Local Application)

Reason for Change: These tests were modified to reference figure 14-1 to be consistent with all the BBMD tests. This overview is contained in JB-010 but this is a newer version than in the proposal.

This group of tests verifies that the IUT will execute all paths of broadcast distribution.

Configuration Requirements: The IUT shall be configured so that BBMD option is on and FDT option is on. The FDT shall contain the following two entries:

	B/IP Address
	Time-To-Live

	FD1
	3600

	FD2
	3600

Note: The remaining time in each foreign device registration must be adequate for the tests to be run to completion before the registration terminates

14.7.1 Broadcast Message from Directly Connected IP Subnet

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT will correctly forward Original-Broadcast-NPDU messages to IP subnets in its BDT, to foreign devices, and to local applications.

Test Concept: The test device shall broadcast an Original-Broadcast-NPDU message as if it were a node on the same IP subnet as the IUT. The DNET/DADR and SNET/SADR fields in the Network Layer header shall not be present, which represents a local broadcast.

Configuration Requirements: The TD shall take the role of device D1.

This test is broken into separate tests for one-hop distribution and two-hop distribution.

14.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution)

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Configuration Requirements: The IUT’s BDT shall contain the following three entries:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	IP Subnet 1 subnet mask

	BBMD1
	IP Subnet 2 subnet mask

	BBMD2
	IP Subnet 3 subnet mask

Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, steps 6-10 are the distribution of the I-Am response from the local application.

Test Steps:

1.
TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = D1,

Original-Broadcast-NPDU,

NPDU = Who-Is

2.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

3.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 3, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

4.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

5.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

6.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

7.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

8.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 3, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

9.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

10.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Configuration Requirements: The BDT shall contain the following three entries:

	B/IP Address
	Broadcast Distribution Mask

	IUT
	255.255.255.255

	BBMD1
	255.255.255.255

	BBMD2
	255.255.255.255

Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, steps 6-10 are the distribution of the I-Am response from the local application.

Test Steps:

1.
TRANSMIT DESTINATION = Local IP Broadcast, SOURCE = D1,

Original-Broadcast-NPDU,

NPDU = Who-Is

2.
RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

3.
RECEIVE DESTINATION = BBMD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

4.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

5.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D1,

NPDU = Who-Is

6.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

7.
RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

8.
RECEIVE DESTINATION = BBMD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

9.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

10.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.2 Broadcast Message Forwarded by a Peer BBMD

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT will send Forwarded-NPDU messages to the local network, foreign devices, and to local applications.

Test Concept: The TD shall transmit a Forwarded-NPDU to the IUT as if it were peer BBMD1. The DNET/DADR and SNET/SADR fields in the Network Layer header shall not be present.

Configuration Requirements: The TD shall take the role of BBMD1.

This test is broken into separate tests for one-hop distribution and two-hop distribution.

14.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution)

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Configuration Requirements: The BDT shall be configured as in test 14.7.1.1.

Steps 2-3 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, steps 4-8 are the distribution of the I-Am response from the local application.

Test Steps:

1.
TRANSMIT DESTINATION = Directed IP Broadcast to IP Subnet 1, SOURCE = BBMD1,

Forwarded-NPDU,

Originating-Device = D2,

NPDU = Who-Is

2.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D2,

NPDU = Who-Is

3.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D2,

NPDU = Who-Is

4.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

5.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

6.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 3, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

7.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

8.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution)

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Configuration Requirements: The BDT shall be configured as in test 14.7.1.2

Steps 2-4 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, steps 5-9 are the distribution of the I-Am response from the local application.

Test Steps:

1.
TRANSMIT DESTINATION = IUT, SOURCE = BBMD1,

Forwarded-NPDU,

Originating-Device = D2,

NPDU = Who-Is

2.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D2,

NPDU = Who-Is

3.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D2,

NPDU = Who-Is

4.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = D2,

NPDU = Who-Is

5.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

6.
RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

7.
RECEIVE DESTINATION = BBMD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

8.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

9.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.3 Broadcast Message From a Foreign Device

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Purpose: To verify that the IUT will send Forwarded-NPDU messages to the local network, peer BBMDs, foreign devices, and to local applications.

Test Concept: The TD shall transmit a Distribute-Broadcast-To-Network to the IUT as if it were foreign device FD1. The DNET/DADR and SNET/SADR fields in the Network Layer header shall not be present.

Configuration Requirements: The TD shall take the role of FD1.

This test is broken into separate tests for one-hop distribution and two-hop distribution.

14.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Configuration Requirements: The BDT shall be configured as in test 14.7.1.1.

Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, steps 6-10 are the distribution of the I-Am response from the local application.

Test Steps:

1.
TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Distribute-Broadcast-To-Network,

Originating-Device = FD1,

NPDU = Who-Is

2.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

3.
RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

4.
RECEIVE DESTINATION = BBMD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

5.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

6.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

7.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

8.
RECEIVE DESTINATION = Directed IP Broadcast to IP Subnet 3, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

9.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

10.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)

Reason For Change: See 14.7. This test is not contained in any SSPC proposal.

Configuration Requirements: The BDT and FDT shall be configured as in test 14.7.1.2.

Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, steps 6-10 are the distribution of the I-Am response from the local application.

Test Steps:

1.
TRANSMIT DESTINATION = IUT, SOURCE = FD1,

Distribute-Broadcast-To-Network,

Originating-Device = FD1,

NPDU = Who-Is

2.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

3.
RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

4.
RECEIVE DESTINATION = BBMD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

5.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = FD1,

NPDU = Who-Is

6.
RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU,

NPDU = I-Am

7.
RECEIVE DESTINATION = BBMD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

8.
RECEIVE DESTINATION = BBMD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

9.
RECEIVE DESTINATION = FD1, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

10.
RECEIVE DESTINATION = FD2, SOURCE = IUT,

Forwarded-NPDU,

Originating-Device = IUT,

NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.X1 Registering as a Foreign Device

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: None

Purpose: This test case verifies that the IUT can register as a foreign device with a BBMD.

BACnet Reference Clause: J.5.2

Test Concept: The IUT is caused to register as a foreign device with the TD.

Configuration Requirements: The IUT is configured to register as a foreign device with the TD.

Test Steps:

1. RECEIVE DESTINATION = TD, SOURCE = IUT,

Register-Foreign-Device

14.X2 Initiating BVLL Service Requests Conveying an NPDU

This group of tests verifies that the IUT can correctly initiate BVLL service requests conveying an NPDU.

14.X2.1 Distribute-Broadcast-To-Network

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: 14.X1, “Registering as a Foreign Device”

Purpose: This test case verifies that the IUT, registered as a foreign device, can issue a request to a BBMD to broadcast the message on all subnets in the BBMD’s BDT.

BACnet Reference Clause: J.2.10

Test Concept: The IUT is configured to register itself as a foreign device with the TD, then after registration is achieved it is caused to initiate a broadcast message to be conveyed to the BBMD for distribution. If the IUT does not support foreign device registration, or cannot initiate broadcast messages conveying a BACnet NPDU, then this test shall be omitted.

Test Steps:

1. RECEIVE DESTINATION = TD, SOURCE = IUT,

Register-Foreign-Device

2. TRANSMIT DESTINATION = IUT, SOURCE = TD,

BVLC-Result,

‘Result Code’ = Successful completion

3. MAKE (the IUT initiate a broadcast)

4. RECEIVE DESTINATION = TD, SOURCE = IUT,

Distribute-Broadcast-To-Network

14.X2.2 Initiating An Original-Unicast-NPDU

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Dependencies: 14.2.3, “Execute Original-Unicast-NPDU”

Purpose: This test case verifies that the IUT can issue a directed NPDU to another device.

