Addendum a to BTL Test Package 9.0

[This foreword and the “Overview” on the following pages are not part of this Test Package. They are merely informative and do not contain requirements necessary for conformance to the Test Package.]

FOREWORD

The purpose of this addendum is to present current changes being made to the BTL Test Package. These modifications are the result of change proposals made pursuant to the continuous maintenance procedures and of deliberations within the BTL-WG Committee. The changes are summarized below.

BTL-TP9.0a-1. Relax Tests of INVALID_DATATYPE, pg2. [wID0066, BTL-CR-0185]
BTL-TP9.0a-2: Accepting Input and Modifying Properties and Commanding Properties, pg 5. [BTL-CR-0242]
BTL-TP9.0a-3: Reading Multiple Properties with Multiple Embedded Access Errors Clarification, pg 8. [wID0178, BTL-CR-0245]
BTL-TP9.0a-4: Notification Logging Clarifications, pg 9. [BTL-CR-0246, BTL-CR-0231]
BTL-TP9.0a-5: Binary Object Elapsed Active Time Clarification, pg 13. [BTL-CR-0253]
BTL-TP9.0a-6: Revise Event Type Filter test for new Event Types, pg 15. [wID0078]

BTL-TP9.0a-7: Revise the Non-documented Property Test to exclude special property identifiers, pg 16. [wID0107]

In the following document, language to be added to existing clauses within the BTL Test Package 9.0 is indicated through the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain type is used throughout.

In addition, changes to BTL Specified Tests might also contain a yellow highlight to indicate the changes made by this addendum.

When this addendum is applied, all highlighting will be removed. Change markings on tests will remain to indicate the difference between the new test and an existing 135.1 test. If a test being modified has never existed in 135.1, the applied result should not contain any change markings. When this is the case, square brackets will be used to describe the changes required for this test.

Each addendum can stand independently unless specifically noted via dependency within the addendum. If multiple addenda change the same test or section, each future released addendum that changes the same test or section will note in square brackets whether or not those changes are reflected.

This addendum contains results of various clarification requests put forth to the BTL-WG that resulted in test package changes.

BTL 9.0a-1 Relax Tests of INVALID_DATATYPE

Overview:

Change the following Tests that are sending invalid datatypes to accept a REJECT response with a reject reason of INVALID-PARAMETER-DATATYPE, or INVALID-TAG.

Reason for Change:

There are a number of tests in the Test Package which attempt to send requests containing invalid datatypes. The intent of the tests is to verify the request fails, and an appropriate response is returned indicating the reason for the failure. Virtually all of these tests however assume the request will make it to Property parsing before the invalid data is detected and will thus return a PROPERTY Error of INVALID-DATATYPE. There should be no reason however why the datatype checking could not be done at the APDU level , with the IUT Rejecting the request outright with a Reject Reason of INVALID-PARAMETER-DATATYPE when an invalid value is detected.

This applies changes to the test package for:

INTERPRETATION IC 135-2004-28.: It was not the intent of Standard 135 to prohibit datatype checking before the execution of a service request begins.

Question: Is this interpretation correct?

Answer: Yes.

Comments: The standard will be modified accordingly.
· The implications of that interpretation affect multiple tests. BTL Specified Test 9.23.2.6 already reflects this “relaxed” response.

Here all additional tests that check whether the correct response is observed, are also revised per BTL-CR-0185.
Changes:

[In BTL Test Plan, modify test references per table below]
	135.1-2009 - 9.22.2.3
	BTL - 9.22.2.3

	135.1-2009f-3 - 9.16.2.4
	BTL - 9.16.2.4

	135.1-2009f-3 - 9.16.2.5
	BTL - 9.16.2.5

[In BTL Specified Tests, modify 9.14.2.2]

9.14.2.2 Adding a List Element With an Invalid Datatype

Reason for change: Success criteria should specify 'First Failed Element' = 1 and the additional error conditions are now accepted.
Purpose: To verify the ability of the IUT to correctly respond to an AddListElement service request to add an element with an invalid datatype to a list.

