
BACnet is a registered trademark of ASHRAE.  ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards.  Compliance of listed products to the requirements of ASHRAE 
Standard 135 is the responsibility of BACnet International.  BTL is a registered trademark of BACnet International. 
 

 

 

 
 
 

BACnet TESTING LABORATORIES 
ADDENDA 

 
Addendum aq to 

BTL Test Package 16.1 
 

Revision 6 
Revised September 30, 2020 

 
 
 
 
 

Approved by the BTL Working Group on July 9, 2020. 
Approved by the BTL Working Group Voting Members on September 30, 2020. 

Published on October 1, 2020. 



Addendum aq to BTL Test Package 16.1   

 1 

[This foreword and the “Overview” on the following pages are not part of this Test Package. They are 
merely informative and do not contain requirements necessary for conformance to the Test Package.] 

 
 

FOREWORD 
 
The purpose of this addendum is to present current changes being made to the BTL Test Package. These modifications are the 
result of change proposals made pursuant to the continuous maintenance procedures and of deliberations within the BTL-WG 
Committee. The changes are summarized below. 
 
BTL-16.1aq-1: Tests for FAULT_LISTED Algorithm- BTLWG-698 ..................................................................................... 2 
BTL-16.1aq-2: Add Testing for Elevator Object Types - BTLWG-699................................................................................... 7 
BTL-16.1aq-3: Add Testing for SubscribeCOVPropertyMultiple - BTLWG-119 ................................................................. 15 
 
In the following document, language to be added to existing clauses within the BTL Test Package 16.1 is indicated through the 
use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain 
type is used throughout 
 
In contrast, changes to BTL Specified Tests also contain a yellow highlight to indicate the changes made by this addendum.  
When this addendum is applied, all highlighting will be removed.  Change markings on tests will remain to indicate the 
difference between the new test and an existing 135.1 test.  If a test being modified has never existed in 135.1, the applied result 
should not contain any change markings.  When this is the case, square brackets will be used to describe the changes required 
for this test. 
 
Each addendum can stand independently unless specifically noted via dependency within the addendum.  If multiple addenda 
change the same test or section, each future released addendum that changes the same test or section will note in square brackets 
whether or not those changes are reflected.  
 
 



Addendum aq to BTL Test Package 16.1   

 2 

BTL-16.1aq-1: Tests for FAULT_LISTED Algorithm- BTLWG-698 
 
Overview: 
 
Addendum 135-2012aq-3 at Protocol_Revision 18 added new FAULT_LISTED algorithm to vertical transport objects that 
provide fault reporting, and to the Event Enrollment object.  

 
 
Changes: 
 

[In BTL Checklist, change Alarm and Event Management - Notification - Internal - B and Alarm and Event Management - 
Notification - External - B] 
 

Alarm and Event Management - Notification - Internal - B 
  … 
 C3, 8 Implements the CHANGE_OF_RELIABILITY - FAULT_LISTED algorithm 
  … 

1 Required if EventNotifications with service parameter AckRequired = True can be issued. 
2 At least one of these options must be supported to claim support for this BIBB. 
3 At least one of these options must be supported to claim support for this BIBB. It is 
recommended that a standard BACnet algorithm be used instead of a proprietary algorithm 
whenever possible. 
4 At least one of these options must be supported to claim support for this BIBB. The 
BACnetDateTime form of the timestamp is the recommended option. 
5 Contact BTL for interim tests for this algorithm. 
6 Protocol_Revision 16 or higher must be claimed. 
7 Protocol_Revision 17 or higher must be claimed. 
8 Protocol_Revision 18 or higher must be claimed. 
 

Alarm and Event Management - Notification - External - B 
  … 
 C1, 5 Implements the CHANGE_OF_RELIABILITY - FAULT_LISTED algorithm 
  … 

1 One of these options must be supported to claim support for this BIBB. It is recommended that a 
standard BACnet algorithm be used instead of a proprietary algorithm whenever possible. 
2 Contact BTL for interim tests for this algorithm. 
3 Protocol_Revision 16 or higher must be claimed. 
4 Protocol_Revision 17 or higher must be claimed. 
5 Protocol_Revision 18 or higher must be claimed. 

 
 
 

[In BTL Test Plan, change 5.2.36] 

 
5.2.36 Implements the CHANGE_OF_RELIABILITY - FAULT_LISTED Algorithm 

The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of 
CHANGE_OF_RELIABILITY and supports the specified algorithm. 

Contact BTL for interim tests for this algorithm. 
BTL - 8.4.17.X1.1 - NORMAL to FAULT Transition (ConfirmedEventNotification) 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  



Addendum aq to BTL Test Package 16.1   

 3 

BTL - 8.4.17.X1.2 - FAULT-to-FAULT transition (ConfirmedEventNotification) 
 Test Conditionality If the IUT supports only one fault condition, this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 8.5.17.X1.1 - NORMAL to FAULT Transition (UnconfirmedEventNotification) 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 8.5.17.X1.2 - FAULT-to-FAULT transition (UnconfirmedEventNotification) 
 Test Conditionality If the IUT supports only one fault condition, this test shall be skipped. 
 Test Directives  
 Testing Hints  

 

[In BTL Test Plan, change 5.3.24] 

5.3.24 Implements the CHANGE_OF_RELIABILITY - FAULT_LISTED Algorithm 

The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of 
CHANGE_OF_RELIABILITY and supports the specified algorithm. 

Contact BTL for interim tests for this algorithm. 
BTL - 8.4.17.X1.1 NORMAL to FAULT Transition (ConfirmedEventNotification) 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 8.4.17.X1.2 FAULT-to-FAULT transition (ConfirmedEventNotification) 
 Test Conditionality If the IUT supports only one fault condition, this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 8.5.17.X1.1 NORMAL to FAULT Transition (UnconfirmedEventNotification) 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 8.5.17.X1.2 FAULT-to-FAULT transition (UnconfirmedEventNotification) 
 Test Conditionality If the IUT supports only one fault condition, this test shall be skipped. 
 Test Directives  
 Testing Hints  

 
 

[In BTL Specified Tests, add a new test in this section] 
 
8.4.17.X1 CHANGE_OF_RELIABILITY – FAULT_LISTED Tests (ConfirmedEventNotification) 
 
8.4.17.X1.1 NORMAL to FAULT Transition (ConfirmedEventNotification) 
Reason for Change: No tests exist. 
 
Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from 
NORMAL to FAULT event states. 
 
Test Concept: The test concept corresponds to 8.5.17.X1.1. 
 
Configuration Requirements: The configuration requirements are identical to those in 8.5.17.X1.1, except that the 'Issue 
Confirmed Notifications' parameter shall have a value of TRUE. 
 



Addendum aq to BTL Test Package 16.1   

 4 

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.X1.1, except that the 
UnconfirmedEventNotification requests are ConfirmedEventNotification requests and the TD acknowledges receiving the 
notifications. 
 
Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.X1.1, except that the event 
notifications shall be conveyed using a ConfirmedEventNotification service request. 
 
8.4.17.X1.2 FAULT-to-FAULT transition (ConfirmedEventNotification) 
Reason for Change: No tests exist. 
 
Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from 
FAULT to FAULT event states. 
 
Test Concept: The test concept corresponds to 8.5.17.X1.2. 
 
Configuration Requirements: The configuration requirements are identical to those in 8.5.17.X1.2, except that the 'Issue 
Confirmed Notifications' parameter shall have a value of TRUE. 
 
Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.X1.2, except that the 
UnconfirmedEventNotification requests are ConfirmedEventNotification requests and the TD acknowledges receiving the 
notifications. 
 
Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.X1.2, except that the event 
notifications shall be conveyed using a ConfirmedEventNotification service request. 
 
 
8.5.17.X1 CHANGE_OF_RELIABILITY - FAULT_LISTED Tests (UnconfirmedEventNotification) 
 
8.5.17.X1.1 NORMAL to FAULT Transition (UnconfirmedEventNotification) 
Reason for Change: No tests exist. 
 
Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from 
NORMAL to FAULT event states. 
 
Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_LISTED algorithm. Ensure that no 
fault conditions exist in the object. Set pMonitoredList to FV1, a non-empty list of supported faults. Verify the correct 
transition is generated. The fault condition is removed by setting pMonitoredList to an empty list. Verify the correct 
transition is generated. 
 
Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 
is initially configured to have no fault conditions present, and has an Event_State of NORMAL. 
 
Test Steps: 
 
1. VERIFY pCurrentReliability = NO_FAULT_DETECTED 
2. VERIFY pCurrentState = NORMAL 
3. IF (pMonitoredList is writable) THEN 
  WRITE pMonitoredList = FV1 
 ELSE 
  MAKE (pMonitoredList = FV1) 
4. BEFORE Notification Fail Time 
  RECEIVE UnconfirmedEventNotification-Request, 
   'Process Identifier' =   (any valid process Identifier), 
   'Initiating Device Identifier' =  IUT 
   'Event Object Identifier' =  O1 
   'Time Stamp' =     (any valid time stamp), 
   'Notification Class' =   (the notification class configured for O1), 
   'Priority' =    (the value configured for the transition), 
   'Event Type' =     CHANGE_OF_RELIABILITY, 
   'Message Text' =   (optional, any valid message text), 



Addendum aq to BTL Test Package 16.1   

 5 

   'Notify Type' =   ALARM | EVENT, 
   'AckRequired' =     TRUE | FALSE, 
   'From State' =     NORMAL, 
   'To State' =      FAULT, 
   'Event Values' =   (FAULT_LISTED,  
       (T, T, ? ?),  
       (A list of valid values for properties required to be reported  
        for O1, and 0 or more other properties of O1)) 
5. VERIFY pCurrentReliability = FAULTS_LISTED 
6. VERIFY pCurrentState = FAULT 
7. IF (pMonitoredList is writable) THEN 
  WRITE pMonitoredList = (an empty list) 
 ELSE 
  MAKE (pMonitoredList = (an empty list) 
8. BEFORE Notification Fail Time 
  RECEIVE UnconfirmedEventNotification-Request, 
   'Process Identifier' =   (any valid process Identifier), 
   'Initiating Device Identifier' =  IUT 
   'Event Object Identifier' =  O1 
   'Time Stamp' =   (any valid time stamp), 
   'Notification Class' =   (the notification class configured for O1), 
   'Priority' =      (the value configured for the transition), 
   'Event Type' =     CHANGE_OF_RELIABILITY, 
   'Message Text' =   (optional, any valid message text), 
   'Notify Type' =   ALARM | EVENT,   
   'AckRequired' =     TRUE | FALSE, 
   'From State' =     FAULT, 
   'To State' =      NORMAL, 
   'Event Values' =   (NO_FAULT_DETECTED,  
       (F, F, ? ?),  
       (A list of valid values for properties required to be reported  
        for O1, and 0 or more other properties of O1)) 
9. pCurrentReliability = NO_FAULT_DETECTED 
10. VERIFY pCurrentState = NORMAL  
 
8.5.17.X1.2 FAULT-to-FAULT transition (UnconfirmedEventNotification) 
Reason for Change: No tests exist. 
 
Purpose: This test case verifies the correct operation of the FAULT_LISTED event algorithm for objects transitioning from 
FAULT to FAULT event states. 
 
Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_LISTED algorithm. Ensure that a 
fault condition, FV1, exists in the object. Set pMonitoredList to FV2, a non-empty list different from FV1. Verify the correct 
transition is generated. 
 
Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 
is initially configured to have a fault by having pMonitoredList contain a non-empty list, FV1, and has an Event_State of 
FAULT. 
 
Test Steps: 
 
1. VERIFY pCurrentReliability = FAULT_LISTED 
2. VERIFY pCurrentState = FAULT 
3. IF (pMonitoredList is writable) THEN 
  WRITE pMonitoredList = FV2 
 ELSE 
  MAKE (pMonitoredList = FV2)  
4. BEFORE Notification Fail Time 
  RECEIVE UnconfirmedEventNotification-Request, 
   'Process Identifier' =   (any valid process Identifier), 



Addendum aq to BTL Test Package 16.1   

 6 

   'Initiating Device Identifier' =  IUT 
   'Event Object Identifier' =  O1 
   'Time Stamp' =     (any valid time stamp), 
   'Notification Class' =   (the notification class configured for O1), 
   'Priority' =      (the value configured for the transition), 
   'Event Type' =     CHANGE_OF_RELIABILITY, 
   'Message Text' =   (optional, any valid message text), 
   'Notify Type' =   ALARM | EVENT, 
   'AckRequired' =     TRUE | FALSE, 
   'From State' =     FAULT, 
   'To State' =      FAULT, 
   'Event Values' =   (FAULT_LISTED, 
       (T, T, ? ?), 
       (A list of valid values for properties required to be reported 
       for O1, and 0 or more other properties of O1)) 
5. VERIFY pCurrentReliability = FAULTS_LISTED 
6. VERIFY pCurrentState = FAULT 
 

  



Addendum aq to BTL Test Package 16.1   

 7 

BTL-16.1aq-2: Add Testing for Elevator Object Types - BTLWG-699 
 
Overview: 
 
The existing test package does not have any coverage for Elevator Group, Escalator, and Lift object types. 
 