BACnet Reference Clause: J.2.11

Test Concept: The TD sends a ReadProperty-Request to the IUT in an Original-Unicast-NPDU. The IUT responds with a ReadProperty-ACK in an Original-Unicast-NPDU.

Test Steps: The test steps for this test are identical to those in 14.2.3, “Execute Original-Unicast-NPDU.”

14.X2.3 Original-Broadcast-NPDU

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can issue a broadcast on its own IP subnet.

BACnet Reference Clause: J.2.12

Test Concept: The IUT is caused to initiate a broadcast message on its IP subnet. If the IUT cannot initiate a broadcast message conveying a BACnet NPDU, then this test shall be omitted.

1. MAKE (the IUT initiate a broadcast)

2. RECEIVE DESTINATION = Local IP Broadcast, SOURCE = IUT,

Original-Broadcast-NPDU

	Version
	Date
	Author
	Change

	0.07
	5-Aug-2004
	Carl Neilson
	Updates based on Nashville meeting comments on Round 3 updates.

	0.08
	24-Aug-2004
	Carl Neilson
	· Removed 9.24.4.X1, 9.24.4.X2. Now exist in 135.1.

· Modified the purpose of 14.5.3.

· Modified the purpose of 14.2.2

· Added 10.2.4.4

	0.09
	
	Roland Laird
	· Modified all Clause 14 tests

	0.10
	26-Oct-2004
	Roland Laird
	· Continuation of BACnet/IP modifications - changes highlighted inline

	0.11
	27-Oct-2004
	Carl Neilson
	· Added 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1, 9.1.2.5. The specification of the expected Time Stamp in the ack notifications was changed. - changes still highlighted inline

	0.12
	29-Oct-2004
	Carl Neilson
	· Changes to 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1, 9.1.2.5 based on group feedback.

· Changes to BACnet/IP based on group feedback

	0.13
	23-Nov-2004
	Carl Neilson
	· Added 9.24.1.X2 and 9.24.1.X3

· Added "Reason For Change" to all tests.

· Added passing result text to 9.1.2.5 (missed in version 12)

· A few minor typos

	0.14
	20-Dec-2004
	Carl Neilson
	· Added tests 10.2.2.3, 10.2.2.7.2, 10.2.2.7.3, 10.2.3.2, 10.2.3.5, 10.2.4.6, 10.2.4.8, 10.2.6 from P3-Routing-14.

· Modified 10.2.4.4 as per P3-Routing-14.

· Added tests 9.20.2.1 into RPM-B

· Added 7.3.2.9.8, 7.3.2.9.9, 7.3.2.17.5, 7.3.2.18.6, 7.3.2.19.5, 7.3.2.22.9 into WP-B.

· Added 9.23.1.X7, 9.23.1.X8 into WPM-B

· Added 7.3.1.X2

	0.15
	15-Jun-2005
	Carl Neilson,

Roland Laird
	· Modified 7.3.2.9.8's & 7.3.2.9.9's reason for change comments as 135.1a now incorporates the complete change.

· Added 8.34.X1

· 13.X.1 fixed test step reference in steps 8 & 18

· 13.4.3 changed 2 < x < 254 to 2 < x <= 254

· Change 9.20.2.1 to 9.20.2.X1 as the test is new and there is already a 9.20.2.1 in 135.1
· Added scheduling tests 7.3.2.22.X2 and 7.3.2.22.X3 from ShedProtRev4Tests-9. Test numbers were changed to correspond with the equivalent pre-revision 4 tests.

	0.16
	19-Jul-2005
	Carl Neilson
	· Added WhoHas tests 9.32.1.X1, 9.32.1.X2

	0.17
	05-Oct-2005
	Jim Butler

Carl Neilson

	· Added Recipient List Test 7.3.2.20.3.X1,

· Added MS/TP restart tests 2.2.14...2.2.17

· Added RP fallback tests 8.20.Y1.X1, 8.20.Y1.X2

· Added AckAlarm tests 9.1.1.X1, 9.1.1.X2
· Changed 2.2.7 as per CLB-001

· Changed 2.2.6 as per CLB-002

· Changed 2.2.5 as per CLB-003

· Changed 2.2.4 as per CLB-004

· Added changes to 7.3.2.23.5

	0.18
	24-Oct-2005
	Carl Neilson
	· Added ARCNET tests & re-arranged section 2.

· Added 7.3.1.X3 Array Sizing Test

· Added 13.X2.1 APDU Retry and Timeout

	0.19
	27-Oct-2005
	Carl Neilson
	· Removed router qualification tests.

· Added reason for change to 13.X2.1 & modified note to tester

· Fixed incorrect numbering of BACnet/IP sections

· Deleted old comment as end of 7.3.2.20.3.X1

Reference Router

Node Address <A>

ARCNET twisted pair bus

Node Address

Node Address <C>

IUT

Reference Device

TD

Va-Vb

Fail-Safe Bias

0 Volts

Va-Vb

Interpulse Period

0 Volts

Pulse Width

PAGE
BACnet is a registered trademark of ASHRAE. ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed products to the requirements of ASHRAE Standard 135 if the responsibility of the BACnet Manufacturers Association (BMA). BTL is a registered trademark of the BMA.

_1054066781.txt
EDGE Diagram File
Version 3.0

Globals Section:

X -106
Y -78
Scale 80
PosterRows 1
PosterCols 1
Color1 255,255,255
Color2 192,192,192
Color3 130,130,130
Color4 0,0,0
Color5 0,255,255
Color6 0,0,255
Color7 0,0,160
Color8 128,0,128
Color9 255,128,0
Color10 255,0,0
Color11 128,0,64
Color12 128,64,0
Color13 0,255,0
Color14 0,128,0
Color15 128,128,255
Color16 255,255,0
GridX 32
GridY 32
SnapX 16
SnapY 16
ShadowColor 4,4,4
ShadowX 7
ShadowY 7
ShowGrid TRUE
AlignToGrid TRUE
SmartConnect TRUE
SBarWidth 128
SBarFigCols 2
SBarLblCols 1
SBarConCols 1
SBarFigHeight 32
SBarLblHeight 32
SBarConHeight 20
Parent ""
TranspBMPs TRUE
TranspColor 255,255,255
LastEnd "block"
LastEndLen 36

DevMode 488
{
 4E 45 43 20 53 75 70 65 72 53 63 72 69 70 74 20
 38 36 30 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 04 00 03 94 00 54 01 03 F7 00 00 01 00 01 00
 EA 0A 6F 08 64 00 01 00 02 00 58 02 01 00 01 00
 58 02 02 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 FC 12 00 00
 D8 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 03 44 02 00 00 00 00 00 00 01 00
 03 00 58 02 58 02 01 00 02 00 00 00 01 00 00 14
 41 46 4C 4F 57 00 52 45 00 00 00 00 00 00 C0 00
 80 80 01 00 01 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 02 00 00 00 00 01 41 72 69 61 6C 00 72 20
 4E 65 77 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 20 03 90 01 00 00 02 00
 E0 00 02 00 04 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 09 00 00 00 00 00 4C 50
 54 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4E 45
 43 38 36 30 00 00 00 00
}

DevNames 60
{
 08 00 11 00 25 00 01 00 77 69 6E 73 70 6F 6F 6C
 00 4E 45 43 20 53 75 70 65 72 53 63 72 69 70 74
 20 38 36 30 00 4C 50 54 31 3A 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00
}