Test Steps:

1.
TRANSMIT AddListElement-Request,

'Object Identifier' =

L,

'Property Identifier' =

ListProp,

'List of Elements' =

(a single element with a datatype inappropriate for this property)

2.
RECEIVE

AddListElement-Error,

Error Class =

PROPERTY,

Error Code =

INVALID_DATATYPE,

'First Failed Element' =

01 |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =

 INVALID_TAG)
Notes to Tester: value selected for step 1 is 'inappropriate', not a value which is 'allowed' but not supported by this instance of the property. I.e. it is not one of the datatypes that would ever be supported by an instance of this property in this object type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example in a CHOICE, by this property in this object type, but not supported by this instance of the property.

[In BTL Specified Tests, add test 9.22.2.3 based on 135.1-2009]

9.22.2.3 Writing with a Property Value Having the Wrong Datatype

Purpose: To verify that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be made to write to this property using an invalid datatype. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1.
VERIFY (Object1), P1 =
(the value defined for this property in the EPICS)

2.
TRANSMIT WriteProperty-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(any value with an invalid datatype)

3.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE BACnet-Error PDU,

Error Class =
PROPERTY,

Error Code =
INVALID_DATATYPE

ELSE

RECEIVE

(BACnet-Error PDU,

Error Class =
PROPERTY,

Error Code =
INVALID_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =
INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =
 INVALID_TAG)

4.
VERIFY (Object1), P1 = (the value defined for this property in the EPICS)
[In BTL Specified Tests, add 9.16.2.4 based on the 135.1-2009f-3 addendum version]

9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values

Purpose: To verify the correct execution of the CreateObject service request when an object type is used as the object specifier and a list of initial property values containing an invalid value is provided.

Test Steps:

1.
READ X1 = Object_List

2.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any creatable object type),

'List Of Initial Values' =
(a list of twoone or more properties and their initial values, that the IUT will

accept initial values for, with one of the values being out of range)

3.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)

ELSE

RECEIVE CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE |

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED | OTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)

4.
CHECK(Verify that the new object was not created)

5.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any creatableobject type of step 2),

'List Of Initial Values' =
(a list of twoone or more properties and their initial values, that the IUT will

accept initial values for, with one of the values being an inappropriate datatype)
6.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE

CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

INVALID_DATATYPE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE | INVALID_TAG)

ELSE

RECEIVE CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE | INVALID_DATATYPE |

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED | OTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE | INVALID_TAG)
6.
CHECK(Verify that the new object was not created)

7.
READ X2 = Object_List

8.
CHECK (X1=X2)

[In BTL Specified Tests, add 9.16.2.5 based on the 135.1-2009f-3 addendum version]

9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial Values

Purpose: To verify the correct execution of the CreateObject service request when an object identifier is used as the object specifier and a list of initial property values containing an invalid value is provided.

Test Steps:

1.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any unique object identifier of a type that is creatable and an

instance number that is creatable)

'List Of Initial Values' =
(a list of twoone or more properties and their initial values, that the IUT will

accept initial values for, with one of the values being out of range)

2.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)

ELSE

RECEIVE CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE | INVALID_DATATYPEOTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value)
3. CHECK(Verify that the new object was not created)

4.
TRANSMIT CreateObject-Request,

'Object Specifier' =
(any uniqueobject identifier from step 1of a type that is creatable),

'List Of Initial Values' =

(a list of twoone or more properties and their initial values, that the

IUT will accept initial values for, with one of the values being an

inappropriate datatype)

5.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE

CreateObject-Error PDU,

Error Class =

PROPERTY,

Error Code =

INVALID_DATATYPE

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason =

 INVALID_TAG)
ELSE

RECEIVE

CreateObject-Error,

Error Class =

PROPERTY,

Error Code =

VALUE_OUT_OF_RANGE | INVALID_DATATYPE | OTHER

'First Failed Element Number' =
(the position in the 'List Of Initial Values' with the invalid value) |

(BACnet-Reject-PDU

Reject Reason =

INVALID_PARAMETER_DATATYPE | INVALID_TAG)
6.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the 'Object Identifier' used in step 1),

'Property Identifier' =
(any required property of the specified object)Object_Name
7.
IF (Protocol_Revision is present and Protocol_Revision (4) THEN

RECEIVE BACnet-Error-PDU,

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT

ELSE

RECEIVE BACnet-Error-PDU

Error Class =
OBJECT,

Error Code =
UNKNOWN_OBJECT | NO_OBJECTS_OF_SPECIFIED_TYPE | OTHER

BTL-TP9.0a-2: Accepting Input and Modifying Properties and Commanding Properties

Overview:

These tests exist in 135.1-2009g and are modified in 135.1-2009i. They are included here solely to show all changes in one place. These changes were noted in BTL-CR-0242.
Changes:
[In BTL Test Plan, Modify Test References per table below]
	BTL - 8.22.X2
	BTL - 8.22.4

	BTL - 8.22.X3
	BTL - 8.22 5

[In BTL Specified Tests, add 8.22.4 and 8.22.5]

8.22.4 Accepting Input and Modifying Properties

Reason for Change: This test exists in 135.1-2009g and is modified in 135.1-2009i. It is included here solely to show all changes in one place.

Purpose: This test case verifies that the IUT is capable of accepting user input and using it to modify properties. It is a generic test used to test data input requirements.

This test is written so as to allow the TD to monitor a conversation between the IUT and a reference server. The reference server may be the TD, or some other device.

Configuration: For this test, the tester shall choose a property, P1, from an object, O1, in a device, D1, that does not support execution of WritePropertyMultiple.

Test Steps:

1.
MAKE (the IUT accept a new value for P1 from the user)

2.
RECEIVE WriteProperty-Request,

SOURCE =

IUT,

DESTINATION =

D1,

'Object Identifier' =

O1,

'Property Identifier' =

P1

'Property Value' =

(the value provided to the IUT for P1)

3.
RECEIVE BACnet-SimpleACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT,

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation, formatting, language conversion etc.

Notes to Tester: If the property being modified is an array element, the IUT may include an Array Index parameter in the WriteProperty-Request in step 2. Under these circumstances this is acceptable and shall not be considered a failure condition.

Notes to Tester: If the IUT has not already determined that D1 does not support execution of WritePropertyMultiple, the IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall only pass the test if it automatically falls back to using WriteProperty upon receipt of the correct BACnetError-PDU from D1 indicating that WritePropertyMultiple is not supported.

Notes to Tester: The IUT is allowed to include a Priority parameter with a value in the range 1..16.

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the range 1-16, excluding 6.
8.22.5 Accepting Input and Commanding/Relinquishing Properties
Reason for Change: This test exists in 135.1-2009g and is modified in 135.1-2009i. It is included here solely to show all changes in one place.

Purpose: This test case verifies that the IUT is capable of accepting user input and using it to modify a commandable property at a specific priority. It also tests that the IUT is capable of relinquishing at that same priority.

This test is written so as to allow the TD to monitor a conversation between the IUT and a reference server. The reference server may be the TD, or some other device.

Configuration: For this test, the tester shall choose a commandable property, P1, from an object, O1, in a device, D1, that does not support execution of WritePropertyMultiple. PR1 is the specific priority that will be tested.

Test Steps:

1.
MAKE (the IUT accept a new value for P1 from the user, to be commanded at priority PR1)

2.
RECEIVE WriteProperty-Request,

SOURCE =

IUT,

DESTINATION =

D1,

'Object Identifier' =

(O1),

'Property Identifier' =

(P1)

‘Priority’ =

(PR1)

'Property Value' =

(the value provided to the IUT for P1)

3.
RECEIVE BACnet-SimpleACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT

4.
MAKE (the IUT relinquish P1 at priority PR1)

5.
RECEIVE WriteProperty-Request,

SOURCE =

IUT,

DESTINATION =

D1,

'Object Identifier' =

(O1),

'Property Identifier' =

(P1)

‘Priority’ =

(PR1)

'Property Value' =

NULL

6.
RECEIVE BACnet-SimpleACK-PDU,

SOURCE =

D1,

DESTINATION =

IUT

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation, formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that D1 does not support execution of WritePropertyMultiple, the IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall only pass the test if it automatically falls back to using WriteProperty upon receipt of the correct BACnetError-PDU from D1 indicating that WritePropertyMultiple is not supported.

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the range 1-16, excluding 6.
BTL-TP9.0a-3: Reading Multiple Properties with Multiple Embedded Access Errors Clarification
Overview:

The BTL Specified Test version was out of date and needed to be updated to meet the newly accepted version from the SSPC (per 135.1-2009l). These changes were noted in BTL-CR-0245.
Changes:
[In BTL Specified Tests, modify test 9.20.1.6 (based on addendum 135.1-2009l)]
 [BTL Specified Test version in 9.0, to be deleted]

9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

Reason For Change: The BTL decided that, depending on the parameters of the test, the IUT could also return UNSUPPORTED_OBJECT_TYPE for properties in Object 2. This test is not in any SSPC proposal.
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read Access Specifications' contains specifications for multiple unsupported properties.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Identifier' =
P2,

'Property Identifier' =
(any property, P3, not supported in this object),

'Property Identifier' =
(any property, P4, not supported in this object),

'Object Identifier' =
(any non-existent object, Object2, which is of a type supported by the IUT), not supported in the IUT)

'Property Identifier' =
P5,

'Property Identifier' =
P6

2.
RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
Object1,

'Property Identifier' =
P1,

'Property Value' =
(the value of P1 specified in the EPICS),

'Property Identifier' =
P2,

'Property Value' =
(the value of P2 specified in the EPICS),

'Property Identifier' =
P3,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Property Identifier' =
P4,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Object Identifier' =
Object2,

'Property Identifier' =
P5,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT|UNSUPPORTED_OBJECT_TYPE),

'Property Identifier' =
P6,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT|UNSUPPORTED_OBJECT_TYPE)
[BTL Specified Test 12.0 version, to be added]

9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

Reason For Change: This test exists in 135.1-2009l.
Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read Access Specifications' contains specifications for multiple unsupported properties.

Test Steps:

1.
TRANSMIT ReadPropertyMultiple-Request,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Identifier' =
P2,

'Property Identifier' =
(any property, P3, not supported in this object),

'Property Identifier' =
(any property, P4, not supported in this object),

'Object Identifier' =
(any non-existent object, O2, which is of a type supported by the IUT), not supported in the IUT)

'Property Identifier' =
P5,

'Property Identifier' =
P6

2.
RECEIVE ReadPropertyMultiple-ACK,

'Object Identifier' =
O1,

'Property Identifier' =
P1,

'Property Value' =
(the value of P1 specified in the EPICS),

'Property Identifier' =
P2,

'Property Value' =
(the value of P2 specified in the EPICS),

'Property Identifier' =
P3,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Property Identifier' =
P4,

'Error Class' =

PROPERTY,

'Error Code' =

UNKNOWN_PROPERTY,

'Object Identifier' =
O2,

'Property Identifier' =
P5,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT),

'Property Identifier' =
P6,

'Error Class' =

OBJECT,

'Error Code' =

(UNKNOWN_OBJECT)
BTL-TP9.0a-4: Notification Logging Clarifications
Overview:

The tests 7.3.2.26.X1 – X4 incorrectly specify the MORE_ITEMS flag state. The FIRST_ITEM flag was also corrected. These changes were noted in BTL-CR-0246.
Changes:

[In BTL Specified Tests, modify 7.3.2.26.X1-X4]
7.3.2.26.X1 Internal Logging of Notifications

Purpose: To verify the IUT correctly collects and represents the Notifications which it initiates.

Test Concept: Make the IUT generate two event notification messages which the IUT logs. Use ReadRange to retrieve them from an Event Log and compare the two representations.

Configuration Requirements: The tester shall choose two events which the IUT will initiate and place into its Event Log. O1 is an event initiating object in IUT, which is configured to send event notifications to TD. LO1 is an Event Log object in IUT.
Test Steps:

1. WRITE Enable = TRUE

2. MAKE (IUT generate an EventNotification)

3. RECEIVE ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

O1

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)

4. TRANSMIT BACnet-SimpleACK-PDU

5. MAKE (IUT generate another EventNotification to ensure at least two records are logged)

6. RECEIVE ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

O1

'Time Stamp' =

(T2, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)

7. TRANSMIT BACnet-SimpleACK-PDU

8. READ RC = LO1, Record_Count

9. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -2
[The following step 10 is from BTL Specified Version 9.0 and needs to be deleted]
10. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {FALSE,?, TRUE},

'Item Count'

= 2,

'Item Data'

= (logged data that matches the information received in steps 3 and 6,

 except that Process_Identifier can be any value and need not match)
[The following is the new step 10 to be added to BTL Specified Tests 12.0]
10. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 2,

'Item Data'

= (logged data that matches the information received in steps 3 and 6,

 except that Process_Identifier can be any value and need not match)
11. CHECK (T2 > T1, and that they were logged in order)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the TD shall skip the steps in which a SimpleACK-PDU is sent.
7.3.2.26.X2 Remote Logging of Notifications

Purpose: To verify that the IUT correctly collects and represents the Notifications which it receives.

Test Concept: Make TD send multiple event notification messages. Use ReadRange to retrieve the events from an Event Log or perhaps from multiple Event Logs in the IUT, and compare the two representations.

Configuration Requirements: LO1 is an Event Log object in IUT which logs the Event types which are sent. Stop_When_Full in LO1 shall be FALSE or absent.
Test Steps:

1. WRITE Enable = TRUE

2. TRANSMIT ConfirmedEventNotification-Request,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
TD,

'Event Object Identifier' =

(any valid object identifier),

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)

3. RECEIVE BACnet-SimpleACK-PDU

4. TRANSMIT ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

(any valid object identifier),

'Time Stamp' =

(T2, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ALARM | EVENT,

'AckRequired' =

TRUE | FALSE,

'From State' =

(state S1, any valid state for this event type),

'To State' =

(state S2, any valid state for this event type that can follow S1),

'Event Values' =

(any values appropriate to the event type)

5. RECEIVE BACnet-SimpleACK-PDU

6. READ RC = LO1, Record_Count

7. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -2
[The following step 8 is taken from BTL Specified Tests 9.0 and needs to be deleted]
8. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {FALSE,?,TRUE},

'Item Count'

= 2,

'Item Data'

= (logged data that matches the information received in steps 3 and 6,

 except that Process_Identifier can be any value and need not match)
[The following shows the new step 8 that should be added to the BTL Specified Tests 12.0]
8. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 2,

'Item Data'

= (logged data that matches the information received in steps 3 and 6,

 except that Process_Identifier can be any value and need not match)

9. CHECK (that the events were logged in the order in which they were received)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the test shall skip the steps in which a SimpleACK-PDU is expected.

7.3.2.26.X3 Internal Logging of ACK_NOTIFICATION

Purpose: To verify the IUT correctly collects and represents an ACK_NOTIFICATION which it initiates.

Test Concept: Make the IUT generate an ACK_NOTIFICATION message. Use ReadRange to retrieve that same event from an Event Log and compare the two representations. If the IUT does not support logging of the ACK_NOTIFICATIONs which it initiates, this test shall be skipped.

Configuration Requirements: O1 is an event initiating object in IUT, which is configured to send event notifications to TD. LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONs.
Test Steps:

1. WRITE Enable = TRUE

2. MAKE (O1 issue an ACK_NOTIFICATION)

3. READ RC = LO1, Record_Count

4. RECEIVE ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

O1,

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ACK_NOTIFICATION,

'From State' =

(state S1, any valid state for this event type)

5. TRANSMIT BACnet-SimpleACK-PDU

6. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -1
[The following step 7 is taken from BTL Specified Tests 9.0 and needs to be deleted]
7. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {FALSE,?, TRUE},

'Item Count'

= 1,

'Item Data'

= (logged data that matches the information received in step 4,

 except that Process_Identifier can be any value and need not match)
[The following is the new step 7 that should be added to the BTL Specified Tests 12.0]

7. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 1,

'Item Data'

= (logged data that matches the information received in step 4,

 except that Process_Identifier can be any value and need not match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the TD shall skip the step in which a SimpleACK-PDU is sent.
7.3.2.26.X4 Remote Logging of ACK_NOTIFICATION

Purpose: To verify that the IUT correctly collects and represents ACK_NOTIFICATIONs which it receives.

Test Concept: Send an ACK_NOTIFICATION to the IUT. Use ReadRange to retrieve that same event from an Event Log and compare the two representations.

Configuration Requirements: LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONs. Stop_When_Full in LO1 shall be FALSE or absent.
Test Steps:

1. WRITE Enable = TRUE

2. TRANSMIT ConfirmedEventNotification-Request,

SOURCE =

IUT,

DESTINATION =

TD,

'Process Identifier' =

(any valid process identifier),

'Initiating Device Identifier' =
IUT,

'Event Object Identifier' =

(any valid object identifier),

'Time Stamp' =

(T1, any valid timestamp),

'Notification Class' =

(any valid notification class),

'Priority' =

(any valid priority),

'Event Type' =

(any standard event type),

'Message Text' =

(any character string),

'Notify Type' =

ACK_NOTIFICATION,

'From State' =

(state S1, any valid state for this event type)

3. RECEIVE BACnet-SimpleACK-PDU

4. READ RC = LO1, Record_Count

5. TRANSMIT ReadRange-Request,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

‘Reference Index’
= RC,

‘Count’

= -1
[The following step 6 is taken from BTL Specified Tests 9.0 and should be deleted]
6. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {FALSE,?, TRUE},

'Item Count'

= 1,

'Item Data'

= (logged data that matches the information received in step 2,

 except that Process_Identifier can be any value and need not match)

[The following step 6 is to be added to BTL Specified Tests 12.0]

6. RECEIVE ReadRange-ACK,

'Object Identifier'
= LO1,

'Property Identifier'
= Log_Buffer,

'Result Flags'

= {?,?,FALSE},

'Item Count'

= 1,

'Item Data'

= (logged data that matches the information received in step 2,

 except that Process_Identifier can be any value and need not match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service, the test shall skip the step in which a SimpleACK-PDU is expected.

BTL-TP9.0a-5: Binary Object Elapsed Active Time Clarification
Overview:

BTL-CR-0253 pointed out an error in the below test which is now corrected.

Changes:

[In BTL Test Plan, change references for 135.1-2009 - 7.3.1.9 to BTL - 7.3.1.9, there are 4 places to change]

[In BTL Specified Tests, add 7.3.1.9 based on 135.1-2009]

7.3.1.9 Binary Object Elapsed Active Time Tests

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.6.17, 12.6.18, 12.7.17, 12.7.18, 12.8.15, and 12.8.16.
Purpose: To verify that the properties of binary objects that collectively track active time function properly. If the Elapsed_Active_Time and Time_Of_Active_Time_Reset properties are not supported then this test shall be omitted. This test applies to Binary Input, Binary Output, and Binary Value objects.

Test Concept: The Present_Value of the binary object being tested is set to INACTIVE. The Elapsed_Active_Time property is checked to verify that it does not accumulate time while the object is in an INACTIVE state. The Present_Value is then set to ACTIVE. The Elapsed_Active_Time property is checked to verify that it is accumulating time while the object is in an ACTIVE state. The Present_Value is then set to INACTIVE and the Elapsed_Active_Time is reset. The Time_Of_Active_Time_Reset property is checked to verify that it has been updated.

Configuration Requirements: The object being tested shall be configured such that the Present_Value and Elapsed_Active_Time properties are writable or another means of changing these properties shall be provided.

Test Steps:

1.
IF (Present_Value is writable) THEN

WRITE Present_Value = INACTIVE

VERIFY Present_Value = INACTIVE

ELSE

MAKE (Present_Value = INACTIVE)

2.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time

3.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time,

'Property Value' =
(the elapsed active time, TELAPSED in seconds)

4.
WAIT (1 minute)

5.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time

6.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time,

'Property Value' =
(the same TELAPSED as step 3)

7.
IF (Present_Value is writable) THEN

WRITE Present_Value = ACTIVE

VERIFY Present_Value = ACTIVE

ELSE

MAKE (Present_Value = ACTIVE)

8.
WAIT (Internal Processing Fail Time + 30 seconds)

9.
IF (Present_Value is writable) THEN

WRITE Present_Value = INACTIVE

VERIFY Present_Value = INACTIVE

ELSE

MAKE (Present_Value = INACTIVE)
10.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time

11.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Elapsed_Active_Time,

'Property Value' =
(T: (TELAPSED + 30) (T ((TELAPSED + TimeX, where TimeX is the time between the beginning of step 7 and this step30 + Internal Processing Fail Time))
11.
IF (Present_Value is writable) THEN

WRITE Present_Value = INACTIVE

VERIFY Present_Value = INACTIVE

ELSE

MAKE (Present_Value = INACTIVE)
12.
IF (Elapsed_Active_Time is writable) THEN

WRITE Elapsed_Active_Time = 0

VERIFY Elapsed_Active_Time = 0

ELSE

MAKE (Elapsed_Active_Time = 0)

13.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Date

14.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local Date,

'Property Value' =
(the current local date, D)

15.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time

16.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the IUT's Device object),

'Property Identifier' =
Local_Time,

'Property Value' =
(the current local time, TLOC)

17.
TRANSMIT ReadProperty-Request,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Time_Of_Active_Time_Reset

18.
RECEIVE ReadProperty-ACK,

'Object Identifier' =
(the object being tested),

'Property Identifier' =
Present_Value,

'Property Value' =
(a date and time such that the date = D and the time is approximately TLOC)

BTL-TP9.0a-6: Revise Event Type Filter test for new Event Types

Overview:

This document applies changes to the test package for:

· BTL-CRR-0197 proposes revising test 9.7.2.3 for when a subset of event types are supported

Changes:

[In BTL Test Plan, Change references from 135.1-2009 - 9.7.2.3 to BTL - 9.7.2.3, one reference]

[In BTL Specified Tests, Add test 9.7.2.3 which is a modification of the test in 135.1-2009]

9.7.2.3 Event Type Filter

Purpose: To verify that the IUT can execute the GetEnrollmentSummary request when the 'Event Type Filter' is used.

Configuration Requirements: If possible, the IUT shall be configured so that it has one or more event-generating objects for

each of the event types CHANGE_OF_BITSTRING, CHANGE_OF_STATE, CHANGE_OF_VALUE, COMMAND_FAILURE, FLOATING_LIMIT, and OUT_OF_RANGE. If only a subset of these event types are supported as many of them as possible shall be configured.

Test Steps:

1. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = CHANGE_OF_BITSTRING

2. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = CHANGE_OF_BITSTRING)

3. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = CHANGE_OF_STATE

4. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = CHANGE_OF_STATE)

5. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = CHANGE_OF_VALUE

6. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = CHANGE_OF_VALUE)

7. TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' = ALL,

'Event Type Filter' = FLOATING_LIMIT

8. RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' = (all configured event-generating objects with

Event_Type = FLOATING_LIMIT)

Configuration Requirements: If possible, the IUT shall be configured so that it has one or more event-generating objects for each of its supported event types. If the IUT cannot be configured in such a way all at once,

then the test shall be repeated so that each of its supported event types is tested. If only a subset of these event types are supported as many of them as possible shall be configured.

Test Steps:

REPEAT Y = (All the configurations that will be tested) DO {

REPEAT X = (All the Event Types currently configured) DO {

TRANSMIT GetEnrollmentSummary-Request,

'Acknowledgment Filter' =

ALL,

'Event Type Filter' =

X

RECEIVE GetEnrollmentSummary-ACK,

'List of Enrollment Summaries' =
(all configured event-generating objects with

Event_Type = X)

}
BTL-TP9.0a-7: Revise the Non-documented Property Test to Exclude Special Property Identifiers

Overview:

This document applies changes to the test package for this Problem:

· The ALL, REQUIRED, and OPTIONAL special BACnetPropertyIdentifiers are not supposed to be Read during Non-documented Property Test 7.2.2.X2

Changes:

[In BTL Test Plan, change test references for BTL-7.2.2.X2 to BTL-7.1.2]

[In BTL Specified Tests, delete test 7.2.2.X2]

[In BTL Specified Tests, add test 7.1.2 relative to the version in 135.1-2009i-22, changes indicated in italic]

7.1.2 Non-documented Property Test

Purpose: To verify that all properties contained in every object are documented in the EPICS.

Test Concept: For each object in the EPICS database, attempt to read each standard property that the EPICS does not document as being part of the object.

Test Steps:

1. REPEAT X = (a tester selected set of objects) DO {

 REPEAT Y = (0 through 511 except 8 (all), 80 (optional) and 105 (required)all (8), optional (80), and required (105)) DO {

 IF (the property Y is not in the EPICS for object X) THEN

 TRANSMIT ReadProperty-Request,

 'Object Identifier' = X,

 'Property Identifier' = Y

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = UNKNOWN_PROPERTY

 }

 }

Notes to Tester: The objects selected by the tester should include one instance of each supported object type. Where some instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the writability of a property, then one instance of each variant of that object type should be selected.

19