Changes: 
 
[In BTL Checklist, completely replace the entries for Elevator Group, Lift and Escalator objects] 
 

…. 
Elevator Group Object 

 R1 Base Requirements  
 O Supports Landing_Call_Control property 

1 Protocol_Revision 18 or higher must be claimed 
Lift Object 

 R1 Base Requirements  
 S Supports writable Out_Of_Service property 
 O Supports Energy_Meter_Ref and Energy_Meter properties 
 O Contains an object with Reliability_Evaluation_Inhibit property 

1Protocol_Revision 18 or higher must be claimed 
Escalator Object 

 R1 Base Requirements  
 S Supports writable Out_Of_Service property 
 O Supports Energy_Meter_Ref and Energy_Meter properties 
 O Contains an object with Reliability_Evaluation_Inhibit property 

1 Protocol_Revision 18 or higher must be claimed 
…. 

 
 
 
[In BTL Test Plan, modify section 3.58 Elevator Group Object]  

3.58     Elevator Group Object 

3.58.1 Base Requirements 
Contact BTL for interim tests for this object. Base requirements must be met by any IUT that can contain Elevator Group 
objects. 

BTL - 7.3.2.X45.1 - Machine_Room_ID property references a Positive Integer Value Object  
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

BTL - 7.3.2.X45.2 - Linking of Lift and Escalator Objects under Group_Members property of the Elevator 
Group Object 

 

 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
 

3.58.2 Supports Landing_Call_Control Property 
The IUT contains, or can be made to contain, an Elevator Group object that contains the Landing_Call_Control Property. 

BTL - 7.3.2.X45.3 - Linking of Landing_Call_Control Property Test  
 Test Conditionality Must be executed.  
 Test Directives  
 Testing Hints  
 



Addendum aq to BTL Test Package 16.1   

 8 

 
 
[In BTL Test Plan, modify section 3.59 Lift Object] 

 3.59     Lift Object 

3.59.1 Base Requirements 
Contact BTL for interim tests for this object. Base requirements must be met by any IUT that can contain Lift objects. 

BTL - 7.3.2.X45.2 - Linking of Lift and Escalator Objects under Group_Members property of the Elevator 
Group Object 

 Test Conditionality If the IUT contains at least one Elevator_Group object, this test may be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X46.1- Array Size of the Lift Object properties based on car door size 
 Test Conditionality This test must be executed if two or more of the BACnetARRAY properties 

Car_Door_Text, Assigned_Landing_Calls, Making_Car_Call, 
Registered_Car_Call, Car_Door_Status, Car_Door_Command and 
Landing_Door_Status are present.  

 Test Directives  
 Testing Hints  
BTL - 7.3.2.X46.2- Lift Properties Operational Test 
 Test Conditionality Must be executed.  Repeat the test for each supported method of control 

(modification of Making_Car_Call property, modification of 
Assigned_Landing_Calls) 

 Test Directives  
 Testing Hints  

3.59.2 Supports writable Out_Of_Service property  
The Out_Of_Service property in Lift objects contained in the IUT is either writable or can be modified by any other means. 

BTL - 7.3.2.X46.3 - Out_Of_Service, Status_Flags for Lift Object 
 Test Conditionality If the Out_Of_Service property is writable or can be modified by other means 

this test must be executed. 
 Test Directives  
 Testing Hints  

 
3.59.3 Supports Energy_Meter_Ref and Energy_Meter Properties 
The Energy_Meter_Ref and Energy_Meter properties are both present in at least one Lift object. 

BTL - 7.3.2.X46.4 - Energy_Meter_Ref Property Tests 
 Test Conditionality If the IUT does not contain a Lift object with both Energy_Meter_Ref and 

Energy_Meter properties, this test may be skipped. 
 Test Directives  
 Testing Hints  

3.59.4 Contains an object with Reliability_Evaluation_Inhibit Property 
The IUT contains, or can be made to contain, a Reliability_Evaluation_Inhibit property that is configurable to a value of TRUE. 

BTL - 7.3.1.X8.1 - Reliability_Evaluation_Inhibit Test 
 Test Conditionality If no object exists in the IUT for which fault conditions can be generated, then 

this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.1.X8.2 - Reliability_Evaluation_Inhibit Summarization Test 
 Test Conditionality If no object exists in the IUT for which fault conditions can be generated, then 

this test shall be skipped. 
 Test Directives  



Addendum aq to BTL Test Package 16.1   

 9 

 Testing Hints  
 

[In BTL Test Plan, modify section 3.60 Escalator Object]  

3.60     Escalator Object 

3.60.1 Base Requirements 
Contact BTL for interim tests for this object. Base requirements must be met by any IUT that can contain Escalator objects. 

BTL - 7.3.2.X45.2 Linking of Lift and Escalator Objects under Group_Members property of the Elevator 
Group Object 
 Test Conditionality If the IUT contains at least one Elevator_Group object, this test may be 

skipped. 
 Test Directives  
 Testing Hints  

3.60.2 Supports Writable Out_Of_Service property 
The Out_Of_Service property in Escalator objects contained in the IUT is either writable or can be modified by any other 
means.  

BTL - 7.3.2.X47.1 - Out_Of_Service, Status_Flags for Escalator Object 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

3.60.3 Supports Energy_Meter_Ref and Energy_Meter Properties 
The Energy_Meter_Ref and Energy_Meter properties are both present in at least one Escalator object. 

BTL - 7.3.2.X46.4 Energy_Meter_Ref Property Tests 
 Test Conditionality If the IUT does not contain an Escalator object with both Energy_Meter_Ref 

and Energy_Meter properties, this test may be skipped. 
 Test Directives  
 Testing Hints  

3.60.4 Contains an object with Reliability_Evaluation_Inhibit Property 
The IUT contains, or can be made to contain, a Reliability_Evaluation_Inhibit property that is configurable to a value of TRUE. 

BTL - 7.3.1.X8.1 - Reliability_Evaluation_Inhibit Test 
 Test Conditionality If no object exists in the IUT for which fault conditions can be generated, then 

this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.1.X8.2 - Reliability_Evaluation_Inhibit Summarization Test 
 Test Conditionality If no object exists in the IUT for which fault conditions can be generated, then 

this test shall be skipped. 
 Test Directives  
 Testing Hints  

 
 
 
[In BTL Specified Tests, add new tests] 
 
7.3.2.X45 Elevator Group Object Tests 
 
7.3.2.X45.1  Machine_Room_ID property references a Positive Integer Value Object 
Reason for Change: No tests exist. 



Addendum aq to BTL Test Package 16.1   

 10 

 
Purpose: To verify that the Machine_Room_ID property of an Elevator Group object can only reference a Positive Integer 
Value object or an object with instance number of 4194303. 
 
Test Concept: The Machine_Room_ID property of an Elevator Group object, EG1, is read to verify that it contains an object 
reference to a Positive Integer Value object, PIV, or an object with instance number of 4194303.  If the property is writable, 
an attempt is made to write an object reference, O1, that is not a Positive Integer Value object and has an instance number 0-
4194302 (inclusive) to verify that an error is returned.  
 
Test Steps: 
 
1. IF (Machine_Room_ID contains room identification number) THEN 
 VERIFY (EG1), Machine_Room_ID = (PIV) 
    ELSE  
 VERIFY (EG1), Machine_Room_ID = (any object type, 4194303) 
2. IF (Machine_Room_ID is writeable) THEN 
 Transmit WriteProperty-Request 
  ‘Object Identifier’=  EG1, 
  ‘Property Identifier’=  Machine_Room_ID, 
  ‘Property Value’= O1 
 Receive BACnet-Error-PDU 
  ‘Error Class’= PROPERTY,  
  ‘Error Code’= VALUE_OUT_OF_RANGE 
 
 
7.3.2.X45.2  Linking of Lift and Escalator Objects under Group_Members property of the Elevator Group Object 
Reason for Change: No tests exist. 
 
Purpose: This test verifies that objects in the Group_Members property of Elevator Group objects contain a reference back to 
the Elevator Group that has it listed as a member. 
 
Test Concept: The Group_Members property of each Elevator Group object is read to identify member Lift and Escalator 
objects.  The Elevator_Group property is read from each member Lift object and Escalator object to verify it contains a 
reference back to the appropriate Elevator Group object.  The Elevator_Group property of the remaining Lift and Escalator 
objects are read to verify that it contains an object identifier instance of 4194303.   
 
Configuration Requirements: If the IUT supports a Group_Members property that can be made to contain a reference to one or 
more Lift objects, than it shall be configured as such. If the IUT supports a Group_Members property that can be made to 
contain a reference to one or more Escalator objects, it shall be configured as such.   
 
Test Steps: 
 
1.  REPEAT EGO = (each Elevator Group object in the IUT) { 
 READ L1 = (EGO, Group_Members) 
  IF (L1 is not empty) THEN 
   REPEAT O1 = (each Lift or Escalator object in L1) { 
   READ EGP = (O1, Elevator_Group) 
   VERIFY EGP = EGO  
   } 
 } 
3. REPEAT O1 = (each remaining Lift or Escalator object in the IUT) { 
 READ EGP = (O1, Elevator_Group) 
 VERIFY EGP = (any object type, 4194303) 
 } 
    
 
7.3.2.X45.3  Landing_Call_Control test 
Reason for Change: No tests exist. 
 



Addendum aq to BTL Test Package 16.1   

 11 

Purpose: To verify that writing to the Landing_Call_Control property updates the Landing_Call_Control and Landing_Calls 
properties in the Elevator Group object and updates the Assigned_Landing_Calls property of a linked Lift object  
 
Test Concept: The Landing_Call_Control property of an Elevator Group object (EG1) is written with a value that represents a 
request to travel upwards from FN1.  The Landing_Call_Control and Landing_Calls properties of EG1 and the 
Assigned_Landing_Calls property of the linked Lift object (L1) are checked to verify they updated correctly.   The 
Landing_Call_Control property is written with a value that represents a request to travel downwards from FN2 and the 
aforementioned properties are checked again. The optional 'floor-text' parameter is used in one of the WRITE steps to verify 
the server will ignore this parameter when present.  In the test steps, DF represents a valid destination floor. 
 
Configuration Requirements: Lift object (L1) is contained in the Group_Members property of the Elevator Group object (EG1) 
and has a door at array index Y on the same side of the landing call. FN1 and FN2 values should be sufficiently far away from 
the current position of L1 to allow for reading of the property values.  No other processes shall be generating landing calls 
during this test. 
 
Test Steps: 
 
1. WRITE EG1, Landing_Call_Control = (FN1, UP | DF (DF > FN1), "test string") 
2. VERIFY EG1, Landing_Call_Control = (FN1, UP | DF, floor-text (optional)) 
3. VERIFY EG1, Landing_Calls = (FN1, UP | DF, floor-text (optional)) 
4. IF (L1 contains the Assigned_Landing_Calls property) 
 VERIFY L1, Assigned_Landing_Calls, ARRAY INDEX (Y) = (FN1, UP) 
5. WAIT (a time interval sufficient for the car to complete the call + Internal Processing Fail Time) 
6. VERIFY EG1, Landing_Calls = () 
7. IF (L1 contains the Assigned_Landing_Calls property) 
 VERIFY L1, Assigned_Landing_Calls, ARRAY_INDEX (Y) = () 
8. WRITE EG1, Landing_Call_Control = (FN2, DOWN | DF (DF < FN2)) 
9. VERIFY EG1, Landing_Call_Control = (FN2, DOWN | DF, floor-text (optional)) 
10.VERIFY EG1, Landing_Calls = (FN2, DOWN | DF, floor-text (optional)) 
11.IF (L1 contains the Assigned_Landing_Calls property) 
 VERIFY L1, Assigned_Landing_Calls = (FN1, DOWN) 
12.WAIT (a time interval sufficient for the car to complete the call + Internal Processing Fail Time) 
13.VERIFY EG1, Landing_Calls = () 
14. IF (L1 contains the Assigned_Landing_Calls property) 
 VERIFY L1, Assigned_Landing_Calls, ARRAY_INDEX (Y) = () 
 
Notes to Tester: If the Elevator Group contains more than 1 lift, the value written to Landing_Call_Control may get assigned 
to any other lift in the group based on the lift algorithm. 
 
7.3.2.X46 Lift Object Tests 
 
7.3.2.X46.1 Array Size of the Lift Object properties based on car door size. 
Reason for Change: No tests exist. 
 
Purpose:  To verify that the size of the arrays for the Car_Door_Text, Assigned_Landing_Calls, Making_Car_Call, 
Registered_Car_Call, Car_Door_Status, Car_Door_Command and Landing_Door_Status properties are the same.  
 