Preview 14968
{
 42 4D 76 3A 00 00 00 00 00 00 36 04 00 00 28 00
 00 00 70 00 00 00 7C 00 00 00 01 00 08 00 00 00
 00 00 00 00 00 00 CD 0E 00 00 CD 0E 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 40 00 00 00 80 00
 00 00 FF 00 00 00 00 20 00 00 40 20 00 00 80 20
 00 00 FF 20 00 00 00 40 00 00 40 40 00 00 80 40
 00 00 FF 40 00 00 00 60 00 00 40 60 00 00 80 60
 00 00 FF 60 00 00 00 80 00 00 40 80 00 00 80 80
 00 00 FF 80 00 00 00 A0 00 00 40 A0 00 00 80 A0
 00 00 FF A0 00 00 00 C0 00 00 40 C0 00 00 80 C0
 00 00 FF C0 00 00 00 FF 00 00 40 FF 00 00 80 FF
 00 00 FF FF 00 00 00 00 20 00 40 00 20 00 80 00
 20 00 FF 00 20 00 00 20 20 00 40 20 20 00 80 20
 20 00 FF 20 20 00 00 40 20 00 40 40 20 00 80 40
 20 00 FF 40 20 00 00 60 20 00 40 60 20 00 80 60
 20 00 FF 60 20 00 00 80 20 00 40 80 20 00 80 80
 20 00 FF 80 20 00 00 A0 20 00 40 A0 20 00 80 A0
 20 00 FF A0 20 00 00 C0 20 00 40 C0 20 00 80 C0
 20 00 FF C0 20 00 00 FF 20 00 40 FF 20 00 80 FF
 20 00 FF FF 20 00 00 00 40 00 40 00 40 00 80 00
 40 00 FF 00 40 00 00 20 40 00 40 20 40 00 80 20
 40 00 FF 20 40 00 00 40 40 00 40 40 40 00 80 40
 40 00 FF 40 40 00 00 60 40 00 40 60 40 00 80 60
 40 00 FF 60 40 00 00 80 40 00 40 80 40 00 80 80
 40 00 FF 80 40 00 00 A0 40 00 40 A0 40 00 80 A0
 40 00 FF A0 40 00 00 C0 40 00 40 C0 40 00 80 C0
 40 00 FF C0 40 00 00 FF 40 00 40 FF 40 00 80 FF
 40 00 FF FF 40 00 00 00 60 00 40 00 60 00 80 00
 60 00 FF 00 60 00 00 20 60 00 40 20 60 00 80 20
 60 00 FF 20 60 00 00 40 60 00 40 40 60 00 80 40
 60 00 FF 40 60 00 00 60 60 00 40 60 60 00 80 60
 60 00 FF 60 60 00 00 80 60 00 40 80 60 00 80 80
 60 00 FF 80 60 00 00 A0 60 00 40 A0 60 00 80 A0
 60 00 FF A0 60 00 00 C0 60 00 40 C0 60 00 80 C0
 60 00 FF C0 60 00 00 FF 60 00 40 FF 60 00 80 FF
 60 00 FF FF 60 00 00 00 80 00 40 00 80 00 80 00
 80 00 FF 00 80 00 00 20 80 00 40 20 80 00 80 20
 80 00 FF 20 80 00 00 40 80 00 40 40 80 00 80 40
 80 00 FF 40 80 00 00 60 80 00 40 60 80 00 80 60
 80 00 FF 60 80 00 00 80 80 00 40 80 80 00 80 80
 80 00 FF 80 80 00 00 A0 80 00 40 A0 80 00 80 A0
 80 00 FF A0 80 00 00 C0 80 00 40 C0 80 00 80 C0
 80 00 FF C0 80 00 00 FF 80 00 40 FF 80 00 80 FF
 80 00 FF FF 80 00 00 00 A0 00 40 00 A0 00 80 00
 A0 00 FF 00 A0 00 00 20 A0 00 40 20 A0 00 80 20
 A0 00 FF 20 A0 00 00 40 A0 00 40 40 A0 00 80 40
 A0 00 FF 40 A0 00 00 60 A0 00 40 60 A0 00 80 60
 A0 00 FF 60 A0 00 00 80 A0 00 40 80 A0 00 80 80
 A0 00 FF 80 A0 00 00 A0 A0 00 40 A0 A0 00 80 A0
 A0 00 FF A0 A0 00 00 C0 A0 00 40 C0 A0 00 80 C0
 A0 00 FF C0 A0 00 00 FF A0 00 40 FF A0 00 80 FF
 A0 00 FF FF A0 00 00 00 C0 00 40 00 C0 00 80 00
 C0 00 FF 00 C0 00 00 20 C0 00 40 20 C0 00 80 20
 C0 00 FF 20 C0 00 00 40 C0 00 40 40 C0 00 80 40
 C0 00 FF 40 C0 00 00 60 C0 00 40 60 C0 00 80 60
 C0 00 FF 60 C0 00 00 80 C0 00 40 80 C0 00 80 80
 C0 00 FF 80 C0 00 00 A0 C0 00 40 A0 C0 00 80 A0
 C0 00 FF A0 C0 00 00 C0 C0 00 40 C0 C0 00 80 C0
 C0 00 FF C0 C0 00 00 FF C0 00 40 FF C0 00 80 FF
 C0 00 FF FF C0 00 00 00 FF 00 40 00 FF 00 80 00
 FF 00 FF 00 FF 00 00 20 FF 00 40 20 FF 00 80 20
 FF 00 FF 20 FF 00 00 40 FF 00 40 40 FF 00 80 40
 FF 00 FF 40 FF 00 00 60 FF 00 40 60 FF 00 80 60
 FF 00 FF 60 FF 00 00 80 FF 00 40 80 FF 00 80 80
 FF 00 FF 80 FF 00 00 A0 FF 00 40 A0 FF 00 80 A0
 FF 00 FF A0 FF 00 00 C0 FF 00 40 C0 FF 00 80 C0
 FF 00 FF C0 FF 00 00 FF FF 00 40 FF FF 00 80 FF
 FF 00 FF FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 92 B6
 92 92 92 92 6D 92 92 FF 92 92 92 6D 92 6D B6 92
 92 B6 92 B6 92 FF FF B6 92 B6 B6 B6 FF FF FF FF
 FF FF FF FF FF FF 92 B6 92 92 92 92 6D 92 92 FF
 92 92 92 6D 92 6D B6 92 92 B6 92 B6 92 FF FF B6
 92 B6 92 B6 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 92 92
 B6 92 92 92 6D 92 6D FF B6 6D 92 6D 92 6D 92 92
 6D 92 92 92 92 FF 92 B6 6D 92 B6 B6 6D FF FF FF
 FF FF FF FF FF FF 92 92 B6 92 92 92 6D 92 6D FF
 B6 6D 92 6D 92 6D 92 92 6D 92 92 92 92 FF 92 B6
 B6 FF FF B6 6D FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 92 FF
 B6 FF FF FF 92 FF FF FF FF FF FF 92 FF 92 FF FF
 FF FF FF FF FF FF FF B6 92 B6 B6 B6 FF FF FF FF
 FF FF FF FF FF FF 92 FF B6 FF FF FF 92 FF FF FF
 FF FF FF 92 FF 92 FF FF FF FF FF FF FF FF FF B6
 B6 92 B6 B6 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF
 FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF FF FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF 00 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 FF 00 FF FF FF FF FF FF FF FF
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF 92 92 B6 92 FF 92 FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF 92 FF 92 92 92 92 92 92 B6 92 92 B6 92
 92 92 92 92 FF 92 92 B6 92 92 B6 92 92 92 92 B6
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF 92 92 FF B6 FF 92 FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF 92 92 B6 92 6D 6D 92 6D 92 92 6D 92 92
 92 B6 92 6D FF 92 B6 92 B6 6D 92 92 6D 92 6D 92
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF 92 92 FF B6 B6 92 FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF 92 B6 B6 FF FF 92 FF FF FF FF FF FF FF
 FF FF FF FF FF 92 FF 92 FF FF FF FF B6 FF FF FF
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF
 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF 00 FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 92 92 B6 92 B6 B6 B6 FF 92 92
 FF FF FF 92 B6 92 92 92 92 92 92 B6 92 92 B6 92
 92 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 92 B6 92 B6 92 B6 B6 FF 92 92
 B6 B6 FF 92 92 B6 92 6D 6D 92 92 B6 92 92 92 6D
 92 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 92 FF 92 92 92 B6 B6 B6 92 92
 B6 B6 FF 92 FF B6 FF FF B6 FF FF FF FF FF FF 92
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF B6 92 6D B6
 B6 6D B6 B6 6D B6 B6 B6 92 B6 6D B6 FF B6 92 92
 B6 92 B6 B6 6D B6 B6 FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF 92 B6 92 92 92 92 6D 92 92 FF 92 92
 FF 92 6D 92 6D B6 92 92 B6 92 B6 92 FF FF B6 92
 B6 92 B6 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF 92 92 B6 B6
 92 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 FF 92 92 B6
 B6 B6 B6 92 B6 B6 B6 FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF 92 92 B6 92 92 92 6D 92 6D FF B6 6D
 FF 92 6D 92 6D 92 92 6D 92 92 92 92 FF 92 B6 92
 92 FF B6 6D FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF 00 00 00 FF B6 B6 FF FF
 B6 FF FF FF FF FF FF FF FF FF FF FF FF B6 B6 FF
 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF 92 FF B6 FF FF FF 92 FF FF FF FF FF
 FF FF 92 FF 92 FF FF FF FF FF FF FF FF FF B6 FF
 92 FF B6 FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF 00 00 00 FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF 00 FF FF 00 FF FF 00 FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF 00 FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF FF 00 00 FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF 00 FF FF FF FF FF FF FF
 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF FF 92 92 B6 B6 FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF FF 92 92 FF 92 FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF B6 92 92 B6 B6 FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF 00 00
}