Test Concept: The array size for each of the above properties, if present, is read and the sizes are compared to verify they are 
all equal. 
 
Test Steps: 
 
1. VERIFY (L1), Car_Door_Text = (Number of car doors present in the Lift), ARRAY INDEX = 0 
2. VERIFY (L1), Assigned_Landing_Calls = (Number of car doors present in Lift), ARRAY INDEX = 0 
3. VERIFY (L1), Making_Car_Call = (Number of car doors present in the Lift), ARRAY INDEX = 0 
4. VERIFY (L1), Registered_Car_Call = (Number of car doors present in the Lift), ARRAY INDEX = 0 
5. VERIFY (L1), Car_Door_Status = (Number of car doors present in the Lift), ARRAY INDEX = 0 
6. VERIFY (L1), Car_Door_Command = (Number of car doors present in the Lift), ARRAY INDEX = 0 
7. VERIFY (L1), Landing_Door_Status = (Number of car doors present in the Lift), ARRAY INDEX = 0 
8. CHECK (Array index 0 of all these properties shall be same) 



Addendum aq to BTL Test Package 16.1   

 12 

 
7.3.2.X46.2 Lift Properties Operational Test 
Reason for Change: No tests exist. 
 
Purpose: To verify that the property values in the Lift object update when it responds to a call. 
 
Test Concept: The test starts with the Lift object, L1, in the lowest floor that it serves, LF, and property values are checked.  A 
request is made to move the lift to the highest floor that it serves, HF, and property values are checked while the lift is moving 
and again when the lift arrives at HF.   If the IUT does not contain the property specified in the test step, that step shall be 
skipped. In the test steps, DSR is a specific array index corresponding to the car door servicing the request.  
 
Configuration Requirements: At the start of the test, the lift corresponding to L1 is at LF and there are no active calls for L1.  
Throughout the test, L1 is in a normal operating state such that Car_Mode = NORMAL, Out_Of_Service = FALSE, and no 
other processes shall be attempting to control L1. 
 
Test Steps: 
 
1. READ LF = Car_Position 
2. READ DS1 = Car_Door_Status 
3. VERIFY Floor_Text = (any value), ARRAY INDEX = LF 
4. VERIFY Floor_Text = (any value), ARRAY INDEX = HF 
5. REPEAT N = (each array element) DO { 

VERIFY Assigned_Landing_Calls = {}, ARRAY INDEX = N 
} 

6. REPEAT N = (each array element) DO { 
VERIFY Registered_Car_Calls = {}, ARRAY INDEX = N 
} 

7. VERIFY Car_Moving_Direction <> UP | DOWN  
8. VERIFY Car_Mode = NORMAL 
9. VERIFY Next_Stopping_Floor = LF 
10. VERIFY Passenger_Alarm = FALSE 
11. VERIFY Reliability = NO_FAULT_DETECTED 
12. VERIFY Out_Of_Service = FALSE 
13. VERIFY Car_Drive_Status = STATIONARY | UNKNOWN 
14. REPEAT N = (each array element) DO { 

VERIFY Landing_Door_Status = (a list containing an entry {LF, DS1[N]}), ARRAY INDEX = N 
} 

15. MAKE (A command that will cause L1 to travel to HF) 
 

--Complete steps 16 – 19 before L1 reaches HF 
16. IF (command was generated via Landing call) THEN 

VERIFY Assigned_Landing_Calls = (HF, DOWN), ARRAY INDEX = DSR 
 } 
 ELSE --command was generated via Car call 
  VERIFY Making_Car_Call = (HF), ARRAY INDEX = DSR 
  VERIFY Registered_Car_Calls = (HF), ARRAY INDEX = DSR 
  VERIFY Car_Assigned_Direction = (UP) 
  } 
17. VERIFY Car_Moving_Direction = UP 
18. VERIFY Next_Stopping_Floor = HF 
19. VERIFY Car_Drive_Status <> STATIONARY 
20. WAIT (for L1 to reach HF) + Internal Processing Fail Time 
21. REPEAT N = (each array element) DO { 

VERIFY Registerd_Car_Calls = {}, ARRAY INDEX = N 
} 

22. VERIFY Car_Position = HF 
23. VERIFY Car_Moving_Direction <> UP | DOWN 
24. VERIFY Next_Stopping_Floor = HF 
25. READ DS2 = Car_Door_Status 
26. REPEAT (N = each array element) DO{ 



Addendum aq to BTL Test Package 16.1   

 13 

VERIFY Landing_Door_Status = (a list containing an entry {LF, DS2[N]}), ARRAY INDEX = N 
} 
 

7.3.2.X46.3 Out_Of_Service, Status_Flags for Lift object 
Reason for Change: No tests exist. 
 
Purpose: To verify the interrelationship between Out_Of_Service and Status_Flags and that properties dictated by the standard 
to be writable when Out_Of_Service is TRUE are writable when Out_Of_Service is TRUE. 
 
Test Concept: Out_Of_Service is set to TRUE and Status_Flags is checked to verify the Out_Of_Service flag is set.  While 
Out_Of_Service is TRUE, each of the properties (represented by LP), if present in the object, is read to obtain the current 
property value, X, and written with a different property value, Y.  The property value is read again to verify it changed to Y. 
 
LP = (Assigned_Landing_Calls, Registered_Car_Call, Car_Position, Car_Moving_Direction, Car_Assigned_Direction, 
Car_Door_Status, Car_Door_Zone, Car_Load, Next_Stopping_Floor, Passenger_Alarm, Energy_Meter, Car_Drive_Status, 
Fault_Signals, Landing_Door_Status, Making_Car_Call, Car_Door_Command, and Car_Mode) 
 
Test Steps: 
 
1. WRITE Out_Of_Service = TRUE 
2. VERIFY Out_Of_Service = TRUE 
3. VERIFY Status_Flags = (?, ?, ?, TRUE) 
4. REPEAT P = (each property in LP present in the object) DO{ 
        READ X = P 
 WRITE P = Y 
 WAIT Internal Processing Fail Time 
 VERIFY  (P =Y) 
 } 
 
7.3.2.X46.4 Energy_Meter_Ref Property Tests 
Reason for Change: No tests exist. 
 
Purpose: To verify linking of Energy_Meter property and Energy_Meter_Ref property. 
 
Test Concept: If the Energy_Meter_Ref property of an object (O1) is present and initialized (contains an instance other than 
4194303), then the Energy_Meter property, if present, shall have a value of 0.0. If Energy_Meter_Ref is present and is un-
initialized, then the value of Energy_Meter property shall have any valid value.  
 
Test Steps: 
 
1.    IF (Energy_Meter_Ref is present and initialized with instance other than 4194303) THEN 

VERIFY Energy_Meter = 0.0 
       ELSE 
 VERIFY Energy_Meter = (Any Valid Value) 
 
7.3.2.X47 Escalator Object Tests 
 
7.3.2.X47.1 Out_Of_Service, Status_Flags for Escalator object 
Reason for Change: No tests exist. 
 
Purpose: To verify the interrelationship between Out_Of_Service and Status_Flags and that properties dictated by the standard 
to be writable when Out_Of_Service is TRUE are writable when Out_Of_Service is TRUE. 
 
Test Concept: Out_Of_Service is set to TRUE and Status_Flags is checked to verify the Out_Of_Service flag is set.  While 
Out_Of_Service is TRUE, each of the properties (represented by EP), if present in the object, is read to obtain the current 
property value, X, and written with a different property value, Y.  The property value is read again to verify it changed to Y. 
 
EP = (Power_Mode, Operation_Direction, Escalator_Mode , Energy_Meter, Fault_Signals, and Passenger_Alarm) 
 
Test Steps: 



Addendum aq to BTL Test Package 16.1   

 14 

 
1. WRITE Out_Of_Service = TRUE 
2. VERIFY Out_Of_Service = TRUE 
3. VERIFY Status_Flags = (?, ?, ?, TRUE) 
4. REPEAT P = (each property in LP present in the object)  DO { 
        READ X = P 
 WRITE (P = Y) 
 WAIT Internal Processing Fail Time 
 VERIFY  (P =Y) 
 } 
 
  



Addendum aq to BTL Test Package 16.1   

 15 

BTL-16.1aq-3: Add Testing for SubscribeCOVPropertyMultiple - BTLWG-119 
 
Overview: 
 
Addenda aq-2 added COVMultiple services: SubscribeCOVPropertyMultiple, ConfirmedCOVNotificationMultiple, 
UnconfirmedCOVNotificationMultiple services to all multiple values to be subscribed to and allow individual timestamps in 
each notification.  This service can be used with any property of any object, so long as it is supported on the A and B sides. 
 
Changes: 
 
[In BTL Checklist, replace the data for DS-COVM-A and DS-COVM-B to add support for these BIBBs] 
 

Data Sharing - Change Of Value Multiple - A 
 R Base Requirements 
 R Subscribes with lifetimes up to 8 hours in duration 
 O Can cancel subscriptions 
 C1 Can subscribe for confirmed notifications 
 C1 Can subscribe for unconfirmed notifications 
 O Supports subscribing to timestamped notifications 
 C2 Can subscribe to non-array properties 
 C2 Can subscribe to array elements 
 C2 Can subscribe to the size of an array 
 C2 Can subscribe to whole arrays 
 O Can subscribe to list properties 
 O Can subscribe with a COV Increment 
 C3 Can subscribe to NULL property values 
 C3 Can subscribe to BOOLEAN property values 
 C3 Can subscribe to Enumerated property values 
 C3 Can subscribe to INTEGER property values 
 C3 Can subscribe to Unsigned property values 
 C3 Can subscribe to REAL property values 
 C3 Can subscribe to Double property values 
 C3 Can subscribe to Time property values 
 C3 Can subscribe to Date property values 
 C3 Can subscribe to CharacterString property values 
 C3 Can subscribe to OctetString property values 
 C3 Can subscribe to BitString property values 
 C3 Can subscribe to BACnetObjectIdentifier property values 
 C3 Can subscribe to Value_Source property values 
 C3 Can subscribe to constructed property values 
 C3 Can subscribe to proprietary property values of basic data types 

1 At least one of these options is required in order to claim conformance to this BIBB. 
2 At least one of these options is required in order to claim conformance to this BIBB. 
3 At least one of these options is required in order to claim conformance to this BIBB. 

Data Sharing - Change Of Value Multiple - B 
 R Base Requirements 
 R Supports COVM Lifetimes up to 8 hours in duration 
 R Supports a minimum of 5 COV-multiple contexts with 5 COV-references per context 
 C1 Supports COVM for non-array property 
 C1 Supports COVM for array element 
 C1 Supports COVM for the size of an array 
 C1 Supports COVM for the whole array 
 O Supports COVM for list property 
 C2 Supports COVM for NULL property values 
 C2 Supports COVM for BOOLEAN property values 
 C2 Supports COVM for Enumerated property values 
 C2 Supports COVM for INTEGER property values 
 C2 Supports COVM for Unsigned property values 



Addendum aq to BTL Test Package 16.1   

 16 

 C2 Supports COVM for REAL property values 
 C2 Supports COVM for Double property values 
 C2 Supports COVM for Time property values 
 C2 Supports COVM for Date property values 
 C2 Supports COVM for CharacterString property values 
 C2 Supports COVM for OctetString property values 
 C2 Supports COVM for BitString property values 
 C2 Supports COVM for BACnetObjectIdentifier property values 
 C2 Supports COVM for Value_Source property values 
 C2 Supports COVM for constructed property values 

1 At least one of these options is required in order to claim conformance to this BIBB. 
2 At least one of these options is required in order to claim conformance to this BIBB. 

 
[In BTL Test Plan, replace sections 4.25 and 4.26 to add support for these BIBBs] 

4.25 Data Sharing - Change Of Value Multiple - A 
4.25.1 Base Requirements 
Base requirements must be met by any IUT claiming conformance to this BIBB. 

BTL - 8.X12.1.5 - Subscribe to Two Properties in a Single Object 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 8.X12.1.6 - Subscribe to Properties in Multiple Objects Using a Single Request 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 

4.25.2 Subscribes with lifetimes up to 8 hours in duration 
The IUT is capable of subscribing with a lifetime less than or equal to 28800 seconds (8 hours). 

BTL - 8.X12.1.3 - Requests 8 Hour Lifetimes 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 

4.25.3 Can Cancel Subscriptions 
The IUT can explicitly cancel COV subscriptions (in contrast to just letting the subscription expire). 

BTL - 8.X12.1.8 - Canceling a Subscription  
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 

4.25.4 Can Subscribe for Confirmed Notifications 
The IUT can subscribe for, receive, and process confirmed Change of Value Multiple notifications. 