Figure Symbols Section:

FigureSymbol "computer4"
{
 FixedAspect TRUE
 Height 128
 Width 128
 TextBox 125,125,875,625
 Fill
 {
 Polygon 13 0,0 1000,0 1000,750 750,750 750,850 1000,850 1000,1000 0,1000-
 0,850 250,850 250,750 0,750 0,0
 }
 Outline
 {
 Polyline 13 0,0 1000,0 1000,750 750,750 750,850 1000,850 1000,1000 0,1000-
 0,850 250,850 250,750 0,750 0,0
 Line 250,750 750,750
 Line 250,850 750,850
 Rect 100,100,900,650
 Rect 125,925,250,950
 Rect 900,700,925,725
 }
 Hot 13 0,0 1000,0 1000,750 750,750 750,850 1000,850 1000,1000 0,1000-
 0,850 250,850 250,750 0,750 0,0
}

FigureSymbol "printer4"
{
 FixedAspect TRUE
 Height 128
 Width 192
 Fill
 {
 Polygon 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-
 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-
 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0
 }
 Outline
 {
 Polyline 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-
 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-
 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0
 Line 0,300 100,300
 Line 700,500 700,750
 Line 100,950 200,950
 Line 500,950 600,950
 Rect 80,375,575,425
 Rect 200,575,475,650
 Rect 200,725,475,800
 }
 Hot 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-
 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-
 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0
}

FigureSymbol "printer2"
{
 FixedAspect TRUE
 Height 48
 Width 192
 Fill
 {
 Polygon 15 0,0 770,0 840,300 770,300 770,450 1000,450 1000,600 770,650-
 770,850 720,850 720,1000 50,1000 50,850 0,850 0,0
 }
 Outline
 {
 Polyline 15 0,0 770,0 840,300 770,300 770,450 1000,450 1000,600 770,650-
 770,850 720,850 720,1000 50,1000 50,850 0,850 0,0
 Line 720,850 50,850
 Line 650,0 650,850
 Line 0,150 650,150
 }
 Hot 15 0,0 770,0 840,300 770,300 770,450 1000,450 1000,600 770,650-
 770,850 720,850 720,1000 50,1000 50,850 0,850 0,0
}

FigureSymbol "hub1"
{
 FixedAspect TRUE
 Height 48
 Width 200
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 0,150 1000,150
 Rect 50,475,100,650
 Rect 900,475,950,650
 Rect 825,475,875,650
 Rect 750,475,800,650
 Rect 675,475,725,650
 Rect 600,475,650,650
 Rect 525,475,575,650
 Rect 450,475,500,650
 Rect 375,475,425,650
 }
}

FigureSymbol "hub2"
{
 FixedAspect TRUE
 Height 80
 Width 256
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 35,150 35,850
 Line 965,150 965,850
 Rect 70,100,930,400
 Rect 70,450,930,750
 Rect 850,175,900,325
 Rect 775,175,825,325
 Rect 700,175,750,325
 Rect 625,175,675,325
 Rect 550,175,600,325
 Rect 475,175,525,325
 Rect 400,175,450,325
 Rect 325,175,375,325
 Rect 250,175,300,325
 Rect 175,175,225,325
 Rect 100,175,150,325
 Rect 850,525,900,675
 Rect 775,525,825,675
 Rect 700,525,750,675
 Rect 625,525,675,675
 Rect 550,525,600,675
 Rect 475,525,525,675
 Rect 400,525,450,675
 Rect 325,525,375,675
 Rect 250,525,300,675
 Rect 175,525,225,675
 Rect 100,525,150,675
 Rect 900,850,930,950
 Rect 840,850,870,950
 Rect 780,850,810,950
 }
}

FigureSymbol "device1"
{
 FixedAspect TRUE
 Height 50
 Width 200
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Rect 50,200,100,350
 Rect 50,600,700,800
 Line 775,150 775,850
 Line 850,150 850,850
 Line 925,150 925,850
 }
}

FigureSymbol "server5"
{
 FixedAspect TRUE
 Height 67
 Width 230
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 0,100 1000,100
 Rect 900,150,950,400
 Rect 650,500,950,900
 Rect 745,660,855,740
 Line 690,700 910,700
 Rect 50,250,75,900
 Rect 100,250,125,900
 Rect 150,250,175,900
 Rect 200,250,225,900
 Rect 250,250,275,900
 Rect 300,250,325,900
 Rect 350,250,375,900
 }
}

FigureSymbol "server2"
{
 FixedAspect TRUE
 Height 204
 Width 102
 TextBox 150,675,850,925
 Fill
 {
 Polygon 9 0,0 1000,0 1000,950 925,950 925,1000 75,1000 75,950 0,950-
 0,0
 }
 Outline
 {
 Polyline 9 0,0 1000,0 1000,950 925,950 925,1000 75,1000 75,950 0,950-
 0,0
 Line 100,950 900,950
 Line 0,100 1000,100
 Rect 150,175,850,575
 Rect 750,600,850,650
 Rect 550,600,650,650
 Rect 150,600,450,650
 Line 150,275 850,275
 Line 150,375 850,375
 Line 150,475 850,475
 }
 Hot 9 0,0 1000,0 1000,950 925,950 925,1000 75,1000 75,950 0,950-
 0,0
}

FigureSymbol "mainframe1"
{
 FixedAspect TRUE
 Height 204
 Width 455
 Fill
 {
 Rect 0,0,1000,975
 }
 Outline
 {
 Rect 0,0,1000,975
 Rect 10,975,40,1000
 Rect 960,975,990,1000
 Rect 406,975,436,1000
 Rect 590,975,620,1000
 Line 0,50 1000,50
 Line 184,50 184,975
 Line 421,50 421,975
 Line 605,50 605,975
 Line 816,50 816,975
 Line 184,125 421,125
 Line 184,875 421,875
 Line 605,125 816,125
 Line 605,875 816,875
 Rect 481,175,545,300
 Polyline 4 605,350 640,350 640,550 605,550
 }
 Hot 5 0,0 0,975 1000,975 1000,0 0,0
}