BTL - 8.X12.1.1 - Confirmed Notifications Subscription 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 8.X12.2.2 - Unknown Subscription 
 Test Conditionality Must be executed. 
 Test Directives Repeat this test with an Invalid Process Identifier, Invalid Monitored Object 

Identifier, and Invalid Monitored property reference 



Addendum aq to BTL Test Package 16.1   

 17 

 Testing Hints  
BTL - 8.X12.2.1 - Change of Value Multiple Notification Arrives After Subscription Has Expired 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

4.25.5 Can Subscribe for Unconfirmed Notifications 
The IUT can subscribe for, receive, and process unconfirmed Change of Value Multiple notifications. 

BTL - 8.X12.1.2 - Unconfirmed Notifications Subscription 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 

4.25.6 Supports Subscribing to Timestamped Notifications 
The IUT can subscribe for and receive Timestamped Notifications. 

BTL - 8.X12.1.4 - Subscribe to Timestamped Notifications 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 

4.25.7 Can Subscribe to Non-array Properties 
The IUT can subscribe for and receive a Change of Value Multiple notification that that references a non-array property and 
can correctly process the response. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing the 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property' = (any 
valid non-array property in the Monitored Object, which the vendor supports 
in a SubscribeCOVPropertyMultiple-Request) 

 Testing Hints  

4.25.8 Can Subscribe to Array Elements 
The IUT can subscribe for and receive a Change of Value Multiple notification that references a specific element of an array 
property and can correctly process the response. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing the 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any valid array property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request and array index with value different 
from 0) 

 Testing Hints  
 

4.25.9 Can Subscribe to the Size of an Array 
The IUT can subscribe for and receive a Change of Value Multiple notification that references the size of an array property and 
can correctly process the response. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing the 

property to monitor and which the vendor supports in a 



Addendum aq to BTL Test Package 16.1   

 18 

SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any valid array property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and array index with value equal 
to 0) 

 Testing Hints  
 

4.25.10 Can Subscribe to Whole Arrays 
The IUT can subscribe for and receive a Change of Value Multiple notification for an array property and can correctly process 
the response. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing the 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any valid array property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request with no array index) 

 Testing Hints  
 

4.25.11 Can Subscribe to List Properties 
The IUT can subscribe for and receive a Change of Value Multiple notification that references a list property and can correctly 
process the response 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing the list 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any valid list property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) 

 Testing Hints  
 

4.25.12 Can Subscribe with a COV Increment 
The IUT can subscribe with the parameter 'COV Increment'.  

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a  

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and ensure that IUT generates a 
SubscribeCOVPropertyMulitple-Request which contains 
'COV Increment' parameter, 

 Testing Hints  
 

4.25.13 Can Subscribe to NULL Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from property that contains a NULL 
value. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a NULL value) 



Addendum aq to BTL Test Package 16.1   

 19 

 Testing Hints Schedule_Default of the Schedule Object, Alarm_Values and Fault_Values 
of the CharacterString Value Object and Low_Diff_Limit in the Loop Object 
are standard properties that should accept a written NULL. 

 

4.25.14 Can Subscribe to BOOLEAN Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from BOOLEAN property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a BOOLEAN 
value) 

 Testing Hints  
 

4.25.15 Can Subscribe to Enumerated Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from Enumerated property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain an Enumerated 
value) 

 Testing Hints  
 

4.25.16 Can Subscribe to INTEGER Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from INTEGER property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain an Integer value) 

 Testing Hints  

4.25.17 Can Subscribe to Unsigned Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from Unsigned  property values. 

BTL - 8.X12.1.7 - Change of Value Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain an Unsigned  
value) 

 Testing Hints  
 



Addendum aq to BTL Test Package 16.1   

 20 

4.25.18 Can Subscribe to REAL Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from REAL property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a REAL value) 

 Testing Hints  
 

4.25.19 Can Subscribe to Double Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from Double property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a Double value) 

 Testing Hints  
 

4.25.20 Can Subscribe to Time Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from Time property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a Time value) 

 Testing Hints  
 

4.25.21 Can Subscribe to Date Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from Date property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a Date value) 

 Testing Hints  
 

4.25.22 Can Subscribe to CharacterString Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from CharacterString property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 



Addendum aq to BTL Test Package 16.1   

 21 

= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a CharacterString 
value) 

 Testing Hints  
 

4.25.23 Can Subscribe to OctetString Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from OctetString property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain an OctetString 
value) 

 Testing Hints  
 

4.25.24 Can Subscribe to BitString Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from BitString property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a BitString value) 

 Testing Hints  
 

4.25.25 Can Subscribe to BACnetObjectIdentifier Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from BACnetObjectIdentifier property 
values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a 
BACnetObjectIdentifier value) 

 Testing Hints  
 

4.25.26 Can Subscribe to Value_Source Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from Value_Source property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object which contains a 

Value_Source property and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= Value_Source 

 Testing Hints  
 



Addendum aq to BTL Test Package 16.1   

 22 

4.25.27 Can Subscribe to Constructed Property Values 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from constructed property values. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubcribeCOVPropertyMultiple-Request that can contain a constructed 
property value) 

 Testing Hints  

4.25.28 Can Subscribe to Proprietary Property Values of Basic Data Types 
The IUT can subscribe for, receive, and process Change of Value Multiple notifications from proprietary property values of 
basic data types. 

BTL - 8.X12.1.7 - Change of Value Multiple Notification 
 Test Conditionality Must be executed. 
 Test Directives Execute test using 'Monitored Object' = (any valid object containing a 

property to monitor and which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request) and 'Monitored Property Identifier' 
= (any property which the vendor supports in a 
SubscribeCOVPropertyMultiple-Request that can contain a proprietary value 
of basic data types) 

 Testing Hints  
 
 

4.26 Data Sharing - Change Of Value Multiple - B 

4.26.1 Base Requirements 
Base requirements must be met by any IUT claiming conformance to this BIBB. 

BTL - 9.X41.1.1 - Supports Non-Timestamped Notifications 
 Test Conditionality Must be executed. 
 Test Directives Execute this test using a property that supports non-timestamped notifications 
 Testing Hints  
BTL - 9.X41.1.2 - Supports Timestamped Notifications 
 Test Conditionality Must be executed. 
 Test Directives Execute this test using a property that supports timestamped notifications 
 Testing Hints  
BTL - 9.X41.1.5 - Supports Subscriptions Multiple Properties Using Multiple Requests 
 Test Conditionality Must be executed. 
 Test Directives Select objects and properties which support COV-multiple notifications 
 Testing Hints  
BTL - 9.X41.1.9 - Canceling Subsets of COVM Subscriptions 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 9.X41.1.10 - Canceling Expired or Non-Existing Subscriptions 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 9.X41.1.8 - Updating Existing Subscriptions   
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  



Addendum aq to BTL Test Package 16.1   

 23 

BTL - 9.X41.1.7 - Supports Client-Supplied COV Increment  
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 9.X41.2.1 - The Monitored Object Does Not Support COVM Notification 
 Test Conditionality Must be executed, unless all objects support SubscribeCOVPropertyMultiple 

on at least one of its properties. 
 Test Directives Apply the test to a property in an object that does not support COVM (on any 

property). 
 Testing Hints  
BTL - 9.X41.2.2 - The Monitored Property Does Not Support COVM Notification 
 Test Conditionality Must be executed, unless all objects support SubscribeCOVPropertyMultiple 

on all properties. 
 Test Directives Apply the test to a property for which the IUT does not support COVM, 

which is contained in an object that does support COVM (on a different 
property). 

 Testing Hints  
BTL - 9.X41.2.3 - Monitored Object Does Not Exist 
 Test Conditionality Must be executed 
 Test Directives  
 Testing Hints  
BTL - 9.X41.2.4 - Monitored Property Does Not Exist 
 Test Conditionality Must be executed 
 Test Directives Be sure to test at least one property identifier that is within the ASHRAE 

allocated range for standard property identifiers, but that has not yet been 
defined. 

 Testing Hints  
BTL - 9.X41.2.5 - Array Index Provided But Property is Not an Array 
 Test Conditionality Must be executed 
 Test Directives  
 Testing Hints  
BTL - 9.X41.2.6 - Array Index Provided is Out Of Range 
 Test Conditionality Must be executed 
 Test Directives  
 Testing Hints  
BTL - 9.X41.2.7 - No Space To Add List Element 
 Test Conditionality Must be executed 
 Test Directives  
 Testing Hints  
BTL - 9.X41.2.8 - The Lifetime Parameter is Out Of Range 
 Test Conditionality Must be executed 
 Test Directives  
 Testing Hints  
BTL - 9.X41.2.9 - The Max Notification Delay Parameter is Out Of Range 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 9.X41.2.10 - The Max Notification Delay is Greater Than the Lifetime 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 

4.26.2 Supports COVM Lifetimes Up to 8 Hours in Duration 
The IUT will accept COVM subscriptions with lifetimes up to 8 hours. 
BTL - 9.X41.1.11 - Subscription Expiration Test  
 Test Conditionality Must be executed. 
 Test Directives Execute this test using a Lifetime of 8 hours. 



Addendum aq to BTL Test Package 16.1   

 24 

 Testing Hints  
 

4.26.3 Supports a Minimum of 5 COV-Multiple Contexts with 5 COV-References 
per Context 

The IUT supports 5 or more concurrent COVM subscriptions 

BTL - 9.X41.1.6 - Ensuring 5 Concurrent COV-Multiple Contexts With 5 COV-References per Context 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 

4.26.4 Supports COVM for Non-Array Property 
The IUT supports COVM notifications for at least one non-array property 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple. 
 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple  
 Testing Hints  

 
 

4.26.5 Supports COVM for Array Element 
The IUT supports COVM notifications for at least one array element. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple. 
 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple  
 Testing Hints  

 

4.26.6 Supports COVM for the Size of an Array 
The IUT supports COVM notifications for at least one index 0 of an array 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple  
 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple 
 Testing Hints  

 

4.26.7 Supports COVM for the Whole Array 
The IUT supports COVM notifications for at least one whole array 



Addendum aq to BTL Test Package 16.1   

 25 

BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple.  
 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple 
 Testing Hints  

 
 

4.26.8 Supports COVM for List Property 
The IUT supports COVM notifications for at least one list property 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple.  
 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Select parameters for an object and property which supports 

SubscribeCOVPropertyMultiple 
 Testing Hints  

 

4.26.9 Supports COVM for NULL Property Values 
The IUT supports COVM notifications for at least one property that contains a NULL value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 
 

 Testing Hints Schedule_Default of the Schedule Object, Alarm_Values and Fault_Values 
of the CharacterString Value Object and Low_Diff_Limit in the Loop Object 
are standard properties that can contain or accept a written NULL. 

BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 
 

 Testing Hints Schedule_Default of the Schedule Object, Alarm_Values and Fault_Values 
of the CharacterString Value Object and Low_Diff_Limit in the Loop Object 
are standard properties that can contain or accept a written NULL. 

 

4.26.10 Supports COVM for BOOLEAN Property Values 
The IUT supports change of value notifications for at least one BOOLEAN property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 



Addendum aq to BTL Test Package 16.1   

 26 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.11 Supports COVM for Enumerated Property Values 
The IUT supports change of value notifications for at least one Enumerated property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.12 Supports COVM for INTEGER Property Values 
The IUT supports change of value notifications for at least one INTEGER property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 

4.26.13 Supports COVM for Unsigned Property Values 
The IUT supports change of value notifications for at least one Unsigned Property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 



Addendum aq to BTL Test Package 16.1   

 27 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.14 Supports COVM for REAL Property Values 
The IUT supports change of value notifications for at least one REAL property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.15 Supports COVM for Double Property Values 
The IUT supports change of value notifications for at least one Double property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 

4.26.16 Supports COVM for Time Property Values 
The IUT supports change of value notifications for at least one Time property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 



Addendum aq to BTL Test Package 16.1   

 28 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.17 Supports COVM for Date Property Values 
The IUT supports change of value notifications for at least one Date property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.18 Supports COVM for CharacterString Property Values 
The IUT supports change of value notifications for at least one CharacterString property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 

4.26.19 Supports COVM for OctetString Property Values 
The IUT supports change of value notifications for at least one property with value of type OctetString. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 



Addendum aq to BTL Test Package 16.1   

 29 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 

 

4.26.20 Supports COVM for BitString Property Values 
The IUT supports change of value notifications for at least one property with value of type BitString. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  

4.26.21 Supports COVM for BACnetObjectIdentifier Property Values 
The IUT supports change of value notifications for at least one property with value of type BACnetObjectIdentifier. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.22 Supports COVM for Value_Source Property Values 
The IUT supports change of value notifications for at least one Value_Source property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 



Addendum aq to BTL Test Package 16.1   

 30 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 

4.26.23 Supports COVM for Constructed Property Values 
The IUT supports change of value notifications for at least one constructed property value. 
BTL - 9.X41.1.3 - Confirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
BTL - 9.X41.1.4 - Unconfirmed Change of Value Notification From Property Value 
 Test Conditionality Must be executed. 
 Test Directives Apply to at least 1 property of the specified datatype. 

Ensure that after all applications of this test (regardless of the property 
datatype it is applied for), that the test has been applied at least once to each 
object type which supports COVM on one or more of its properties. 

 Testing Hints  
 
 
 
[In BTL Specified Tests, add the following tests] 

8.X12 SubscribeCOVPropertyMultiple Service Initiation Tests 

8.X12.1 Positive SubscribeCOVPropertyMultiple Service Initiation Tests 

8.X12.1.1 Confirmed Notifications Subscription 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify the client can subscribe to confirmed notifications using the SubscribeCOVPropertyMultiple service. 

Test Concept: The IUT is made to subscribe for confirmed notifications. 

Test Steps: 

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = (any valid list of subscriptions) 
3. TRANSMIT BACnet-SimpleAck-PDU 
 

8.X12.1.2 Unconfirmed Notifications Subscription 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify the client can subscribe to unconfirmed notifications using the SubscribeCOVPropertyMultiple service. 

Test Concept: The IUT is made to subscribe for unconfirmed notifications. 



Addendum aq to BTL Test Package 16.1   

 31 

Test Steps: 

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = (any valid list of subscriptions) 
3. TRANSMIT BACnet-SimpleAck-PDU 
 

8.X12.1.3 Requests 8 Hour Lifetimes 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify that the IUT is able to provide a lifetime which is less than or equal to 8 hours for any 
SubscribeCOVPropertyMultiple request it generates.  
 
Test Concept: The tester selects any of the possible COVM subscriptions that the IUT is able to generate and it is configured 
to use a lifetime less than or equal to 8 hours. The IUT is made to send the subscription, and the lifetime is verified to be less 
than or equal to 8 hours. 

Test Steps: 
 
1.  MAKE (the IUT send the selected SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request, 
  'Subscriber Process Identifier' =    (any valid process identifier), 
  'Issue Confirmed Notifications' =   TRUE | FALSE, 
  'Lifetime' =     (any value <= 28800), 
  'Max Notification Delay' =    (any valid delay between 1 and 3600), 
  'List of COV Subscription Specifications' =  (a valid list of COV Specifications) 
3. TRANSMIT BACnet-SimpleACK-PDU 
 

8.X12.1.4 Subscribe to Timestamped Notifications 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify the client can subscribe to timestamped notifications using the SubscribeCOVPropertyMultiple service. 

Test Concept: A subscription for timestamped COVM notifications is established with Lifetime L for property P1 of Object 
O1. L shall be less than 8 hours but large enough to complete the test. 

Test Steps: 

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = (any valid list with at least 1 entry where 'Timestamped' is TRUE) 
3. TRANSMIT BACnet-SimpleAck-PDU 
 

8.X12.1.5 Subscribe to Two Properties in a Single Object 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify that the IUT can subscribe to 2 or more properties from a single object. 

Test Concept: A subscription for COVM notifications is established for properties from a single object. 

Test Steps: 

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 



Addendum aq to BTL Test Package 16.1   

 32 

2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' =  (a valid list of 2 or more properties from a single object) 
3. TRANSMIT BACnet-SimpleAck-PDU 
 

8.X12.1.6 Subscribe to Properties in Multiple Objects Using a Single Request 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify the client can subscribe to properties from multiple objects. 

Test Concept: A subscription for notifications is established for properties from 2 or more objects. 

Test Steps: 

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (PID: any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = (PROPS: any valid list of properties from 2 or more objects) 
3. TRANSMIT BACnet-SimpleAck-PDU 

8.X12.1.7 Change of Value Multiple Notification 

Reason for Change: Added new test to support DS-COVM-A testing. 
 
Purpose: To verify that the IUT accepts COVM notifications for properties which it subscribed to. 
 
Test Concept: A subscription for COVM notifications is established, a notification is sent to the IUT, and the vendor defined 
actions are verified. 
 
Test Steps: 
 
1.  MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' =  (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' =   (L: any valid lifetime), 
  'Max Notification Delay' =  (any valid delay between 1 and 3600), 
  'List of COV Subscription Specifications' = (PROPS: any valid list of subscriptions) 
3. TRANSMIT BACnet-SimpleACK-PDU 
4. IF (the subscription was for confirmed notifications) THEN 
  TRANSMIT ConfirmedCOVNotificationMultiple-Request, 
   'Subscriber Process Identifier' = ID1, 
   'Initiating Device Identifier' = TD, 
   'Time Remaining' = (any value ~=L), 
   'Timestamp' = (any valid value, or absent if subscribed to non-timestamped  
     notifications), 
   'List of COV Notifications' = (values appropriate to each entry in PROPS) 
  RECEIVE BACnet-SimpleACK-PDU 
 ELSE 
  TRANSMIT UnconfirmedCOVNotificationMultiple-Request, 
   'Subscriber Process Identifier' = ID1, 
   'Initiating Device Identifier' = TD, 
   'Time Remaining' = (any value ~= L), 
   'Timestamp' = (any valid value, or absent if subscribed to non-timestamped  
     notifications), 



Addendum aq to BTL Test Package 16.1   

 33 

   'List of COV Notifications' = (values appropriate to each entry in PROPS) 
5. CHECK (verify that any appropriate functions defined by the manufacturer, such as displaying  
 information on a workstation screen are carried out) 
 
 
 

8.X12.1.8 Canceling a Subscription 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify the client can cancel a COVM subscription. 

Test Concept: A subscription for COVM notifications is established with a lifetime L, which is long enough to complete the 
test. The client is made to cancel the subscription by sending a SubscribeCOVPropertyMultiple request with Lifetime, and Max 
Notification Delay absent. 

Test Steps: 

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (the process identifier used in step 1), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid delay between 1 and 3600), 
  'List of COV Subscription Specifications' = (PROPS: a valid list of COV Subscription Specifications) 
3. TRANSMIT BACnet-SimpleAck-PDU 
4. IF confirmed notifications were subscribed for THEN 
  TRANSMIT ConfirmedCOVNotificationMultiple-Request 
   'Subscriber Process Identifier' = PID, 
   'Initiating Device Identifier' = (TD's device identifier), 
   'Time Remaining' = (a value ~= L), 
   'Timestamp' = (a valid value, or absent if Time Of Change was not requested 
      in the subscription) 
   'List of COV Notifications' = (a valid list containing an entry for each entry in PROPS) 
  RECEIVE BACnet-SimpleAck-PDU 
 ELSE 
  TRANSMIT UnconfirmedCOVNotificationMultiple-Request 
   'Subscriber Process Identifier' = PID, 
   'Initiating Device Identifier' = (TD's device identifier), 
   'Time Remaining' = (a value ~= L), 
   'Timestamp' = (a valid value, or absent if Time Of Change was not requested 
      in the subscription) 
   'List of COV Notifications' = (a valid list containing an entry for each entry in PROPS) 
5. MAKE (the IUT cancel the subscription) 
6. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (the process identifier used in step 2), 
  'Issue Confirmed Notifications' = (the same value used in step 2), 
  -- 'Lifetime' = (absent) 
  -- 'Max Notification Delay' = (absent) 
  'List of COV Subscription Specifications' =  (PROPS, or an empty list) 
7. TRANSMIT BACnet-SimpleAck-PDU 
 

8.X12.2 Negative SubscribeCOVPropertyMultiple Service Initiation Tests 

8.X12.2.1 Change of Value Multiple Notification Arrives After Subscription Has Expired 

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify that an appropriate error is returned if a COVM notification arrives after the subscription time period has 
expired. 
 



Addendum aq to BTL Test Package 16.1   

 34 

Test Concept: A subscription for COVM notifications is established and then cancelled or allowed to expire. A 
ConfirmedCOVNotificationMultiple is then sent to the IUT to verify it returns either the appropriate error or a Simple-Ack. 
 
Test Steps: 
 
1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request), 
2. RECEIVE SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' =  (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE, 
  'Lifetime' = (L: any valid lifetime), 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = (PROPS: any valid list of COV subscriptions) 
3. TRANSMIT BACnet-SimpleACK-PDU 
4.  TRANSMIT ConfirmedCOVNotificationMultiple-Request, 
  'Subscriber Process Identifier' = ID1, 
  'Initiating Device Identifier' = TD, 
  'Time Remaining' = (a value ~= L), 
  'Timestamp' = (any appropriate value or absent if it is not a timestamped subscription) 
  'List of COV Notifications' = (values appropriate to the properties in PROPS) 
5. RECEIVE BACnet-SimpleACK-PDU 
6. IF (the IUT can cancel the subscription) THEN 
  MAKE (the IUT cancel the subscription), 
  RECEIVE SubscribeCOVPropertyMultiple-Request, 
   'Subscriber Process Identifier' =  ID1, 
   'Issue Confirmed Notifications' = TRUE, 
   'Lifetime' = (absent) 
   'Max Notification Delay' = (absent) 
   'List of COV Subscription Specifications' = (PROPS or an empty list) 
 ELSE 
  WAIT (2 * L seconds) 
7. TRANSMIT ConfirmedCOVNotificationMultiple-Request, 
  'Subscriber Process Identifier' = ID1, 
  'Initiating Device Identifier' = TD, 
  'Time Remaining' = (a value ~= L), 
  'Timestamp' =   (any appropriate value or absent if it is not a timestamped subscription) 
  'List of COV Notifications' = (values appropriate to the properties in PROPS) 
8. RECEIVE BACnet-Error-PDU, 
    Error Class =  SERVICES, 
    Error Code =  UNKNOWN_SUBSCRIPTION | 
   (BACnet-SimpleAck-PDU) 
 

8.X12.2.2 Unknown Subscription  

Reason for Change: Added new test to support DS-COVM-A testing. 

Purpose: To verify that an appropriate response is returned if a COVM notification arrives that contains arguments or 
parameters which do not match any current subscriptions. 
 
Test Concept: The TD sends a ConfirmedCOVNotificationMultiple-Request which does not correspond to any existing 
subscriptions. Verify that the IUT responds with either an error message or a Simple-ACK. 
 
Configuration Requirements: At the start of the test, the IUT shall have no outstanding COVM subscriptions with TD using 
process identifier ID2. 
 
Test Steps: 
1. TRANSMIT ConfirmedCOVNotificationMultiple-Request, 
  'Subscriber Process Identifier' = ID2, 
  'Initiating Device Identifier' = TD, 
  'Time Remaining' = (any valid value), 
  'List of COV Notifications' = (any valid list of property notifications) 



Addendum aq to BTL Test Package 16.1   

 35 

2. RECEIVE  
  BACnet-Error-PDU, 
   Error Class =   SERVICES, 
   Error Code =   (UNKNOWN_SUBSCRIPTION) | 
  (BACnet-SimpleACK-PDU) 
 
 

9.X41 SubscribeCOVPropertyMultiple Service Execution Tests 

9.X41.1 Positive SubscribeCOVPropertyMultiple Service Execution Tests 

9.X41.1.1 Supports Non-Timestamped Notifications 

Reason for Change: Added new test to support DS-COVM-B testing. 
 
Purpose: To verify that the IUT can execute a COVM Notification without providing a timestamp 
 
Test Concept: A subscription for COVM notifications, with the Timestamped parameter set to FALSE.  Verify that the IUT 
sends the appropriate COVM notification in response. 
 
Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' =  (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' =   L, 
  'Max Notification Delay' =  (any valid delay between 1 and 3600), 
  'List of COV Subscription Specifications' = (any valid list with 'Timestamped' set to FALSE in all entries) 
2. RECEIVE BACnet-SimpleACK-PDU 
3. IF (the subscription was for confirmed notifications) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' = ID1, 
    'Initiating Device Identifier' = TD, 
    'Time Remaining' =  (a value ~= L), 
    -- 'Timestamp' =  (absent) 
    'List of COV Notifications' =  (values appropriate to the properties subscribed to) 
   TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' = ID1, 
     'Initiating Device Identifier' = TD, 
     'Time Remaining' =  (a value ~= L), 
     -- 'Timestamp' =  (absent) 
     'List of COV Notifications' = (values appropriate to some or all of the properties subscribed  
       to) 
 

9.X41.1.2 Supports Timestamped Notifications 

Reason for Change: Added new test to support DS-COVM-B testing. 
 
Purpose: To verify that the IUT can execute a COVM Notification providing a timestamp 
 
Test Concept: A subscription for COVM notifications with the Timestamped parameter set to TRUE for at least 1 entry in the 
list of subscriptions, and FALSE for at least 1 entry in the list of subscriptions, is sent to the IUT for properties for which the 
IUT supports COVM.  Verify that the IUT sends the appropriate COVM notification in response. 
 



Addendum aq to BTL Test Package 16.1   

 36 

Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' =   (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' =  TRUE | FALSE, 
  'Lifetime' =    (L: a valid lifetime), 
  'Max Notification Delay' =   (any valid delay between 1 and 3600), 
  'List of COV Subscription Specifications' = (any valid list of properties which exist in the IUT for which the  
     IUT supports COVM with Timestamped set to TRUE for at  
     least one, and FALSE for at least one) 
2. RECEIVE BACnet-SimpleACK-PDU 
3. IF (the subscription was for confirmed notifications) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' = ID1, 
    'Initiating Device Identifier' = IUT, 
    'Time Remaining' =  (a value ~= L), 
    'Timestamp' =  (an appropriate timestamp) 
    'List of COV Notifications' =  (values appropriate to the properties subscribed to along 
       with 'Time of Change' values only for those for which  
      timestamps were requested) 
  TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' = ID1, 
     'Initiating Device Identifier' = IUT, 
     'Time Remaining' =  (a value ~= L), 
     'Timestamp' =  (an appropriate timestamp) 
     'List of COV Notifications' = (values appropriate to some or all of the properties subscribed  
       to along with 'Time of Change' values only for those for which  
       timestamps were requested) 
 
Notes to Tester: If the IUT only supports COVM for one property in one object, then the subscription shall be for the single 
property with Timestamped set to TRUE. 
 

9.X41.1.3 Confirmed Change of Value Notification From Property Value 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT initiates a ConfirmedCOVMultipleNotification service request when a subscribed to property 
changes. 

Test Concept: A COVM subscription is made which contains a subscription to property P1 in object O1. The value of P1 is 
changed and it is verified that the IUT sends a COVM notification. 

 
Test Steps: 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE, 
  'Lifetime' = (L: any valid lifetime), 
  'Max Notification Delay' = (any valid value), 
  'List of COV Subscription Specifications' = (PROPS: a valid list of properties for which the IUT supports  
     COVM including P1 in O1) 
2.  RECEIVE BACnet-SimpleACK-PDU 
3.  BEFORE Notification Fail Time 
  RECEIVE ConfirmedCOVNotificationMultiple-Request, 
   'Subscriber Process Identifier' =  ID1, 



Addendum aq to BTL Test Package 16.1   

 37 

   'Initiating Device Identifier' =   IUT, 
   'Time Remaining' =    (a value ~= L), 
   'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      notifications, otherwise absent), 
   'List of COV Notifications' =  (values appropriate to the subscribed to properties) 
4. TRANSMIT BACnet-SimpleACK-PDU 
5.  MAKE (a change to P1 that should cause a COVM notification) 
6.  BEFORE Notification Fail Time 
  RECEIVE ConfirmedCOVNotificationMultiple-Request, 
   'Subscriber Process Identifier' =  ID1, 
   'Initiating Device Identifier' =   IUT, 
   'Time Remaining' =    (a value greater than 0 and less than L), 
   'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      notifications, otherwise absent), 
   'List of COV Notifications' =  (a list consisting of a valid value for P1 and values for any co-reported 
properties as described in clause 13.1) 
7. TRANSMIT BACnet-SimpleACK-PDU 
 

9.X41.1.4 Unconfirmed Change of Value Notification From Property Value 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT initiates an UnconfirmedCOVMultipleNotification service request when a subscribed to 
property changes. 

Test Concept: A COVM subscription is made which contains a subscription to property P1 in object O1. The value of P1 is 
changed and it is verified that the IUT send a COVM notification. 

Test Steps: 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' = FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (MND: any valid value) 
  'List of COV Subscription Specifications' = (a valid list of properties for which the IUT supports COVM  
     including P1 in O1) 
 
2.  RECEIVE BACnet-SimpleACK-PDU 
3.  WHILE (notifications have not been received for all subscribed to items) 
  BEFORE Notification Fail Time 
   RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  ID1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =   (a value ~= L), 
    'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      notifications, otherwise absent) 
    'List of COV Notifications' =  (values appropriate to some or all of the properties subscribed  
      to) 
4.  MAKE (a change to the P1 that should cause a COVM notification) 
5.  BEFORE Notification Fail Time 
  RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
   'Subscriber Process Identifier' =  ID1, 
   'Initiating Device Identifier' =   IUT, 
   'Time Remaining' =    (a value greater than 0 and less than the requested lifetime), 
   'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      notifications, otherwise absent), 
   'List of COV Notifications' =  (a list consisting of a valid value for P1 and values for any co-reported 
properties as described in clause 13.1) 
 



Addendum aq to BTL Test Package 16.1   

 38 

9.X41.1.5 Supports Subscriptions to Multiple Properties Using Multiple Requests 

Reason for Change: Added new test to support DS-COVM-B testing. 

Purpose: To verify the server adds new subscriptions to existing COVM contexts when requested. 

Test Concept: A subscription for COVM notifications is established for property P1 of object O1. A second subscription is sent 
using the same COVM context for property P2 in object O2. Verify that the IUT's Active_COV_Multiple_Subscriptions 
property is correctly updated after each subscription. 

Configuration Requirements: There are no active COVM subscription for properties in the IUT. If the IUT cannot be configured 
to have 2 properties which support COVM subscriptions, then this test shall be skipped.  

Test Steps: 

1. CHECK (the IUT's Active_COV_Multiple_Subscriptions property is empty) 
2. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = { ('Monitored Object' =  O1, 
      'List of COV References' = { (  
       'Monitored Property' = P1,  
       'COV Increment' = (any valid 
          increment, or  
          empty if P1 is not 
          numeric), 
       'Timestamped' = TRUE | FALSE)} 
      ) 
     } 
3. RECEIVE BACnet-SimpleAck-PDU 
4. IF (confirmed notifications were requested) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' = ID1, 
    'Initiating Device Identifier' = IUT, 
    'Time Remaining' =  (any value ~= L), 
    'Timestamp' =  (an appropriate timestamp) 
    'List of COV Notifications' =  (a list of values of length 1 indicating P1's value) 
  TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  BEFORE Notification Fail Time 
   RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' = ID1, 
    'Initiating Device Identifier' = IUT, 
    'Time Remaining' =  (any value ~= L), 
    'Timestamp' =  (an appropriate timestamp, or absent if timestamps not  
      requested) 
    'List of COV Notifications' =  (a list of values of length 1 indicating P1's value) 
5.  VERIFY Active_COV_Multiple_Subscriptions = (a list with one entry for COVM context ID1 with 1 entry for the 
subscription to P1) 
6. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = ID1, 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = { ('Monitored Object' =  O2, 
      'List of COV References' = { (  
       'Monitored Property' = P2,  
       'COV Increment' = (any valid 
          increment, or  
          empty if P2 is not 



Addendum aq to BTL Test Package 16.1   

 39 

          numeric), 
       'Timestamped' = TRUE | FALSE)} 
      ) 
     } 
7. RECEIVE BACnet-SimpleAck-PDU 
8. IF confirmed notifications were requested THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' = ID1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =  (any value ~= L), 
    'Timestamp' =  (an appropriate timestamp, or absent if timestamps not 
       requested) 
    'List of COV Notifications' =  (a list of values of length 1 indicating P2's new value) 
  TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' = ID1, 
     'Initiating Device Identifier' = IUT, 
     'Time Remaining' =  (any value ~= L), 
     'Timestamp' =  (an appropriate timestamp, or absent if timestamps not 
        requested) 
     'List of COV Notifications' = (a list of values of length 1 indicating P2's new value) 
9.  VERIFY Active_COV_Multiple_Subscriptions = (a list with one entry for COVM context ID1 with 2 entries for P1 and 
P2) 
 
Notes to Tester: Objects O1 and O2 can be the same object, and properties P1 and P2 can be the same property, but (O1, P1) 
must be different than (O2, P2). 
 
 
 
 

9.X41.1.6 Ensuring 5 Concurrent COV-Multiple Contexts With 5 COV-References Per Context 

Reason for Change: Added new test to support DS-COVM-B testing. 

Purpose: To verify that the IUT can support 5 COV-multiple contexts with 5 COV-references each. 

Test Concept: Subscriptions for COVM notifications are made using process identifiers PID1 through PID5. The required post 
subscription notifications are verified. Once all subscriptions are made, the Active_COV_Multiple_Subscriptions is verified to 
contain all subscriptions. 

Configuration Requirements: The IUT has no active COVM subscriptions. 

Test Steps: 
1. REPEAT (X=PID1 to PID5) { 
   TRANSMIT SubscribeCOVPropertyMultiple-Request 
   'Subscriber Process Identifier' =  X, 
   'Issue Confirmed Notifications' =  TRUE | FALSE, 
   'Lifetime' =  (L, any value large enough to complete the test), 
   'Max Notification Delay' =  (any valid value), 
   'List of COV Subscription Specifications' = (any valid list of properties for which the IUT supports  
       COVM) 
  RECEIVE BACnet-SimpleACK-PDU 
2. IF (if confirmed notifications were requested) THEN 
  BEFORE Notification Fail Time 
    RECEIVE ConfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' = X, 
     'Initiating Device Identifier' = IUT, 
      'Time Remaining' =   (a value ~= L), 



Addendum aq to BTL Test Package 16.1   

 40 

     'Timestamp' =   (any appropriate timestamp, if subscribed to  
        timestamped notifications), 
     'List of COV Notifications' = (values appropriate to the subscribed to properties) 
    TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items)   
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' = X, 
     'Initiating Device Identifier' = IUT, 
      'Time Remaining' =   (any valid value), 
     'Timestamp' =   (any appropriate timestamp, if subscribed to  
        timestamped  notifications) 
     'List of COV Notifications' = (values appropriate to some or all of the properties  
         subscribed to) 
 } 
3. VERIFY Active_COV_Multiple_Subscriptions = (a list of 5 COVM contexts as subscribed to) 
 

9.X41.1.7 Supports Client-Supplied COV Increment  

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT abides by client supplied COV increments from SubscribeCOVPropertyMultiple requests.  

Test Concept: A subscription for COVM notifications is made to a numeric property P1 which supports COVM in object O1. 
The COV Increment, N, is specified in the subscription request. Verify that the COV Increment N is stored in the COVM 
context for this subscription. The value of P1 is changed by less than the COV Increment and the TD waits to ensure the IUT 
does not generate a notification. The value of P1 is changed such that the total change is more than N and it is verified that the 
IUT sends a notification within the delay time. 

 
Configuration Requirements: If the property being subscribed to has a related COV_Increment property in the object, then the 
value of N should be significantly different than the value of the COV_Increment property. If the object does not have a 
COV_Increment property, then N shall be significantly different than the device's internal COV Increment. 
 
Test Steps: 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (ID1: any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (MND: any valid value), 
  'List of COV Subscription Specifications' = {('Monitored Object' =  O1, 
     'List of COV References' = { (  
      'Monitored Property' = P1,  
      'COV Increment' = N, 
      'Timestamped' =  TRUE | FALSE)} 
     ) } 
2.  RECEIVE BACnet-SimpleACK-PDU 
3. VERIFY Active_COV_Multiple_Subscriptions = (a list containing a COVM context for ID1 containing 1 entry 
      for P1 with a COV_ Increment of N) 
4.  MAKE (P1's value change by less than COV Increment) 
5. WAIT Notification Fail Time + MND 
5. CHECK (verify that the IUT did not transmit a notification message for the monitored property) 
6. MAKE (P1's value change such that the total change to P1 is slightly more than N) 
7. IF (the subscription was for confirmed notifications) THEN  
  BEFORE Notification Fail Time 

  RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  ID1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =   (any valid value greater than 0 and less than L), 



Addendum aq to BTL Test Package 16.1   

 41 

    'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      notifications, otherwise absent) 
    'List of COV Notifications' =  (a list of values of length 1 indicating P1's new value) 
   TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' =  (ID1), 
     'Initiating Device Identifier' =   IUT, 
     'Time Remaining' =    (any valid value greater than 0 and less than L), 
     'Timestamp' =   (an appropriate timestamp, if subscribed to  
        timestamped notifications, otherwise absent) 
     'List of COV Notifications' =  (a list of values of length 1 indicating P1's new value) 
 

9.X41.1.8 Updating Existing Subscriptions 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT supports resubscriptions to extend the lifetime of COVM contexts. 

Test Concept: A COVM subscription is made for 1 or more properties in the IUT. The IUT shall be made to transmit a 
notification to the TD and the Time Remaining value is validated. Before the subscription expires, the TD resubscribes with a 
different, and longer, lifetime and the new lifetime is verified in the resultant COVM notification. 

Test Steps: 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = ID1, 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (MND: any valid value) 
  'List of COV Subscription Specifications' = (PROPS: a valid list of subscriptions) 
2.  RECEIVE BACnet-SimpleACK-PDU 
3.  IF (the subscription was for confirmed notifications) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  IUD1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =   (TR: TR ~= L),  
    'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      Notifications, otherwise absent) 
    'List of COV Notifications' =  (values appropriate to each entry in PROPS) 
  TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' =  ID1, 
     'Initiating Device Identifier' =  IUT, 
     'Time Remaining' =   (TR:TR ~= L),  
     'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
         notifications, otherwise absent), 
     'List of COV Notifications' =  (values appropriate to some or all entries in PROPS) 
4.  MAKE (a change to a monitored property, P1, that should cause a COVM notification) 
5.  WAIT N seconds, where L > N > the resolution of the IUT's COVM lifetime timer 
6.  IF (the subscription was for confirmed notifications) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  ID1, 
    'Initiating Device Identifier' =  IUT, 



Addendum aq to BTL Test Package 16.1   

 42 

    'Time Remaining' =   (TR: 0 < TR < (L - N)),  
    'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      notifications, otherwise absent) 
    'List of COV Notifications' =  (a list of values of length 1 indicating P1's new value) 
  TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' = ID1, 
     'Initiating Device Identifier' =   IUT, 
     'Time Remaining' =    (TR: 0 < TR < (L - N)),  
     'Timestamp' =   (an appropriate timestamp, if subscribed to  
          timestamped notifications, otherwise absent), 
     'List of COV Notifications' =   (values appropriate to some or all entries in PROPS) 
7.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = ID1, 
  'Issue Confirmed Notifications' = (the same value used previously), 
  'Lifetime' = (L2: where L < L2 <= 28800), 
  'Max Notification Delay' = MND, 
  'List of COV Subscription Specifications' = PROPS 
8.  RECEIVE BACnet-SimpleACK-PDU 
9.  IF (the subscription was for confirmed notifications) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  ID1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =   (TR2: TR ~= L2), 
    'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      notifications, otherwise absent) 
    'List of COV Notifications' =  (values appropriate to each entry in PROPS) 
  TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' =  (the same identifier used in step 2), 
     'Initiating Device Identifier' =  IUT, 
     'Time Remaining' =   (TR2: TR2 ~= L2), 
     'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
         notifications, otherwise absent), 
     'List of COV Notifications' =  (values appropriate to some or all entries in PROPS) 
 

9.X41.1.9 Canceling Subsets of COVM Subscriptions 

Reason for Change: Added new test to support DS-COVM-B testing. 

Purpose: To verify that the IUT correctly cancels COVM subscriptions for some, not all, of the properties subscribed to in a 
COVM context. 

Test Concept: A subscription for COVM notifications is established for multiple properties within the IUT. Before the 
subscriptions expire, one of the subscriptions is cancelled. Verify that the IUT's Active_COV_Multiple_Subscriptions property 
only contains an entry for the remaining subscriptions. 

Configuration Requirements: There are no active COVM subscription for properties in the IUT. If the IUT cannot be configured 
to have 2 properties which support COVM subscriptions, then this test shall be skipped.  

Test Steps: 

1. VERIFY Active_COV_Multiple_Subscriptions = () 
2. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 



Addendum aq to BTL Test Package 16.1   

 43 

  'Issue Confirmed Notifications' = FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = (any valid notification delay), 
  'List of COV Subscription Specifications' = (a list of 2 or more properties for which the IUT supports 
      COVM) 
3.  RECEIVE BACnet-SimpleACK-PDU 
4. WHILE (notifications have not been received for all subscribed to items) 
  BEFORE Notification Fail Time 
   RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' = ID1, 
    'Initiating Device Identifier' = IUT, 
    'Time Remaining' =  (any value ~= L), 
    'Timestamp' =  (an appropriate timestamp, or absent if not requested) 
    'List of COV Notifications' =  (values appropriate to some or all of the properties subscribed  
      to) 
5. VERIFY Active_COV_Multiple_Subscriptions = (a list with 1 COVM context containing all properties 
      subscribed to)  
6. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = ID1, 
  'Issue Confirmed Notifications' = FALSE 
  'Lifetime' = (absent) 
  'Max Notification Delay' = (absent) 
  'List of COV Subscription Specifications' = (CANCELLED: a subset of the properties subscribed to) 
7.  RECEIVE BACnet-SimpleACK-PDU 
8. VERIFY Active_COV_Multiple_Subscriptions = (a list with 1 COVM context containing all remaining   
     properties subscribed to, excluding those in CANCELLED) 

9.X41.1.10 Canceling Expired or Non-Existing Subscriptions 

Reason for Change: Added new test to support DS-COVM-B testing. 

Purpose: To verify the IUT does not return an error when the client cancels a COVM subscription that doesn't match any of the 
COV contexts in the IUT's list of active subscriptions. 

Test Concept: Send a SubscribeCOVPropertyMultiple request to cancel a subscription for property P1 in object O1, which is 
not in the list of subscriptions in the IUT's Active_COV_Multiple_Subscriptions property. Verify that the IUT sends a BACnet-
SimpleACK-PDU in response. 

Configuration Requirements: The IUT is configured with 1 or more COVM subscriptions. One of the subscriptions is using a 
process identifier ID1 and includes a subscription to property P1 in object O1. Property P2 in object O2 shall not be included 
in the subscriptions for ID1 (but may in subscriptions using a different process identifier). Where possible P2 in O2 should be 
a property for which the IUT supports COVM subscriptions. 

Test Steps: 

1. READ COVM_LIST = Active_COV_Multiple_Subscriptions 
2. CHECK (COVM_LIST contains an COVM context with a process identifier of ID1 and includes a subscription to property 
P1 in object O1) 
3.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier which is not ID1), 
  'Issue Confirmed Notifications' = (the value matching the entry for ID1), 
  -- 'Lifetime' = (absent), 
  -- 'Max Notification Delay' = (absent), 
  'List of COV Subscription Specifications' = (a list with 1 entry matching the subscription details for P1 in 
      O1) 
4.  RECEIVE BACnet-SimpleACK-PDU 
5. VERIFY Active_COV_Multiple_Subscriptions = COVM_LIST 
6.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = ID1, 
  'Issue Confirmed Notifications' = (the value matching the entry for ID1), 
  -- 'Lifetime' = (absent), 
  -- 'Max Notification Delay' = (absent), 
  'List of COV Subscription Specifications' = (a list with 1 entry referencing P2 in O2) 



Addendum aq to BTL Test Package 16.1   

 44 

7.  RECEIVE BACnet-SimpleACK-PDU 
8. VERIFY Active_COV_Multiple_Subscriptions = COVM_LIST 
 

9.X41.1.11 Subscription Expiration Test 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT removes subscriptions from the list of active subscriptions once the subscription lifetime has 
elapsed.  

Test Concept: A COVM subscription is made for 1 or more properties in the IUT. One of the subscribed to properties is made 
to change and it is verified that the IUT transmits a notification to the TD containing an accurate Time Remaining value. The 
tester then waits for the subscription to expire, it is verified that Active_COV_Multiple_Subscriptions is updated. The property 
is changed again and it is verified that the IUT does not send a notification. 
 
Configuration Requirements: No existing subscription exists for ID1 for the TD. A value for L is chosen which is long enough 
to complete the initial test steps, but which is short enough to wait for it to expire. 
 
Test Steps: 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = ID1, 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = L, 
  'Max Notification Delay' = 0, 
  'List of COV Subscription Specifications' = (a valid list of subscriptions) 
2.  RECEIVE BACnet-SimpleACK-PDU 
3.  IF (the subscription was for confirmed notifications) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  ID1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =   (a value ~= L), 
    'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      Notifications, otherwise absent), 
    'List of COV Notifications' =  (values appropriate to the properties subscribed to) 
  TRANSMIT BACnet-SimpleACK-PDU 
 ELSE 
  WHILE (notifications have not been received for all subscribed to items) 
   BEFORE Notification Fail Time 
    RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
     'Subscriber Process Identifier' =  ID1, 
     'Initiating Device Identifier' =  IUT, 
     'Time Remaining' ~=   (a value approximately equal to, but not greater than, the  
         requested subscription lifetime), 
     'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
         Notifications, otherwise absent), 
     'List of COV Notifications' =  (values appropriate to some or all of the properties subscribed  
         to) 
4.  MAKE (a change to a monitored property, P1, that should cause a COVM notification) 
5.  WAIT N seconds, where L > N > the resolution of the IUT's COVM lifetime timer 
6.  IF (the subscription was for confirmed notifications) THEN 
  BEFORE Notification Fail Time 
   RECEIVE ConfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  ID1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =   (TR: 0 < TR < (L - N)), 
    'Timestamp' =  (an appropriate timestamp, if subscribed to timestamped  
      Notifications, otherwise absent) 
    'List of COV Notifications' =  (a list of values of length 1 indicating P1's value) 
  TRANSMIT BACnet-SimpleACK-PDU 



Addendum aq to BTL Test Package 16.1   

 45 

 ELSE 
  BEFORE Notification Fail Time 
   RECEIVE UnconfirmedCOVNotificationMultiple-Request, 
    'Subscriber Process Identifier' =  ID1, 
    'Initiating Device Identifier' =  IUT, 
    'Time Remaining' =   (TR: 0 < TR < (L - N)), 
    'Timestamp' =   (an appropriate timestamp, if subscribed to timestamped  
         Notifications, otherwise absent) 
    'List of COV Notifications' =  (values appropriate to the properties subscribed to) 
7.  WAIT L seconds 
8.  MAKE (a change to a monitored property that would cause a COVM notification if there were an active subscription) 
9.  CHECK (verify that the IUT did not transmit a COVM notification message for the modified property) 
10. VERIFY Active_COV_Multiple_Subscriptions  = (a list which does not contain a COVM context for ID1) 
 

9.X41.2 Negative SubscribeCOVPropertyMutliple Service Execution Tests 

9.X41.2.1 The Monitored Object Does Not Support COVM Notification 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the monitored object does not support COVM notifications.  
 
Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1. where 
O1 does not support COVM All requested subscriptions before O1 are selected such that they would succeed if O1 were not in 
the list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first failed element encountered. 

Configuration Requirements: The object, O1, shall not support COVM notification for any of its properties. If the IUT cannot 
be configured in this manner, then this test shall be skipped. 

 
Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid lifetime), 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 
  'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other 
     objects with P1 being the first property requested from O1) 
2. RECEIVE BACnet-Error-PDU, 
  'First-Failed-Subscription' =  { 
        'Monitored Object Identifier' = O1,  
        'Monitored Property Reference = P1,  
        'Error Class' = OBJECT, 
        'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED 
        } 

9.X41.2.2 The Monitored Property Does Not Support COVM Notification 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the monitored property does not support COVM notifications.  
 
Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1. where P1 
does not support COVM All requested subscriptions before P1 are selected such that they would succeed if P1 were not in the 
list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first failed element encountered. 



Addendum aq to BTL Test Package 16.1   

 46 

Configuration Requirements: The object, O1, shall support COVM notification for any of its properties. If the IUT does not 
support objects for which COVM is supported for only a subset of the properties, then this test shall be skipped. 

 
Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid lifetime), 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 
  'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other 
     objects with P1 being the first property which cannot be  
     subscribed to) 
2. RECEIVE BACnet-Error-PDU, 
  'First-Failed-Subscription' =  { 
        'Monitored Object Identifier' = O1,  
        'Monitored Property Reference' = P1,  
        'Error Class' = PROPERTY, 
        'Error Code' = NOT_COV_PROPERTY 
        } 

9.X41.2.3 Monitored Object Does Not Exist 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the monitored object does not exist.  
 
Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1. where 
O1 does not exist but would support COVM for P1 if it did. All requested subscriptions before O1 are selected such that they 
would succeed if O1 were not in the list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first 
failed element encountered. 

Configuration Requirements: The object, O1, shall be of a type for which the IUT supports COVM notifications for property 
P1. If the IUT cannot be configured in this manner, then this test shall be skipped. 

 
Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid lifetime), 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 
  'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other 
     objects with P1 being the first property requested from O1) 
2. RECEIVE BACnet-Error-PDU, 
  'First-Failed-Subscription' =  { 
        'Monitored Object Identifier' = O1,  
        'Monitored Property Reference' = P1,  
        'Error Class' = OBJECT, 
        'Error Code' = UNKNOWN_OBJECT 
        } 
 

9.X41.2.4 Monitored Property Does Not Exist 

Reason for Change: Added new test to support DS-COVM-B testing. 

 



Addendum aq to BTL Test Package 16.1   

 47 

Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the monitored property does not exist.  
 
Test Concept: A subscription for COVM notifications is made which includes a request for property P1 in object O1. where P1 
does not exist in O1. All requested subscriptions before P1 in O1 are selected such that they would succeed if P1 in O1 were 
not in the list. It is verified that the IUT returns the correct error indicating O1 and P1 as the first failed element encountered. 

Configuration Requirements: The object, O1, shall exist, shall not contain P1 and be of a type for which the IUT supports 
COVM notifications. If the IUT cannot be configured in this manner, then this test shall be skipped. 

 
Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid lifetime), 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 
  'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other 
     objects with P1 being the first property which cannot be  
     subscribed to) 
2. RECEIVE BACnet-Error-PDU, 
  'First-Failed-Subscription' =  { 
        'Monitored Object Identifier' = O1,  
        'Monitored Property Reference' = P1,  
        'Error Class' = PROPERTY, 
        'Error Code' = UNKNOWN_PROPERTY 
        } 

9.X41.2.5 Array Index Provided But Property is Not an Array 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the monitored property is not an array but an array index is provided.  
 
Test Concept: A subscription for COVM notifications is made which includes a request for property P1, with an array index, 
in object O1 where the IUT supports COVM for P1 in O1 but P1 is not an array. All requested subscriptions before P1 in O1 
are selected such that they would succeed if P1 in O1 were not in the list. It is verified that the IUT returns the correct error 
indicating O1 and P1 as the first failed element encountered. 

Configuration Requirements: The property P1 shall be one which supports COVM and is not an array. If the IUT cannot be 
configured in this manner, then this test shall be skipped. 

 
Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid lifetime), 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 
  'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other 
     objects with P1 being the first property which cannot be  
     subscribed to. An array index shall be included in the entry for 
     P1) 
2. RECEIVE BACnet-Error-PDU, 
  'First-Failed-Subscription' =  { 
        'Monitored Object Identifier' = O1,  
        'Monitored Property Reference' = P1,  
        'Error Class' = PROPERTY, 
        'Error Code' = PROPERTY_IS_NOT_AN_ARRAY 



Addendum aq to BTL Test Package 16.1   

 48 

        } 
 

9.X41.2.6 Array Index Provided Is Out Of Range 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the monitored property an array but the provided array index is outside the range of the array.  
 
Test Concept: A subscription for COVM notifications is made which includes a request for an array property P1, with an array 
index, in object O1 where the IUT supports COVM for P1. All requested subscriptions before P1 in O1 are selected such that 
they would succeed if P1 in O1 were not in the list. It is verified that the IUT returns the correct error indicating O1 and P1 as 
the first failed element encountered. 

Configuration Requirements: If the IUT does not support COVM on any array properties, then this test shall be skipped. 

 
Test Steps: 
 
1. TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid lifetime), 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 
  'List of COV Subscription Specifications' = (a list of subscriptions for properties in O1 and optionally other 
     objects with P1 being the first property which cannot be  
     subscribed to. The array index included in the entry for 
     P1 shall be larger than the number of entries in P1) 
2. RECEIVE BACnet-Error-PDU, 
  'First-Failed-Subscription' =  { 
        'Monitored Object Identifier' = O1,  
        'Monitored Property Reference' = P1,  
        'Error Class' = PROPERTY, 
        'Error Code' = INVALID_ARRAY_INDEX 
        } 
 

9.X41.2.7 No Space to Add List Element 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when there is no space for a subscription.  
 
Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out of 
resources and returns the appropriate error. 
 
Configuration Requirements: If the device cannot be configured such that the maximum number of subscriptions the IUT can 
accept is less than 10000, then this test shall be skipped. 
 
Test Steps: 
 
REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1 or until the IUT returns an Error-
PDU) { 
 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = PID, 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid lifetime large enough to complete the test), 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 



Addendum aq to BTL Test Package 16.1   

 49 

  'List of COV Subscription Specifications' = (any valid list of subscriptions)  
2.  RECEIVE BACNET-SimpleACK-PDU 
  | (BACnet-Error-PDU, 
   'Error Class' =  RESOURCES, 
   'Error Code' =  NO_SPACE_TO_ADD_LIST_ELEMENT) 
} 
 
 

9.X41.2.8 The Lifetime Parameter is Out Of Range 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the Lifetime parameter is out of range.  
 
Configuration Requirements: If the device supports lifetimes across the full range of valid lifetimes then this test shall be 
skipped. 
 
Test Steps: 
 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (a value larger than that supported by the IUT 
  'Max Notification Delay' = (any valid value smaller than the lifetime), 
  'List of COV Subscription Specifications' = (any valid list of subscriptions) 
2.  RECEIVE BACnet-Error-PDU, 
  'Error Class' =  SERVICES, 
  'Error Code' =  VALUE_OUT_OF_RANGE 

9.X41.2.9 The Max Notification Delay Parameter is Out Of Range 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the Max Notification Delay parameter is out of range.  
 
Configuration Requirements: If the device supports Max Notification Delays across the full range of valid values then this test 
shall be skipped. 
 
Test Steps: 
 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (any valid value large enough to complete the test), 
  'Max Notification Delay' = (a value larger than supported by the IUT), 
  'List of COV Subscription Specifications' = (any valid list of subscriptions) 
2.  RECEIVE BACnet-Error-PDU, 
  'Error Class' =  SERVICES, 
  'Error Code' =  VALUE_OUT_OF_RANGE 
 

9.X41.2.10 The Max Notification Delay is Greater Than the Lifetime 

Reason for Change: Added new test to support DS-COVM-B testing. 

 
Purpose: To verify that the IUT correctly responds to a SubscribeCOVPropertyMultiple request to establish a subscription 
when the Max Notification Delay parameter is greater than the Lifetime parameter.  



Addendum aq to BTL Test Package 16.1   

 50 

 
 
Test Steps: 
 
1.  TRANSMIT SubscribeCOVPropertyMultiple-Request 
  'Subscriber Process Identifier' = (any valid process identifier), 
  'Issue Confirmed Notifications' = TRUE | FALSE, 
  'Lifetime' = (a value supported by the IUT but within the normal range of  
     Max Notification Delay) 
  'Max Notification Delay' = (a value greater than the lifetime), 
  'List of COV Subscription Specifications' = (any valid list of subscriptions) 
2.  RECEIVE BACnet-Error-PDU, 
  'Error Class' =  SERVICES, 
  'Error Code' =  VALUE_OUT_OF_RANGE 
 
 
 
 
 


	3.58     Elevator Group Object
	3.58.1 Base Requirements
	3.58.2 Supports Landing_Call_Control Property

	3.59     Lift Object
	3.59.1 Base Requirements
	3.59.2 Supports writable Out_Of_Service property
	3.59.4 Contains an object with Reliability_Evaluation_Inhibit Property

	3.60     Escalator Object
	3.60.1 Base Requirements
	3.60.2 Supports Writable Out_Of_Service property
	3.60.3 Supports Energy_Meter_Ref and Energy_Meter Properties
	3.60.4 Contains an object with Reliability_Evaluation_Inhibit Property

	7.3.2.X45 Elevator Group Object Tests
	7.3.2.X45.1  Machine_Room_ID property references a Positive Integer Value Object
	7.3.2.X45.2  Linking of Lift and Escalator Objects under Group_Members property of the Elevator Group Object
	7.3.2.X45.3  Landing_Call_Control test

	7.3.2.X46 Lift Object Tests
	7.3.2.X46.1 Array Size of the Lift Object properties based on car door size.
	7.3.2.X46.2 Lift Properties Operational Test
	7.3.2.X46.3 Out_Of_Service, Status_Flags for Lift object
	READ X = P
	WRITE P = Y
	WAIT Internal Processing Fail Time
	VERIFY  (P =Y)
	}
	7.3.2.X46.4 Energy_Meter_Ref Property Tests

	7.3.2.X47 Escalator Object Tests
	7.3.2.X47.1 Out_Of_Service, Status_Flags for Escalator object
	READ X = P
	WRITE (P = Y)
	WAIT Internal Processing Fail Time
	VERIFY  (P =Y)
	}

	4.25 Data Sharing - Change Of Value Multiple - A
	4.25.1 Base Requirements
	4.25.2 Subscribes with lifetimes up to 8 hours in duration
	4.25.3 Can Cancel Subscriptions
	4.25.4 Can Subscribe for Confirmed Notifications
	4.25.5 Can Subscribe for Unconfirmed Notifications
	4.25.6 Supports Subscribing to Timestamped Notifications
	4.25.7 Can Subscribe to Non-array Properties
	4.25.8 Can Subscribe to Array Elements
	4.25.9 Can Subscribe to the Size of an Array
	4.25.10 Can Subscribe to Whole Arrays
	4.25.11 Can Subscribe to List Properties
	4.25.12 Can Subscribe with a COV Increment
	4.25.13 Can Subscribe to NULL Property Values
	4.25.14 Can Subscribe to BOOLEAN Property Values
	4.25.15 Can Subscribe to Enumerated Property Values
	4.25.16 Can Subscribe to INTEGER Property Values
	4.25.17 Can Subscribe to Unsigned Property Values
	4.25.18 Can Subscribe to REAL Property Values
	4.25.19 Can Subscribe to Double Property Values
	4.25.20 Can Subscribe to Time Property Values
	4.25.21 Can Subscribe to Date Property Values
	4.25.22 Can Subscribe to CharacterString Property Values
	4.25.23 Can Subscribe to OctetString Property Values
	4.25.24 Can Subscribe to BitString Property Values
	4.25.25 Can Subscribe to BACnetObjectIdentifier Property Values
	4.25.26 Can Subscribe to Value_Source Property Values
	4.25.27 Can Subscribe to Constructed Property Values
	4.25.28 Can Subscribe to Proprietary Property Values of Basic Data Types

	4.26 Data Sharing - Change Of Value Multiple - B
	4.26.1 Base Requirements
	4.26.2 Supports COVM Lifetimes Up to 8 Hours in Duration
	4.26.3 Supports a Minimum of 5 COV-Multiple Contexts with 5 COV-References per Context
	4.26.4 Supports COVM for Non-Array Property
	4.26.5 Supports COVM for Array Element
	4.26.6 Supports COVM for the Size of an Array
	4.26.7 Supports COVM for the Whole Array
	4.26.8 Supports COVM for List Property
	4.26.9 Supports COVM for NULL Property Values
	4.26.10 Supports COVM for BOOLEAN Property Values
	4.26.11 Supports COVM for Enumerated Property Values
	4.26.12 Supports COVM for INTEGER Property Values
	4.26.13 Supports COVM for Unsigned Property Values
	4.26.14 Supports COVM for REAL Property Values
	4.26.15 Supports COVM for Double Property Values
	4.26.16 Supports COVM for Time Property Values
	4.26.17 Supports COVM for Date Property Values
	4.26.18 Supports COVM for CharacterString Property Values
	4.26.19 Supports COVM for OctetString Property Values
	4.26.20 Supports COVM for BitString Property Values
	4.26.21 Supports COVM for BACnetObjectIdentifier Property Values
	4.26.22 Supports COVM for Value_Source Property Values
	4.26.23 Supports COVM for Constructed Property Values
	8.X12 SubscribeCOVPropertyMultiple Service Initiation Tests
	8.X12.1 Positive SubscribeCOVPropertyMultiple Service Initiation Tests
	8.X12.1.1 Confirmed Notifications Subscription
	8.X12.1.2 Unconfirmed Notifications Subscription
	8.X12.1.3 Requests 8 Hour Lifetimes
	8.X12.1.4 Subscribe to Timestamped Notifications
	8.X12.1.5 Subscribe to Two Properties in a Single Object
	8.X12.1.6 Subscribe to Properties in Multiple Objects Using a Single Request
	8.X12.1.7 Change of Value Multiple Notification
	8.X12.1.8 Canceling a Subscription
	8.X12.2 Negative SubscribeCOVPropertyMultiple Service Initiation Tests
	8.X12.2.1 Change of Value Multiple Notification Arrives After Subscription Has Expired
	8.X12.2.2 Unknown Subscription
	9.X41 SubscribeCOVPropertyMultiple Service Execution Tests
	9.X41.1 Positive SubscribeCOVPropertyMultiple Service Execution Tests
	9.X41.1.1 Supports Non-Timestamped Notifications
	9.X41.1.2 Supports Timestamped Notifications
	9.X41.1.3 Confirmed Change of Value Notification From Property Value
	9.X41.1.4 Unconfirmed Change of Value Notification From Property Value
	9.X41.1.5 Supports Subscriptions to Multiple Properties Using Multiple Requests
	9.X41.1.6 Ensuring 5 Concurrent COV-Multiple Contexts With 5 COV-References Per Context
	9.X41.1.7 Supports Client-Supplied COV Increment
	9.X41.1.8 Updating Existing Subscriptions
	9.X41.1.9 Canceling Subsets of COVM Subscriptions
	9.X41.1.10 Canceling Expired or Non-Existing Subscriptions
	9.X41.1.11 Subscription Expiration Test
	9.X41.2 Negative SubscribeCOVPropertyMutliple Service Execution Tests
	9.X41.2.1 The Monitored Object Does Not Support COVM Notification
	9.X41.2.2 The Monitored Property Does Not Support COVM Notification
	9.X41.2.3 Monitored Object Does Not Exist
	9.X41.2.4 Monitored Property Does Not Exist
	9.X41.2.5 Array Index Provided But Property is Not an Array
	9.X41.2.6 Array Index Provided Is Out Of Range
	9.X41.2.7 No Space to Add List Element
	9.X41.2.8 The Lifetime Parameter is Out Of Range
	9.X41.2.9 The Max Notification Delay Parameter is Out Of Range
	9.X41.2.10 The Max Notification Delay is Greater Than the Lifetime