FigureSymbol "modem3"
{
 FixedAspect TRUE
 Height 56
 Width 128
 Fill
 {
 RoundRect 0,0,1000,1000 300,300
 Polygon 4 0,550 200,0 800,0 1000,550
 }
 Outline
 {
 RoundRect 0,500,1000,1000 300,300
 Polyline 4 0,550 200,0 800,0 1000,550
 Rect 100,600,200,700
 Rect 100,800,450,900
 Rect 500,800,900,900
 }
 Hot 7 0,1000 0,550 200,0 800,0 1000,550 1000,1000 0,1000
}

FigureSymbol "mini2"
{
 FixedAspect TRUE
 Height 204
 Width 256
 Fill
 {
 Polygon 10 0,1000 0,50 100,50 100,0 100,0 850,0 850,50 1000,50-
 1000,1000 0,1000
 }
 Outline
 {
 Polyline 10 0,1000 0,50 100,50 100,0 100,0 850,0 850,50 1000,50-
 1000,1000 0,1000
 Line 100,50 100,1000
 Line 850,50 850,1000
 Line 0,950 100,950
 Line 850,950 1000,950
 Rect 675,150,750,250
 Rect 675,350,750,550
 Line 150,0 150,1000
 Line 500,0 500,1000
 Line 150,100 500,100
 Line 150,200 500,200
 Line 150,300 500,300
 Line 150,400 500,400
 Line 150,500 500,500
 Line 150,600 500,600
 Line 150,700 500,700
 Line 150,800 500,800
 Line 150,900 500,900
 }
 Hot 10 0,1000 0,50 100,50 100,0 100,0 850,0 850,50 1000,50-
 1000,1000 0,1000
}

FigureSymbol "phone1"
{
 FixedAspect TRUE
 Height 96
 Width 128
 Fill
 {
 Polygon 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-
 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-
 0,400
 Polygon 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-
 675,250 675,400 850,750 850,1000 150,1000
 }
 Outline
 {
 Polyline 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-
 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-
 0,400
 Polyline 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-
 675,250 675,400 850,750 850,1000 150,1000
 Rect 375,550,425,625
 Rect 475,550,525,625
 Rect 575,550,625,625
 Rect 375,675,425,750
 Rect 475,675,525,750
 Rect 575,675,625,750
 Rect 375,800,425,875
 Rect 475,800,525,875
 Rect 575,800,625,875
 }
 Hot 15 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-
 675,400 850,750 850,1000 150,1000 150,750 325,400 0,400
}

FigureSymbol "phone2"
{
 FixedAspect TRUE
 Height 128
 Width 130
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 400,0 400,1000
 Line 152,180 96,140
 Line 248,180 304,140
 Arc 75,90,325,370 248,370 152,370
 Rect 152,180,248,800
 Arc 75,630,325,910 152,630 248,630
 Line 152,820 96,860
 Line 248,820 304,860
 Line 400,150 1000,150
 Rect 500,500,900,900
 Line 500,600 900,600
 Line 500,700 900,700
 Line 500,800 900,800
 Line 600,500 600,900
 Line 700,500 700,900
 Line 800,500 800,900
 }
}

FigureSymbol "phone3"
{
 FixedAspect TRUE
 Height 128
 Width 180
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 290,0 290,1000
 Line 290,150 1000,150
 Line 105,180 65,140
 Line 175,180 215,140
 Arc 50,90,230,370 175,370 105,370
 Rect 105,180,175,820
 Arc 50,630,230,910 105,630 175,630
 Line 105,820 65,860
 Line 175,820 215,860
 Rect 350,500,650,900
 Line 350,600 650,600
 Line 350,700 650,700
 Line 350,800 650,800
 Line 425,500 425,900
 Line 500,500 500,900
 Line 575,500 575,900
 Rect 725,200,925,900
 Line 825,200 825,900
 Line 725,300 925,300
 Line 725,400 925,400
 Line 725,500 925,500
 Line 725,600 925,600
 Line 725,700 925,700
 Line 725,800 925,800
 }
}

FigureSymbol "fax"
{
 FixedAspect TRUE
 Height 160
 Width 225
 TextBox 382,50,850,275
 Fill
 {
 Polygon 9 0,1000 0,200 332,200 332,0 900,0 900,200 1000,200 1000,1000-
 0,1000
 }
 Outline
 {
 Polyline 9 0,1000 0,200 332,200 332,0 900,0 900,200 1000,200 1000,1000-
 0,1000
 Polyline 4 332,200 332,325 900,325 900,200
 Line 232,250 332,250
 Line 900,250 1000,250
 Line 232,200 232,1000
 Line 300,75 300,250
 Line 300,163 332,163
 Line 932,75 932,250
 Line 900,163 932,163
 Rect 302,400,930,750
 Line 302,450 930,450
 Line 302,700 930,700
 Line 380,400 380,750
 Line 460,400 460,750
 Line 540,400 540,750
 Line 620,400 620,750
 Line 700,400 700,750
 Line 780,400 780,750
 Line 860,400 860,750
 Rect 302,830,500,930
 Rect 700,830,930,930
 Line 860,830 860,930
 Line 780,830 780,930
 Line 84,344 52,312
 Line 140,344 172,312
 Arc 40,272,184,496 140,496 84,496
 Rect 84,344,140,856
 Arc 40,704,184,928 84,704 140,704
 Line 84,856 52,888
 Line 140,856 172,888
 }
 Hot 9 0,1000 0,200 332,200 332,0 900,0 900,200 1000,200 1000,1000-
 0,1000
}

FigureSymbol "mainframe4"
{
 FixedAspect TRUE
 Height 204
 Width 279
 Fill
 {
 Polygon 7 0,1000 0,100 100,0 900,0 1000,100 1000,1000 0,1000
 }
 Outline
 {
 Polyline 7 0,1000 0,100 100,0 900,0 1000,100 1000,1000 0,1000
 Line 0,100 1000,100
 Line 0,175 1000,175
 Line 333,175 333,1000
 Line 666,175 666,1000
 Rect 25,125,220,155
 Line 0,750 1000,750
 Line 0,775 1000,775
 Line 0,800 1000,800
 Line 0,825 1000,825
 }
 Hot 7 0,1000 0,100 100,0 900,0 1000,100 1000,1000 0,1000
}

FigureSymbol "server3"
{
 FixedAspect TRUE
 Height 204
 Width 128
 Fill
 {
 Rect 250,0,750,1000
 }
 Outline
 {
 Rect 250,0,750,1000
 Polyline 3 250,960 0,1000 250,1000
 Polyline 3 750,960 1000,1000 750,1000
 Rect 325,50,675,650
 Line 325,60 675,60
 Rect 440,95,560,125
 Line 380,112 620,112
 Line 325,160 675,160
 Rect 575,275,625,300
 Line 325,325 675,325
 }
 Hot 5 250,0 750,0 750,1000 250,1000 250,0
}

FigureSymbol "cloud"
{
 FixedAspect FALSE
 Height 0
 Width 0
 TextBox 200,200,800,800
 Fill
 {
 Ellipse 84,114,672,702
 Ellipse 421,89,859,527
 Ellipse 573,286,995,708
 Ellipse 263,492,721,950
 Ellipse 0,528,423,952
 }
 Outline
 {
 Arc 84,114,672,702 500,140 120,550
 Arc 421,89,859,527 860,300 500,140
 Arc 573,286,995,708 720,700 860,300
 Arc 263,492,721,950 350,900 720,700
 Arc 0,528,423,952 120,550 350,900
 }
 Hot 40 350,900 363,915 447,950 538,950 622,915 686,851 721,767 720,700-
 743,708 826,708 904,676 963,617 995,539 995,456 963,378 904,319-
 860,300 859,265 826,185 764,123 684,90 597,90 517,123 500,140-
 436,115 321,115 212,160 130,242 85,351 85,466 120,550 92,561-
 33,621 1,699 1,782 33,860 92,920 170,952 253,952 350,900
}

FigureSymbol "server4"
{
 FixedAspect TRUE
 Height 67
 Width 230
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Rect 650,100,950,500
 Rect 745,260,855,340
 Line 690,300 910,300
 Rect 650,500,950,900
 Rect 745,660,855,740
 Line 690,700 910,700
 Rect 50,150,100,400
 Rect 150,150,200,400
 Rect 250,150,300,400
 }
}

FigureSymbol "computer5"
{
 FixedAspect TRUE
 Height 100
 Width 128
 Fill
 {
 RoundRect 150,0,850,650 150,150
 Rect 0,700,1000,1000
 }
 Outline
 {
 RoundRect 150,0,850,650 150,150
 Rect 225,70,775,575
 Rect 0,700,1000,1000
 Rect 775,600,800,625
 Rect 75,750,100,950
 Rect 150,750,175,950
 Rect 225,750,250,950
 Rect 300,750,325,950
 Rect 375,750,400,950
 Rect 450,750,475,950
 Rect 650,800,950,950
 Rect 750,850,850,900
 Line 650,875 950,875
 }
 Hot 9 150,0 850,0 850,700 1000,700 1000,1000 0,1000 0,700 150,700-
 150,0
}

FigureSymbol "hub3"
{
 FixedAspect TRUE
 Height 32
 Width 256
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Rect 32,225,96,775
 Rect 128,225,192,775
 Rect 224,225,288,775
 Rect 320,225,384,775
 Rect 416,225,480,775
 Rect 512,225,576,775
 Rect 608,225,672,775
 Rect 704,225,768,775
 Rect 800,225,864,775
 Rect 896,225,960,775
 }
}

FigureSymbol "process"
{
 FixedAspect FALSE
 Height 0
 Width 0
 TextBox >100,>100,<900,<900
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 }
}

FigureSymbol "mainframe3"
{
 FixedAspect TRUE
 Height 204
 Width 158
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 0,25 1000,25
 Line 0,50 1000,50
 Line 0,75 1000,75
 Line 0,100 1000,100
 Line 333,100 333,1000
 Line 0,750 333,750
 Rect 63,250,260,350
 Line 90,250 90,350
 Rect 63,375,260,475
 Line 90,375 90,475
 Line 227,375 227,475
 Rect 63,575,260,675
 Line 90,575 90,675
 Line 227,575 227,675
 Line 63,475 63,575
 Line 260,475 260,575
 Rect 135,500,182,550
 Line 158,475 158,500
 Line 158,550 158,575
 Rect 400,175,850,400
 Rect 400,425,850,650
 Rect 450,210,700,285
 Rect 450,285,700,360
 Rect 750,320,800,360
 }
}

FigureSymbol "computer6"
{
 FixedAspect TRUE
 Height 130
 Width 200
 Fill
 {
 Polygon 9 280,0 800,0 800,677 1000,930 1000,1000 480,1000 0,660 0,255-
 280,0
 }
 Outline
 {
 Polyline 9 280,0 800,0 800,677 1000,930 1000,1000 480,1000 0,660 0,255-
 280,0
 Rect 355,70,725,607
 Polyline 4 280,0 280,677 480,930 480,1000
 Line 480,930 1000,930
 Line 280,677 800,677
 }
 Hot 9 280,0 800,0 800,677 1000,930 1000,1000 480,1000 0,660 0,255-
 280,0
}

FigureSymbol "rounded box 2"
{
 FixedAspect FALSE
 Height 128
 Width 192
 TextBox >100,>100,<900,<900
 Fill
 {
 Rect >150,0,<850,1000
 Rect 0,>150,1000,<850
 Ellipse 0,0,>300,>300
 Ellipse <700,0,1000,>300
 Ellipse <700,<700,1000,1000
 Ellipse 0,<700,>300,1000
 }
 Outline
 {
 Arc 0,0,>300,>300 >150,0 0,>150
 Line >150,0 <850,0
 Arc <700,0,1000,>300 1000,>150 <850,0
 Line 1000,>150 1000,<850
 Arc <700,<700,1000,1000 <850,1000 1000,<850
 Line >150,1000 <850,1000
 Arc 0,<700,>300,1000 0,<850 >150,1000
 Line 0,>150 0,<850
 }
 MiniOutline
 {
 Arc 0,0,>500,>500 >250,0 0,>250
 Line >250,0 <750,0
 Arc <500,0,1000,>500 1000,>250 <750,0
 Line 1000,>250 1000,<750
 Arc <500,<500,1000,1000 <750,1000 1000,<750
 Line >250,1000 <750,1000
 Arc 0,<500,>500,1000 0,<750 >250,1000
 Line 0,>250 0,<750
 }
 Hot 21 <874,1000 <919,<985 <957,<957 <985,<919 1000,<874 1000,>127 <985,>82 <957,>44-
 <919,>16 <874,0 >127,0 >82,>16 >44,>44 >16,>82 0,>127 0,<874-
 >16,<919 >44,<957 >82,<985 >127,1000 <874,1000
}

FigureSymbol "arrow left/right 1"
{
 FixedAspect FALSE
 Height 96
 Width 256
 TextBox >300,>250,<700,<750
 Fill
 {
 Polygon 11 0,500 >300,0 >300,>200 <700,>200 <700,0 1000,500 <700,1000 <700,<800-
 >300,<800 >300,1000 0,500
 }
 Outline
 {
 Polyline 11 0,500 >300,0 >300,>200 <700,>200 <700,0 1000,500 <700,1000 <700,<800-
 >300,<800 >300,1000 0,500
 }
 Hot 11 0,500 >300,0 >300,>200 <700,>200 <700,0 1000,500 <700,1000 <700,<800-
 >300,<800 >300,1000 0,500
}

FigureSymbol "box 3d"
{
 FixedAspect FALSE
 Height 0
 Width 0
 TextBox >100,>100,<850,<850
 Fill
 {
 Rect 0,0,<900,<900
 Rect >100,>100,1000,1000
 Polygon 4 <900,0 1000,>100 <900,>100 <900,0
 Polygon 4 0,<900 >100,1000 >100,<900 0,<900
 }
 Outline
 {
 Rect 0,0,<900,<900
 Polyline 5 <900,0 1000,>100 1000,1000 >100,1000 0,<900
 Line <900,<900 1000,1000
 }
 MiniOutline
 {
 Rect 0,0,<800,<800
 Polyline 5 <800,0 1000,>200 1000,1000 >200,1000 0,<800
 Line <800,<800 1000,1000
 }
 Hot 7 0,0 <900,0 1000,>100 1000,1000 >100,1000 0,<900 0,0
}

FigureSymbol "wireless2"
{
 FixedAspect FALSE
 Height 115
 Width 192
 TextBox 50,500,950,950
 Fill
 {
 Rect 0,450,1000,1000
 }
 Outline
 {
 Rect 0,450,1000,1000
 Ellipse 125,100,175,200
 Line 150,200 150,450
 Arc 75,0,225,300 225,300 185,25
 Arc 75,0,225,300 115,25 75,300
 Arc 150,0,295,380 285,300 245,0
 Arc 5,0,150,380 55,0 25,300
 }
 Hot 5 0,450 1000,450 1000,1000 0,1000 0,450
}

FigureSymbol "computer3"
{
 FixedAspect TRUE
 Height 92
 Width 128
 TextBox 250,95,750,550
 Fill
 {
 Rect 150,0,850,650
 Polygon 7 0,1000 0,950 150,700 850,700 1000,950 1000,1000 0,1000
 }
 Outline
 {
 Rect 150,0,850,650
 RoundRect 225,70,775,575 150,150
 Polyline 7 0,1000 0,950 150,700 850,700 1000,950 1000,1000 0,1000
 Line 0,950 1000,950
 Polyline 5 100,900 200,750 600,750 600,900 100,900
 Polyline 5 675,900 675,750 800,750 900,900 675,900
 }
 Hot 9 0,1000 0,950 150,700 150,0 850,0 850,700 1000,950 1000,1000-
 0,1000
}

FigureSymbol "device1a"
{
 FixedAspect TRUE
 Height 50
 Width 200
 TextBox 150,50,750,950
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Rect 50,200,100,350
 Line 775,150 775,850
 Line 850,150 850,850
 Line 925,150 925,850
 }
}

FigureSymbol "hub1a"
{
 FixedAspect TRUE
 Height 48
 Width 200
 TextBox 150,200,950,950
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 0,150 1000,150
 Rect 50,475,100,650
 }
}

FigureSymbol "hub2a"
{
 FixedAspect TRUE
 Height 80
 Width 256
 TextBox 85,50,915,800
 Fill
 {
 Rect 0,0,1000,1000
 }
 Outline
 {
 Rect 0,0,1000,1000
 Line 35,150 35,850
 Line 965,150 965,850
 Rect 900,850,930,950
 Rect 840,850,870,950
 Rect 780,850,810,950
 }
}

FigureSymbol "phone1a"
{
 FixedAspect TRUE
 Height 96
 Width 128
 TextBox 200,550,800,950
 Fill
 {
 Polygon 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-
 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-
 0,400
 Polygon 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-
 675,250 675,400 850,750 850,1000 150,1000
 }
 Outline
 {
 Polyline 17 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-
 750,400 725,375 725,250 700,175 300,175 275,250 275,375 250,400-
 0,400
 Polyline 13 150,1000 150,750 325,400 325,250 400,250 400,380 600,380 600,250-
 675,250 675,400 850,750 850,1000 150,1000
 }
 Hot 15 0,400 0,275 75,60 140,0 860,0 925,60 1000,275 1000,400-
 675,400 850,750 850,1000 150,1000 150,750 325,400 0,400
}

FigureSymbol "printer4a"
{
 FixedAspect TRUE
 Height 128
 Width 192
 TextBox 50,350,650,900
 Fill
 {
 Polygon 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-
 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-
 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0
 }
 Outline
 {
 Polyline 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-
 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-
 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0
 Line 0,300 100,300
 Line 700,500 700,750
 Line 100,950 200,950
 Line 500,950 600,950
 }
 Hot 23 0,0 100,0 100,300 600,300 700,400 700,500 900,400 950,450-
 700,600 1000,600 1000,700 700,700 700,950 600,950 600,1000 500,1000-
 500,950 200,950 200,1000 100,1000 100,950 0,950 0,0
}

End Symbols Section:

Figure Styles Section:

FigureStyle "Title"
{
 Label TRUE
 Height 172
 Width 256
 BindToStyle FALSE
 TextFormat 0x0042
 Behavior 0x000251E2
 Symbol "lbl"
 TypeSize 14
 TypeWeight 700
}

FigureStyle "Box"
{
 Height 128
 Width 192
 BorderWidth 3
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "process"
}

FigureStyle "Box 2"
{
 Height 128
 Width 192
 BorderWidth 3
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "rounded box 2"
}

FigureStyle "Misc Box"
{
 Height 89
 Width 192
 Description "Miscellaneous hardware"
 BorderWidth 3
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "box 3d"
}

FigureStyle "External Entity"
{
 Height 160
 Width 320
 BorderWidth 3
 Shadow TRUE
 TextFormat 0x0022
 Behavior 0x00024012
 Symbol "cloud"
}

FigureStyle "Workstation"
{
 HasButton TRUE
 Height 128
 Width 128
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "computer4"
}

FigureStyle "Workstation 2"
{
 HasButton TRUE
 Height 100
 Width 128
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "computer5"
}

FigureStyle "Server"
{
 HasButton TRUE
 Height 204
 Width 102
 Description "Network File/Application Server"
 DefaultText "Server"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "server2"
 TypeWeight 400
}

FigureStyle "Server 2"
{
 HasButton TRUE
 Height 204
 Width 128
 Description "Network File/Application Server"
 DefaultText "Server"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "server3"
 TypeWeight 400
}

FigureStyle "Printer"
{
 InMenu FALSE
 Height 128
 Width 192
 DefaultText "Network\line Printer"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "printer4"
 TypeWeight 400
}

FigureStyle "Printer 2"
{
 HasButton TRUE
 Height 48
 Width 192
 DefaultText "Printer"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "printer2"
 TypeWeight 400
}

FigureStyle "Printer 3"
{
 HasButton TRUE
 Height 128
 Width 192
 DefaultText "Network\line Printer"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "printer4a"
 TypeWeight 400
}

FigureStyle "Hub"
{
 InMenu FALSE
 Height 48
 Width 200
 Description "Standard hub (10Mb/s)"
 DefaultText "Hub - 10 mb/s"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "hub1"
 TypeWeight 400
}

FigureStyle "100 Hub"
{
 InMenu FALSE
 Height 48
 Width 153
 Description "100 Mb/s Hub"
 DefaultText "Hub"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "hub2"
 TypeWeight 400
}

FigureStyle "Hub 2"
{
 HasButton TRUE
 Height 48
 Width 200
 Description "Standard hub (10Mb/s)"
 DefaultText "Hub - 10 mb/s"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "hub1a"
 TypeSize 7
 TypeWeight 400
}

FigureStyle "100 Hub 2"
{
 HasButton TRUE
 Height 48
 Width 153
 Description "100 Mb/s Hub"
 DefaultText "Hub - 100 Mb/s"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "hub2a"
 TypeSize 7
 TypeWeight 400
}

FigureStyle "Mainframe"
{
 HasButton TRUE
 Height 204
 Width 455
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "mainframe1"
}

FigureStyle "PBX Phone System"
{
 HasButton TRUE
 Height 204
 Width 256
 Description "Phone Switch (PBX)"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "mini2"
}

FigureStyle "MiniComputer"
{
 Height 204
 Width 158
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "mainframe3"
}

FigureStyle "Router"
{
 InMenu FALSE
 Height 48
 Width 192
 Description "Router/firewall"
 DefaultText "Router"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "device1"
 TypeWeight 400
}

FigureStyle "Router2"
{
 HasButton TRUE
 Height 46
 Width 192
 Description "Router/firewall"
 DefaultText "Router"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "device1a"
 TypeSize 7
 TypeWeight 400
}

FigureStyle "Gateway"
{
 HasButton TRUE
 Height 48
 Width 164
 DefaultText "Gateway"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "server5"
 TypeWeight 400
}

FigureStyle "Encoder"
{
 Height 128
 Width 192
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "hub3"
}

FigureStyle "Bridge"
{
 HasButton TRUE
 Height 67
 Width 230
 DefaultText "Bridge"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "server4"
 TypeWeight 400
}

FigureStyle "Modem"
{
 HasButton TRUE
 Height 56
 Width 128
 DefaultText "Modem"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "modem3"
 TypeWeight 400
}

FigureStyle "Phone POT"
{
 InMenu FALSE
 Height 96
 Width 128
 Description "Analog telephone instrument"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "phone1"
}

FigureStyle "Phone Dig1"
{
 HasButton TRUE
 Height 128
 Width 130
 Description "Digital telephone instrument"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "phone2"
}

FigureStyle "Phone Dig2"
{
 Height 128
 Width 180
 Description "Digital telephone instrument"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "phone3"
}

FigureStyle "FAX"
{
 HasButton TRUE
 Height 160
 Width 225
 Description "Facsimile Machine"
 DefaultText "FAX"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "fax"
 TypeWeight 400
}

FigureStyle "Mainframe2"
{
 Height 204
 Width 279
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "mainframe4"
}

FigureStyle "Workstation 3"
{
 Height 130
 Width 200
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "computer6"
}

FigureStyle "WAN"
{
 Height 96
 Width 256
 Description "WAN, ISDN, Frame relay, packet switch"
 DefaultText "WAN"
 BorderWidth 3
 TextFormat 0x0022
 Behavior 0x00024212
 Symbol "arrow left/right 1"
 TypeWeight 400
}

FigureStyle "Wireless"
{
 Height 81
 Width 135
 BorderWidth 3
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "wireless2"
 TypeWeight 400
}

FigureStyle "Workstation 4"
{
 Height 92
 Width 128
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "computer3"
}

FigureStyle "Label"
{
 Label TRUE
 Height 0
 Width 0
 BorderWidth 3
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x002241E1
 Symbol "lbl"
 TypeWeight 400
}

FigureStyle "Label 2 "
{
 Label TRUE
 Height 0
 Width 0
 BorderWidth 3
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x002241E1
 Symbol "lbl"
 TypeWeight 400
 TypeItalic TRUE
}

FigureStyle "Phone POT 2"
{
 Height 96
 Width 128
 Description "Analog telephone instrument"
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "phone1a"
 TypeSize 7
 TypeWeight 400
}

Connector Styles Section:

ConnectorStyle "Standard"
{
 HasButton TRUE
 Description "Serial, parallel, or other computer cable"
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 2
 Behavior 0x00000000
}

ConnectorStyle "Cat 3"
{
 HasButton TRUE
 Description "IBM type3/cat3 10 Mbs"
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 PenStyle 5
 Behavior 0x00000000
 FIType "FI_CIRCLE"
 FISize 7
 FIBdrWidth 1
 FISpacing 14
 FIBdrClr 4,4,4
 FIFillClr 4,4,4
}

ConnectorStyle "Cat 5"
{
 HasButton TRUE
 Description "Cat5 100 Mbs"
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 PenStyle 5
 LineWidth 2
 Behavior 0x00000000
 FIType "FI_CIRCLE"
 FISize 7
 FIBdrWidth 1
 FISpacing 21
 FIBdrClr 4,4,4
 FIFillClr 4,4,4
}

ConnectorStyle "Fiber"
{
 HasButton TRUE
 Description "fiberoptic"
 End1 "null"
 End2 "null"
 End1Length 43
 End2Length 43
 LineWidth 2
 EndBorderWidth 0
 Behavior 0x00000000
 FIType "FI_STICKARW"
 FISize 11
 FIBdrWidth 2
 FISpacing 57
 FIBdrClr 0,0,0
 FIFillClr 4,4,4
}

ConnectorStyle "Thincoax"
{
 HasButton TRUE
 Description "thin ethernet coax"
 End1 "null"
 End2 "null"
 End1Length 36
 End2Length 36
 PenStyle 1
 LineWidth 2
 Behavior 0x00000004
}

ConnectorStyle "Thicknet"
{
 HasButton TRUE
 Description '1/2" thick ethernet coax'
 End1 "null"
 End2 "null"
 End1Length 36
 End2Length 36
 PenStyle 2
 LineWidth 4
 Behavior 0x00000004
}

ConnectorStyle "PSTN"
{
 HasButton TRUE
 Description "Public Telephone Lines"
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 PenStyle 2
 LineWidth 2
 Behavior 0x00000000
}

Figures & Connectors Section:

Figure 1
{
 Style "Router2"
 Text "Reference Router"
 Bounds 224,288,544,384
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "device1a"
 TypeSize 7
 TypeWeight 400
}

Figure 2
{
 Style "Misc Box"
 Text "IUT"
 Bounds 512,467,704,557
 BorderWidth 3
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "box 3d"
}

Figure 3
{
 Style "Misc Box"
 Text "Reference Master"
 Bounds 768,464,1024,560
 BorderWidth 3
 TextFormat 0x0022
 Behavior 0x00024E12
 Symbol "box 3d"
}

Figure 4
{
 Style "Workstation"
 Text "TD"
 Bounds 320,96,448,224
 BorderWidth 2
 TextFormat 0x0022
 Behavior 0x00450E12
 Symbol "computer4"
}

Figure 5
{
 Text ""
 Bounds 377,425,392,440
 FillColor 0,0,0
 BorderWidth 0
 BindToStyle FALSE
 TextFormat 0x0000
 Behavior 0x00327A12
 Symbol "null"
}

Connector 6
{
 Style "Standard"
 Figure1 1
 Figure2 5
 EndPoint1 384,384
 EndPoint2 384,432
 SuppressEnd1 FALSE
 SuppressEnd2 TRUE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 2
 Behavior 0x00000000
}

Figure 7
{
 Text ""
 Bounds 889,425,904,440
 FillColor 0,0,0
 BorderWidth 0
 BindToStyle FALSE
 TextFormat 0x0000
 Behavior 0x00327A12
 Symbol "null"
}

Connector 8
{
 Style "Standard"
 Figure1 7
 Figure2 3
 EndPoint1 896,432
 EndPoint2 896,464
 SuppressEnd1 TRUE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 2
 Behavior 0x00000000
}

Figure 9
{
 Text ""
 Bounds 601,425,616,440
 FillColor 0,0,0
 BorderWidth 0
 BindToStyle FALSE
 TextFormat 0x0000
 Behavior 0x00327A12
 Symbol "null"
}

Connector 10
{
 Style "Standard"
 Figure1 5
 Figure2 9
 EndPoint1 384,432
 EndPoint2 608,432
 SuppressEnd1 TRUE
 SuppressEnd2 TRUE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 2
 Behavior 0x00000000
}

Connector 11
{
 Style "Standard"
 Figure1 9
 Figure2 7
 EndPoint1 608,432
 EndPoint2 896,432
 SuppressEnd1 TRUE
 SuppressEnd2 TRUE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 2
 Behavior 0x00000000
}

Connector 12
{
 Style "Standard"
 Figure1 2
 Figure2 9
 EndPoint1 608,467
 EndPoint2 608,432
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 2
 Behavior 0x00000000
}

Connector 13
{
 Style "Standard"
 Figure1 4
 Figure2 1
 EndPoint1 384,223
 EndPoint2 384,288
 SuppressEnd1 FALSE
 SuppressEnd2 FALSE
 End1 "null"
 End2 "null"
 End1Length 32
 End2Length 32
 LineWidth 2
 Behavior 0x00000000
}

Figure 14
{
 Label TRUE
 Style "Label"
 Text "Node address "
 Bounds 516,573,749,606
 BorderWidth 3
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x002241E1
 Symbol "lbl"
 TypeWeight 400
}

Figure 15
{
 Label TRUE
 Style "Label"
 Text "Node address <C>"
 Bounds 810,572,1044,605
 BorderWidth 3
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x002241E1
 Symbol "lbl"
 TypeWeight 400
}

Figure 16
{
 Label TRUE
 Style "Label"
 Text "Node address <A>"
 Bounds 564,314,797,347
 BorderWidth 3
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x002241E1
 Symbol "lbl"
 TypeWeight 400
}

Figure 17
{
 Label TRUE
 Style "Label"
 Text "MS/TP Network"
 Bounds 579,387,773,420
 BorderWidth 3
 BindToStyle FALSE
 TextFormat 0x0044
 Behavior 0x002241E1
 Symbol "lbl"
 TypeWeight 400
}

Staples Section:

_1160301480.vsd
�

�

�

�

�

IUT�

D2�

�

BBMD1�

�

IP Subnet 3�

BBMD2�

BBMD3�

FD2�

D1�

�

FD1�

Internet�

�

�

�

�

�

�

�

�

�

�

IP Subnet 4�

IP Subnet 5�

IP Subnet 6�

IP Subnet 2�

IP Subnet 1�

BACnet Device�

Internet Router�

BBMD�

Foreign Device�

�

