
BACnet is a registered trademark of ASHRAE. ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed

products to the requirements of ASHRAE Standard 135 is the responsibility of BACnet International (BI). BTL is a registered trademark of BI.

BACnet TESTING LABORATORIES

Revision 15.2.final

SPECIFIED TESTS

Revised November 11, 2018

 BACnet Testing Laboratories - Specified Tests

 i

Table of Contents

1. PURPOSE .. 10
2. Interim Data Link Layer Tests .. 11

2.2 MS/TP Data Link Layer Tests ... 11
2.2.18 Verify Tno_token w/ Serial Analyzer .. 11
2.2.X1 Data Not For Us Test ... 11

2.3 ARCNET (twisted pair bus) Data Link Layer Tests ... 12
2.3.1 Verify the Failsafe Biasing with an Oscilloscope ... 13
2.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope.. 13

3. DEFINITIONS ... 15
3.x Common language used in tests .. 15

5. EPICS CONSISTENCY TESTS ... 15
7. OBJECT SUPPORT TESTS ... 16

7.1.1 Read Support Test Procedure .. 16
7.1.2 Non-documented Property Test ... 17
7.1.X3 Verifying Property_List against the EPICS... 18

7.2 Write Support for Properties in Test Database ... 18
7.2.1 Functional Range Requirements for Property Values... 18

7.2.1.3 Octetstrings and Characterstrings ... 18
7.2.2 Write Support Test Procedure ... 18
7.2.3 Read-only Property Test.. 19
7.2.X1 Date Pattern Properties Test ... 21
7.2.X2 Time Pattern Properties Test .. 21
7.2.X3 DateTime Pattern Properties Test ... 22
7.2.X4 Date Non-Pattern Properties Test ... 22
7.2.X5 Time Non-Pattern Properties Test... 23
7.2.X6 DateTime Non-Pattern Properties Test ... 23
7.2.X7 BACnetDateRange Non-Pattern Properties Test ... 24
7.2.X8 BACnetDateRange Open-Ended Pattern Properties Test .. 24

7.3 Object Functionality Tests ... 25
7.3.1 Property Tests ... 25

7.3.1.6 Minimum On/Off Time Tests .. 25
7.3.1.6.1 Override of Minimum Time .. 25
7.3.1.6.2 Minimum Off Time – Writing at priorities numerically greater than 6......................... 26
7.3.1.6.3 Minimum On Time – Writing at priorities numerically greater than 6 27
7.3.1.6.4 Minimum Off Time – Writing at priorities numerically lesser than 6 28
7.3.1.6.5 Minimum On Time – Writing at priorities numerically lesser than 6 29
7.3.1.6.6 Minimum_Off_Time – Clock is not affected by additional write operations 29
7.3.1.6.7 Minimum_On_Time – Clock is not affected by additional write operations 30
7.3.1.6.8 Ensuring Minimum_Off_Time starts at transition to INACTIVE 31
7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE 33
7.3.1.6.10 Ensuring Minimum Times Are Not Effected By Time Changes 34

7.3.1.7 COV Tests ... 35
7.3.1.7.X1 COV_Resubscription_Interval Test .. 35

7.3.1.9 Binary Object Elapsed Active Time Tests .. 36
7.3.1.10 Event_Enable Tests ... 39

7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMAL 39
7.3.1.10.2 Event_Enable Tests for TO_NORMAL only Algorithms .. 40

7.3.1.11 Acked_Transitions Tests.. 42
7.3.1.13 Limit_Enable Tests .. 46

7.3.1.13.X1 Limit_Enable Test, LowLimitEnable .. 51
7.3.1.13.X2 Limit_Enable Test, HighLimitEnable .. 52

7.3.1.X4 Event_Message_Texts Tests ... 53
7.3.1.X5 Event_Message_Texts_Config Test .. 54
7.3.1.X6 Event_Algorithm_Inhibit Tests ... 55

 BACnet Testing Laboratories - Specified Tests

 ii

7.3.1.X6.1 Event_Algorithm_Inhibit Test .. 55
7.3.1.X6.2 Event_Algorithm_Inhibit Summarization Test ... 57
7.3.1.X6.3 Event_Algorithm_Inhibit Acknowledgement Test .. 58

7.3.1.X7 Event_Algorithm_Inhibit_Ref Tests ... 58
7.3.1.X7.1 Event_Algorithm_Inhibit_Ref Test .. 58
7.3.1.X7.2 Event_Algorithm_Inhibit Writable Test ... 59

7.3.1.X8 Reliability_Evaluation_Inhibit Tests ... 59
7.3.1.X8.1 Reliability_Evaluation_Inhibit Test .. 59
7.3.1.X8.2 Reliability_Evaluation_Inhibit Summarization Test ... 60

7.3.1.X9 Event_Detection_Enable Tests.. 61
7.3.1.X9.1 Event_Detection_Enable Inhibits Event Generation .. 61
7.3.1.X9.2 Event_Detection_Enable Inhibits FAULT ... 61

7.3.2 Object Specific Tests .. 62
7.3.2.4 Averaging Object Tests ... 62

7.3.2.4.1 Reinitializing the Samples... 62
7.3.2.4.2 Managing the Sample Window ... 63

7.3.2.9 Command Object Tests.. 64
7.3.2.9.7 Write While In_Process is TRUE Test. ... 64

7.3.2.10 Device Object Tests ... 65
7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test .. 65
7.3.2.10.6 Successful Increment of the Database_Revision Property after Changing the

Object_Identifier Property of an Object ... 67
7.3.2.10.X2 Max_Segments_Accepted at least the minimum ... 67

7.3.2.13 Global Group ... 68
7.3.2.13.X1 Global Group Present_Value, Out_Of_Service and Status_Flags Test 68
7.3.2.13.X2 Reliability MEMBER_FAULT Test ... 68
7.3.2.13.X3 Reliability COMMUNICATION_FAILURE Test ... 69
7.3.2.13.X4 Present_Value Tracking and Reliability Test ... 69
7.3.2.13.X5 Present_Value Tracking Test .. 70
7.3.2.13.X6 COVU_Period and COVU_Recipient Zero Test ... 70

7.3.2.21 Notification Class Object Tests .. 71
7.3.2.21.3 Recipient_List Tests ... 71
7.3.2.21.3.1 ValidDays Test .. 71
7.3.2.21.3.2 FromTime and ToTime Test .. 73
7.3.2.21.3.3 IssueConfirmedNotifications Test ... 73
7.3.2.21.3.4 Transitions Test ... 75
7.3.2.21.3.5 Recipient_List Property Supports Device Identifier Recipients Test 77
7.3.2.21.3.6 Recipient_List Property Supports Network Address Recipients 78
7.3.2.21.3.X7 Recipient_List non-volatility test ... 78
7.3.2.21.3.X8 Read-only Recipient_List with internal Notification Forwarder objects 79
7.3.2.21.3.X9 Read-only Recipient_List for external Notification Forwarder Objects 79

7.3.2.22 Program Object Tests ... 80
7.3.2.22.1 Program_Change property test .. 80

7.3.2.23 Schedule Object Tests.. 80
7.3.2.23.6 Weekly_Schedule Restoration Test .. 80
7.3.2.23.10 Schedule Object Protocol_Revision 4 Tests ... 81
7.3.2.23.10.3 Revision 4 Exception_Schedule Property Tests ... 81
7.3.2.23.10.3.8 Revision 4 Event Priority Test .. 81

7.3.2.24 Log Object Tests ... 82
7.3.2.24.4 Log_Interval Test.. 82
7.3.2.24.13 Log-Status Test ... 83
7.3.2.24.14 Time_Change Test .. 84
7.3.2.24.15 COV-Sampling Verification Test .. 85
7.3.2.24.19 Trigger Verification Test ... 86
7.3.2.24.X8 Clock-Aligned Logging.. 87
7.3.2.24.X9 Logging Interval_Offset ... 87

 BACnet Testing Laboratories - Specified Tests

 iii

7.3.2.X37 Accumulator Object Tests ... 88
7.3.2.X37.1.1 Present_Value Remains In-Range Test .. 88
7.3.2.X37.1.3 Logging_Record in Accumulator Test ... 88
7.3.2.X37.1.5 Logging_Record in Accumulator STARTING Test ... 89
7.3.2.X37.1.6 Out_Of_Service Accumulator Test .. 90
7.3.2.X37.1.7 Value_Set Writing Test ... 90
7.3.2.X37.1.8 Value_Before_Change Writing Test .. 91

7.3.2.X38 Pulse Converter Object Tests .. 91
7.3.2.X38.1.1 Adjust_Value Write Test ... 91
7.3.2.X38.1.2 Scale_Factor Test .. 92
7.3.2.X38.1.3 Out_Of_Service Pulse Converter Test ... 92
7.3.2.X38.1.5 Update_Time Reflects Change to the Count and is Updated Atomically Test 92
7.3.2.X38.2.1 Adjust_Value Out-of-Range WriteProperty Test ... 93

8. APPLICATION SERVICE INITIATION TESTS ... 94
8.1 AcknowledgeAlarm Service Initiation Tests.. 94
8.2 ConfirmedCOVNotification Service Initiation Tests .. 94

8.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large

Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property 94
8.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large

Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property 96
8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object

Present_Value Property ... 97
8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object

Status_Flags Property .. 98
8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value,

Life Safety Point, or Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date

Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object

Present_Value Property ... 99
8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life

Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date

Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object

Status_Flags Property .. 100
8.2.7 Change of Value Notification from Loop Object Present_Value Property 101
8.2.8 Change of Value Notification from a Loop Object Status_Flags Property................................ 103
8.2.X9 ConfirmedCOVNotification Pulse Converter changing Present_Value 104
8.2.X10 ConfirmedCOVNotification Pulse Converter changing Status_Flags 105

8.3 UnconfirmedCOVNotification Service Initiation Tests .. 106
8.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large

Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property 106
8.3.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large

Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property 106
8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value,

Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date

Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object

Present_Value Property ... 106
8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value,

Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date

Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object

Status_Flags Property .. 107
8.3.X1 COVU_Recipients Notifications .. 107
8.3.X11 Unsubscribed COV Service Initiation Test .. 108
8.3.X12 UnconfirmedCOVNotification Pulse Converter changing Present_Value......................... 108
8.3.X13 UnconfirmedCOVNotification Pulse Converter changing Status_Flags 108

8.4 ConfirmedEventNotification Service Initiation Tests... 108
8.4.4 COMMAND_FAILURE Tests .. 108
8.4.X1 DOUBLE_OUT_OF_RANGE Tests (ConfirmedEventNotification) 110

 BACnet Testing Laboratories - Specified Tests

 iv

8.4.X2 SIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification) 110
8.4.X3 UNSIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)............................ 110
8.4.X4 CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification) 111
8.4.X5 Proprietary Algorithm Tests (ConfirmedEventNotifications) .. 114
8.4.X6 Extended Algorithm Tests (ConfirmedEventNotifications) ... 114
8.4.X7 UNSIGNED_RANGE ConfirmedEventNotification Test ... 114
8.4.X8 CHANGE_OF_STATUS_FLAGS Test (ConfirmedEventNotification) 116

8.5 UnconfirmedEventNotification Service Initiation Tests ... 117
8.5.X1 DOUBLE_OUT_OF_RANGE Tests (UnconfirmedEventNotification) 117
8.5.X2 SIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification) 118
8.5.X3 UNSIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification) 118
8.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification) 118
8.5.X5 Proprietary Algorithm Tests (UnconfirmedEventNotifications) .. 119
8.5.X6 Extended Algorithm Tests (UnconfirmedEventNotifications) ... 119
8.5.X8 CHANGE_OF_STATUS_FLAGS Test (UnconfirmedEventNotification) 119
8.5.X9 CHANGE_OF_RELIABILITY Tests ... 120

8.5.X9.1 CHANGE_OF_RELIABILITY with No Fault Algorithm ... 120
8.5.X9.2 CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING Algorithm . 121
8.5.X9.3 CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm 122
8.5.X9.4 CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm 123
8.5.X9.5 CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm 125
8.5.X9.6 CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm 126
8.5.X9.7 Event Enrollment Fault Condition Precedence Tests .. 127

8.5.X9.7.1 Internal Faults Take Precedence Over Monitored Object Faults 127
8.5.X9.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms 128
8.5.X9.7.3 Internal Faults Take Precedence Over Fault Algorithms 128

8.5.X9.8 CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object Fault... 129
8.5.X9.9 CHANGE_OF_RELIABILITY of Event Enrollment Object Fault 130
8.5.X9.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL................................. 131
8.5.X9.11 CHANGE_OF_RELIABILITY with First Stage Object Fault 133

8.11 SubscribeCOVProperty Service Initiation Tests ... 134
8.11.1 Confirmed Notifications Subscription ... 134
8.11.2 Unconfirmed Notifications Subscription ... 134
8.11.3 Canceling a Subscription ... 134
8.11.X1 Change of Value Notification Tests .. 135

8.11.X1.1 Change of Value Notification.. 135
8.11.X1.2 Change of Value Notifications with Invalid Process Identifier 135
8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired 136
8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier 138
8.11.X1.5 Change of Value Notifications with Invalid Monitored property 138

8.11.X4 Requests 8 Hour Lifetimes ... 139
8.20 ReadPropertyMultiple Service Initiation Tests ... 140

8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails 140
8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service 140

8.21 ReadRange Service Initiation Tests ... 140
8.21.1 Reading Values with no Specified Range .. 140
8.21.3 Reading a Range of Values by Position ... 141
8.21.9 Presents Log Records Containing a Specific Datatype ... 141

8.22 WriteProperty Service Initiation Tests ... 141
8.22.X4 Writing Array Properties as a Whole Array .. 141

8.24 DeviceCommunicationControl Service Initiation Tests ... 142
8.24.1 Indefinite Duration, Disable, No Password .. 142
8.24.2 Indefinite Duration, Disable, Password .. 142
8.24.3 Time Duration, Disable, Password ... 142
8.24.4 Enable, Password... 142
8.24.5 Enable, No Password ... 143

 BACnet Testing Laboratories - Specified Tests

 v

8.24.6 Time Duration, Disable, No Password ... 143
8.24.7 Time Duration, Disable-Initiation, Password ... 143

8.27 ReinitializeDevice Service Initiation Tests .. 143
8.27.2 COLDSTART with a Password ... 143
8.27.4 WARMSTART with a Password ... 143

8.32 Who-Has Service Initiation Tests .. 144
8.32.1 Object Identifier Selection with no Device Instance Range .. 144
8.32.2 Object Name Selection with no Device Instance Range ... 144
8.32.3 Object Identifier Selection with a Device Instance Range .. 145
8.32.4 Object Name Selection with a Device Instance Range ... 145

8.34 Who-Is Service Initiation Tests .. 146
8.34.2 Who-Is Request with a Device Instance Range .. 146

9. APPLICATION SERVICE EXECUTION TESTS .. 146
9.1 AcknowledgeAlarm Service Execution Tests .. 147

9.1.1 Positive AcknowledgeAlarm Service Execution Tests ... 147
9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time

Form of the ‘Time of Acknowledgment’ Parameter... 147
9.1.1.2 Successful Alarm Acknowledgment of Confirmed Event Notifications using the Sequence

Number Form of the ‘Time of Acknowledgment’ Parameter ... 149
9.1.1.3 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Date

Time Form of the ‘Time of Acknowledgment’ Parameter ... 150
9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time

Form of the ‘Time of Acknowledgment’ Parameter... 150
9.1.1.5 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the

Sequence Number Form of the ‘Time of Acknowledgment’ Parameter 152
9.1.1.6 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Date

Time Form of the ‘Time of Acknowledgment’ Parameter ... 153
9.1.1.8 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unknown

‘Acknowledging Process Identifier’ Parameter .. 153
9.1.1.9 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an

Unknown ‘Acknowledging Process Identifier’ Parameter .. 155
9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications 157
9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications 159
9.1.1.X3 Successful Alarm Acknowledgment of Confirmed Event Notifications when ‘To State’

is either High-Limit or Low-Limit ... 161
9.1.2 Negative AcknowledgeAlarm Service Execution Tests .. 162

9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the

‘Time Stamp’ is Too Old... 162
9.1.2.3 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the

‘Event Object Identifier’ is Invalid .. 164
9.1.2.4 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the

‘Event State Acknowledged’ is Invalid.. 165
9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the

‘Time Stamp’ is Too Old... 165
9.1.2.6 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the

Referenced Object Does Not Exist .. 168
9.1.2.7 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the

‘Event State Acknowledged’ is Invalid.. 168
9.1.X1 Unsupported Message Text Character Set AcknowledgeAlarm Test 169

9.2 ConfirmedCOVNotification Service Execution Tests .. 170
9.2.1 Positive ConfirmedCOVNotification Service Execution Tests... 170

9.2.1.X4 Change of Value Notification from Proprietary Objects .. 170
9.2.2 Negative ConfirmedCOVNotification Service Execution Tests ... 170

9.2.2.1 Change of Value Notification Arrives after Subscription has Expired 170
9.2.2.2 Change of Value Notifications with Invalid Process Identifier ... 171
9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier 171

 BACnet Testing Laboratories - Specified Tests

 vi

9.3 UnconfirmedCOVNotification Service Execution Tests .. 172
9.3.X9 Change of Value Notification from Proprietary Objects.. 172

9.4 ConfirmedEventNotification Service Execution Tests ... 172
9.4.5 ConfirmedEventNotification Simple Presentation ... 172
9.4.6 ConfirmedEventNotification Full Presentation .. 173
9.4.X1 Unsupported Message Text Character Set ConfirmedEventNotificationTest 173

9.5 UnconfirmedEventNotification Service Execution Tests ... 174
9.5.X1 Unsupported Message Text Character Set UnconfirmedEventNotificationTest 174

9.7 GetEnrollmentSummary Service Execution Tests .. 174
9.7.1 Required GetEnrollmentSummary Filters .. 174

9.7.1.1 Enrollment Summary with Zero Summaries .. 174
9.7.2 User Selectable GetEnrollmentSummary Filters .. 175

9.7.2.3 Event Type Filter ... 175
9.8 GetEventInformation Service Execution Tests ... 175

9.8.6 Chaining Test .. 175
9.10 SubscribeCOV Service Execution Tests .. 176

9.10.1 Positive SubscribeCOV Service Execution Tests ... 176
9.10.1.7 Finite Lifetime Subscriptions ... 176
9.10.1.X1 Ensuring 5 Concurrent COV Subscribers .. 177

9.10.2 Negative SubscribeCOV Service Execution Tests ... 179
9.10.2.1 The Monitored Object Does Not Support COV Notification .. 179
Reason For Change: Added configuration requirements. ... 179
9.10.2.X1 The Monitored Object Does Not Exist ... 179
9.10.2.X2 There Is No Space For A Subscription ... 180
9.10.2.X3 The Lifetime Parameter is Out of Range .. 180

9.10.3 Positive Unsubscribed COVNotification Execution Tests .. 180
9.10.3.X1 Unsubscribed COVNotification Execution Test .. 180

9.14 AddListElement Service Execution Tests .. 182
9.14.2 Negative AddListElement Service Execution Tests ... 182

9.14.2.2 Adding a List Element With an Invalid Datatype ... 182
9.14.2.3 An AddListElement Failure Part Way Through a List .. 182

9.15 RemoveListElement Service Execution Tests .. 183
9.15.2 Negative RemoveListElement Service Execution Tests ... 183

9.15.2.2 A RemoveListElement Failure Part Way Through a List.. 183
9.16 CreateObject Service Execution Tests ... 183

9.16.1 Positive CreateObject Service Execution Tests .. 183
9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values 183
9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values ... 184

9.16.2 Negative CreateObject Service Execution Tests .. 184
9.16.2.1 Attempting to Create an Object That Does Not Have a Unique Object Identifier 184
9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial

Values ... 184
9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in

the Initial Values ... 185
9.16.2.6 Attempting to Create an Object with an instance of 4194303 187
9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type) 187
9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier) 187

9.17 DeleteObject Service Execution Tests ... 188
9.17.2 Negative DeleteObject Service Execution Tests .. 188

9.17.2.1 Attempting to Delete an Object That is Not Deletable .. 188
9.18 ReadProperty Service Execution Tests .. 188

9.18.1 Positive ReadProperty Service Execution Tests ... 188
9.18.1.2 Reading a Single Element of an Array ... 188
9.18.1.X1 Reading Properties Based on Data Type... 188
9.18.1.X3 Respects max-segments-accepted bit pattern ... 189

9.20 ReadPropertyMultiple Service Execution Tests ... 189

 BACnet Testing Laboratories - Specified Tests

 vii

9.20.1 Positive ReadPropertyMultiple Service Execution Tests.. 189
9.20.1.1 Reading a Single Property from a Single Object .. 189
9.20.1.2 Reading Multiple properties from a Single Object ... 189
9.20.1.3 Reading a Single Property from Multiple Objects .. 189
9.20.1.4 Reading Multiple Properties from Multiple Objects ... 190
9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error 190
9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors............................. 190
9.20.1.7 Reading ALL Properties .. 191
9.20.1.8 Reading OPTIONAL Properties .. 191
9.20.1.9 Reading REQUIRED Properties .. 192
9.20.1.X1 Reading Properties Based on Data Type.. 192

9.21 ReadRange Service Execution Tests .. 192
9.21.1 Positive ReadRange Service Execution Tests .. 192

9.21.1.X1 ReadRange Support for All List Properties ... 192
9.21.2 Negative ReadRange Service Execution Tests ... 193

9.21.2.1 Attempting to Read a Property That Does not Exist ... 193
9.21.2.2 Attempting to Read a Property That is not a List .. 193
9.21.2.3 Attempting to Read a non-Array Property with an Array Index 194

9.22 WriteProperty Service Execution Tests .. 194
9.22.1 Positive WriteProperty Service Execution Tests .. 194

9.22.1.1 Writing a Single Element of an Array .. 194
9.22.1.2 Writing a Commandable Property Without a Priority ... 194
9.22.1.3 Writing a Non-Commandable Property with a Priority ... 195
9.22.1.X1 Writing an Array Size .. 195
9.22.1.X2 Writing to Properties Based on Data Type .. 196

9.22.2 Negative WriteProperty Service Execution Tests .. 196
9.22.2.1 Writing Non-Array Properties with an Array Index ... 196
9.22.2.2 Writing Array Properties with an Array Index that is Out of Range................................ 197
9.22.2.3 Writing with a Property Value Having the Wrong Datatype ... 197
9.22.2.4 Writing with a Property Value that is Out of Range ... 198
9.22.2.X1 Writing Non-Array Read-only Property with an Array Index 198
9.22.2.X2 Resizing a writable fixed size array property ... 199

9.23 WritePropertyMultiple Service Execution Tests .. 199
9.23.1 Positive WritePropertyMultiple Service Execution Tests ... 199

9.23.1.1 Writing a Single Property to a Single Object .. 199
9.23.1.2 Writing Multiple properties to a Single Object ... 200
9.23.1.3 Writing a Single Property to Multiple Objects ... 200
9.23.1.4 Writing Multiple Properties to Multiple Objects .. 201
9.23.1.X4 Writing an Array Size ... 201

9.23.2 Negative WritePropertyMultiple Service Execution Tests ... 201
9.23.2.1 Writing Multiple Properties with a Property Access Error .. 201
9.23.2.2 Writing Multiple Properties with an Object Access Error ... 202
9.23.2.3 Writing Multiple Properties with a Write Access Error .. 203
9.23.2.4 Writing Non-Array Properties with an Array Index ... 203
9.23.2.5 Writing Array Properties with an Array Index that is Out of Range................................ 204
9.23.2.6 Writing with a Property Value Having the Wrong Datatype ... 204
9.23.2.7 Writing with a Property Value that is Out of Range ... 204
9.23.2.X1 WritePropertyMultiple Reject Test... 205
9.23.2.X2 Resizing a writable fixed size array property using WritePropertyMultiple service 206

9.24 DeviceCommunicationControl Service Execution Test .. 207
9.24.1 Positive DeviceCommunicationControl Service Execution Tests .. 207

9.24.1.5 Finite Time Duration Restored by ReinitializeDevice .. 207
9.24.2 Negative DeviceCommunicationControl Service Execution Tests ... 207

9.24.2.3 Restore by ReinitializeDevice with Invalid ‘Reinitialized State of Device’ 207
9.27 ReinitializeDevice Service Execution Tests ... 208

9.27.2 Negative ReinitializeDevice Service Execution Tests .. 208

 BACnet Testing Laboratories - Specified Tests

 viii

9.27.2.3 COLDSTART with Missing or Invalid Password .. 208
9.27.2.4 WARMSTART with Missing or Invalid Password .. 209

9.29 UnconfirmedTextMessage Service Execution Tests .. 209
9.29.1 UnconfirmedTextMessage With No Message Class ... 209
9.29.2 UnconfirmedTextMessage With an Unsigned Message Class ... 210
9.29.3 UnconfirmedTextMessage With a CharacterString Message Class 210

9.30 TimeSynchronization Service Execution Tests .. 210
9.30.1 Positive TimeSynchronization Service Execution Tests .. 210

9.30.1.1 TimeSynchronization Local Broadcast... 210
9.30.1.2 TimeSynchronization Directed to the IUT ... 212

9.31 UTCTimeSynchronization Service Execution Tests ... 212
9.31.1 Positive UTCTimeSynchronization Service Execution Tests .. 212

9.31.1.1 UTCTimeSynchronization Local Broadcast ... 212
9.31.1.2 UTCTimeSynchronization Directed to the IUT .. 213

9.32 Who-Has Service Execution Tests ... 213
9.32.1 Execution of Who-Has Service Requests Originating from the Local Network 213

9.32.1.1 Object ID Version with No Device Range ... 213
9.32.1.2 Object Name Version with no Device Range ... 213
9.32.1.3 Object ID Version with IUT Inside of the Device Range.. 214
9.32.1.4 Object ID Version with IUT Outside of the Device Range ... 215
9.32.1.5 Object Name Version with IUT Inside of the Device Range .. 215
9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range

 ... 216
9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range

 ... 216
9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device

Range.. 217
9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device

Range.. 217
9.32.1.11 Object Name Version, Directed to a Specific MAC Address .. 218
9.32.1.12 Who-Has After Object_Name Changed ... 218
9.32.1.13 Who-Has After Object_Identifier Changed .. 219

9.32.2 Execution of Who-Has Service Requests Originating from a Remote Network 220
9.32.2.1 Object ID Version, Global Broadcast from a Remote Network 220
9.32.2.2 Object ID Version, Remote Broadcast ... 221
9.32.2.X3 – Who-Has for Non-existent Object_Name ... 221
9.32.2.X5 Who-Has for Non-existent Object_Identifier .. 221

9.33 Who-Is Service Execution Tests .. 222
9.33.1 Execution of Who-Is Service Requests Originating from the Local Network 222

9.33.1.3 Local Broadcast, Specific Device Inquiry with IUT Outside of the Device Range 222
9.33.2 Execution of Who-Is Service Requests Originating from a Remote Network 222

9.33.2.3 General Inquiry, Directed to a Remote Device ... 222
10. NETWORK LAYER PROTOCOL TESTS ... 223

10.1.1 Processing Application Layer Messages Originating from Remote Networks 223
10.2 Router Functionality Tests ... 223

10.2.2 Processing Network Layer Messages .. 223
10.2.2.7.2 Unknown Network Layer Message Type .. 223

10.2.X1 Initiates Network-Number-Is on Startup ... 224
10.2.X2 Routers Execute What-Is-Network-Number ... 224

10.6 Non-Router Functionality Tests ... 225
10.6.3 Ignore Router Commands ... 225

10.7 Router Functionality .. 225
10.7.2 Router Binding via Application Layer Services ... 225

10.8 Virtual Routing Functionality Tests ... 227
10.8.3 Routing of Unicast APDUs ... 228

 BACnet Testing Laboratories - Specified Tests

 ix

10.8.3.1 Route Request Message from a Local Device to a Virtual Device and Route Response

Message from the Virtual Device to the Local Device ... 228
10.8.3.2 Route Request Message from a Virtual Device to a Local Device 229
10.8.3.5 Unicast Messages That Should Not Be Routed ... 230

10.8.3.5.1 Unknown Network .. 230
10.8.4 Routing of Broadcast APDUs to Virtual Devices ... 230

10.8.4.7 Route Remote Broadcast Message from a Virtual Device to a Local Network 230
10.8.7 Multiple Devices on a Single Virtual Network .. 231

10.8.7.4 Who-Is Specifying Unknown Device Ids ... 231
10.8.7.5 Who-Has Specifying Unknown Device Ids .. 231

12. DATA LINK LAYER PROTOCOLS TESTS ... 232
12.1 MS/TP State Machine Tests... 232

12.1.3 MS/TP Data Link Layer Tests (Alternate) ... 232
12.1.3.3 Verify Tframe_gap .. 232

13. SPECIAL FUNCTIONALITY TESTS ... 232
13.1 Segmentation .. 232

13.1.12.1 IUT Does Not Support Segmented Response ... 232
13.1.X3 Ignore Confirmed Broadcast Requests ... 232

13.8 Backup and Restore Procedure Tests ... 233
13.8.1 Backup and Restore Execution Tests ... 233

13.8.1.1 Execution of Full Backup and Restore Procedure... 233
13.8.1.6 Ending Backup and Restore Procedures via Timeout .. 236
13.8.1.8 Attempting a Backup Procedure with an Invalid Password 237
13.8.1.9 Attempting a Restore Procedure with an Invalid Password 237
13.8.1.11 Starting and Ending a Restore Procedure when a Password is not Required 238

13.8.2 Backup and Restore Initiation Tests .. 239
13.8.2.1 Initiate a Full Backup and Restore ... 239

13.X12.1 Reading with maximum-segments-accepted bit pattern B’000’ ... 241
14. BACnet/IP FUNCTIONALITY TESTS .. 241

14.1 Non-BBMD B/IP Device ... 241
14.1.7 Forwarded-NPDU (One-hop Distribution) .. 241
14.1.8 Original-Broadcast-NPDU .. 241
14.1.10 Forwarded-NPDU (Two-hop Distribution) .. 242

14.2 BBMD B/IP Device with a Server Application .. 242
14.2.1 Execute Forwarded-NPDU .. 242

14.2.1.1 Execute Forwarded-NPDU (One-hop Distribution) .. 242
14.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution) ... 243

14.2.2 Execute Original-Broadcast-NPDU ... 244
14.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution) ... 244
14.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution) .. 244

14.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous

Session 245
14.7 Broadcast management (BBMD, Foreign Devices, Local Application) .. 246

14.7.1 Broadcast Message from Directly Connected IP Subnet .. 246
14.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution) 246
14.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution) 247

14.7.2 Broadcast Message Forwarded by a Peer BBMD .. 248
14.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution) 248
14.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution) 249

14.7.3 Broadcast Message from a Foreign Device .. 250
14.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution) 250
14.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution) 251

BACnet Testing Laboratories - Specified Tests

 10

1. PURPOSE

This document contains tests defined by the BTL that are not included in ANSI/ASHRAE Standard 135.1-2013 or are

modified versions of tests in 135.1. These tests are used by the BTL testing process and are referenced by the BTL Test

Plan document.

Most of the tests defined in this document will be submitted to SSPC 135. Those that are submitted will be removed from

future versions of this document as they are accepted/rejected by the SSPC 135 and 135.1 is updated.

Some of the tests are interim tests defined by the BTL because the test tools are not adequate for testing the particular

functionality. These tests will be removed once the tests in SSPC 135.1 can be implemented by the BTL. Examples of such

tests are the MS/TP tests.

For those tests that will be submitted to the SSPC 135, the test numbering is based on the numbers that the test would have

if they were included in 135.1.

BACnet Testing Laboratories - Specified Tests

 11

2. Interim Data Link Layer Tests

2.2 MS/TP Data Link Layer Tests

2.2.18 Verify Tno_token w/ Serial Analyzer

Reason for Change: No test exists for this functionality.

Purpose: Verify that the IUT waits at least 500 before declaration of loss of token and start behaving as sole master

Test Concept: A network of two reference masters and IUT is constructed and all are turned on Once the network achieves

normal network operation, make one reference master (A) to send a Confirmed Request (Read Property or Read

Property Multiple) to the other reference master (B). B is powered off or removed from the network before sending the

reply. The network is monitored to verify that the IUT (C) does not take token in hand within 500 milliseconds.

Setup: The test starts with an MS/TP network comprised of two reference master devices and IUT that has achieved

normal network operation. Normal network operation should be verified using a serial analyzer. If the IUT does not

autobaud, then it shall be configured with the same baud rate of the operating network. The IUT shall be configured

with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the

Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master in use by

the reference masters.

Test Steps:

1. VERIFY two reference masters (A & B) and IUT (C) achieved normal network operation

2. MAKE one reference master device (A) to send Confirmed request, either Read Property or Read Property Multiple to

other reference master device (B).

3. Power Off or remove the reference Master B from the network before sending the reply.

4. CHECK (verify with the serial analyzer that IUT does not take token in hand and start passing Poll For Master or pass

token within 500 millisecond)

5. If the IUT does exhibit the behavior described in step4, fail the IUT.

2.2.X1 Data Not For Us Test

Reason for Change: Addendum 135-2008z.3 Modify MS/TP State Machine to Ignore Data Not For Us.

Purpose: Verify that the IUT properly skips the complete data portion of frames not intended for the IUT.

Test Concept: Send a BACnet Data Not Expecting Reply frame that contains the frame pre-amble octet sequence to an

address other that the IUT. Follow it immediately with a ReadProperty request for the IUT’s device object to ensure that the

IUT will correctly receive and process the ReadProperty request.

Test Steps:

2. TRANSMIT

 Frame Type = BACnet Data Not Expecting Reply

 Destination Address = (any Unicast address other than IUT),

 Length = 7,

 Data = (55 FF 05 FF 00 01 F5)

2. TRANSMIT ReadProperty-Request

 ‘Object Identifier’ = (device, 4194303),

 ‘Property Identifier’ = Object_Name

3. RECEIVE ReadProperty-Response

 ‘Object Identifier’ = (device, IUT),

BACnet Testing Laboratories - Specified Tests

 12

 ‘Property Identifier’ = Object_Name,

 ‘Value’ = (any valid value)

2.3 ARCNET (twisted pair bus) Data Link Layer Tests

The ARCNET twisted pair bus is an alternate configuration of the standard ARCNET coax, and therefore, requires a

different setup of electronics and chipset configuration. These tests verify that the setup and configuration has been

followed in order to provide interoperability.

Since the TD is installed on the non-ARCNET side of a reference router, these tests do not cover strict conformance to the

ARCNET data link layer. The methodology is to install the IUT on an ARCNET network containing reference devices that

are known to conform to BACnet clause 8 using the twisted pair bus option and verify that the TD can exchange data with

the IUT. An oscilloscope will also be employed on the ARCNET network to verify that the IUT meets the duty cycle and

biasing requirements of the alternate ARCNET data link layer, as these items are critical to interoperability of ARCNET

twisted pair bus. An ARCNET packet sniffer is useful, but not required.

These tests require the use of a reference ARCNET twisted pair bus router and a reference ARCNET twisted pair bus

device. These devices will be selected from a pool of qualified devices that are to be submitted by members of the BMA.

The tester is free to select any of the qualified references devices to use during the test, and the identity of the reference

devices will not be published. The criteria for qualifying the reference devices is virtually identical to the test plans

referenced here, with the addition of a few tests for proper formation of the NPCI by the reference router.

General Test Setup:

Install a reference ARCNET twisted pair bus router at ARCNET node address <A>.

Install a reference ARCNET twisted pair bus device at node address <C>.

Install the IUT at node address .

The ARCNET node addresses are not critical, but must be unique and not zero.

Recommended Test Tools:

ARCNET packet sniffer = Any ARCNET packet sniffer that meets the following requirements:

1. Each packet is time stamped with 1msec accuracy.

2. The packet sniffer can support the baud rates being tested.

3. Captured data can be saved and reloaded, including the time stamp information.

4. The packet sniffer is currently available for purchase.

Other desirable traits:

5. A BACnet aware packet sniffer to allow ARCNET packets to be decoded, either online or offline.

6. Export a captured session to a text file, including time stamp information. (This would provide the ability for advanced

analysis of the data, such as scanning the data for timing anomalies).

Reference
Router Node Address <A>

ARCNET twisted pair bus

Node Address Node Address <C>

IUT Reference
Device

TD

BACnet Testing Laboratories - Specified Tests

 13

Oscilloscope = Agilent 54620 series or similar. This scope has a 2MB sample memory, which is useful for capturing data

for an extended time and then zooming in on the details after the capture is complete. It can also “layer” the samples using

32 levels of display intensity, which makes it easier to spot timing anomalies.

2.3.1 Verify the Failsafe Biasing with an Oscilloscope

Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: Verify that failsafe biasing (see ARCNET specification 11.4.2, Fail-safe Bias) is at least 200mV. A

maximum value is not specified, but the biasing should be such as to not excessively load the EIA-485 transceivers.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1. Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2. With an oscilloscope probe connected across the bus with the correct polarity, measure the Fail-Safe Bias.

3. Fail the IUT if the Fail-Safe Bias is not at least 200mV.

2.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope

Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: The ARCNET chipset has the option of supporting either coax (normal) or twisted pair (differential driver).

The differential driver mode utilizes a 50% duty cycle, while the normal method uses a 25% duty cycle for the bits on the

wire. Verify that the duty cycle is 50% for ARCNET twisted pair bus.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1. Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2. With an oscilloscope probe connected across the bus with the correct polarity, measure the bit signal duty cycle (pulse

width divided by the interpulse period).

Va-Vb

Fail-Safe Bias

0 Volts

BACnet Testing Laboratories - Specified Tests

 14

3. Fail the IUT if the duty cycle is not 50% (with allowance for acceptable jitter).

Va-Vb

Interpulse Period

0 Volts

Pulse Width

BACnet Testing Laboratories - Specified Tests

 15

3. DEFINITIONS

3.x Common language used in tests

‘any valid value’ - Any valid value refers to any value of the correct data type and within the vendor’s range specified for

the property this is applied to.

‘any appropriate password’ – Any password that meets the Configuration Requirements specified in the test or test section.

Passwords when required by the vendor are required to be no more than 20 characters.

5. EPICS CONSISTENCY TESTS

Reason for Change: Improved the language in this set of tests to clarify the exact requirement of the test.

These tests are static tests of the EPICS and do not involve interrogating the IUT. There are no Test Configuration or Test

Step sections with TCSL in these tests because the tests are static tests of the EPICS and not tests of the IUT itself.

Each implementation shall be tested to ensure consistency among interrelated data elements

These tests shall include:

3. All object types required by the specified BIBBs shall be indicated as supported in the Standard Object Types

Supported section of the EPICS.

(b) A minimum of one instance of each object type required by the specified BIBBs shall be included in the test database.

(c) The Protocol_Object_Types_Supported property of the Device object in the test database shall indicate support for

each object type required by the supported BIBBs.

(d) All application services required by the supported BIBBs shall be indicated as supported in the BACnet Standard

Application Services Supported section of the EPICS with Initiate and Execute indicated as required by the supported

BIBBs.

(e) The Application_Services_SupportedProtocol_Services_Supported property of the Device object in the test database

shall indicate support for each application service for which the supported BIBBs requires support for execution of the

service.

(f) The object types listed in the Standard Object Types Supported section of the EPICS shall have a one-to-one

correspondence with object types listed in the Protocol_Object_Types_Supported property of the Device object contained

in the test database.

(g) For each object type listed in the Standard Object Types Supported* section of the EPICS there shall be at least one

object of that type in the test database. **

*An object type is supported if it can be made to exist in the IUT’s database.

**with the exception of the case where File objects are only present in the IUT during Backup and Restore. An object type

is supported if it can be made to exist in the IUT’s database.

(h) There shall be a one-to-one correspondence between the objects listed in the Object_List property of the Device object

and the objects included in the test database. The Object_List property and the test database shall both include all

proprietary objects. Properties of proprietary objects that are not required by BACnet Clause 23.4.3 need not be included in

the test database.

4. For each object included in the test database, all required properties for that object as defined in Clause 12 of BACnet

shall be present. Standard properties which are not defined for the implemented Protocol_Revision shall not be

BACnet Testing Laboratories - Specified Tests

 16

present. In addition, if any of the properties supported for an object require the conditional presence of other

properties, their presence shall be verified.

(j) For each property that is required to be writable, or conditionality writable, that property shall be marked as writable,

or conditionality writable, in the EPICS.

(k) The length of the Protocol_Services_Supported bitstring shall have the number of bits defined for

BACnetProtocolServicesSupported for the IUT’s declared protocol revision.

(l) The length of the Protocol_Object_Types_Supported bitstring shall have the number of bits defined for

BACnetObjectTypesSupported for the IUT’s declared protocol revision

(m) For each object included in the test database, any properties that are deprecated or removed shall not appear after the

Protocol_Revision in which the property was deprecated or removed.

(n) If the Protocol_Revision property is present in the Device object and its value is greater than or equal to 14, the

Property_List property of each object included in the test database shall have one entry for each property present including

non-standard properties with the exception of Object_Type, Object_Identifier, Object_Name and Property_List

(o) If the Segmentation_Supported property in the Device object is SEGMENTED_BOTH or SEGMENTED_RECEIVE,

then the value of the Max_Segments_Accepted property of the Device object shall be greater than 1.

7. OBJECT SUPPORT TESTS

7.1.1 Read Support Test Procedure

Reason for Change: This test does not consider the IUT behavior in cases where a property either can not be read by

ReadProperty, and ReadPropertyMultiple services or whose response may be too long to return in the given APDU and

segment limitations of the IUT.

Purpose: To verify that all properties of all objects can be read using ReadProperty and ReadPropertyMultiple services.

Test Concept: The test is performed once using ReadProperty and once using ReadPropertyMultiple. When verifying array

properties, the whole array shall be read without using an array index, where possible.

Test Steps:

5. REPEAT X = (all objects in the IUT’s database) DO {

 REPEAT Y = (all properties in object X) DO {

 IF (Y = property indicated as not accessible by ReadProperty Services) THEN

 TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y

 IF (Protocol_Revision >= 13) THEN

 RECEIVE BACnet-Error PDU,

 ‘Error Class’ = PROPERTY,

 ‘Error Code’ = READ_ACCESS_DENIED

 ELSE

 RECEIVE BACnet-Error PDU,

 ‘Error Class’ = OBJECT | PROPERTY,

 ‘Error Code’ = (any of the error codes for an OBJECT or PROPERTY class)

 ELSE IF (Y = any property of type ARRAY and is too long to return given the

 APDU and segmentation limitations of the IUT) THEN

 TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = X,

BACnet Testing Laboratories - Specified Tests

 17

 ‘Property Identifier’ = Y

 RECEIVE BACnet-Abort-PDU,

 ‘Server’ = TRUE,

 ‘Abort Reason’ = SEGMENTATION_NOT_SUPPORTED |

 BUFFER_OVERFLOW

 TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

 ‘Property Array Index’ = 0

 RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = X,

 ‘PropertyIdentifier’ = Y,

 ‘Array Index’ = 0,

 ‘Property Value’ = (any value specified in the EPICS, P)

 REPEAT Z = (each index 1 through P of the property Y) DO {

 VERIFY (X), Y = (the value for index Z of this property Y in

 the EPICS), ARRAY INDEX = Z

 }

 ELSE

 VERIFY (X), Y = (the value for this property specified in the EPICS)

 }

 }

Notes to Tester: For cases where the EPICS indicates that the value of a property is unspecified using the “?” symbol, any

value that is of the correct datatype shall be considered to be a match. When using the ReadPropertyMultiple service, a

received ReadPropertyMultiple-ACK containing the specified Error Class and Error Code shall also be considered a

Passing result.

Passing Result: Trying to read the Log_Buffer property of a Trend Log object by using BACnet ReadProperty and

ReadPropertyMultiple services may result in an Error-PDU with an error class of OBJECT or PROPERTY and an error

code of OTHER. Note, however, that while neither ASHRAE 135-2001 nor ASHRAE 135-2004 clearly define whether

OTHER represents a valid error code in this case, Addendum u to ANSI/ASHRAE 135-2008 clearly defined

READ_ACCESS_DENIED as the valid error code in this case.

7.1.2 Non-documented Property Test

Reason for Change: Revised test to exclude special property identifiers.

Purpose: To verify that all properties contained in every object are documented in the EPICS.

Test Concept: For each object in the EPICS database, attempt to read each standard property that the EPICS does not

document as being part of the object.

Test Steps:

6. REPEAT X = (a tester selected set of objects) DO {

 REPEAT Y = (0 through 511 except 8 (all), 80 (optional) and 105 (required)) DO {

 IF (the property Y is not in the EPICS for object X) THEN

 TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = UNKNOWN_PROPERTY

 }

 }

BACnet Testing Laboratories - Specified Tests

 18

Notes to Tester: The objects selected by the tester should include one instance of each supported object type.

Where some instances of an object type differ in the set of supported properties, the allowable value ranges for a property,

or the writability of a property, then one instance of each variant of that object type should be selected.

7.1.X3 Verifying Property_List against the EPICS

Reason for Change: Addendum 135-2010ao-5.

Purpose: To verify the correct content of the Property_List using the properties in each object as claimed in the EPICS.

Test Concept: Match the properties in each object as claimed in the EPICS, against the content of each object’s

Property_List.

Test Conditionality: If Protocol_Revision is not present, or Protocol_Revision < 14, then this test shall be skipped.

Test Steps:

1. READ OL = Object_List

2. REPEAT (O1, each object in the content of OL)

3. READ PL = Property_List, in the selected object instance O1

4. CHECK (that the property identifiers in the EPICS for O1 and those in the Property_List property match, except as

specified in Notes to Tester)

Notes to Tester: Object_Name (77), Object_Type (79), Object_Identifier (75), and Property_List (371) will appear in the

EPICS, but shall not appear in the Property_List value. Any proprietary properties that are supported for the object-type

shall be in the Property_List. (see BACnet 15.7.3.1.2). The order in which property identifiers appear in the EPICS, is not

required to match the order that they appear in the Property_List value.

7.2 Write Support for Properties in Test Database

7.2.1 Functional Range Requirements for Property Values

7.2.1.3 Octetstrings and Characterstrings

Reason for Change: The description here did not account for the Object_Name property which must be of minimum length

of 1 not zero. Not in any SSPC proposal. Addendum 135-2008k-1 Add Support for UTF-8.

Properties with an octetstring or characterstring datatype shall be tested with a string of length zerothe minimum supported

length, a string with the maximum supported length, and a string with some length between the two. The vendor shall

provide the actual value of the maximum length string in the EPICS. See 4.4.2.

When testing character string properties in a device that supports UTF-8 (Protocol_Revision >= 10), at least one of the

data values shall contain multi-byte characters.

7.2.2 Write Support Test Procedure

Reason for Change: ‚Notes to Tester‘ is missing from the version in 135.1-2013.

Purpose: To verify that all writable properties of all objects can be written to using BACnet WriteProperty and

WritePropertyMulitiple services. The test is performed once using WriteProperty and once using WritePropertyMultiple.

When writing to array properties, the whole array shall be written without using an array index, where possible.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Test Steps:

7. REPEAT X = (all objects in the IUT‘s database) DO {

BACnet Testing Laboratories - Specified Tests

 19

 REPEAT Y = (all writable properties in object X) DO {

 REPEAT Z = (all values meeting the functional range requirements of 7.2.1, and any additional

 restrictions placed on the allowable property values by the vendor) DO {

 WRITE (X), Y = Z,

 VERIFY (X), Y = Z

 }

 }

 }

Notes to Tester: An internal process may set the Present_Value of some properties back to the default value after a

successful write, as in the case of a momentary pushbutton, or the Record_Count property. For properties that exhibit this

type of behavior, skip the VERIFY step.

Notes to Tester: When a property is currently not writable, the IUT shall return an Error-PDU with ‘Error Class’ =

PROPERTY and ‘Error Code’ = WRITE_ACCESS_DENIED.

7.2.3 Read-only Property Test

Reason for Change: This test is based on 135.1-2013 and corrects the use of the READ statement. Added ‘Configuration

Requirements’.

Purpose: To verify that properties marked as read-only in the EPICS are in fact read-only.

Test Concept: To each read-only (not writable and not conditionally writable) property in the EPICS, write the value of the

property as read from the device and verify that an error is returned. Write another value that is within the acceptable range

for the datatype and verify that an error is returned. If the property is a list and the IUT supports AddListElement, attempt

to modify the property with AddListElement and verify that an error is returned.

Configuration Requirements: if the IUT does not support the WriteProperty service, then this test shall be skipped.

Test Steps:

8. REPEAT X = (a tester selected set of objects) DO {

 REPEAT Y = (all read-only properties in object X) DO {

 IF (the property is not an array) THEN

 READ Z = X

 READ Z = (X), property Y

 TRANSMIT WriteProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

 ‘Property Value’ = Z

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED

 TRANSMIT WriteProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

 ‘Property Value’ = (any value meeting the range requirements of 7.2.1 except Z)

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED

 IF (the IUT supports AddListElement and the property is a list) THEN

 TRANSMIT AddListElement-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

BACnet Testing Laboratories - Specified Tests

 20

 ‘List of Elements’ = (any elements value meeting the range requirements of 7.2.1 excluding

those in Z)

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED

 ELSE

 READ LEN = X, Array_Index = 0

 READ LEN = (X), Y, Array_Index =0

 IF (LEN > 0)

 READ Z = X, Array Index = 1

 READ Z = (X), Y, Array_Index=1

 TRANSMIT WriteProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

 ‘Property Value’ = Z,

 ‘Array Index’ = 1

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED

 TRANSMIT WriteProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

 ‘Property Value’ = (any value meeting the range requirements of 7.2.1 except Z)

 ‘Array Index’ = 1

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED

 IF (the IUT supports AddListElement and the property is an array of lists) THEN

 TRANSMIT AddListElement-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

 ‘Array Index’ = 1

 ‘List of Elements’ = (any elements value meeting the range requirements of 7.2.1

excluding those in Z)

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED

 ELSE

 TRANSMIT WriteProperty-Request,

 ‘Object Identifier’ = X,

 ‘Property Identifier’ = Y,

 ‘Property Value’ = (any value meeting the range requirements of 7.2.1)

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED

 }

 }

Notes to tester: When modifying a property, it is expected that an error class of PROPERTY with an error code of

WRITE_ACCESS_DENIED is returned but the IUT may instead return an error_class of PROPERTY with an error_code

of VALUE_OUT_OF_RANGE, or an error_class of RESOURCES with an error_code of

NO_SPACE_TO_WRITE_PROPERTY. In the case that the property is an array, and it has no elements, then the IUT may

return and error class of PROPERTY and an error code of INVALID_ARRAY_INDEX. The objects selected by the tester

should include one instance of each supported object type. Where some instances of an object type differ in the set of

BACnet Testing Laboratories - Specified Tests

 21

supported properties, the allowable value ranges for a property, or the writability of a property, then one instance of each

“flavor” of that object type should be selected.

7.2.X1 Date Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.

Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in

dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property

accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. The value,

written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a

complex datatype, the other fields in the value shall be set within the range accepted by the IUT. The list of Specials comes

from the Chapter 21 Application Types section on Date. The day-of-week field is redundant information and can be

regenerated from the other fields. In order to not fail devices which always ensure this field is consistent with the other

fields in the date value, the use of an unspecified day of week is always tested in conjunction with another pattern value.

Test Steps:

9. IF (Protocol_Revision is not present or Protocol_Revision < 4)

 Specials = (year unspecified, month unspecified, day of month unspecified)

ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)

Specials = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day

of month)

ELSE

Specials = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day

of month, even days, odd days)

2. REPEAT SV = (each value in Specials) DO {

 IF SV <> day of week unspecified THEN

 V1 = D1 updated with the value SV

 ELSE

 V1 = D1 updated with the value SV and any other value from Specials

 WRITE P1 = (V1)

 VERIFY P1 = (V1)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

7.2.X2 Time Pattern Properties Test

Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when

wildcards are allowed in dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special time field values.

Test Concept: The property being test, P1, is written with each of the special time field values to ensure that the property

accepts them. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value,

written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a

complex datatype the other fields in the value shall be set within the range accepted by the IUT.

Test Steps:

1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {

 WRITE P1 = (T1 updated with the value SV)

BACnet Testing Laboratories - Specified Tests

 22

 VERIFY P1 = (T1 updated with the value SV)

 }

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

7.2.X3 DateTime Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.

Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in

dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special date and time field values.

Test Concept: The property being tested, P1, is written with each of the special date and time field values to ensure that the

property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. A

time, T1, is selected which is within the time range that the IUT will accept for the property. The value, written to the

property is the date D1 and time T1 with one of its fields replaced with one of the date or time special values. If the

property is a complex datatype which contains the BACnetDateTime, the other fields in the value shall be set within the

range accepted by the IUT. The list of DateSpecials comes from the Chapter 21 Application Types section on Date and the

list of TimeSpecials comes from the Chapter 21 Application Types section on Time.

Test Steps:

10. IF (Protocol_Revision is not present or Protocol_Revision < 4)

 DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified)

ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)

DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified, odd

months, even months, last day of month)

ELSE

DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified, odd

months, even months, last day of month, even days, odd days)

2. TimeSpecials = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)

3. REPEAT SV = (each value in DateSpecials +TimeSpecials) DO {

 WRITE P1 = (D1+T1 updated with the value SV)

 VERIFY P1 = (D1+T1 updated with the value SV)

}

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

7.2.X4 Date Non-Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.

Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in

dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property

does not accept them. A date is selected which is within the date range that the IUT will accept for the property. The value,

V1, written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property

is a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be

applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

11. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, day of week unspecified,

 odd months, even months, last day of month, even days, odd days) DO {

 TRANSMIT WriteProperty-Request

BACnet Testing Laboratories - Specified Tests

 23

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = P1,

 ‘Property Value’ = (V1 updated with the special value SV)

 RECEIVE BACnet-Error-PDU

 ‘Error Class’ = PROPERTY,

 ‘Error Code’ = VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X5 Time Non-Pattern Properties Test

Reason for Change: Addendum 135-2008acac-1 clarifies when wildcards are allowed in dates and times. Test does not

exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property

does not accept them. A time is selected which is within the time range that the IUT will accept for the property. The value,

V1, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property

is a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be

applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

12. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)

 TRANSMIT WriteProperty-Request

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = P1,

 ‘Property Value’ = (V1 updated with the special value SV)

 RECEIVE BACnet-Error-PDU

 ‘Error Class’ = PROPERTY,

 ‘Error Code’ = VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X6 DateTime Non-Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.

Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in

dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special datetime field values to ensure that the

property does not accept them. A datetime DT1 is selected which is within the range that the IUT will accept for the

property. The value, V1, written to the property is the datetime DT1 with one of its fields replaced with one of the date or

time special values. If the property is a complex datatype, the other fields in the value shall be set within the range accepted

by the IUT. This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of

month, even days, odd days, hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {

 TRANSMIT WriteProperty-Request

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = P1,

 ‘Property Value’ = (DT1 updated with the special value SV)

 RECEIVE BACnet-Error-PDU

 ‘Error Class’ = PROPERTY,

BACnet Testing Laboratories - Specified Tests

 24

 ‘Error Code’ = VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X7 BACnetDateRange Non-Pattern Properties Test

Reason for Change: Addendum 135-2008ac-1 clarifies in the clause 12 preamble, when wildcards are allowed in

BACnetDateRange.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: A BACnetDateRange property, or property that is a complex datatype containing a BACnetDateRange, P1 is

written with each of the special date field values to ensure that the property does not accept them. Each half of the

dateRange DR1 is selected so it is within the range that the IUT will accept for the property. The value, V1, written to the

property is the dateRange DR1 with one of its fields replaced with one of the date special values. If the property is a

complex datatype such as a BACnetCalenderEntry, the other fields in the value shall be set within the range accepted by the

IUT.

Configuration Requirements: This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of

month, even days, odd days) DO {

 TRANSMIT WriteProperty-Request

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = P1,

 ‘Property Value’ = (DR1 with startDate updated with the special value SV)

 RECEIVE BACnet-Error-PDU

 ‘Error Class’ = PROPERTY,

 ‘Error Code’ = VALUE_OUT_OF_RANGE

 TRANSMIT WriteProperty-Request

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = P1,

 ‘Property Value’ = (DR1 with endDate updated with the special value SV)

 Receive BACnet-Error-PDU

 ‘Error Class’ = PROPERTY,

 ‘Error Code’ = VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X8 BACnetDateRange Open-Ended Pattern Properties Test

Reason for Change: Addendum 135-2008ac-1 clarifies in the clause 12 preamble, when wildcards are allowed in

BACnetDateRange.

Purpose: To verify that the property being tested accepts a fully unspecified date in either or both halves of the value.

Test Concept: A BACnetDateRange property, or property that has a complex datatype containing a BACnetDateRange, P1

is written with a fully unspecified date in either or both halves to ensure that the property accepts them. DR1 is selected

which is within the date range that the IUT will accept for the property. The value, written to the property is the dateRange

DR1 replaced with a fully unspecified date in either or both startDate and endDate. If the property is a complex datatype the

other fields in the value shall be set within the range accepted by the IUT.

BACnet Testing Laboratories - Specified Tests

 25

Configuration Requirements: This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:

1. WRITE P1 = (DR1 updated with a fully unspecified date in startDate)

2. VERIFY P1 = (the value written)

3. WRITE P1 = (DR1 updated with a fully unspecified date in endDate)

4. VERIFY P1 = (the value written)

5. WRITE P1 = (DR1 updated with a fully unspecified date in both startDate and endDate)

6. VERIFY P1 = (the value written)

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITEs and VERIFYs.

7.3 Object Functionality Tests

7.3.1 Property Tests

7.3.1.6 Minimum On/Off Time Tests

7.3.1.6.1 Override of Minimum Time

Reason for Change: The test was re-written to remove the dependence on the presence of the Minimum_Off_Time

property. This test was renumbered from 7.3.1.6 to 7.3.1.6.1.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.19.

BACnet Reference Clause: 19.

Purpose: To verify that higher priority commands override minimum on or off times. If neither minimum on time or

minimum off time is supported this test shall be omitted. This test applies to Binary Output and commandable Binary Value

objects.

Test Concept: The initial Present_Value of the object tested is set to INACTIVE and it is controlled at a priority

numerically greater (lower priority) than 6. The object has been in this state long enough for any minimum off and/or

minimum on time to have expired. The Present_Value is written to with a value of ACTIVE at priority 7. The value of slot

6 of the Priority_Array is monitored to verify that it contains the value ACTIVE. Before the minimum on time expires the

Present_Value is written to with a value of INACTIVE and a priority numerically lower (higher priority) than 6. This

overrides the minimum on time and immediately initiates the minimum off time algorithm.

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array

numerically less than 7 have a value of NULL and no internal algorithms are issuing commands to this object at a priority

numerically lesser (higher priority) than the priority that is currently controlling Present_Value. Minimum_On_Time must

be configured with a large enough value to allow execution of all test steps before it expires.

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY = 7

2. VERIFY Present_Value = ACTIVE

3. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

4. BEFORE Minimum_On_Time

 WRITE Present_Value = INACTIVE, PRIORITY = (any value numerically lower than 6 (higher priority))

5. VERIFY Present_Value = INACTIVE

6. VERIFY Priority_Array = INACTIVE, PRIORITY = 6

6. VERIFY Priority_Array <> ACTIVE, ARRAY_INDEX = 6

BACnet Testing Laboratories - Specified Tests

 26

Notes to Tester: If minimum on time is not supported but minimum off time is supported, this test should be conducted by

using INACTIVE in steps 1, 2, 3 and 6 through 3 and ACTIVE in steps 4 through 76 and 5, and by using the

Minimum_Off_Time in Step 4.

7.3.1.6.2 Minimum Off Time – Writing at priorities numerically greater than 6

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that commands written at a lower priority than 6 will not affect Present_Value while

Minimum_Off_Time is in effect.

Test Concept: The initial Present_Value of the object tested is set to ACTIVE and it is controlled by the Relinquish_Default

value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this state long enough for

any minimum on time to have expired. The Present_Value of the object is set to INACTIVE at a priority P9. Before

Minimum_Off_Time expires, Present_Value is written with values of ACTIVE and NULL at Priorities P9 and P7, where

P7 is a priority between P9 and 6. The Priority_Array is monitored to verify that it contains the appropriate values and

Present_Value is monitored to verify that it does not change before Minimum_Off_Time expires.

Test Step(s) →
Start of

Test
1-3 4-6 7-10 11-15 16

Present_Value Active Inactive Inactive Inactive Inactive Active

PA_Index = 6 Null Inactive Inactive Inactive Inactive <>Inactive

PA_Index = P7 Null Null Null Active Active Active

PA_Index = P9 Null Inactive Null Null Active Active

Relinquish_Default Active Active Active Active Active Active

Note: Bold font indicates the

change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array from P9

and higher (numerically lesser) have a value of NULL and no internal algorithms are issuing commands to this object.

Minimum_Off_Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

1. WRITE Present_Value = INACTIVE, PRIORITY = P9

2. VERIFY Present_Value = INACTIVE

3. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

4. WRITE Present_Value = NULL, PRIORITY = P9

5. VERIFY Present_Value = INACTIVE

6. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX = 6

--…(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY_INDEX = 6 or PV)

7. WRITE Present_Value = ACTIVE, PRIORITY = P7 (6 < P7 < P9)

8. VERIFY Present_Value = INACTIVE

9. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = P7

10. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX = 6

--…(Steps 7-10:Check that an ACTIVE value at P7 does not affect ARRAY_INDEX = 6 or PV)

End of

Test Minimum_Off_Time

BACnet Testing Laboratories - Specified Tests

 27

11. WRITE Present_Value = ACTIVE, PRIORITY = P9

12. VERIFY Present_Value = INACTIVE

13. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = P9

14. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX = 6

--…(Steps 11-14:Check that an ACTIVE value at P9 does not affect ARRAY_INDEX = 6 or PV)

15. WAIT (Minimum_Off_Time + Internal Processing Fail Time)

16. VERIFY Present_Value = ACTIVE

7.3.1.6.3 Minimum On Time – Writing at priorities numerically greater than 6

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that commands written at a lower priority than 6 will not affect Present_Value while

Minimum_On_Time is in effect.

Test Concept: The initial Present_Value of the object tested is set to INACTIVE and it is controlled by the

Relinquish_Default value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this

state long enough for any minimum off time to have expired. The Present_Value of the object tested is set to ACTIVE at a

priority P9. Before Minimum_On_Time expires, Present_Value is written with values of ACTIVE and NULL at Priorities

P9 and P7, where P7 is a priority between P9 and 6. The Priority_Array is monitored to verify that it contains the

appropriate values and Present_Value is monitored to verify that it does not change before Minimum_On_Time expires.

Test Step(s) →
Start of

Test
1-3 4-6 7-10 11-15 16

Present_Value Inactive Active Active Active Active Inactive

PA_Index = 6 Null Active Active Active Active <>Active

PA_Index = P7 Null Null Null Inactive Inactive Inactive

PA_Index = P9 Null Active Null Null Inactive Inactive

Relinquish_Default Inactive Inactive Inactive Inactive Inactive Inactive

Note: Bold font indicates the

change invoked by write

operation

Configuration Requirements: The object to be tested shall be configured such that all slots from P9 and higher (numerically

lesser) in the Priority_Array have a value of NULL and no internal algorithms are issuing commands to this object.

Minimum_On_Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY = P9

2. VERIFY Present_Value = ACTIVE

3. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

4. WRITE Present_Value = NULL, PRIORITY = P9

5. VERIFY Present_Value = ACTIVE

6. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX = 6

--…(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY_INDEX = 6 or PV)

7. WRITE Present_Value = INACTIVE, PRIORITY = P7 (6 < P7 < P9)

8. VERIFY Present_Value = ACTIVE

End of

Test
Minimum_On_Time

BACnet Testing Laboratories - Specified Tests

 28

9. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = P7

10. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX = 6

--…(Steps 7-10:Check that an INACTIVE value at P7 does not affect ARRAY_INDEX = 6 or PV)

11. WRITE Present_Value = INACTIVE, PRIORITY = P9

12. VERIFY Present_Value = ACTIVE

13. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = P9

14. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX = 6

--…(Steps 11-14:Check that an INACTIVE value at P9 does not affect ARRAY_INDEX = 6 or PV)

15. WAIT (Minimum_On_Time + Internal Processing Fail Time)

16. VERIFY Present_Value = INACTIVE

7.3.1.6.4 Minimum Off Time – Writing at priorities numerically lesser than 6

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority

and minimum off time is in effect.

Test Concept: The initial Present_Value of the object tested is set to ACTIVE and it is controlled by the Relinquish_Default

value or at a priority numerically greater (lower priority) than 6. The object has been in this state long enough for any

minimum on time to have expired. The Present_Value of the object tested is set to INACTIVE at a priority P5 (P5 < 6).

Before Minimum_Off_Time expires, Present_Value is written with values of NULL and ACTIVE and the Present_Value

and Priority_Array properties are observed for correct behavior.

Test Steps → Start of Test 1-3 4-7 8-11

Present_Value Active Inactive Inactive Active

PA_Index = P5 Null Inactive Null Active
PA_Index = 6 Null Inactive Inactive <>Inactive
Relinquish_Default Active Active Active Active

Note: Bold font indicates the

change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array higher

(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.

Minimum_Off_Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present_Value = INACTIVE, PRIORITY = P5

2. VERIFY Present_Value = INACTIVE

3. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

4. WRITE Present_Value = NULL, PRIORITY = P5

5. VERIFY Present_Value = INACTIVE

6. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

7. VERIFY Priority_ Array = NULL, ARRAY_INDEX = P5

--…(Steps 4-7:Check that a NULL value at P5 will NOT change ARRAY_INDEX = 6 or PV)

8. WRITE Present_Value = ACTIVE, PRIORITY = P5

9. VERIFY Present_Value = ACTIVE

Minimum_Off_Time

BACnet Testing Laboratories - Specified Tests

 29

10. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = P5

11. VERIFY Priority_ Array <> INACTIVE, ARRAY_INDEX = 6

--…(Steps 8-11:Check that an ACTIVE value at P5 will change ARRAY_INDEX = 6 and PV)

7.3.1.6.5 Minimum On Time – Writing at priorities numerically lesser than 6

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority

and minimum on time is in effect.

Test Concept: The initial Present_Value of the object tested is set to INACTIVE and it is controlled by the

Relinquish_Default value or at a priority numerically greater (lower priority) than 6. The object has been in this state long

enough for any minimum off time to have expired. The Present_Value of the object tested is set to ACTIVE at a priority

P5 (P5 < 6). Before Minimum_On_Time expires, Present_Value is written with values of NULL and INACTIVE and the

Present_Value and Priority_Array properties are observed for correct behavior.

Test Steps →
Start of

Test
1-3 4-7 8-11

Present_Value Inactive Active Active Inactive

PA_Index = P5 Null Active Null Inactive
PA_Index = 6 Null Active Active <>Active
Relinquish_Default Inactive Inactive Inactive Inactive

Note: Bold font indicates the

change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array higher

(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.

Minimum_On_Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY = P5

2. VERIFY Present_Value = ACTIVE

3. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

4. WRITE Present_Value = NULL, PRIORITY = P5

5. VERIFY Present_Value = ACTIVE

6. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

7. VERIFY Priority_ Array = NULL, ARRAY_INDEX = P5

--…(Steps 4-7:Check that a NULL value at P5 will NOT change ARRAY_INDEX = 6 or PV)

8. WRITE Present_Value = INACTIVE, PRIORITY = P5

9. VERIFY Present_Value = INACTIVE

10. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = P5

11. VERIFY Priority_ Array <> ACTIVE, ARRAY_INDEX = 6

--…(Steps 8-11:Check that an INACTIVE value at P5 will change ARRAY_INDEX = 6 and PV)

7.3.1.6.6 Minimum_Off_Time – Clock is not affected by additional write operations

Reason for Change: This test is not specified in any SSPC proposal.

Minimum_On_Time

BACnet Testing Laboratories - Specified Tests

 30

Purpose: To verify that the Minimum_Off_Time timer is not affected by subsequent write operations that do not cause

present-value to change.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-

array has a value of NULL. Present_Value of the object is written to INACTIVE at priority P8, such that present-value and

slot 6 in the priority-array change to INACTIVE. At time T1, which occurs before minimum off time expires, another

write request, at priority P9, with a value of INACTIVE, is executed by the device. After minimum off time expires but

before T1 + Minimum_Off_Time, slot 6 in the priority-array is checked to verify that it returned to NULL and was not

affected by the second request.

Test Step(s) → 1-2 3-4 5-8 9

Present_Value Active Inactive Inactive Inactive

PA_Index = P6 Null Inactive Inactive Null
PA_Index = PX8 Null Inactive Inactive Inactive
PA_Index = PY9 Null Null Inactive Inactive

Note: Bold font indicates the

change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and

slot 6 in the Priority_Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically) than

any other commanding priority.

Test Steps:

1. VERIFY Present_Value = ACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX = 6

3. WRITE Present_Value = INACTIVE, PRIORITY = P8

4. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

--…(Execute step 5 at time T1)

5. WRITE Present_Value = INACTIVE, PRIORITY = PY9

--…(Execute steps 6 and 7 before Minimum_Off_Time expires)

6. VERIFY Present_Value = INACTIVE

7. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

8. WAIT for Minimum_Off_Time to expire

--…(Execute step 9 before T1 + Minimum_Off_Time)

9. VERIFY Priority_ Array = NULL, ARRAY_INDEX = 6

Notes to Tester: P8 and P9 may assume any value in the Priority_Array (except 6) and may be equal.

7.3.1.6.7 Minimum_On_Time – Clock is not affected by additional write operations

Reason for Change: This test is not specified in any SSPC proposal.

Minimum_Off_Time

BACnet Testing Laboratories - Specified Tests

 31

Purpose: To verify that the Minimum_On_Time timer is not affected by subsequent write operations that do not cause

present-value to change.

Test Concept: The initial Present_Value of the object being tested is set to INACTIVE and the value at slot 6 in the

priority-array has a value of NULL. Present_Value of the object is written to ACTIVE, at priority P8, such that present-

value and slot 6 in the priority-array change to ACTIVE. At time T1, which occurs before minimum on time expires,

another write request, at priority P9, with a value of ACTIVE, is executed by the device. After minimum on time expires

but before T1 + Minimum_On_Time, Sslot 6 in the priority-array is checked to verify that it returned to NULL and was not

affected by the second request.

Test Step(s) → 1-2 3-4 5-8 9

Present_Value Inactive Active Active Active

PA_Index = P6 Null Active Active Null
PA_Index = P8 Null Active Active Active
PA_Index = P9 Null Null Active Active

Note: Bold font indicates the

change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE

and slot 6 in the Priority_Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically)

than any other commanding priority.

Test Steps:

1. VERIFY Present_Value = INACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX = 6

3. WRITE Present_Value = ACTIVE, PRIORITY = P8

4. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

--…(Execute step 5 at time T1)

5. WRITE Present_Value = ACTIVE, PRIORITY = P9

--…(Execute steps 6 and 7 before Minimum_On_Time expires)

6. VERIFY Present_Value = ACTIVE

7. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

8. WAIT for Minimum_On_Time to expire

--…(Execute step 9 before T1 + Minimum_On_Time)

9. VERIFY Priority_ Array = NULL, ARRAY_INDEX = 6

Notes to Tester: P8 and P9 may assume any value in the Priority_Array (except 6) and may be equal.

7.3.1.6.8 Ensuring Minimum_Off_Time starts at transition to INACTIVE

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that Minimum_Off_Time does not start immediately after a write operation while Minimum_On_Time

is in effect and present-value is ACTIVE.

Minimum_On_Time

BACnet Testing Laboratories - Specified Tests

 32

Test Concept: The initial Present_Value of the object being tested is set to INACTIVE and the value at slot 6 in the

priority-array has a value of NULL. Present_Value of the object is written to ACTIVE at P9, where P9 is a priority

between 7 and 16, such that present-value and slot 6 in the priority-array change to ACTIVE. Before Minimum_On_Time

expires, Present_Value is written to INACTIVE at P7, where P7 is a priority between 7 and P9, such that Present_Value

would change if Minimum_On_Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals

to ensure that it contains the appropriate value. Time references T1 and T2 are defined for this test as follows:

T1 = the time when the INACTIVE request is executed by the device + Minimum_Off_Time

T2 = the time when the ACTIVE request is executed by the device + Minimum_On_Time + Minimum_Off_Time

Test Steps → 1-2 3-5 6-9 10-11 12-13 14-15

Present_Value Inactive Active Active Inactive Inactive Inactive

PA_Index = 6 Null Active Active Inactive Inactive Null

PA_Index = P7 Null Null Inactive Inactive Inactive Inactive

PA_Index = P9 Active Active Active Active Active

Note: Bold font indicates the

change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE

and slot 6 in the Priority_Array has a value of NULL. The object being tested must also be configured with

Minimum_On_Time and Minimum_Off_Time values sufficiently large enough to allow execution of this test. If no object

exists with both Minimum_On_Time and Minimum_Off_Time properties, this test shall be skipped.

Test Steps:

1. VERIFY Present_Value = INACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX = 6

3. WRITE Present_Value = ACTIVE, PRIORITY = P9

4. VERIFY Present_Value = ACTIVE

5. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

--…(Execute steps 6 through 7 before Minimum_On_Time expires)

6. WRITE Present_Value = INACTIVE, PRIORITY = P7

7. VERIFY Present_Value = ACTIVE

8. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = 6

9. WAIT for Minimum_On_Time to expire

--…(Execute steps 10 and 11 before T1)

10. VERIFY Present_Value = INACTIVE

11. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX = 6

--…(Execute step 12 between T1 and T2

12. VERIFY Present_Value = INACTIVE

13. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX = 6

--..(Execute step 14 and 15 after T2)

14. VERIFY Present_Value = INACTIVE

15. VERIFY Priority_Array = NULL, ARRAY_INDEX = 6

Notes to Tester: P9 and P7 may be equal.

T1 T2

Minimum_On_Time

BACnet Testing Laboratories - Specified Tests

 33

7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that Minimum_On_Time does not start immediately after a write operation while Minimum_Off_Time

is in effect and present-value is INACTIVE.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-

array has a value of NULL. Present_Value of the object is written to INACTIVE at P9, where P9 is a priority between 7

and 16, such that present-value and slot 6 in the priority-array change to INACTIVE. Before Minimum_Off_Time expires,

Present_Value is written to ACTIVE at P7, where P7 is a priority between 7 and P9, such that Present_Value would change

if Minimum_Off_Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals to ensure that it

contains the appropriate value. Time references T1 and T2 are defined for this test as follows:

T1 = the time when the ACTIVE request is executed by the device + Minimum_On_Time

T2 = the time when the INACTIVE request is executed by the device + Minimum_Off_Time + Minimum_On_Time

Test Steps → 1-2 3-5 6-9 10-11 12-13 14-15

Present_Value Active Inactive Inactive Active Active Active

PA_Index = 6 Null Inactive Inactive Active Active Null

PA_Index = P7 Null Null Active Active Active Active

PA_Index = P9 Inactive Inactive Inactive Inactive Inactive

Note: Bold font indicates the

change invoked by write operation

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and

slot 6 in the Priority_Array has a value of NULL. The object being tested must also be configured with

Minimum_On_Time and Minimum_Off_Time values sufficiently large enough to allow execution of this test. If no object

exists with both Minimum_On_Time and Minimum_Off_Time properties, this test shall be skipped.

Test Steps:

1. VERIFY Present_Value = ACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX = 6

3. WRITE Present_Value = INACTIVE, PRIORITY = P9

4. VERIFY Present_Value = INACTIVE

5. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

--…(Execute steps 6 through 7 before Minimum_Off_Time expires)

6. WRITE Present_Value = ACTIVE, PRIORITY = P7

7. VERIFY Present_Value = INACTIVE

8. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

9. WAIT for Minimum_Off_Time to expire

--…(Execute steps 10 and 11 before T1)

10. VERIFY Present_Value = ACTIVE

11. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX = 6

--…(Execute step 12 between T1 and T2

12. VERIFY Present_Value = ACTIVE

13. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX = 6

--..(Execute step 14 and 15 after T2)

14. VERIFY Present_Value = ACTIVE

T1 T2

Minimum_On_Time

BACnet Testing Laboratories - Specified Tests

 34

15. VERIFY Priority_Array = NULL, ARRAY_INDEX = 6

Notes to Tester: P9 and P7 may be equal.

7.3.1.6.10 Ensuring Minimum Times Are Not Effected By Time Changes

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that minimum times are not affected by changing the time in a device via TimeSynchronization or

UTCTimeSynchronization requests.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-

array has a value of NULL. Present_Value of the object is written to INACTIVE such that present-value and slot 6 in the

priority-array change to INACTIVE. Before Minimum_Off_Time expires, the time is changed to a value T1 which is more

than Minimum_Off_Time in the future and Present_Value and Slot 6 in the priority-array are read to verify that they were

not affected by the time change. After Minimum_Off_Time expires, slot 6 in the priority-array is read again to verify that it

is no longer INACTIVE.

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and

slot 6 in the Priority_Array has a value of NULL. If the IUT does not support TimeSynchronization or UTC-

TimeSynchronization, then this test shall be omitted.

Test Steps:

1. VERIFY Present_Value = ACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX = 6

3. WRITE Present_Value = INACTIVE

4. VERIFY Present_Value = INACTIVE

5. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

6. TRANSMIT

 DA = GLOBAL BROADCAST,

 SA = TD

 BACnet-Unconfirmed-Request-PDU,

 ‘Service Choice’ = TimeSynchronization-Request,

 Date = T1,

 Time = T1

7. TRANSMIT

 DA = GLOBAL BROADCAST,

 SA = TD

 BACnet-Unconfirmed-Request-PDU,

 ‘Service Choice’ = UTC-TimeSynchronization-Request,

 Date = T1,

 Time = T1

8. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

9. WAIT (the remainder of Minimum_Off_Time)

10. VERIFY Priority_Array <> INACTIVE, ARRAY_INDEX = 6

Notes to Tester: The test above is written for Minimum_Off_Time. To execute this test for Minimum_On_Time, use

INACTIVE

BACnet Testing Laboratories - Specified Tests

 35

7.3.1.7 COV Tests

7.3.1.7.X1 COV_Resubscription_Interval Test

Reason for Change: No existing test in the standard.

Dependencies: Confirmed Notifications Subscription, 8.10.1.

BACnet Reference Clause: 12.25.10 and 12.50.15.

Purpose: To verify that object O1 acquiring data via COV notification reissues its subscription at the interval set by

COV_Resubscription_Interval.

Test Concept: O1 is configured to acquire data from the TD by COV notification. The TD verifies the resubscription

interval.

Configuration RequirementsO1 is configured to acquire data from TD by COV notification. Non-zero values shall be

chosen for COV_Resubscription_Interval in accordance with the range and resolution specified by the manufacturer for this

property.

Test Steps:

13. IF (the IUT uses SubscribeCOV) THEN

 RECEIVE SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = (SPI1, any value),

 ‘Monitored Object Identifier’ = (MOI1, the object to be monitored),

 ‘Issue Confirmed Notifications’ = (ICN1 = TRUE | FALSE),

 ‘Lifetime’ = (L1, any value >= COV_Resubscription_Interval)

 ELSE

 RECEIVE SubscribeCOVProperty-Request,

 ‘Subscriber Process Identifier’ = (SPI1, any value),

 ‘Monitored Object Identifier’ = (MOI1, the object to be monitored),

 ‘Issue Confirmed Notifications’ = (ICN1 = TRUE | FALSE),

 ‘Lifetime’ = (L1, any value >= COV_Resubscription_Interval),

 ‘Monitored Property Identifier’ = (MPI1, the property to be monitored),

 ‘COV Increment’ = (CI1, Client_COV_Increment – optional)

2. TRANSMIT BACnet-SimpleACK-PDU

3. TRANSMIT ConfirmedCOVNotification-Request,

 ‘Subscriber Process Identifier’ = SPI1,

 ‘Initiating Device Identifier’ = TD,

 ‘Monitored Object Identifier’ = MOI1,

 ‘Issue Confirmed Notifications’ = ICN1,

 ‘Time Remaining’ = (any value <= L1),

 ‘List of Values’ = (appropriate BACnetPropertyValue(s))

4. RECEIVE BACnet-SimpleACK-PDU

5. BEFORE (the lesser of COV_Resubscription_Interval + Re-subscription Interval Tolerance and L1LifeTime from

step 1)

 IF (the IUT uses SubscribeCOV)

 RECEIVE SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = SPI1,

 ‘Monitored Object Identifier’ = MOI1,

 ‘Issue Confirmed Notifications’ = ICN1,

 ‘Lifetime’ = (L2, any value >= COV_Resubscription_Interval)

BACnet Testing Laboratories - Specified Tests

 36

 ELSE

 RECEIVE SubscribeCOVProperty-Request,

 ‘Subscriber Process Identifier’ = SPI1,

 ‘Monitored Object Identifier’ = MOI1,

 ‘Issue Confirmed Notifications’ = ICN1,

 ‘Lifetime’ = (L2, any value >= COV_Resubscription_Interval)

 ‘Monitored Property Identifier’ = MPI1,

 ‘COV Increment’ = CI1

6. TRANSMIT BACnet-SimpleACK-PDU

7. TRANSMIT ConfirmedCOVNotification-Request,

 ‘Subscriber Process Identifier’ = SPI1,

 ‘Initiating Device Identifier’ = TD,

 ‘Monitored Object Identifier’ = MOI1,

 ‘Issue Confirmed Notifications’ = ICN1,

 ‘Time Remaining’ = (any value <= L2),

 ‘List of Values’ = (appropriate BACnetPropertyValue(s))

8. RECEIVE BACnet-SimpleACK-PDU

9. WAIT (COV_Resubscription_Interval – Re-subscription Interval Tolerance)

10. BEFORE (2 * Re-subscription Interval Tolerance)

 IF (the IUT uses SubscribeCOV)

 RECEIVE SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = SPI1,

 ‘Monitored Object Identifier’ = MOI1,

 ‘Issue Confirmed Notifications’ = ICN1,

 ‘Lifetime’ = L1

 ELSE

 RECEIVE SubscribeCOVProperty-Request,

 ‘Subscriber Process Identifier’ = SPI1,

 ‘Monitored Object Identifier’ = MOI1,

 ‘Issue Confirmed Notifications’ = ICN1,

 ‘Lifetime’ = L1,

 ‘Monitored Property Identifier’ = MPI1,

 ‘COV Increment’ = CI1

11. TRANSMIT BACnet-SimpleACK-PDU

Passing Result: Where the Lifetime parameter of a SubscribeCOV request is less than COV_Resubscription_Interval +

Re-subscription Interval Tolerance, the IUT shall send the subsequent SubscribeCOV request within Lifetime seconds even

though this is a smaller time window than defined by the test. If the IUT does not meet this stricter time window, then the

IUT shall fail the test.

7.3.1.9 Binary Object Elapsed Active Time Tests

Reason for Change: Errors were pointed out via BTL-CR-0253.

Purpose: To verify that the properties of binary objects that collectively track active time function properly. If the

Elapsed_Active_Time and Time_Of_Active_Time_Reset properties are not supported then this test shall be omitted. This

test applies to Binary Input, Binary Output, and Binary Value and Binary Lighting Output objects.

Test Concept: The Present_Value or Feedback_Value of the binary object being tested is set to INACTIVE. The

Elapsed_Active_Time property is checked to verify that it does not accumulate time while the object is in an INACTIVE

state. The Present_Value or Feedback_Value is then set to ACTIVE. The Elapsed_Active_Time property is checked to

verify that it is accumulating time while the object is in an ACTIVE state. The Present_Value or Feedback_Value is then

set to INACTIVE and the Elapsed_Active_Time is reset. The Time_Of_Active_Time_Reset property is checked to verify

that it has been updated.

BACnet Testing Laboratories - Specified Tests

 37

Configuration Requirements: The object being tested shall be configured such that the Present_Value or Feedback_Value if

that is used for the calculation, and Elapsed_Active_Time properties are writable or another means of changing these

properties shall be provided. Whether Present_Value or Feedback_Value is used as the indicator for the calculation of the

Elapsed_Active_Time is a local matter.

Notes To Tester: It was intentional to specify that the alternative use of Feedback_Value tracking specified in 135-2010ad-

3 is allowed regardless of the Protocol_Revision claimed by the implementation.

Test Steps:

14. IF (Present_Value is writable) THEN

 WRITE Present_Value = INACTIVE

 VERIFY Present_Value = INACTIVE

 ELSE

 MAKE (Present_Value = INACTIVE)

2. IF (Feedback_Value is used for Elapsed_Active_Time tracking)

 WAIT(long enough for Feedback_Value to reflect the Present_Value)

 VERIFY Feedback_Value = INACTIVE

 TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Elapsed_Active_Time

3. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Elapsed_Active_Time,

 ‘Property Value’ = (the elapsed active time, TELAPSED in seconds)

3. READ Elapsed_Active_Time = initialElapsedTime

-- verify that Elapsed_Active_Time does not change when the object is INACTIVE

4. WAIT (1 minute)

5. VERIFY Elapsed_Active_Time = initialElapsedTime

-- verify that Elapsed_Active_Time correctly reflects the time the object is ACTIVE5. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Elapsed_Active_Time

6. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Elapsed_Active_Time,

 ‘Property Value’ = (the same TELAPSED as step 3)

6. IF (Present_Value is writable) THEN

 WRITE Present_Value = ACTIVE

 VERIFY Present_Value = ACTIVE

 ELSE

 MAKE (Present_Value = ACTIVE)

7. IF (Feedback_Value is used for Elapsed_Active_Time tracking)

 WAIT (long enough for Feedback_Value to reflect the Present_Value)

 VERIFY Feedback_Value = ACTIVE

8. READ initialTime = (the IUT’s Device object) Local_Time

9. WAIT (Internal Processing Fail Time + 30 seconds)

10. IF (Present_Value is writable) THEN

 WRITE Present_Value = INACTIVE

 VERIFY Present_Value = INACTIVE

 ELSE

 MAKE (Present_Value = INACTIVE)

11. IF (Feedback_Value is used for Elapsed_Active_Time tracking)

 WAIT (long enough for Feedback_Value to reflect the Present_Value)

BACnet Testing Laboratories - Specified Tests

 38

 VERIFY Feedback_Value = INACTIVE

12. READ currentTime = (the IUT’s Device object) Local_Time

13. READ totalElapsedTime = Elapsed_Active_Time

14. CHECK (totalElapsedTime ~= (currentTime – initialTime) – initialElapsedTime)

-- verify ability to reset Elapsed_Active_Time, if it is writable

15. IF (Elapsed_Active_Time is writable) THEN

 WRITE Elapsed_Active_Time = 0

 READ currentDate = (the IUT’s Device object) Local_Date

 READ currentTime = (the IUT’s Device object) Local_Time

 VERIFY Time_Of_Active_Time_Reset ~= { currentDate, currentTime }

10. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Elapsed_Active_Time

11. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Elapsed_Active_Time,

 ‘Property Value’ = (T: (TELAPSED + 30) T (TELAPSED + TimeX, where TimeX is the time between the

beginning of step 7 and this step30 + Internal Processing Fail Time))

11. IF (Present_Value is writable) THEN

 WRITE Present_Value = INACTIVE

 VERIFY Present_Value = INACTIVE

 ELSE

 MAKE (Present_Value = INACTIVE)

12. IF (Elapsed_Active_Time is writable) THEN

 WRITE Elapsed_Active_Time = 0

 VERIFY Elapsed_Active_Time = 0

 ELSE

 MAKE (Elapsed_Active_Time = 0)

13. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the IUT’s Device object),

 ‘Property Identifier’ = Local_Date

14. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the IUT’s Device object),

 ‘Property Identifier’ = Local Date,

 ‘Property Value’ = (the current local date, D)

15. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the IUT’s Device object),

 ‘Property Identifier’ = Local_Time

16. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the IUT’s Device object),

 ‘Property Identifier’ = Local_Time,

 ‘Property Value’ = (the current local time, TLOC)

17. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Time_Of_Active_Time_Reset

18. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the object being tested),

 ‘Property Identifier’ = Present_ValueTime_Of_Active_Time_Reset,

 ‘Property Value’ = (a date and time such that the date = D and the time is approximately TLOC)

BACnet Testing Laboratories - Specified Tests

 39

7.3.1.10 Event_Enable Tests

7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMAL

Reason For Change: This test was modified to take into account the Feedback behavior that is required by the Output

objects.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation

Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.23, 12.2.24, 12.3.20, 12.5.22, 12.6.26, 12.7.24, 12.11.10, 12.14.18, 12.15.18, 12.16.33,

12.17.17, 12.18.18, 12.19.18 and 12.23.23.

Purpose: To verify that notification messages are transmitted only if the bit in Event_Enable corresponding to the event

transition has a value of TRUE. This test applies to Event Enrollment objects and objects that support intrinsic reporting.

Test Concept: The IUT is configured such that the Event_Enable property indicates that some event transitions are to

trigger an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that

notification messages are transmitted only for those transitions for which the Event_Enable property has a value of TRUE.

Configuration Requirements: The Event_Enable property shall be configured with a value of TRUE for either the TO-

OFFNORMAL transition or the TO-NORMAL transition and the other event transition shall have a value of FALSE. If the

Event_Enable property is not configurable, follow the test steps as written and verify correct behavior for the value of the

Event_Enable property. For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE).

The referenced event-triggering property shall be set to a value that results in a NORMAL condition. If a Notification Class

object is being used to configure recipient information the value of the Transitions parameter for all recipients shall be

(TRUE, TRUE, TRUE).

In the test description below, “X” is used to designate the event-triggering property.

1. VERIFY Event_State = NORMAL

2. WAIT (Time_Delay + Notification Fail Time)

3. IF (X is the Present_Value property in a Binary Output or Multi-state Output object) THEN

 MAKE (the Feedback_Value property differe from the X property)

 ELSE IF (X is writable) THEN

 WRITE X = (a value that is OFFNORMAL)

 ELSE

 MAKE (X have a value that is OFFNORMAL)

4. WAIT (Time_Delay)

5. BEFORE Notification Fail Time

 IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = OFFNORMAL,

 ‘Event Values’ = (values appropriate to the event type)

 ELSE

 CHECK (verify that the IUT did not transmit an event notification message)

BACnet Testing Laboratories - Specified Tests

 40

6. VERIFY Event_State = OFFNORMAL

7. IF (X is the Present_Value property in a Binary Output or Multi-state Output object) THEN

 MAKE (the Feedback_Value property differe from the X property)

 ELSE IF (X is writable) THEN

 WRITE X = (a value that is NORMAL)

 ELSE

 MAKE (X have a value that is NORMAL)

8. WAIT (Time_Delay)

9. BEFORE Notification Fail Time

 IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-NORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = OFFNORMAL,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

 ELSE

 CHECK (verify that the IUT did not transmit an event notification message)

10. VERIFY Event_State = NORMAL

11. IF (the event-triggering object can be placed into a fault condition) THEN {

 MAKE (the event-triggering object change to a fault condition)

 BEFORE Notification Fail Time

 IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-FAULT transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = FAULT,

 ‘Event Values’ = (values appropriate to the event type)

 ELSE

 CHECK (verify that the IUT did not transmit an event notification message)

 VERIFY Event_State = FAULT

 }

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service.

The ‘Message Text’ parameter is omitted in the test description because it is optional. The IUT may include this parameter in

the notification messages.

7.3.1.10.2 Event_Enable Tests for TO_NORMAL only Algorithms

BACnet Testing Laboratories - Specified Tests

 41

Reason For Change: There is an error pointed out by BTL-CR-0196, of not returning the TO_NORMAL bit of the

Event_Enable to TRUE in step 7.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation

Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that notification messages are transmitted only if the bit in Event_Enable corresponding to the event

transition has a value of TRUE. This test applies to objects that only support generation of TO_NORMAL transitions.

Test Concept: The IUT is configured such that the Event_Enable property indicates that some event transitions are to

trigger an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that

notification messages are transmitted only for those transitions for which the Event_Enable property has a value of TRUE.

Configuration Requirements: In the Notification Class object providing recipient information, the value of the Transitions

parameter for all recipients shall be (TRUE, TRUE, TRUE).

1. VERIFY Event_State = NORMAL

2. MAKE (the TO_NORMAL bit of the Event_Enable property equal to TRUE)

3. MAKE (a condition exist that would cause the object to generate a TO_NORMAL transition)

4. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO_NORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

5. TRANSMIT SimpleAck-PDU

6. VERIFY Event_State = NORMAL

7. IF (Event_Enable can be changed such that the TO_NORMAL transition is FALSE) THEN

 MAKE (the TO_NORMAL bit of the Event_Enable property equal to FALSE)

 MAKE (a condition exist that would cause the object to generate a TO_NORMAL transition)

 CHECK (verify that the IUT did not transmit an event notification message)

 MAKE (the TO_NORMAL bit of the Event_Enable property equal to TRUE)

8. IF (the event-generating object can be placed into a fault condition) THEN

 IF (Event_Enable can be modified) THEN

 MAKE(Event_Enable TO_FAULT transition equal TRUE)

 IF (Event_Enable TO_FAULT transition = TRUE) THEN

 MAKE (the event-triggering object change to a fault condition)

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO_FAULT transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

BACnet Testing Laboratories - Specified Tests

 42

 ‘From State’ = NORMAL,

 ‘To State’ = FAULT,

 ‘Event Values’ = (values appropriate to the event type)

 TRANSMIT SimpleAck-PDU

 VERIFY Event_State = FAULT

 MAKE (the event-triggering object change to a normal condition)

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO_NORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = FAULT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

 TRANSMIT SimpleAck-PDU

9. IF (Event_Enable can be modified) THEN

 MAKE (Event_Enable TO_FAULT transition equal FALSE)

10. IF (Event_Enable TO_FAULT transition = FALSE) THEN

 MAKE (the event-triggering object change to a fault condition)

 VERIFY Event_State = FAULT

 CHECK (verify that the IUT did not transmit an event notification message)

 MAKE (the event-triggering object change to a normal condition)

Notes to Tester: For objects that do not have a Time_Delay property, the Time_Delay value used in the test shall be 0. The

UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service, in which case the

TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent. The ‘Message Text’ parameter is omitted in the

test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.11 Acked_Transitions Tests

Reason For Change: Corrected language of parameter descriptions.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation

Tests, 8.5; AcknowledgeAlarm Service Execution Tests, 9.1; ReadProperty Service Execution Tests, 9.18; WriteProperty

Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.28, 12.2.24, 12.3.25, 12.4.21, 12.6.23, 12.7.27, 12.8.25, 12.12.11, 12.15.20,

12.16.20,12.17.35, 12.18.18, 12.19.19, 12.20.19, 12.23.27 and 12.25.23.

Purpose: To verify that the Acked_Transitions property tracks whether or not an acknowledgment has been received for a

previously issued event notification. It also verifies the interrelationship between Status_Flags and Event_State. This test

applies to Event Enrollment objects and Accumulator, Analog Input, Analog Output, Analog Value, Binary Input, Binary

Output, Binary Value, Life Safety Point, Life Safety Zone, Loop, Multi-state Input, Multi-state Output, Multi-state Value,

Pulse Converter and Trend Log objects that support intrinsic reporting.

Test Concept: The IUT is configured such that the Event_Enable property indicates that all event transitions are to trigger

an event notification. The Acked_Transitions property shall have the value (TRUE, TRUE, TRUE) indicating that all

previous transitions have been acknowledged. Each event transition is triggered and the Acked_Transitions property is

monitored to verify that the appropriate bit is cleared when a notification message is transmitted and reset if an

acknowledgment is received.

BACnet Testing Laboratories - Specified Tests

 43

Configuration Requirements: The Event_Enable and Acked_Transitions properties shall be configured with a value of

(TRUE, TRUE, TRUE). For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE).

The referenced event-triggering property shall be set to a value that results in a NORMAL condition. The value of the

Transitions parameter for all recipients shall be (TRUE, TRUE, TRUE).

In the test description below, “X” is used to designate the event-triggering property.

Test Steps:

1. WAIT (Time_Delay + Notification Fail Time)

2. VERIFY Event_State = NORMAL

3. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)

4. VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

5. IF (X is writable) THEN

 WRITE X = (a value that is OFFNORMAL)

 ELSE

 MAKE (X have a value that is OFFNORMAL)

6. WAIT (Time_Delay)

7. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (any valid time stamp),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = (the notify type configured for this event),

 ‘AckRequired’ = TRUE,

 ‘From State’ = NORMAL,

 ‘To State’ = OFFNORMAL,

 ‘Event Values’ = (values appropriate to the event type)

8. TRANSMIT BACnet-SimpleACK-PDU

9. VERIFY Event_State = OFFNORMAL

10. VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)

11. VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

12. IF (X is writable) THEN

 WRITE X = (a value that is NORMAL)

 ELSE

 MAKE (X have a value that is NORMAL)

13. WAIT (Time_Delay)

14. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (any valid time stamp),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-NORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = (the notify type configured for this event),

 ‘AckRequired’ = TRUE,

 ‘From State’ = OFNORMAL,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

BACnet Testing Laboratories - Specified Tests

 44

15. TRANSMIT BACnet-SimpleACK-PDU

16. VERIFY Event_State = NORMAL

17. VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)

18. VERIFY Status_Flags = (FALSE, FALSE, ?,?)

19. IF (the event-triggering object can be placed into a fault condition) THEN

20. MAKE (the event-triggering object change to a fault condition)

21. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (any valid time stamp),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-FAULT transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = (the notify type configured for this event),

 ‘AckRequired’ = TRUE,

 ‘From State’ = NORMAL,

 ‘To State’ = FAULT,

 ‘Event Values’ = (values appropriate to the event type)

22. TRANSMIT BACnet-SimpleACK-PDU

23. VERIFY Event_State = FAULT

24. VERIFY Acked_Transitions = (FALSE, FALSE, FALSE)

25. VERIFY Status_Flags = (TRUE, TRUE, ?, ?)

26. MAKE (the event-triggering object change to a normal condition)

27. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (any valid time stamp),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-NORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = (the notify type configured for this event),

 ‘AckRequired’ = TRUE,

 ‘From State’ = FAULT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

28. TRANSMIT BACnet-SimpleACK-PDU

29. VERIFY Event_State = NORMAL

30. VERIFY Acked_Transitions = (FALSE, FALSE, FALSE)

31. VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

32. TRANSMIT AcknowledgeAlarm-Request,

 ‘Acknowledging Process Identifier’ = (the value of the ‘Process Identifier’ in step 21),

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 21),

 ‘Event State Acknowledged’ = FAULT,

 ‘Time Stamp’ = (the ‘Time Stamp’ in step 21),

 ‘Time of Acknowledgment’ = (the TD’s current time)

33. RECEIVE BACnet-SimpleACK-PDU

34. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (the value of the ‘Process Identifier’ in step 21),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 21),

BACnet Testing Laboratories - Specified Tests

 45

 ‘Time Stamp’ = (the current time or sequence number’Time Stamp’ in step 21),

 ‘Notification Class’ = (the ‘Notification Class’ in step 21),

 ‘Priority’ = (the ‘Priority’ in step 21),

 ‘Event Type’ = (the ‘Event Type’ in step 21),

 ‘Notify Type’ = ACK_NOTIFICATION,

 ‘To State’ = FAULT

 ELSE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (the value of the ‘Process Identifier’ in step 21),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 21),

 ‘Time Stamp’ = (the current time or sequence number’Time Stamp’ in step 21),

 ‘Notification Class’ = (the ‘Notification Class’ in step 21),

 ‘Priority’ = (the ‘Priority’ in step 21),

 ‘Event Type’ = (the ‘Event Type’ in step 21),

 ‘Notify Type’ = ACK_NOTIFICATION

35. TRANSMIT BACnet-SimpleACK-PDU

36. VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)

37. TRANSMIT AcknowledgeAlarm-Request,

 ‘Acknowledging Process Identifier’ = (the value of the ‘Process Identifier’ in step 27),

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 27),

 ‘Event State Acknowledged’ = NORMAL,

 ‘Time Stamp’ = (the ‘Time Stamp’ in step 27),

 ‘Time of Acknowledgment’ = (the TD’s current time)

38. RECEIVE BACnet-SimpleACK-PDU

39. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (the value of the ‘Process Identifier’ in step 27),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 27),

 ‘Time Stamp’ = (the current time or sequence number),

 ‘Notification Class’ = (the ‘Notification Class’ in step 27),

 ‘Priority’ = (the ‘Priority’ in step 27),

 ‘Event Type’ = (the ‘Event Type’ in step 27),

 ‘Notify Type’ = ACK_NOTIFICATION,

 ‘To State’ = NORMAL

 ELSE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (the value of the ‘Process Identifier’ in step 27),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 27),

 ‘Time Stamp’ = (the current time or sequence number),

 ‘Notification Class’ = (the ‘Notification Class’ in step 27),

 ‘Priority’ = (the ‘Priority’ in step 27),

 ‘Event Type’ = (the ‘Event Type’ in step 27),

 ‘Notify Type’ = ACK_NOTIFICATION

40. TRANSMIT BACnet-SimpleACK-PDU

41. VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)

42. TRANSMIT AcknowledgeAlarm-Request,

 ‘Acknowledging Process Identifier’ = (the value of the ‘Process Identifier’ in step 7),

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 7),

 ‘Event State Acknowledged’ = OFFNORMAL,

 ‘Time Stamp’ = (the ‘Time Stamp’ in step 7),

BACnet Testing Laboratories - Specified Tests

 46

 ‘Time of Acknowledgment’ = (the TD’s current time)

43. RECEIVE BACnet-SimpleACK-PDU

44. IF (Protocol_Revision is present and Protocol_Revision ≥ 1) THEN

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (the value of the ‘Process Identifier’ in step 7),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 7),

 ‘Time Stamp’ = (the current time or sequence number),

 ‘Notification Class’ = (the ‘Notification Class’ in step 7),

 ‘Priority’ = (the ‘Priority’ in step 7),

 ‘Event Type’ = (the ‘Event Type’ in step 7),

 ‘Notify Type’ = ACK_NOTIFICATION,

 ‘To State’ = OFFNORMAL

 ELSE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (the value of the ‘Process Identifier’ in step 7),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the ‘Event Object Identifier’ in step 7current time or sequence

number),

 ‘Time Stamp’ = (the current time or sequence number’Time Stamp’ in step 7),

 ‘Notification Class’ = (the ‘Notification Class’ in step 7),

 ‘Priority’ = (the ‘Priority’ in step 7),

 ‘Event Type’ = (the ‘Event Type’ in step 7),

 ‘Notify Type’ = ACK_NOTIFICATION

45. TRANSMIT BACnet-SimpleACK-PDU

46. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification

service. The ‘Message Text’ parameter is omitted in the test description because it is optional. The IUT may include this

parameter in the notification messages.

7.3.1.13 Limit_Enable Tests

Reason for Change: Added a missing step to check that a notification is not sent.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation

Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.22, 12.2.23, and 12.3.19.

Purpose: To verify that the Limit_Enable property correctly enables or disables reporting of out of range events. This test

applies to objects with a Limit_Enable property.

Test Concept: The event-triggering property is manipulated to cause both the high limit and the low limit to be exceeded for

each possible combination of values for Limit_Enable. The resulting event notification messages are monitored to verify

that they are transmitted only for circumstances where the associated event limit is enabled.

Configuration Requirements: Configure the object with High_Limit, Low_Limit and Deadband values such that

High_Limit – Deadband > Low_Limit and both the Low_Limit and High_Limit values are within the valid range of values

for Present_Value. If the device cannot be configured with limit values that meet these conditions, then this test shall be

skipped. The Event_Enable property should be set to (TRUE, ?, TRUE) for this test. If the Event_Enable cannot be

configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are TRUE, this test may be skipped.

In the test description below “X” is used to designate the event-triggering property.

BACnet Testing Laboratories - Specified Tests

 47

Test Steps:

1. IF Limit_Enable can be made to be equal (TRUE, TRUE)

2. If Limit_Enable is writable

 WRITE Limit_Enable = (TRUE, TRUE)

 ELSE

 MAKE Limit_Enable = (TRUE, TRUE)

3. WAIT (Time_Delay + Notification Fail Time)

4. VERIFY Event_State = NORMAL

5. IF (X is writable) THEN

 WRITE X = (a value that exceeds High_Limit)

 ELSE

 MAKE (X a value that exceeds High_Limit)

6. WAIT (Time_Delay)

7. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

TO-OFFNORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = HIGH_LIMIT,

 ‘Event Values’ = (values appropriate to the event type)

8. TRANSMIT SimpleAck-PDU

9. IF (X is writable) THEN

 WRITE X = (a value that is lower than Low_Limit)

 ELSE

 MAKE (X a value that is lower than Low_Limit)

10 . WAIT (Time_Delay)

11. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ =(the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

TO-NORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = HIGH_LIMIT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

12. TRANSMIT SimpleAck-PDU

13. WAIT (Time_Delay)

14. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

BACnet Testing Laboratories - Specified Tests

 48

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

TO-OFFNORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = LOW_LIMIT,

 ‘Event Values’ = (values appropriate to the event type)

15. TRANSMIT SimpleAck-PDU

16. IF (X is writable) THEN

 WRITE X = (a value that is between Low_Limit + deadband and High_Limit)

 ELSE

 MAKE (X a value that is between than Low_Limit + deadband and High_Limit)

17. WAIT (Time_Delay)

18. BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

TO-NORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = LOW_LIMIT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

19. TRANSMIT SimpleAck-PDU

20. IF Limit_Enable can be made to equal (FALSE, TRUE)

21. IF Limit_Enable is writable

 WRITE Limit_Enable = (FALSE, TRUE)

 ELSE

 MAKE (Limit_Enable = (FALSE,TRUE))

22. IF (X is writable) THEN

 WRITE X = (a value that exceeds High_Limit)

 ELSE

 MAKE (X a value that exceeds High_Limit)

23. WAIT (Time_Delay)

24. BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

TO-OFFNORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = HIGH_LIMIT,

 ‘Event Values’ = (values appropriate to the event type)

BACnet Testing Laboratories - Specified Tests

 49

25. TRANSMIT SimpleAck-PDU

26. IF (X is writable) THEN

 WRITE X = (a value that is between Low_Limit and High_Limit-Deadband)

 ELSE

 MAKE (X a value that is between Low_Limit and High_Limit-Deadband)

27. WAIT (Time_Delay)

28. BEFORE Notification Fail Time RECEIVE ConfirmdEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

TO-NORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = HIGH_LIMIT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

29. TRANSMIT SimpleAck-PDU

30. IF (X is writable) THEN

 WRITE X = (a value that is lower than Low_Limit)

 ELSE

 MAKE (X a value that is lower than Low_Limit)

31. WAIT (Time_Delay + Notification Fail Time)

32. CHECK (verify that no notification message was transmitted)

33. IF (X is writable) THEN

 WRITE X = (a value that is between Low_Limit+Deadband and High_Limit)

 ELSE

 MAKE (X a value that is between Low_Limit+Deadband and High_Limit)

34. WAIT (Time_Delay + Notification Fail Time)

35. CHECK (verify that no notification message was transmitted)

36. IF Limit_Enable can be made to equal (TRUE, FALSE)

37. IF Limit_Enable is writable

 WRITE Limit_Enable = (TRUE, FALSE)

 ELSE

 MAKE (Limit_Enable = (TRUE, FALSE))

38. IF (X is writable) THEN

 WRITE X = (a value that exceeds High_Limit)

 ELSE

 MAKE (X a value that exceeds High_Limit)

39. WAIT (Time_Delay + Notification Fail Time)

40. CHECK (verify that no notification message was transmitted)

41. IF (X is writable) THEN

 WRITE X = (a value that is lower than Low_Limit)

 ELSE

 MAKE (X a value that is lower than Low_Limit)

42. WAIT (Time_Delay)

43. BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

BACnet Testing Laboratories - Specified Tests

 50

TO-OFFNORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = LOW_LIMIT,

 ‘Event Values’ = (values appropriate to the event type)

44. TRANSMIT SimpleAck-PDU

45. IF (X is writable) THEN

 WRITE X = (a value that is between Low_Limit + Deadband and High_Limit)

 ELSE

 MAKE (X a value that is between Low_Limit + Deadband and High_Limit)

46. WAIT (Time_Delay)

47. BEFORE Notification Fail Time RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a

TO-NORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = LOW_LIMIT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

48. IF Limit_Enable can be made to equal (FALSE, FALSE)

49. IF Limit_Enable is writable

 WRITE Limit_Enable = (FALSE, FALSE)

 ELSE

 MAKE (Limit_Enable = (FALSE, FALSE))

50. IF (X is writable) THEN

 WRITE X = (a value that exceeds High_Limit)

 ELSE

 MAKE (X a value that exceeds High_Limit)

51. WAIT (Time_Delay + Notification Fail Time)

52. CHECK (verify that no notification message was transmitted)

53. IF (X is writable) THEN

 WRITE X = (a value that is lower than Low_Limit)

 ELSE

 MAKE (X a value that is lower than Low_Limit)

54. WAIT (Time_Delay + Notification Fail Time)

55. CHECK (verify that no notification message was transmitted)

56. IF (X is writable) THEN

 WRITE X = (a value that is between Low_Limit and High_Limit)

 ELSE

 MAKE (X a value that is between Low_Limit and High_Limit)

57. WAIT (Time_Delay + Notification Fail Time)

58. CHECK (verify that no notification message was transmitted)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service

in which case the TD shall skip all of the steps in which a SimpleACK-PDU is sent. The ‘Message Text’ parameter is

omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

BACnet Testing Laboratories - Specified Tests

 51

7.3.1.13.X1 Limit_Enable Test, LowLimitEnable

Reason for Change: New test to reduce scope of original test and simplify.

Purpose: To verify that the LowLimitEnable flag in the Limit_Enable property correctly enables or disables reporting of out

of range events. This test applies to objects with a Limit_Enable property.

Test Concept: The LowLimitEnable flag is set to true in the Limit_Enable property and the event-triggering property is

manipulated to cause the low limit to be exceeded. This should generate an event notification and make Event_State =

Low_Limit. After the event-triggering property is returned to a normal value, the LowLimitEnable flag is the set to false

and the event-triggering property is again manipulated to exceed the low limit. No event notification should be observed

and the Event_State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit and pDeadband values such that

pLowLimit + pDeadband < pHighLimit and both the pLowLimit and pHighLimit values are within the valid range of

values for the event-triggering property. If the device cannot be configured with limit values that meet these conditions,

then this test shall be skipped. The Event_Enable property shall be set to (TRUE, ?, TRUE) for this test. If the

Event_Enable property cannot be configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are

TRUE, this test shall be skipped.

Test Steps:

1. MAKE pLimitEnable = (TRUE, ?)

2. VERIFY pCurrentState = NORMAL

3. MAKE (pMonitoredValue a value less than pLowLimit)

4. WAIT (pTimeDelay)

5. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = LOW_LIMIT,

 ‘Event Values’ = (values appropriate to the event type)

6. TRANSMIT SimpleAck-PDU

7. VERIFY pCurrentState = LOW_LIMIT

8. MAKE (pMonitoredValue a value that is between pLowLimit + pDeadband and pHighLimit)

9. WAIT (pTimeDelayNormal)

10. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-NORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = LOW_LIMIT,

 ‘To State’ = NORMAL,

BACnet Testing Laboratories - Specified Tests

 52

 ‘Event Values’ = (values appropriate to the event type)

11. TRANSMIT SimpleAck-PDU

12. MAKE pLimitEnable = (FALSE, ?)

13. VERIFY pCurrentState = NORMAL

14. MAKE (pMonitoredValue a value less than pLowLimit)

15. WAIT (pTimeDelay + Notification Fail Time)

16. CHECK (verify that no notification message was transmitted)

17. VERIFY pCurrentState = NORMAL

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service

in which case the TD shall skip all of the steps in which a SimpleACK-PDU is sent. The ‘Message Text’ parameter is

omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.13.X2 Limit_Enable Test, HighLimitEnable

Reason for Change: New test to reduce scope of original test and simplify.

Purpose: To verify that the HighLimitEnable flag in the Limit_Enable property correctly enables or disables reporting of

out of range events. This test applies to objects with a Limit_Enable property.

Test Concept: The HighLimitEnable flag is set to true in the Limit_Enable property and the event-triggering property is

manipulated to cause the high limit to be exceeded. This should generate an event notification and make Event_State =

High_Limit. After the event-triggering property is returned to a normal value, the HighLimitEnable flag is the set to false

and the event-triggering property is again manipulated to exceed the high limit. No event notification should be observed

and the Event_State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit and pDeadband values such that

pHighLimit – pDeadband > pLowLimit and both the pLowLimit and pHighLimit values are within the valid range of

values for the event triggering property. If the device cannot be configured with limit values that meet these conditions,

then this test shall be skipped. The Event_Enable property shall be set to (TRUE, ?, TRUE) for this test. If the

Event_Enable property cannot be configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are

TRUE, this test shall be skipped.

Test Steps:

1. MAKE pLimitEnable = (?, TRUE)

2. VERIFY pCurrentState = NORMAL

3. MAKE (pMonitoredValue a value that exceeds pHighLimit)

4. WAIT (pTimeDelay)

5. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = HIGH_LIMIT,

 ‘Event Values’ = (values appropriate to the event type)

6. TRANSMIT SimpleAck-PDU

7. VERIFY pCurrentState = HIGH_LIMIT

8. MAKE (pMonitoredValue a value that is between pLowLimit and pHighLimit – pDeadband)

9. WAIT (pTimeDelayNormal)

BACnet Testing Laboratories - Specified Tests

 53

10. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-NORMAL transition),

 ‘Event Type’ = OUT_OF_RANGE,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = HIGH_LIMIT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

11. TRANSMIT SimpleAck-PDU

12. MAKE pLimitEnable = (?, FALSE)

13. VERIFY pCurrentState = NORMAL

14. MAKE (pMonitoredValue a value that exceeds pHighLimit)

15. WAIT (pTimeDelay + Notification Fail Time)

16. CHECK (verify that no notification message was transmitted)

17. VERIFY pCurrentState = NORMAL

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service

in which case the TD shall skip all of the steps in which a SimpleACK-PDU is sent. The ‘Message Text’ parameter is

omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.X4 Event_Message_Texts Tests

Reason For Change: 135-2008z-1. This test does not exist in 135.1-2013.

Purpose: To verify that the value of the Event_Message_Texts property is updated when an object generates an event

notification.

Test Concept: Read the Event_Message_Texts from the object. Transition the object through each event state which is

enabled in the object saving the Message Text parameter from the received notification. Verify that the

Event_Message_Texts updates with the Event_Message_Texts value received from the notification.

Configuration Requirements: The IUT shall be configured with an event-generation object, O1 which shall be in a

NORMAL Event_State at the beginning of the test. If the algorithm of the object does not support NORMAL to NORMAL

transitions, then the TO-OFFNORMAL bit of the Event_Enable shall be TRUE. If the IUT does not contain any objects

which can transition to any offnormal state, then this test shall be skipped.

In the test description below X1 is used to designate the event-triggering property linked to O1.

Test Steps:

1. READ EMT = Event_Message_Texts

2. IF (Event_Enable is (TRUE, ?, ?)) THEN

3. IF (X1 is writable) THEN

 WRITE X1 = (a value that is offnormal)

 ELSE

 MAKE (X1 a value that is offnormal)

4. WAIT (Time_Delay)

5. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

BACnet Testing Laboratories - Specified Tests

 54

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (O1),

 ‘Time Stamp’ = (the IUT’s local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the configured TO_OFFNORMAL priority),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = Notify_Type,

 ‘AckRequired’ = (the configured value for the TO_OFFNORMAL transition),

 ‘From State’ = NORMAL,

 ‘To State’ = (any valid offnormal state),

 ‘Message Text’ = (M: any valid value placed into EMT[1]),

 ‘Event Values’ = (values appropriate to the event type)

6. VERIFY Event_Message_Texts = EMT

7. IF (Event_Enable is (?, ?, TRUE)) THEN

8. IF (X1 is writable) THEN

 WRITE X1 = (a value that will result in a TO_NORMAL transition)

 ELSE

 MAKE (X1 a value that will result in a TO_NORMAL transition)

9. WAIT (Time_Delay)

10. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (O1),

 ‘Time Stamp’ = (the IUT’s local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the configured TO_NORMAL priority),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = Notify_Type,

 ‘AckRequired’ = (the configured value for the TO_NORMAL transition),

 ‘From State’ = (any valid value),

 ‘To State’ = NORMAL,

 ‘Message Text’ = (M: any valid value placed into EMT[3]),

 ‘Event Values’ = (values appropriate to the event type)

11. VERIFY Event_Message_Texts = EMT

12. IF (Event_Enable is (?, TRUE, ?)) THEN

13. MAKE (O1 transition to a FAULT state)

14. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (O1),

 ‘Time Stamp’ = (the IUT’s local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the configured TO_FAULT priority),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = Notify_Type,

 ‘AckRequired’ = (the configured value for the TO_FAULT transition),

 ‘From State’ = (any valid value),

 ‘To State’ = FAULT,

 ‘Message Text’ = (M: any valid value placed into EMT[2]),

 ‘Event Values’ = (values appropriate to the event type)

15. VERIFY Event_Message_Texts = EMT

7.3.1.X5 Event_Message_Texts_Config Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

BACnet Testing Laboratories - Specified Tests

 55

Purpose: To verify that the Message Text parameter of generated event notifications is controlled via the

Event_Message_Texts_Config property.

Test Concept: Select an object, O1, in the IUT that supports the Event_Message_Texts_Config property. Make O1 perform

each supported event transition (i.e. to-offnormal, to-normal and to-fault). Verify that the ‘Message Text’ parameter

matches the associated Event_Message_Texts_Config value. Note that due to the use of text substitution codes, the

resulting text might not be an exact match.

Configuration Requirements: Configure each entry in the Event_Message_Texts_Config property of Object O1 to be

distinct, if possible. ES1 shall be the state to which O1 transitions. DELAY shall represent the time delay appropriate to the

transition being tested (i.e. Time_Delay for TO_OFFNORMAL, 0 for TO_FAULT and FAULT to NORMAL transitions,

and either Time_Delay or Time_Delay_Normal for TO_NORMAL). ESINDEX shall be the array index associated with

ES1 (1 for offnormal states, 2 for FAULT, and 3 for NORMAL). The notification class for O1 is configured for

UnconfirmedEventNotification.

Test Steps:

1. MAKE(a condition exist which will cause O1 to transition to ES1)

2. WAIT DELAY

3. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 ‘Process Identifier’ = (any valid process identifier),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = O1,

 ‘Time Stamp’ = (any valid timestamp),

 ‘Notification Class’ = (the notification class configured for O1),

 ‘Priority’ = (any valid priority),

 ‘Event Type’ = (any standard event type),

 ‘Message Text’ = T1,

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = (any valid event state),

 ‘To State’ = ES1,

 ‘Event Values’ = (any values appropriate to the event type)

4. CHECK(T1 is equivalent to Event_Message_Texts_Config[ESINDEX] with any text substitutions as defined by the

vendor)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not

necessary to test both.

7.3.1.X6 Event_Algorithm_Inhibit Tests

7.3.1.X6.1 Event_Algorithm_Inhibit Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Event_Algorithm_Inhibit property in objects with intrinsic or algorithmic reporting controls

whether or not the event state detection algorithm is executed.

Test Concept: Select an event generating object, O1, which supports the Event_Algorithm_Inhibit property and does not

support the Event_Algorithm_Inhibit_Ref property. With Event_Algorithm_Inhibit set to FALSE, make a condition exist

that should result in an event transition to a normal or offnormal state. Verify that a transition occurs and that a notification

is generated. Set Event_Algorithm_Inhibit to TRUE. Verify that the object transitions to NORMAL, if not already in that

state. Make a condition exist that should result in an event transition if the object Event_Algorithm_Inhibit were FALSE. If

O1 supports fault detection, make a fault condition exist and verify that object detects it and transitions to FAULT.

BACnet Testing Laboratories - Specified Tests

 56

Configuration Requirements: O1 is configured to detect and report unconfirmed events, is in the NORMAL state and, if

supported, is configured to detect fault conditions.

Test Steps:

1. VERIFY Event_State = NORMAL

2. VERIFY Event_Algorithm_Inhibit = FALSE

3. MAKE (a condition exist which results in a transition of O1. If possible, ‘To State’ shall be an offnormal event state)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 ‘Process Identifier’ = (PID1: any valid process identifier),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = O1,

 ‘Time Stamp’ = (the current local time or sequence number),

 ‘Notification Class’ = (the notification class configured for O1),

 ‘Priority’ = (the value configured for the transition),

 ‘Event Type’ = (ET1: any valid event type),

 ‘Notify Type’ = (value from the Notify_Type property configured for O1),

 ‘Message Text’ = (any valid message text),

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = (ES1: any event state appropriate to the event type),

 ‘Event Values’ = (any values appropriate to the event type)

5. WRITE Event_Algorithm_Inhibit = TRUE

6. IF (ES1 <> NORMAL) THEN

 BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 ‘Process Identifier’ = PID1,

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = O1,

 ‘Time Stamp’ = (the current local time or sequence number),

 ‘Notification Class’ = (the notification class configured for O1),

 ‘Priority’ = (the value configured for the transition),

 ‘Event Type’ ET1,

 ‘Notify Type’ = (value from the Notify_Type property configured for O1),

 ‘Message Text’ = (any valid message text),

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = ES1,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (any values appropriate to the event type)

7. VERIFY Event_State = NORMAL

8. MAKE (a condition exist which would result in a transition of O1 other than to FAULT, if Event_Algorithm_Inhibit

were FALSE.)

9. WAIT Notification Fail Time

10. CHECK (that the IUT did not send any event notifications other than to FAULT for O1)

11. VERIFY Event_State = NORMAL

12. IF (O1 supports fault detection) THEN

 MAKE (a fault condition exist for O1)

 BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 ‘Process Identifier’ = PID1,

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = O1,

 ‘Time Stamp’ = (the current local time or sequence number),

 ‘Notification Class’ = (the notification class configured for O1),

 ‘Priority’ = (the value configured for the transition),

 ‘Event Type’ = CHANGE_OF_RELIABILITY,

BACnet Testing Laboratories - Specified Tests

 57

 ‘Notify Type’ = (value from the Notify_Type property configured for O1),

 ‘Message Text’ = (any valid message text),

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = FAULT,

 ‘Event Values’ = (any values appropriate for CHANGE_OF_RELIABILITY)

 MAKE (remove the fault condition)

 BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 ‘Process Identifier’ = PID1,

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = O1,

 ‘Time Stamp’ = (the current local time or sequence number),

 ‘Notification Class’ = (the notification class configured for O1),

 ‘Priority’ = (the value configured for the transition),

 ‘Event Type’ = CHANGE_OF_RELIABILITY,

 ‘Notify Type’ = (value from the Notify_Type property configured for O1),

 ‘Message Text’ = (any valid message text),

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = FAULT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (any values appropriate for CHANGE_OF_RELIABILITY)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not

necessary to test both.

7.3.1.X6.2 Event_Algorithm_Inhibit Summarization Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that event generating objects are reported by summarization routines as needed even when the algorithm

has been inhibited.

Test Concept: Select an event generating object O1 which is configured for event reporting, which is configured to need

acknowledgement for either the TO_NORMAL or TO_OFFNORMAL transition. The TO_FAULT bit being FALSE in

Acked_Transitions is not suitable as the testable point in this test because Event_Algorithm_Inhibit does not influence

detection and reporting of FAULT. Similarly, a transition from FAULT is not suitable for this test. Verify that the event is

reported when the device responds to a GetEventInformation request.

Configuration Requirements: O1 is configured such that it requires at least one of its transitions to require operator

acknowledgement. O1’s algorithm is inhibited. The number of event generating objects in the IUT that have an Event_State

other than NORMAL, or which have an Acked_Transitions other than (T, T, T), is such that they can all be reported in a

single GetEventInformation-ACK response.

Test Steps:

1. AT = READ Acked_Transitions

2. CHECK (AT <> (T, T, T))

3. VERIFY Acked_Transitions = (?, T, ?)

4. VERIFY Event_Algorthm_Inhibit = TRUE

5. TRANSMIT GetEventInformation

6. RECEIVE GetEventInformation-Ack,

 ‘List of Event Summaries’ = (list of object identifiers which includes O1)

 ‘More Events’ = FALSE

BACnet Testing Laboratories - Specified Tests

 58

7.3.1.X6.3 Event_Algorithm_Inhibit Acknowledgement Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that event generating objects can be acknowledged when the algorithm has been inhibited.

Test_Concept: Select an event generating object O1 which is configured for event reporting, which is configured to need

acknowledgement for at least one of its transitions, and its Acked_Transitions property is not (T, T, T). Verify that the IUT

accepts an acknowledgment for the transition that requires it. The TO_FAULT bit in Acked_Transitions is not suitable as

the testable point in this test because Event_Algorithm_Inhibit does not influence detection and reporting of FAULT.

Similarly, a transition from FAULT is not suitable for this test.

Configuration Requirements: O1 is configured such that it requires at least one of its transitions to require operator

acknowledgement. O1’s algorithm is inhibited. The number of event generating objects in the IUT that have an Event_State

other than NORMAL, or which have an Acked_Transitions other than (T, T, T) is such that they can all be reported in a

single GetEventInformation-ACK response. For this test, ES_TO_ACK is the Event_State that is to be acknowledged,

TS_TO_ACK is the timestamp associated with that transition. The IUT is configured such that TD will receive a confirmed

notification when O1 transitions.

Test Steps:

1. AT = READ Acked_Transitions

2. CHECK(AT <> (T, T, T))

3. VERIFY Event_Algorthm_Inhibit = TRUE

4. TRANSMIT AcknowledgeAlarm

 ‘Acknowledging Process Identifier’ = (any valid value),

 ‘Event Object Identifier’ = O1,

 ‘Event State Acknowledged’ = ES_TO_ACK,

 ‘Time Stamp’ = TS_TO_ACK,

 ‘Time of Acknowledgment’ = (the current timestamp)

5. RECEIVE BACnet-SimpleACK-PDU

6. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (the configured process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (O1),

 ‘Time Stamp’ = (the current local time or sequence number),

 ‘Notification Class’ = (the class configured for O1),

 ‘Priority’ = (the value configured for the transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = ACK_NOTIFICATION,

 ‘To State’ = ES_TO_ACK

7. TRANSMIT BACnet-SimpleACK-PDU

8. AT2 = READ Acked_Transitions

9. CHECK(AT2 is equal to AT, except the bit associated with ES_TO_ACK is TRUE)

7.3.1.X7 Event_Algorithm_Inhibit_Ref Tests

7.3.1.X7.1 Event_Algorithm_Inhibit_Ref Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that the object referenced by Event_Algorithm_Inhibit_Ref controls Event_Algorithm_Inhibit and thus

whether or not the event state detection algorithm is executed.

BACnet Testing Laboratories - Specified Tests

 59

Test Concept: Execute test 7.3.1.X2.1 against an object O2 which supports both Event_Algorithm_Inhibit_Ref and

Event_Algorithm_Inhibit and instead of writing Event_Algorithm_Inhibit, write the property referenced by

Event_Algorithm_Inhibit_Ref to change the value in the Event_Algorithm_Inhibit property.

Configuration Requirements: If the IUT has no object in which the Event_Algorithm_Inhibit_Ref property is absent or can

be made uninitialized, or has no object in which Event_Detection_Enable can be made TRUE, this test shall be skipped.

7.3.1.X7.2 Event_Algorithm_Inhibit Writable Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that if the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized then the

Event_Algorithm_Inhibit property shall be writable.

Configuration Requirements: Select an event-initiating object, O1 in which Event_Algorithm_Inhibit_Ref property is

absent or is uninitialized. If the IUT has no such object, this test shall be skipped.

Test Steps:

1. WRITE Event_Algorithm_Inhibit = TRUE

2. WRITE Event_Algorithm_Inhibit = FALSE

7.3.1.X8 Reliability_Evaluation_Inhibit Tests

7.3.1.X8.1 Reliability_Evaluation_Inhibit Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Reliability_Evaluation_Inhibit controls whether or not fault conditions are detected.

Test Concept: Select an event generating object, O1, which supports the Reliability_Evaluation_Inhibit property. With

Reliability_Evaluation_Inhibit FALSE, make a fault condition exist. Verify that Reliability changes and that a notification

is generated. Set Reliability_Evaluation_Inhibit to TRUE. Verify that the Reliability changes to NO_FAULT_DETECTED

and that a TO_NORMAL notification is generated. Remove the fault condition and ensure that no notification is generated.

Make a fault condition exist and verify that Reliability remains NO_FAULT_DETECTED, and that no notification is

generated.

Test Configuration: O1 is configured to detect and report unconfirmed events, is in the NORMAL state, and

Reliability_Evaluation_Inhibit equals FALSE, so that reliability evaluation for that object is configured to detect fault

conditions. If no object exists in the IUT for which fault conditions can be generated then this test shall be skipped.

Test Steps:

1. VERIFY Event_State = NORMAL

2. VERIFY Reliability = NO_FAULT_DETECTED

3. MAKE(a fault condition exist for O1)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 ‘Process Identifier’ = (the value configured for the transition),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = O1,

 ‘Time Stamp’ = (any valid timestamp),

 ‘Priority’ = (any valid priority),

 ‘Event Type’ = CHANGE_OF_RELIABILITY,

 ‘Notify Type’ = ALARM | EVENT,

 ‘Message Text’ = (any valid message text),

 ‘AckRequired’ = TRUE | FALSE,

BACnet Testing Laboratories - Specified Tests

 60

 ‘From State’ = NORMAL,

 ‘To State’ = FAULT,

 ‘Event Values’ = (any values appropriate to CHANGE_OF_RELIABILITY)

5. WRITE Reliability_Evaluation_Inhibit = TRUE

6. BEFORE Internal Processing Fail Time + Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 ‘Process Identifier’ = (the value configured for the transition),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = O1,

 ‘Time Stamp’ = (any valid timestamp),

 ‘Priority’ = (any valid priority),

 ‘Event Type’ = CHANGE_OF_RELIABILITY,

 ‘Notify Type’ = ALARM | EVENT,

 ‘Message Text’ = (any valid message text),

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = FAULT,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (any values appropriate to CHANGE_OF_RELIABILITY)

7. VERIFY Reliability = NO_FAULT_DETECTED

8. VERIFY Event_State = NORMAL

9. MAKE(remove the fault condition)

10. WAIT Notification Fail Time

11. CHECK (that the IUT did not send any event notifications for O1)

12. MAKE(a fault condition exist for O1)

13. WAIT Notification Fail Time

14. VERIFY Reliability = NO_FAULT_DETECTED

15. VERIFY Event_State = NORMAL

16. CHECK (that the IUT did not send any event notifications for O1)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not

necessary to test both.

7.3.1.X8.2 Reliability_Evaluation_Inhibit Summarization Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that event generating objects are reported by summarization routines as needed even when the reliability

evaluation has been inhibited.

Test_Concept: Select an event generating object O1 which is configured for event reporting, which is configured to require

acknowledgement for TO_FAULT transition, and its Acked_Transitions property is (T, F, T). Verify that the event is

reported when the device responds to a GetEventInformation request.

Configuration Requirements: O1 is configured such that it requires acknowledgement of the TO_FAULT transition, and the

Acked_Transitions is (T, F, T). O1’s Reliability_Evaluation_Inhibit equals TRUE, so that reliability evaluation for that

object is inhibited. The number of event generating objects in the IUT that have an Event_State other than NORMAL, or

which have an Acked_Transitions other than (T, T, T) is such that they can all be reported in a single GetEventInformation-

ACK response.

Test Steps:

1. VERIFY Acked_Transitions = (T, F, T)

2. VERIFY Reliability_Evaluation_Inhibit = TRUE

3. TRANSMIT GetEventInformation

4. RECEIVE GetEventInformation-Ack,

 ‘List of Event Summaries’ = (list of object identifiers which includes O1)

BACnet Testing Laboratories - Specified Tests

 61

 ‘More Events’ = FALSE

7.3.1.X9 Event_Detection_Enable Tests

7.3.1.X9.1 Event_Detection_Enable Inhibits Event Generation

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Event_Detection_Enable disables event detection.

Test Concept: Select an event generating object, O1, that supports event reporting. Verify that Event_State is NORMAL

and Acked_Transitions, Event_Time_Stamps, and Event_Message_Texts are equal to their respective initial conditions, as

mandated in the standard. If possible, make a condition exist that would cause a transition if event reporting were enabled

and observe that no notification messages are transmitted.

Configuration Requirements: O1 is configured with Event_Detection_Enable set to FALSE. DELAY shall represent the

time delay appropriate to the transition being tested (i.e. Time_Delay for TO_OFFNORMAL, 0 for TO_FAULT and

FAULT to NORMAL transitions, and either Time_Delay or Time_Delay_Normal for TO_NORMAL). For this test,

NO_TS equals a BACnetDateTime with all unspecified values, a BACnet Time with all unspecified values, or a sequence

number of 0.

Test Steps:

1. VERIFY Event_Detection_Enable = FALSE

2. VERIFY Event_State = NORMAL

3. VERIFY Acked_Transitions = (T,T,T)

4. VERIFY Event_Time_Stamps = [NO_TS , NO_TS , NO_TS]

5. IF the Event_Message_Texts property exists THEN

 VERIFY Event_Message_Texts = [‘’, ‘’, ‘’]

6. MAKE (a condition exist which would cause O1 to transition, if Event_Detection_Enable were TRUE)

7. WAIT DELAY + Notification Fail Time

8. CHECK (that the IUT did not send any event notifications for O1)

9. VERIFY Event_State = NORMAL

10. VERIFY Acked_Transitions = (T,T,T)

11. VERIFY Event_Time_Stamps = [NO_TS, NO_TS, NO_TS]

12. IF the Event_Message_Texts property exists THEN

 VERIFY Event_Message_Texts = [‘’, ‘’, ‘’]

7.3.1.X9.2 Event_Detection_Enable Inhibits FAULT

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Event_Detection_Enable disables fault reporting.

Test Concept: When the event-state-detection process is disabled via the Event_Detection_Enable, both the event algorithm

and the Reliability value are ignored, and Event_State remains NORMAL. Select an event generating object, O1 that is

configured for event reporting and which can be made to go into FAULT. Set the Event_Detection_Enable property to

FALSE. Create a condition which would cause O1 to transition to FAULT, if Event_Detection_Enable were TRUE. Verify

the Event_State is NORMAL and the Acked_Transitions, Event_Time_Stamps, and Event_Message_Texts are equal to

their respective initial conditions, as mandated in the standard, and no notification messages are transmitted.

Configuration Requirements: O1 is an object capable of detecting and reporting an event for a FAULT condition, and the

Event_Detection_Enable can be set to FALSE. Reliability_Evaluation_Inhibit is equal to TRUE. For this test, NO_TS

equals a BACnetDateTime with all unspecified values, a BACnet Time with all unspecified values, or a sequence number

of 0.

BACnet Testing Laboratories - Specified Tests

 62

Test Steps:

1. VERIFY Event_Detection_Enable = FALSE

2. IF Reliability is writable THEN

 WRITE Reliability = (any value other than NO_FAULT_DETECTED)

 ELSE

 MAKE (a condition exist which would cause O1 to transition to FAULT, if Event_Detection_Enable were TRUE)

3. WAIT Notification Fail Time

4. CHECK (that the IUT did not send any event notifications due to this condition)

5. VERIFY Event_State = NORMAL

6. VERIFY Acked_Transitions = (T,T,T)

7. VERIFY Event_Time_Stamps = [NO_TS, NO_TS, NO_TS]

8. IF Event_Message_Texts property exists THEN

 VERIFY Event_Message_Texts = [‘’, ‘’, ‘’]

7.3.2 Object Specific Tests

7.3.2.4 Averaging Object Tests

An Averaging object provides a way to monitor the average, minimum, and maximum values attained by a sampled

property. The datatype of the sampled property can be BOOLEAN, INTEGER, Unsigned, Enumerated, or Real. The tests in

this clause shall be repeated once for each of these datatypes.

7.3.2.4.1 Reinitializing the Samples

Reason For Change: Per clarification BTL-CR-0309

Purpose: To verify that an Averaging object correctly resets the Attempted_Samples, Valid_Samples, Minimum_Value,

Average_Value, and Maximum_Value when Attempted_Samples, Object_Property_Reference, Window_Interval, or

Window_Samples are changed.

Test Concept: The IUT is configured with an Averaging object that is actively monitoring some property value. The

sampling is reinitialized by writing to the Attempted_Samples, Object_Property_Reference, Window_Interval,

Window_Samples, and Window_SamplesObject_Property_Reference in turn. After each reinitialization, the TD pauses and

verifyies that new sampling has begun.

Configuration Requirements: The IUT shall be configured with an Averaging object that is actively monitoring some

property value. The sampling interval shall be long enough to permit the TD to verify that the sample is properly

reinitialized.

Test Steps:

[Renumber remaining steps to close the gaps for those which are now omitted.]

1. VERIFY Minimum_Value = (a value x: -INF < x < INF),

2. VERIFY Average_Value = (a value NaN),

3. VERIFY Maximum_Value = (a value x: Minimum_Value x < INF),

4. VERIFY Attempted_Samples = (a value x > 0),

5. VERIFY Valid_Samples = (a value x > 0),

6. WRITE Attempted_Samples = 0,

7. VERIFY Attempted_Samples = 0,

8. VERIFY Minimum_Value = INF,

9. VERIFY Maximum_Value = -INF,

10. VERIFY Average_Value = NaN,

11. VERIFY Valid_Samples = 0,

12. WAIT (at least two sample times),

13. VERIFY Minimum_Value = (a value x: -INF < x < INF),

BACnet Testing Laboratories - Specified Tests

 63

14. VERIFY Average_Value = (a value NaN),

15. VERIFY Maximum_Value = (a value x: Minimum_Value x < INF),

16. VERIFY Attempted_Samples = (a value x 2),

17. VERIFY Valid_Samples = (a value x 2),

18. WRITE Window_Interval = (any new value that will result in an appropriate sample time),

19. VERIFY Attempted_Samples = 0,

20. VERIFY Minimum_Value = INF,

21. VERIFY Maximum_Value = -INF,

22. VERIFY Average_Value = NaN,

23. VERIFY Valid_Samples = 0,

24. WAIT (at least two sample times),

25. VERIFY Minimum_Value = (a value x: -INF < x < INF),

26. VERIFY Average_Value = (a value NaN),

27. VERIFY Maximum_Value = (a value x: Minimum_Value x < INF),

28. VERIFY Attempted_Samples = (a value x 2),

29. VERIFY Valid_Samples = (a value x 2),

30. WRITE Window_Samples = (any new value that will result in an appropriate sample time),

31. VERIFY Attempted_Samples = 0,

32. VERIFY Minimum_Value = INF,

33. VERIFY Maximum_Value = -INF,

34. VERIFY Average_Value = NaN,

35. VERIFY Valid_Samples = 0,

36. IF (Object_Property_Reference is writable) THEN {

 WAIT (at least two sample times),

 VERIFY Minimum_Value = (a value x: -INF < x < INF),

 VERIFY Average_Value = (a value NaN),

 VERIFY Maximum_Value = (a value x: Minimum_Value x < INF),

 VERIFY Attempted_Samples = (a value x 2),

 VERIFY Valid_Samples = (a value x 2),

 WRITE Object_Property_Reference = (any new value),

 IF (Samples_are_taken_immediately) THEN {

 VERIFY Attempted_Samples = 1,

 VERIFY Minimum_Value = Average_Value,,

 VERIFY Maximum_Value = Average_Value,

 VERIFY Valid_Samples = 1

 ELSE

 VERIFY Attempted_Samples = 0,

 VERIFY Minimum_Value = INF,

 VERIFY Maximum_Value = -INF,

 VERIFY Average_Value = NaN,

 VERIFY Valid_Samples = 0

7.3.2.4.2 Managing the Sample Window

Reason For Change: Per clarification BTL-CR-0309

Purpose: To verify that an Averaging object correctly tracks the average, minimum, and maximum values attained in a

sample. This includes monitoring before and after the sampling window is full.

Test Concept: An Averaging object is configured to monitor a property that can be controlled manually by the testing agent

or by the TD. The TD initializes the sample and then monitors the Minimum_Value, Average_Value, Maximum_Value,

Attempted_Samples, and Valid_Samples properties after each sampling interval to verify that their values are properly

tracking the monitored value. This requires the ability to manipulate the values of the monitored property value and a slow

BACnet Testing Laboratories - Specified Tests

 64

enough sampling interval to permit the analysis. This continues until after the sample window is full. If the IUT does not

support Averaging object configuration for this Test Concept, then this test shall be omitted.

Configuration Requirements: The IUT shall be configured with an Averaging object used to monitor a property that can be

controlled by the testing agent or by the TD. The sampling interval shall be configured to allow time to change the

monitored property value and to determine if each of the properties Minimum_Value, Average_Value, Maximum_Value,

Attempted_Samples, and Valid_Samples correctly changes after each sample interval.

Test Steps:

1. WRITE Attempted_Samples = 0,

2. VERIFY Attempted_Samples = 0,

3. VERIFY Minimum_Value = INF,

4. VERIFY Maximum_Value = -INF,

5. VERIFY Average_Value = NaN,

6. VERIFY Valid_Samples = 0,

2. READ StartingSample = Valid_Samples +1

73. REPEAT X = (1StartingSample to Window_Samples + 5) DO {

 WAIT (Window_Interval / Window_Samples)

 IF (X Window_Samples) THEN

 VERIFY Attempted_Samples = X

 ELSE

 VERIFY Attempted_Samples = Window_Samples,

 VERIFY Minimum_Value = (the minimum of the monitored values so far),

 VERIFY Maximum_Value = (the maximum of the monitored values so far),

 VERIFY Average_Value = (the average of the monitored values so far),

 IF (X Window_Samples) THEN

 VERIFY Valid_Samples = X

 ELSE

 VERIFY Valid_Samples = Window_Samples

7.3.2.9 Command Object Tests

7.3.2.9.7 Write While In_Process is TRUE Test.

Reason for Change: Updated with new error codes for Protocol_Revision >= 10.

Purpose: To verify that an action list continues to completion if a second action list is commanded while In_Process is

TRUE and that the second action list is not executed.

Test Concept: The IUT is configured with two action lists that include a sequence of externally visible outputs with post

delays for each action. The TD triggers the first action list. The external outputs are observed in order to trigger the second

action list during the post delay of the first list. The TD triggers the second action list. The external outputs are observed to

verify that the second action list is not executed. If the IUT does not support Post Delay, then this test shall be omitted. If

the IUT does not support action list configuration, then this test shall be omitted.

Configuration Requirements: The IUT shall be configured with a Command object having two distinct action lists, X and

Y, that include writing to a sequence of externally visible outputs. There shall be a post delay between writes to the

externally visible outputs that is long enough for the tester to observe the delay (This ensures In_Process remains TRUE

long enough to command the second action list).

Test Steps:

1. WRITE Present_Value = X

BACnet Testing Laboratories - Specified Tests

 65

2. RECEIVE Simple-ACK-PDU

2. WRITE Present_Value = Y

3. IF (Protocol_Revision exists and Protocol_Revision >= 10) THEN

 RECEIVE BACnet-Error-PDU

 Error Class = OBJECT,

 Error Code = BUSY

 ELSE

 RECEIVE (BACnet-Error PDU

 Error Class = OBJECT,

 Error Code = BUSY)

 |

 (BACnet- Error-PDU

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED | OTHER)

4. CHECK (that the externally visible actions of X took place)

5. CHECK (that the externally visible actions of Y did not take place)

6. VERIFY In_Process = FALSE,

7. VERIFY All_Writes_Successful = TRUE

7.3.2.10 Device Object Tests

These are the tests for the Device object. Other tests for functionality of the Device object are covered by tests for the

application service or special functionality to which they correspond.

7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test

Reason for Change: IC135-2012-18 ruled that the increment shall not be in the Active_COV_Subscriptions property value

if the property is not numeric; present if a valid Increment was provided in the subscription; and optionally present

otherwise

Purpose: This test case verifies that the IUT correctly updates the Active_COV_Subscriptions property when COV

subscriptions are created, cancelled and timed-out using SubscribeCOV.

Test Concept: INC1, INC2, and INC3 are each not present if the property is not numeric; present if a valid Increment was

provided in the subscription; and optionally present otherwise.

Configuration Requirements: In this test, the tester shall choose three standard objects, O1, O2, and O3, for which the device

supports SubscribeCOV. O1, O2, and O3 are not required to refer to different objects. The tester shall also choose three non-

zero unique process identifiers, P1, P2, and P3, and three non-zero lifetimes L1, L2, and L3. Lifetime L1 shall be long enough

to allow the initial part of the test to run through to step 14. Lifetimes L2 and L3 shall be long enough for the whole test to

be completed without expiring.

The IUT shall start the test with no entries in its Active_COV_Subscriptions property.

Test Steps:

15. TRANSMIT SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = P1,

 ‘Monitored Object Identifier’ = O1,

 ‘Issue Confirmed Notifications’ = TRUE,

 ‘Lifetime’ = L1

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘Subscriber Process Identifier’ = P1,

 ‘Initiating Device Identifier’ = IUT,

BACnet Testing Laboratories - Specified Tests

 66

 ‘Monitored Object Identifier’ = O1,

 ‘Time Remaining’ = (a value approximately equal to L1),

 ‘List of Values’ = (values appropriate to the object type of the monitored object)

4. TRANSMIT BACnet-SimpleACK-PDU

5. IF P1 is numeric

 VERIFY Active_COV_Subscriptions = {{ {TD, P1}, {O1, Present_Value }, TRUE, (a value less than L1),

 (INC1 : not present or a valid Increment if the property is REAL) }}

 ELSE

 VERIFY Active_COV_Subscriptions = {{ {TD, P1, { O1, Present_Value }, TRUE, (a value less than L1), (INC1: not

present)}}

6. TRANSMIT SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = P2,

 ‘Monitored Object Identifier’ = O2,

 ‘Issue Confirmed Notifications’ = FALSE,

 ‘Lifetime’ = L2

7. RECEIVE BACnet-SimpleACK-PDU

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 ‘Subscriber Process Identifier’ = P2,

 ‘Initiating Device Identifier’ = IUT,

 ‘Monitored Object Identifier’ = O2,

 ‘Time Remaining’ = (a value approximately equal to L2),

 ‘List of Values’ = (values appropriate to the object type of the monitored object)

9. VERIFY Active_COV_Subscriptions = {{ {TD, P1}, {O1, Present_Value}, TRUE, (a value less than L1),

 INC1(a valid Increment if the property is REAL) },

 { {TD, P2}, {O2, Present_Value}, FALSE, (a value less than L2),

 (INC2: not present if the property is not numeric; present

 if a valid Increment was provided in the subscription;

 optionally present otherwiseif the property is REAL) }}

10. TRANSMIT SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = P3,

 ‘Monitored Object Identifier’ = O3,

 ‘Issue Confirmed Notifications’ = FALSE,

 ‘Lifetime’ = L3

11. RECEIVE BACnet-SimpleACK-PDU

12. BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 ‘Subscriber Process Identifier’ = P3,

 ‘Initiating Device Identifier’ = IUT,

 ‘Monitored Object Identifier’ = O3,

 ‘Time Remaining’ = (a value approximately equal to L3),

 ‘List of Values’ = (values appropriate to the object type of the monitored object)

13. IF P3 is numeric

 VERIFY Active_COV_Subscriptions = {{{TD, P1}, {O1, Present_Value}, TRUE, (a value less than L1),

 INC1(a valid Increment if the property is REAL)},

 {{TD, P2}, {O2, Present_Value}, FALSE, (a value less than L2),

 INC2(a valid Increment if the property is REAL)},

 {{TD, P3}, {O3, Present_Value}, FALSE, (a value less than L3),

 INC3: : not present or (a valid Increment if the property is REAL)}}

 ELSE

 VERIFY Active_COV_Subscriptions = {{{TD, P1}, {O1, Present_Value}, TRUE, (a value less than

 L1), INC1 },

 {{TD, P2,}, {O2, Present_Value}, FALSE, (a value less than

 L2), INC2 },

 {{TD, P3}, {O3, Present_Value}, FALSE, (a value less Than

 L3), (INC3: not present)}}

BACnet Testing Laboratories - Specified Tests

 67

14. WAIT L1 + the IUT’s timer granularity

15. VERIFY Active_COV_Subscriptions = {{{TD, P 2 }, {O 2 , Present_Value}, FALSE, (a value less than L 2),

 INC2 (a valid Increment if the property is REAL)},

 {{TD, P 3 }, {O 3 , Present_Value}, FALSE, (a value less than L 3),

 INC3(a valid Increment if the property is REAL)}}

16. TRANSMIT SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = P3 ,

 ‘Monitored Object Identifier’ = O3

17. RECEIVE BACnet-SimpleACK-PDU

18. VERIFY Active_COV_Subscriptions = {{{TD, P 2 }, {O 2 , Present_Value}, FALSE, (a value less than L 2),

 INC2(a valid Increment if the property is REAL) }}

19. TRANSMIT SubscribeCOV-Request,

 ‘Subscriber Process Identifier’ = P2 ,

 ‘Monitored Object Identifier’ = O2

20. RECEIVE BACnet-SimpleACK-PDU

21. VERIFY Active_COV_Subscriptions = { }

7.3.2.10.6 Successful Increment of the Database_Revision Property after Changing the Object_Identifier Property

of an Object

Reason for change: To correct a cut&paste&forgot-to-revise typo in the Test Concept.

Purpose: To verify that the Database_Revision property of the Device object increments after changing the

Object_Identifier property of an object. If the Object_Identifier property of an object cannot be changed, this test shall be

omitted.

Test Concept: The Database_Revision property of the Device object is read. An object’s nameObject_Identifier property is

changed. The Database_Revision property of the Device object is read again to verify that it incremented.

Configuration Requirements: none.

Test Steps:

16. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the Device object),

 ‘Property Identifier’ = Database_Revision

17. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the Device object),

 ‘Property Identifier’ = Database_Revision,

 ‘Property Value’ = (any value = initial value)

3. MAKE (the Object_Identifier property of an object change)

4. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (the Device object),

 ‘Property Identifier’ = Database_Revision

5. RECEIVE ReadProperty-ACK,

 ‘Object Identifier’ = (the Device object),

 ‘Property Identifier’ = Database_Revision,

 ‘Property Value’ = (greater than initial value)

7.3.2.10.X2 Max_Segments_Accepted at least the minimum

Reason for Change: There is no SSPC proposal for this change.

BACnet Testing Laboratories - Specified Tests

 68

Purpose: To verify that the IUT implements the Max_Segments_Accepted property value when it does support

segmentation.

Configuration Requirements: If the IUT cannot be configured to support segmentation, then this test shall be skipped.

Test Steps:

1. VERIFY (Max_Segments_Accepted > 1)

7.3.2.13 Global Group

7.3.2.13.X1 Global Group Present_Value, Out_Of_Service and Status_Flags Test

Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: This test verifies the interrelationship between the Present_Value, Out_Of_Service and Status_Flags properties of

a Global Group object.

Test Concept: Verify the Present_Value stops updating when Out_Of_Service is TRUE.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members property

containing a member M1 at index N1 that has a value that can be changed. W1 is the maximum time it takes for the Global

Group to receive an update from M1.

Test Steps:

1. MAKE (Out_Of_Service = TRUE)

2. VERIFY Out_Of_Service = TRUE

3. VERIFY Status_Flags = {?, ?, FALSE, TRUE}

4. X1 = READ Present_Value, ARRAY_INDEX = N1

5. MAKE (M1 value change)

6. WAIT (W1)

7. X2 = READ Present_Value, ARRAY_INDEX = N1

8. VERIFY X1 = X2

7.3.2.13.X2 Reliability MEMBER_FAULT Test

Reason for Change: New Tests for Global Group object type.

Purpose: This test case verifies the FAULT flag of the Member_Status_Flags is TRUE and the Reliability property is equal

to MEMBER_FAULT when a member of the Group_Members property goes into FAULT.

Test Concept: Force a member of the Group_Members property to enter a Fault condition and verify the

Member_Status_Flags FAULT flag equals TRUE and Reliability equals MEMBER_FAULT.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members property

containing a member M1 at index N1 that has a value that can be made to indicate a fault condition (see Notes To Tester).

The Out_Of_Service property of the Global Group object must remain FALSE throughout the test. W1 is the maximum

time it takes for the Global Group to receive an update from M1.

BACnet Testing Laboratories - Specified Tests

 69

Test Steps:

1. MAKE (M1 Status_Flags = {?, TRUE, ?, ?})

2. WAIT (W1)

3. VERIFY Member_Status_Flags = {?, TRUE, ?, ?}

4. IF (Reliability is present) THEN

 VERIFY Reliability = MEMBER_FAULT

Notes to Tester: Member_Status_Flags FAULT flag will the TRUE and the Reliability property will change to

MEMBER_FAULT when a member of the Group_Members property goes into fault.

7.3.2.13.X3 Reliability COMMUNICATION_FAILURE Test

Reason for Change: New Tests for Global Group object type.

Purpose: This test case verifies that the Member_Status_Flags FAULT flag will remain FALSE while the Reliability

property is COMMUNICATION_FAILURE.

Test Concept: Force a member of the Group_Members property to stop communicating and verify the Reliability property

equals COMMUNICATION_FAILURE and the Member_Status_Flags FAULT flag remains FALSE.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members containing

a member M1 at index N1that can be made to discontinue communications and also respond with an error such as

OBJECT/UNKNOWN_OBJECT. (See Notes To Tester). The Out_Of_Service property of the Global Group object must

remain FALSE throughout the test. W1 is the maximum time it takes for the Global Group to receive an update from M1.

Test Steps:

1. MAKE (M1 fail (communications or error))

2. WAIT (W1)

3. VERIFY Reliability = COMMUNICATION_FAILURE

4. IF (Reliability is present) THEN

 VERIFY Reliability = COMMUNICATION_FAILURE

5. VERIFY Member_Status_Flags = {?, FALSE, ?, ?}

Notes to Tester: Reliability will change to COMMUNICATION_FAILURE when a member is no longer able to

communicate its Status_Flags property. This can occur when the device goes offline or the object is deleted within the

device.

7.3.2.13.X4 Present_Value Tracking and Reliability Test

Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18

Purpose: This test verifies that the Global Group object continues to update its Present_Value independent of the state of

the Reliability property.

Test Concept: While the Reliability property is not NO_FAULT_DETECTED verify the Present_Value continues to

update.

BACnet Testing Laboratories - Specified Tests

 70

Configuration Requirements: The IUT shall be configured with a Global Group object with its Reliability not equal to

NO_FAULT_DETECTED and a Group_Members member M1 at index N1 that can be changed. W1 is the maximum time

it takes for the Global Group to receive an update from M1.

1. VERIFY Reliability <> NO_FAULT_DETECTED

2. MAKE (M1 = X1)

3. WAIT (W1)

4. X2 = READ Present_Value, ARRAY_INDEX = N1

5. VERIFY X1 = X2

Note to Tester: Reliability will change to COMMUNICATION_FAILURE when a member is no longer able to

communicate its Status_Flags property. This can occur when the device goes offline or the object is deleted within the

device. Also, the Reliability property will change to MEMBER_FAULT when a member of the Group_Members property

goes into fault.

7.3.2.13.X5 Present_Value Tracking Test

Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18

Purpose: This test verifies that the Global Group object tracks the value of the monitored properties value and data type.

Test Concept: Make a member of the Group_Members property change value and verify the Present_Value updates to

match that value.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members containing

a member M1 at index N1 of the specified data type that can be changed. W1 is the maximum time it takes for the Global

Group to receive an update from M1.

1. MAKE (M1 = X1)

2. WAIT (W1)

3. X2 = READ Present_Value, ARRAY_INDEX = N1

4. VERIFY X1 = X2

7.3.2.13.X6 COVU_Period and COVU_Recipient Zero Test

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that object O1 does not initiate UnconfirmedCOVNotification service requests when COVU_Period is

zero or COVU_Recipient contains an empty list.

Test Concept: Configure O1 to produce unsubscribed UnconfirmedCOVNotifications, set COVU_Period to zero and

attempt to produce unsubscribed UnconfirmedCOVNotifications. Repeat with COVU_Recipients containing an empty list.

Configuration Requirements: At the start of the test, O1 shall be configured with a non-zero COVU_Preiod and a non-

empty COV_Recipient property.

Test Steps:

1. MAKE (O1 issue an unsubscribed UnconfirmedCOVNotification)

2. BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 DESTINATION = (any valid address),

 ‘Subscriber Process Identifier’ = 0,

BACnet Testing Laboratories - Specified Tests

 71

 ‘Initiating Device Identifier’ = IUT,

 ‘Monitored Object Identifier’ = O1,

 ‘Time Remaining’ = 0,

 ‘List of Values’ = (any valid set of values)

3. WRITE (COVU_Period = 0)

4. MAKE (O1 a condition that would normally cause the IUT to issue an unsubscribed UnconfirmedCOVNotification)

5. WAIT Notification Fail Time times 2

6. CHECK (that O1 has not transmitted an UnconfirmedCOVNotification-Request)

7. WRITE (COVU_Period <> 0)

8. MAKE (O1 issue an unsubscribed UnconfirmedCOVNotification)

9. BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 DESTINATION = (any valid address),

 ‘Subscriber Process Identifier’ = 0,

 ‘Initiating Device Identifier’ = IUT,

 ‘Monitored Object Identifier’ = O1,

 ‘Time Remaining’ = 0,

 ‘List of Values’ = (any valid set of values)

10. WRITE (COVU_Recipient an empty list)

11. MAKE (O1 a condition that would normally cause the IUT to issue an unsubscribed UnconfirmedCOVNotification)

12. WAIT Notification Fail Time times 2

13. CHECK (that O1 has not transmitted an UnconfirmedCOVNotification-Request)

7.3.2.21 Notification Class Object Tests

This section was renumbered in 135.1-2007 to 7.3.2.21. This was section 7.3.2.20 in 135.1-2003.

7.3.2.21.3 Recipient_List Tests

7.3.2.21.3.1 ValidDays Test

Reason for Change: Updated Test Concept to include changes from 135-2010af.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation

Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22; TimeSynchronization

Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.21.8.

Purpose: To verify the operation of the Valid Days parameter of a BACnetDestination as used in the Recipient_List

property of the Notification Class object.

Test Concept: The TD will select one instance of the Notification Class object and one instance of an event-generating

object that is linked to it. The Recipient_List of the Notification Class object shall contain a single recipient with the Valid

Days parameter configured so that at least one day is TRUE and at least one day is FALSE. The properties of the event-

generating object will be manipulated to cause the Event_State to change from NORMAL to OFFNORMAL. The tester

verifies that if the local date is one of the valid days a notification message is transmitted and the if local date is not a valid

day then no notification message is transmitted. For devices of protocol revision 13 or higher that implement a read-only

Recipient_List property for all instances of Notification Class objects and are exclusively configured for all days (Valid

Days set to all Days), this test shall be omitted. For devices of protocol revision 13 or higher that implement a writeable

Recipient_List property for all instances of Notification Class objects, and exclusively accept all days as the only permitted

configuration, this test shall be omitted.

BACnet Testing Laboratories - Specified Tests

 72

Configuration Requirements: The IUT shall be configured with one or more instance of the Notification Class object and at

least one event-generating object that is linked to the Notification Class object. The event-generating object may be any

object that supports intrinsic reporting or it may be an Event Enrollment object. The event-generating object shall have the

Event_Enable property configured to transmit notification messages for all event transitions. The event-generating object

shall be configured to be in a NORMAL event state at the start of the test. The Notification Class object shall be configured

with a single recipient in the Recipient_List. The Valid Days parameter shall be configured so that at least one day of the

week has a value of TRUE and at least one day of the week has a value of FALSE. The Transitions parameter shall be

configured for the recipient to receive notifications for all event transitions.

In the test description below, “X” is used to designate the event-triggering property.

Test Steps:

18. (TRANSMIT TimeSynchronization-Request,

 ‘Time’ = (any time within the window defined by From Time and To Time in the BACnet Destination that

 corresponds to one of the valid days)) |

 (TRANSMIT UTCTimeSynchronization-Request,

 ‘Time’ = (any time within the window defined by From Time and To Time in the BACnet Destination that

 corresponds to one of the valid days, converted to UTC)) |

 MAKE (the local date and time = (any time within the window defined by From Time and To Time in the

 BACnetDestination that corresponds to one of the valid days))

2. WAIT (Time_Delay + Notification Fail Time)

3. VERIFY Event_State = NORMAL

4. IF (X is writable) THEN

 WRITE X = (a value that is OFFNORMAL)

 ELSE

 MAKE (X have a value that is OFFNORMAL)

5. WAIT (Time_Delay)

6. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = OFFNORMAL,

 ‘Event Values’ = (values appropriate to the event type)

7. TRANSMIT BACnet-SimpleACK-PDU

8. VERIFY Event_State = OFFNORMAL

9. (TRANSMIT TimeSynchronization-Request,

 ‘Time’ = (any time within the window defined by From Time and To time in the BACnet Destination that

 corresponds to one of the invalid days)) |

 (TRANSMIT UTCTimeSynchronization-Request,

‘Time’ = (any time within the window defined by From Time and To Time in the BACnet Destination that

corresponds to one of the invalid days, converted to UTC)) |

 MAKE (the local date and time = (any time within the window defined by From Time and To Time in the

 BACnetDestination that corresponds to one of the invalid days))

10. IF (X is writable) THEN

 WRITE X = (a value that is NORMAL)

 ELSE

 MAKE (X have a value that is NORMAL)

BACnet Testing Laboratories - Specified Tests

 73

11. WAIT (Time_Delay + Notification Fail Time)

12. CHECK (verify that no notification message was transmitted)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service,

in which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent. The ‘Message Text’ parameter

is omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.2.21.3.2 FromTime and ToTime Test

Reason for Change: Incorporated changes from Addendum 135-2010af.

Dependencies: ValidDays Test, 7.3.2.21.3.1; ConfirmedEventNotification Service Initiation Tests, 8.4;

UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18;

TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.21.8.

Purpose: To verify the operation of the From Time and To Time parameters of a BACnetDestination as used in the

Recipient_List property of the Notification Class object.

Test Concept: The case where the local date and time fall within the window defined by the From Time and To Time

parameters is covered by the ValidDays test in 7.3.2.21.3.1. This test uses the same IUT configuration and sets the local

time to a value that is one of the ValidDays but outside of the window defined by the From Time and To Time parameters.

The objective is to verify that an event notification message is not transmitted when the event is triggered. For devices of

protocol revision 13 or higher that implement a read-only Recipient_List property for all instances of Notification Class

objects and are exclusively configured for all times (From Time set to 00:00:00.0, To_Time set to 23:59:59.90), this test

shall be omitted. For devices of protocol revision 13 or higher that implement a writeable Notification Class

Recipient_List property for all instances of Notification Class objects, and exclusively accept all times as the only permitted

configuration, this test shall be omitted.

Configuration Requirements: The configuration requirements are identical to the requirements in 7.3.2.21.3.1.

Test Steps:

19. (TRANSMIT TimeSynchronization-Request,

 ‘Time’ = (any time outside the window defined by From Time and To Time in the BACnet Destination that

 corresponds to one of the valid days)) |

 (TRANSMIT UTCTimeSynchronization-Request,

 ‘Time’ = (any time within the window defined by From Time and To Time in the BACnet Destination that

 corresponds to one of the valid days, converted to UTC)) |

 MAKE (the local date and time = (any time outside the window defined by From Time and To Time in the

 BACnetDestination that corresponds to one of the valid days))

2. WAIT (Time_Delay + Notification Fail Time)

3. VERIFY Event_State = NORMAL

4. IF (X is writable) THEN

 WRITE X = (a value that is OFFNORMAL)

 ELSE

 MAKE (X have a value that is OFFNORMAL)

5. WAIT (Time_Delay + Notification Fail Time)

6. CHECK (verify that no notification message was transmitted)

7.3.2.21.3.3 IssueConfirmedNotifications Test

Reason for Change: Updates per Addendum 135-2010af.

BACnet Testing Laboratories - Specified Tests

 74

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation

Tests, 8.5; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.21.8.

Purpose: To verify that ConfirmedEventNotification messages are used if the Issue Confirmed Notifications parameter has

the value TRUE and UnconfirmedEventNotification messages are used if the value is FALSE. If the IUT does not support

both confirmed and unconfirmed event notifications this test may be omitted. For devices of protocol revision 13 or higher

that implement a read-only Recipient_List property for all instances of Notification Class objects, and there is a value of

FALSE for the IssueConfirmedNotifications component in all instances, this test shall be omitted.

Configuration Requirements: The IUT shall be configured with two or more instances of the Notification Class object and

event-generating objects that are linked to the Notification Class objects. The event-generating objects may be objects that

support intrinsic reporting or they may be Event Enrollment objects. The event-generating objects shall have the

Event_Enable property configured to transmit notification messages for all event transitions. The event-generating objects

shall be configured to be in a NORMAL event state at the start of the test. One Notification Class object, N1, shall be

configured with Issue Confirmed Notifications equal to TRUE. The other Notification Class object, N2, shall be configured

with Issue Confirmed Notifications equal to FALSE. The Valid Days parameter shall be configured so that at least one day

of the week has a value of TRUE. The Transitions parameter shall be configured for the recipient to receive notifications

for all event transitions. The local date and time shall be configured to be within the window defined by From Time and To

Time on one of the ValidDays.

In the test description below “X1” and “X2” are used to designate the event-triggering property linked to Notification objects

“N1” and “N2” respectively.

Test Steps:

1. VERIFY (the event-generating object linked to N1), Event_State = NORMAL

2. VERIFY (the event-generating object linked to N2), Event_State = NORMAL

3. WAIT (Time_Delay + Notification Fail Time)

4. IF (X1 is writable) THEN

 WRITE X1 = (a value that is OFFNORMAL)

 ELSE

 MAKE (X1 a value that is OFFNORMAL)

5. WAIT (Time_Delay)

6. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object linked to N1),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = OFFNORMAL,

 ‘Event Values’ = (values appropriate to the event type)

7. IF (X2 is writable) THEN

 WRITE X2 = (a value that is OFFNORMAL)

 ELSE

 MAKE (X2 a value that is OFFNORMAL)

8. WAIT (Time_Delay)

9. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,

BACnet Testing Laboratories - Specified Tests

 75

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object linked to N2),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = OFFNORMAL,

 ‘Event Values’ = (values appropriate to the event type)

Notes to Tester: If the Recipient_List is writable and the Issue Confirmed Notifications can be changed then this test can be

performed using only one Notification Class object by writing to the Recipient_List in order to change between confirmed

and unconfirmed notifications. The ‘Message Text’ parameter is omitted in the test description because it is optional. The

IUT may include this parameter in the notification messages.

7.3.2.21.3.4 Transitions Test

Reason for change: Incorporated changes for addendum 135-2010af.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation

Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.21.8.

Purpose: To verify that notification messages are transmitted only if the bit in the Transitions parameter corresponding to

the event transition is set.

Test Concept: The IUT is configured such that the Transitions parameter indicates that some event transitions are to trigger

an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that notification

messages are transmitted only for those transitions for which the Transitions parameter has a value of TRUE. For devices

of protocol revision 13 or higher that implement a read-only Recipient_List property for all instances of Notification Class

objects and are exclusively configured for all transitions (all bits in Transitions set to TRUE), this test shall be omitted.

For devices of protocol revision 13 or higher that implement a writeable Notification Class Recipient_List property for all

instances of Notification Class objects, and exclusively accept all transitions as the only permitted configuration, this test

shall be omitted.

Configuration Requirements: The IUT shall be configured with one or more instance of the Notification Class object and at

least one event-generating object that is linked to the Notification Class object. The event-generating object may be any

object that supports intrinsic reporting or it may be an Event Enrollment object. The event-generating object shall have the

Event_Enable property configured to transmit notification messages for all event transitions. The event-generating object

shall be configured to be in a NORMAL event state at the start of the test. The Notification Class object shall be configured

with a single recipient in the Recipient_List. The Transitions parameter shall be configured with a value of TRUE for either

the TO-OFFNORMAL transition or the TO-NORMAL transition and the other event transition shall have a value of

FALSE. The local time shall be configured such that it represents one of the valid days in the window specified by From

Time and To Time.

In the test description below, “X” is used to designate the event-triggering property.

1. VERIFY Event_State = NORMAL

2. WAIT (Time_Delay + Notification Fail Time)

3. IF (X is writable) THEN

 WRITE X = (a value that is OFFNORMAL)

BACnet Testing Laboratories - Specified Tests

 76

 ELSE

 MAKE (X have a value that is OFFNORMAL)

4. WAIT (Time_Delay)

5. BEFORE Notification Fail Time

 IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = OFFNORMAL,

 ‘Event Values’ = (values appropriate to the event type)

 ELSE

 CHECK (verify that the IUT did not transmit an event notification message)

6. VERIFY Event_State = OFFNORMAL

7. IF (X is writable) THEN

 WRITE X = (a value that is NORMAL)

 ELSE

 MAKE (X have a value that is NORMAL)

8. WAIT (Time_Delay)

9. BEFORE Notification Fail Time

 IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-NORMAL transition),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = OFFNORMAL,

 ‘To State’ = NORMAL,

 ‘Event Values’ = (values appropriate to the event type)

 ELSE

 CHECK (verify that the IUT did not transmit an event notification message)

10. VERIFY Event_State = NORMAL

11. IF (the event-triggering object can be placed into a fault condition) THEN {

 MAKE (the event-triggering object change to a fault condition)

 BEFORE Notification Fail Time

 IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN

 RECEIVE ConfirmedEventNotification-Request,

 ‘Process Identifier’ = (any valid process ID),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = (the event-generating object configured for this test),

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (the class corresponding to the object being tested),

 ‘Priority’ = (the value configured to correspond to a TO-FAULT transition),

 ‘Event Type’ = (any valid event type),

BACnet Testing Laboratories - Specified Tests

 77

 ‘Notify Type’ = EVENT | ALARM,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = NORMAL,

 ‘To State’ = FAULT,

 ‘Event Values’ = (values appropriate to the event type)

 ELSE

 CHECK (verify that the IUT did not transmit an event notification message)

 VERIFY Event_State = FAULT

 }

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service.

The ‘Message Text’ parameter is omitted in the test description because it is optional. The IUT may include this parameter in

the notification messages.

7.3.2.21.3.5 Recipient_List Property Supports Device Identifier Recipients Test

Reason for Change: Changes per Addendum 135-2010af.

Purpose: To verify that the Recipient_List property of the Notification Class object supports the device form of the

Recipient component and that the IUT is able to associate a MAC address with the Device Identifier. The intent is to ensure

that the IUT is able to locate the specified alarm recipient and send notification to the specified recipient. This test shall be

run if the IUT’s Notification Class object’s Recipient_List property supports the BACnet object identifier form of

BACnetRecipient.

Test Concept: The tester shall select a single event-generating object E in the IUT that references Notification Class object

N. The tester shall add an entry into the Recipient_List of the associated Notification Class object that specifies a Device

Identifier, D, for a device that the IUT is not already aware of. The TD, acting as device D, shall be located on a different

network than the IUT to ensure that the IUT is capable of binding to recipients located on any network. For devices of

protocol revision 13 or higher that implement a read-only Recipient_List property for all instances of Notification Class

objects and there is an address form of the Recipient component in all instances, this test shall be omitted.

Configuration Requirements:The TD shall be configured so that it does not execute WhoHas.

Test Steps:

1. WRITE N.RecipientList = ({all days, all times, D, any process ID, FALSE, all transitions})

2. MAKE (the event generating object, E, transition)

3. BEFORE Notification Fail Time plus the amount of time the IUT takes to perform device discovery

 RECEIVE UnconfirmedEventNotification-Request,

 ‘Process Identifier’ = (the valid process ID from step 1),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = E,

 ‘Time Stamp’ = (any valid time stamp),

 ‘Notification Class’ = (N’s instance),

 ‘Priority’ = (any valid priority),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = (any valid event state),

 ‘To State’ = (any valid event state),

 ‘Event Values’ = (values appropriate to the event type)

Notes to Tester: The IUT is expected to initiate one or more range-restricted WhoIs requests after the modification of the

Recipient_List but before the sending of the notification. The IUT might also need to perform other network discovery

BACnet Testing Laboratories - Specified Tests

 78

operations. Given that there are multiple approaches to the use of WhoIs for device discovery, the test only focuses on the

IUT’s ability to find device D and not on the specifics or timing of the WhoIs requests.

7.3.2.21.3.6 Recipient_List Property Supports Network Address Recipients

Reason for Change: Changes per Addendum 135-2010af.

Purpose: To verify that the Recipient_List property of the Notification Class object supports the address form of the

Recipient component. The intent is to ensure that the IUT is able to send notifications to the specified recipient.

Test Concept: The tester shall select a single event-generating object E in the IUT that references Notification Class object

N. The tester shall add an entry into the Recipient_List of the associated Notification Class object that specifies a

BACnetAddress A, where A is a unicast or is a local, remote, or global broadcast address. For devices of protocol revision

13 or higher that implement a read-only Recipient_List property for all instances of Notification Class objects and there is

a Device Identifier form of the Recipient component in all instances, this test shall be skipped.

Test Steps:

1. WRITE N.RecipientList = ({all days, all times, A, any process ID, FALSE, all transitions})

2. MAKE (the event generating object, E, transition)

3. BEFORE Notification Fail Time

 RECEIVE

 DESTINATION = A,

 UnconfirmedEventNotification-Request,

 ‘Process Identifier’ = (the valid process ID from step 1),

 ‘Initiating Device Identifier’ = IUT,

 ‘Event Object Identifier’ = E,

 ‘Time Stamp’ = (the current local time),

 ‘Notification Class’ = (N’s instance),

 ‘Priority’ = (any valid priority),

 ‘Event Type’ = (any valid event type),

 ‘Notify Type’ = ALARM | EVENT,

 ‘AckRequired’ = TRUE | FALSE,

 ‘From State’ = (any valid event state),

 ‘To State’ = (any valid event state),

 ‘Event Values’ = (values appropriate to the event type)

7.3.2.21.3.X7 Recipient_List non-volatility test

Reason for Change: New test per Addendum 135-2010af.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.21.8

Purpose: This test case verifies that a Notification Class object Recipient_List is maintained through a power failure and

device restart.

Test Concept: Write the Recipient_List of a Notification Class object and restart the IUT device by issuing a

ReinitializeDevice – WARMSTART service request and by temporarily removing power. When the device has resumed

operation after each restart, verify that the Recipient_List contains the values that were written. This test is only applied to

IUT devices that have writable Notification Class object Recipient_List properties. If the device only accepts

Recipient_List values that include Valid Days = (1, 1, 1, 1, 1, 1, 1), From Time = 00:00:00.00, To Time = 23:59:59.99, and

Transitions = (True, True, True), then those values shall be used in this test. If the IUT accepts Recipient_List sizes greater

than one, then at least two different BACnetDestination values shall be written in the list. If the device does not support

ReinitializeDevice WARMSTART, then only the removal of power will be tested.

BACnet Testing Laboratories - Specified Tests

 79

Configuration Requirements: If the Recipient_List of a Notification Class object is read-only in all instances, this test shall

be skipped.

Test Steps:

1. MAKE (Recipient_List consist of entries at least one of which is different from what it has)

2. IF (ReinitializeDevice is supported) THEN

 { TRANSMIT ReinitializeDevice-Request

 Reinitialized State of Device = WARMSTART

 Password = (any valid password)

 RECEIVE BACnet-Simple-ACK-PDU

 CHECK (Did the IUT perform a WARMSTART reboot?)

 VERIFY RecipientList = (the entries with which it was configured)

 }

3. MAKE (the IUT power cycle to reinitialize)

4. VERIFY RecipientList = (the entries with which it was configured)

7.3.2.21.3.X8 Read-only Recipient_List with internal Notification Forwarder objects

Reason for Change: New test per Addendum 135-2010af.

Purpose: This test case verifies that a read-only Notification Class object Recipient_List is configured with the only content

designed for internal Notification Forwarder objects.

Test Concept: This test is only applied to IUT devices that have read-only Notification Class object Recipient_List

properties and are capable of containing a Notification Forwarder object. The Notification Class Recipient_List is read and

checked to insure all entries in the Recipient_List refer to the local device.

Test Steps:

1. READ RL = Recipient_List

2. CHECK (All Recipients in RL are equal to IUT)

7.3.2.21.3.X9 Read-only Recipient_List for external Notification Forwarder Objects

Reason for Change: New test per Addendum 135-2010af.

Purpose: This test case verifies that a read-only Notification Class object Recipient_List is configured with the content

designed for external Notification Forwarder objects.

Test Concept: Read the Recipient_List of the Notification Class objects and check that the length is 1, the Recipient is local

broadcast, Valid Days are all days, From Time and To Time are the entire day, Process Identifier is 0, Issue Confirmed

Notifications parameter is False and Transitions is set to all transitions. This test is only applied to IUT devices that have

read-only Notification Class object Recipient_List properties, and which do not contain internal Notification Forwarder

objects.

Test Steps:

1. VERIFY Recipient_List = { (1, 1, 1, 1, 1, 1, 1) --Valid Days

 00:00:00.0 --From Time

 23:59:59.99 --To Time

 (BACnetAddress: network-number = 0, zero length mac-address)

20. --Process Identifier

BACnet Testing Laboratories - Specified Tests

 80

 False --Issue Confirmed Notifications

 (True, True, True) --Transitions

}

7.3.2.22 Program Object Tests

The Program object makes parameters of a custom program network visible. Since BACnet does not define the

functionality of the program there are no standard tests to verify this functionality. The Program object utilizes parameter

control through its writable Program_Change property.

7.3.2.22.1 Program_Change property test

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify writability of Program_Change property.

Test Concept: The Program_Change property is set to a value other than READY and then it and the Program_State

property are verified to update correctly.

Configuration Requirements: The Program_Change property of the program object being tested shows a value of READY.

Test Steps:

1. VERIFY Program_Change = READY

2. WRITE Program_Change = (a value other than READY)

3. WAIT (for the processing to consume that value written to Program_Change)

4. VERIFY Program_Change = READY

5. VERIFY Program_State = the new state reflected, based upon value written to Program_Change in step 2.

Notes to Tester: In step 2, depending on the current Program_State, and the implementation, certain requested values for

Program_Change may be invalid and would return a Result(-) if an attempt were made to write them.

7.3.2.23 Schedule Object Tests

This section was renumbered in 135.1-2007 to 7.3.2.23. The old reference was 7.3.2.22

7.3.2.23.6 Weekly_Schedule Restoration Test

Reason for Change: Corrected the Configuration Requirements to allow the test to be executed on devices greater than or

equal to Protocol_Revision 4.

Dependencies: ReadProperty Service Execution Tests, 9.18; ReinitializeDevice Service Execution Tests, 9.27;

TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.4, 12.24.7, 12.24.9.

Purpose: To verify the restoration behavior in a Weekly_Schedule.

Test Concept: The IUT is configured with a Schedule object containing a Weekly_Schedule with a BACnetDailySchedule

that has multiple BACnetTimeValue entries that do not include the time 00:00. There shall be no Exception_Schedule that

overrides this Weekly_Schedule during the date and time used for this test. The local date and time are changed to a value

between 00:00 and the first entry in the BACnetDailySchedule. Present_Value is read to verify that it contains the

Schedule_Default value, or Vlast for implementations with a Protocol_Revision less than 4. The IUT is reset and the

Present_Value is checked again to verify that it contains the Schedule_Default value, or Vlast for implementations with a

Protocol_Revision less than 4.

BACnet Testing Laboratories - Specified Tests

 81

Configuration Requirements: The IUT shall be configured with a Schedule object that contains a Weekly_Schedule that has

more than one scheduled write operation for a particular day. None of the write operations shall be scheduled for time 00:00

and there shall be no higher priority coincident BACnetSpecialEvents. In the test description D1 represents a time between

00:00 and the time of the first scheduled write operation in the BACnetDailySchedule. Vlast represents the value that is

scheduled to be written in the last BACnetTimeValue pair for the day. This test shall not be performed if the

Protocol_Revision property is present in the Device object and has a value of 4 or greater.

Test Steps:

21. (TRANSMIT TimeSynchronization-Request, ‘Time’ = D1) |

 (TRANSMIT UTCTimeSynchronization-Request ‘Time’ = D1) |

 MAKE (the local date and time = D1)

2. WAIT Schedule Evaluation Fail Time

3. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

 VERIFY Present_Value = Schedule_Default

 ELSE

 VERIFY Present_Value = Vlast

22. IF (ReinitializeDevice execution is supported) THEN

 TRANSMIT ReinitializeDevice-Request,

 ‘Reinitialized State of Device’ = WARMSTART,

 ‘Password’ = (any valid password)

 RECEIVE BACnet-Simple-ACK-PDU

 ELSE

 MAKE (the IUT reinitialize)

5. CHECK (Did the IUT perform a WARMSTART reboot?)

6. WAIT Schedule Evaluation Fail Time

7. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

 VERIFY Present_Value = Schedule_Default

 ELSE

 VERIFY Present_Value = Vlast

7.3.2.23.10 Schedule Object Protocol_Revision 4 Tests

7.3.2.23.10.3 Revision 4 Exception_Schedule Property Tests

Reason for Change: No tests existed for revision 4 functionality. The change is in SED-006.

7.3.2.23.10.3.8 Revision 4 Event Priority Test

Reason for Change: Added ‘Notes to Tester’ for clarity.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority when both

are active at the same time, and that it relinquishes to the lower priority.

Configuration Requirements: The IUT shall be configured with a Schedule object containing two or more

BACnetSpecialEvents, all active on the same date, with different eventPriority values (if possible, all 16 priority levels

should be represented), and with overlapping BACnetTimeValue entries distributed thus: the entry with the lowest priority

shall have the earliest time-value pair (D1) with a non-NULL value, and the last time-value pair (DN) with a NULL value;

the next higher priority shall have a time-value pair D2 occurring after D1 with a different non-NULL value, and a time-

BACnet Testing Laboratories - Specified Tests

 82

value pair DN-1 with a NULL value and occurring before DN; and so on. The result is that the time-value pairs shall be

ordered chronologically thus: D1, D2, D3, …, DN-1, DN. An example of such a configuration testing five priority levels is

shown in Table 7-11.

Table 7-11. Example of event and value prioritization

Event Time:

 Priority: D1 D2 D3 D4 D5 D6 D7 D8 D9

1 - - - - V5 NULL - - -

2 - - - V4 - - NULL - -

3 - - V3 - - - - NULL -

4 - V2 - - - - - - NULL

5 V1 - - - - - - - -

Present_Value: V1 V2 V3 V4 V5 V4 V3 V2 V1

Note: Each event priority in the table above represents 1 BACnetSpecialEvent. The BACnetSpecialEvent should contain

the time value pairs listed in the table (Dx, Vx). There should be only 1 BACnetSpecialEvent per priority for this test.

23. Test Step1. REPEAT D = (the times in the configured time-value pairs with non-NULL values) DO {

 (TRANSMIT TimeSynchronization-Reques‘, 'T’me' = D) |

 (TRANSMIT UTCTimeSynchronization-Reques‘, 'T’me' = D converted to UTC) |

 MAKE (the local date and time = D)

 WAIT Schedule Evaluation Fail Time

 VERIFY Present_Value = (the value corresponding to the time D)

24. 2. REPEAT D = (the times in the configured time-value pairs with NULL values,

 except the final DN) DO {

 (TRANSMIT TimeSynchronization-Reques‘, 'T’me' = D) |

 (TRANSMIT UTCTimeSynchronization-Reques‘, 'T’me' = D converted to UTC) |

 MAKE (the local date and time = D)

 WAIT Schedule Evaluation Fail Time

 VERIFY Present_Value = (the non-NULL value corresponding to the priority lower than that

 associated with D)

 }

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in

the range 1-16, excluding 6. The Priority parameter for WriteProperty-Request may be left out if the target property is a

standard property of a standard object for which commandability is not an option.

7.3.2.24 Log Object Tests

This section was renumbered in 135.1-2007 to 7.3.2.24. The old section number was 7.3.2.23.

7.3.2.24.4 Log_Interval Test

Reason for Change: The Configuration Requirements are enhanced, and a Notes to Tester is added.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that the logging period is controlled by Log_Interval.

Test Concept: The logging object is configured to acquire data by polling. Polling is done at two different intervals,

defined by Log_Interval, with about 10 records acquired at each rate. The timestamps of the records are inspected to verify

the polling rate.

BACnet Testing Laboratories - Specified Tests

 83

Configuration Requirements: Start_Time, if present, shall be configured with a date and time preceding the beginning of

the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end

of the test. Stop_When_Full, if configurable, shall be set to FALSE. Enable shall be set to TRUE. Logging_Type is not

equal to TRIGGERED. Non-zero values shall be chosen for Log_Interval in accordance with the range and resolution

specified by the manufacturer for this property.

Test Steps:

1. WRITE Log_Interval = (some non-zero value)

2. WRITE Record_Count = 0

3. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)

4. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 1)

5. WRITE Log_Interval = (a non-zero value different from the one written in step 1)

6. WRITE Record_Count = 0

7. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)

8. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 5)

Notes to tester: The step 1 write of Logging_Interval to a non-zero value will make a change in Logging_Type from COV to

POLLED, if Logging_Type was initially COV.

7.3.2.24.13 Log-Status Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive

approach.

Dependencies: ReadRange Service Execution Tests, 9.21; WriteProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 12.25.14, 12.27.13, 12.30.19

Purpose: To verify proper logging of log-disabled and buffer-purged events.

Test Concept: The buffer is cleared. Then the Enable property is changed and it is verified that the Record_Count property

is changed and it is verified that the status entry is made correctly in the Log_Buffer. The Record_Count is also set to zero

while the Enable property is FALSE and it is verified that the buffer-purged event is recorded into the Log_Buffer.

Test Configuration: The logging object is configured to acquire data by whatever means available. Configure the logging

such that the entire test may be run without the trend buffer overflowing.

Test Steps:

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0

3. VERIFY Record_Count = 1

4. TRANSMIT ReadRange

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Reference Index’ = 1,

 ‘Count’ = 1

5. RECEIVE ReadRange-Ack

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Result Flags’ = (True, True, False),

 ‘Item Count’ = 1

 ‘Item Data’ = ((a buffer purged record))

6. WRITE Enable = TRUE

7. WRITE Enable = FALSE

8. TRANSMIT ReadRange

 ‘Object Identifier’ = O1,

BACnet Testing Laboratories - Specified Tests

 84

 ‘Property Identifier’ = Log_Buffer,

 ‘Reference Index’ = 1,

 ‘Count’ = 2

9. RECEIVE ReadRangeAck

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Result Flags’ = (True, False, False),

 ‘Item Count’ = 2

 ‘Item Data’ = ((a buffer purged record), (a log-enable record))

10. TRANSMIT ReadRange

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Reference Time’ = (2154-12-31, 23:59:59.99),

 ‘Count’ = -1

11. RECEIVE ReadRangeAck

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Result Flags’ = (False, True, False),

 ‘Item Count’ = 1

 ‘Item Data’ = ((a log-disable record))

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0

3. VERIFY (Log_Buffer contains 1 entries, and it is the buffer-purged event)

4. WRITE Enable = TRUE

5. WRITE Enable = FALSE

6. VERIFY (Record_Count => 3 and the first entry is the buffer-purged event, the second entry is

 the log-enable TRUE event and the last entry is the log-enable FALSE event)

Notes to Tester: When the ’UT's Protocol_Revision < 7, the length of BACnetLogStatus shall be 2; otherwise, it shall be 3.

7.3.2.24.14 Time_Change Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive

approach. Addendum 135-2008x-2 Clarify Trend Log Time Stamp.

Purpose: To verify proper logging of time-change events in the log buffer

Test Concept: Change the clock in the device and verify that a record is logged indicating the number of seconds that the

clock changed by or indicating zero if unknown. This test shall be skipped if the device does not support the Local_Time

property in the device object or there is no way to change the time in the device.

Configuration Requirements: The log object is configured to acquire data by whatever means available. The Log_Buffer

should be cleared such that the Record_Count is 0. Configure the logging such that the entire test may be run without the

trend buffer overflowing.

Test Steps:

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0

3. READ currentTime = (Device Object of device that contains the log object), Local_Time

4. WRITE Enable = TRUE

5. MAKE(the time change on the device by deltaTime where deltaTime >= 1 hour)

6. WRITE Enable = FALSE

7. READ N = Record_Count

8. REPEAT X = (N down through 1) DO {

 TRANSMIT ReadRange

 ‘Object Identifier’ = O1,

BACnet Testing Laboratories - Specified Tests

 85

 ‘Property Identifier’ = Log_Buffer,

 ‘Reference Index’ = X,

 ‘Count’ = 1

 RECEIVE ReadRangeAck

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Result Flags’ = (False, True, False),

 ‘Item Count’ = 1,

 ‘Item Data’ = ((a record. If the record is a time-change record, save the timestamp

 into TS and the time-change value into TC))

 }

9. CHECK (TC ~= deltaTime)

10. CHECK (TS ~= currentTime + deltaTime)

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0

3. VERIFY (Log_Buffer contains 1 entry, and it is the buffer-purged event)

4. TRANSMIT ReadProperty-Request,

 ‘Object Identifier’ = (device that contains log object)

 ‘Property Identifier’ = Local_Time

5. RECEIVE ReadProperty-Ack,

 ‘Object Identifier’ = (device that contains log object)

 ‘Property Identifier’ = Local_Time

 ‘Property Value’ = (currentTime)

6. WRITE Enable = TRUE

7. MAKE (the time change on the device by a reasonable amount (deltaTime); change by one hour or

 more)

8. WRITE Enable = FALSE

9. VERIFY Record_Count => 4

10. CHECK (Log_Buffer contains a log-status entry of time-change)

11. VERIFY (time-change value ~= deltaTime)

12. VERIFY TimeStamp on the time-change entry ~= (currentTime + deltaTime)

7.3.2.24.15 COV-Sampling Verification Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive

approach. The Test Concept is simplified. The Configuration Requirements are enhanced.

Purpose: To verify logged samples are based on COV rather than by interval.

Test Concept: The trend log is configured to log based on COV increment. Logging is enabled. After a period of time the

buffer is checked to verify the data in the buffer is based on the COV values and not on the set interval.

Configuration Requirements: The IUT shall be configured such that the monitored object has a COV_Increment property

that is set to a value other than 0.0, the Client_COV_Increment is set to a value other than 0.0 or NULL, or the monitored

property is not of datatype REAL.

Test Steps:

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0

3. WRITE Interval = 0

4. WRITE Enable = TRUE

5. WAIT (10 seconds)

6. MAKE (monitored property change its value)

7. WAIT (60 seconds)

8. MAKE (monitored property change its value)

9. WAIT (90 seconds)

BACnet Testing Laboratories - Specified Tests

 86

10. MAKE (monitored property change its value)

11. WAIT (40 seconds)

12. MAKE (monitored property change its value)

13. WAIT Notification Fail Time

14. WRITE Enable = FALSE

15. READ N = RecordCount

16. REPEAT X = (1 through 4) {

 TRANSMIT ReadRange

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Reference Index’ = N-5+X,

 ‘Count’ = 1

 RECEIVE ReadRangeAck

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Result Flags’ = (False, False, False),

 ‘Item Count’ = 1

 ‘Item Data’ = ((one data record storing the timestamp in TS[X]))

 }

17. CHECK(TS[–] - TS[1] ~= 60 seconds)

18. CHECK(TS[–] - TS[2] ~= 90 seconds)

19. CHECK(TS[–] - TS[3] ~= 40 seconds)

Configuration Requirements: The IUT shall be configured such that the monitored object has COV configured or the

Client_COV_Increment shall be configured or it is not monitoring a REAL property. The Logging_Type shall not have a

value of TRIGGERED.

Test Steps:

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0

3. WRITE Log_Interval = 0

4. WRITE Enable = TRUE

5. MAKE (monitored property change its value)

6. WAIT (60 seconds)

7. MAKE (monitored property change its value)

8. WAIT (90 seconds)

9. MAKE (monitored property change its value)

10. WAIT (40 seconds)

11. CHECK (Log_Buffer contains 3 or 4 data entries, and time between each sample is not equal)

7.3.2.24.19 Trigger Verification Test

Reason for Change: This test has been included in 135.1-2013, but is here with a correction to the typo in Record_Count,

with the steps renumbered to be consecutive, , with the distinct ‘Result Flags’ in the final record as noted in CR-0259, the

REPEAT loop should be one fewer, and the appropriate fields present in ReadRange-Request and ReadRange-ACK are

based upon Record_Count, not Total_Record_Count, since this is a request byPosition as noted by CR-0282.

Purpose: To verify logged samples are based on the triggered Logging_Type.

Test Concept: The log, O1 is configured to log based on TRIGGERED. Logging is enabled. After a period of time the

buffer is checked to verify the data in the buffer is based on triggered values.

Configuration Requirements: The IUT shall be configured such that the monitored object’s Logging_Type is set to

TRIGGERED.

Test Steps:

BACnet Testing Laboratories - Specified Tests

 87

1. WRITE Enable = FALSE

2. WRITE Record_Count = 0 -- results in a buffer purged record

3. WRITE Enable = TRUE -- results in a logging enable record

4. WAIT (10 seconds)

5. WRITE Trigger = TRUE

6. WAIT (20 seconds)

7. WRITE Trigger = TRUE

8. WAIT (40 seconds)

9. WRITE Trigger = TRUE

10. WAIT (30 seconds)

11. WRITE Enable = FALSE -- results in a logging disabled record

12. VERIFY RecordCount = 6

12. READ N = Record_Count

13. REPEAT X = (1 through 34)

 TRANSMIT ReadRange-Request

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Reference Index’ = N-4+X,

 ‘Count’ = 1

 RECEIVE ReadRangeAckReadRange-ACK

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Result Flags’ = (?False, ?False, False),

 ‘Item Count’ = 1,

 ‘Item Data’ = ((one data record storing the timestamp in TS[X]))

14. TRANSMIT ReadRange-Request

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Reference Index’ = N,

 ‘Count’ = 1

 RECEIVE ReadRange-ACKck

 ‘Object Identifier’ = O1,

 ‘Property Identifier’ = Log_Buffer,

 ‘Result Flags’ = (False, True, False),

 ‘Item Count’ = 1,

 ‘Item Data’ = (one data record storing the timestamp in TS[4])

14. CHECK(TS[–] - TS[2] ~= 10 seconds)

15. CHECK(TS[–] - TS[3] ~= 20 seconds)

16. CHECK(TS[–] - TS[4] ~= 40 seconds)

17. CHECK(TS[–] - TS[5] ~= 30 seconds)

15. CHECK(TS[–] - TS[1] ~= 20 seconds)

16. CHECK(TS[–] - TS[2] ~= 40 seconds)

17. CHECK(TS[–] - TS[3] ~= 30 seconds)

7.3.2.24.X8 Clock-Aligned Logging

Test yet to be defined.

7.3.2.24.X9 Logging Interval_Offset

Test yet to be defined.

BACnet Testing Laboratories - Specified Tests

 88

7.3.2.X37 Accumulator Object Tests

7.3.2.X37.1.1 Present_Value Remains In-Range Test

Reason for Change: New test for Accumulator object.

Purpose: To verify the correct wrapping operation of the Accumulator Present_Value.

Test Concept: The IUT shall be configured with a Max_Pres_Value which is attainable, within reasonable testing time,

after Present_Value is preset to a value slightly less than that, then incremented. The Present_Value shall remain in range

from one to Max_Pres_Value, by wrapping back to 1 when it would exceed Max_Pres_Value.

25. Test Steps1. IF (Value_Set is writable) THEN

 WRITE Value_Set = (a value slightly less than Max_Pres_Value)

 ELSE

 MAKE (Present_Value equal a value slightly less than Max_Pres_Value)

2. MAKE (the Accumulator increase its Present_Value until it rolls over Max_Pres_Value)

3. CHECK (Present_Value < Max_Pres_Value)

7.3.2.X37.1.2 Prescale in Accumulator Test

Reason for Change: New test for Accumulator object.

Purpose: To verify the correct effect of Prescale on the increment of the Present_Value in Accumulator.

Test Concept: The IUT shall be configured with a Prescale whose effect when incrementing Present_Value is testable.

Three readings of the Present_Value are observed, then the math is checked to ensure that it increments at the rate expected

given Prescale.

Configuration Requirements: If there is no Prescale property present in any Accumulator object, then this test shall be

skipped.

26. Test Steps1. IF (Value_Set is writable) THEN

 WRITE Value_Set = (any valid value V1)

 ELSE

 MAKE (Present_Value equal any valid value V1)

2. MAKE (the Accumulator increase its Present_Value)

3. READ V2 = Present_Value)

4. READ V3 = Present_Value)

5. IF (the Accumulator is stopped) THEN

 CHECK (V3 = V2 = Prescale-multiplier * pulse-count of signals generated by the measuring instrument) / Prescale-

moduloDivide + V1)

 ELSE

 CHECK (V1 < V2 < V3)

7.3.2.X37.1.3 Logging_Record in Accumulator Test

Reason for Change: New test for Accumulator object.

Purpose: To verify the correct values represented in Logging_Record of Accumulator.

Test Concept: Two readings of the Logging_Object acquiring the Logging_Record are performed, Pvprior being the value

from the first, and Present_Value matching what is observed in the second Logging_Record. Then all fields are checked to

ensure these match the values expected.

Configuration Requirements: The IUT shall be configured so that Logging_Record capture is testable. If there is no

Logging_Record property present in any Accumulator object, then this test shall be skipped.

BACnet Testing Laboratories - Specified Tests

 89

Test Steps:

1. MAKE (the Logging_Object acquire the Logging_Record)

2. Pvprior = present-value parameter in the Logging_Record

3. MAKE (the Logging_Object acquire another Logging_Record)

4. CHECK (Logging_Record list of values are:

 timestamp: the local date and time,

 present-value: Present_Value,

 accumulated-value: Present_Val–e - Pvprior,

 accumulated-status: NORMAL)

7.3.2.X37.1.4 Logging_Record in Accumulator RECOVERED Test

Reason for Change: New test for Accumulator object.

Purpose: To verify the correct values represented in Logging_Record of Accumulator after one or more writes to

Value_Before_Change or Value_Set.

Test Concept: The effect of the Logging_Object acquiring the Logging_Record is checked to ensure that after one or more

writes to Value_Before_Change or Value_Set, it matches the values expected.

Configuration Requirements: The IUT shall be configured so that Logging_Record capture is testable. If there is no

Logging_Record property present in any Accumulator object, or if neither Value_Before_Change nor Value_Set is

writable in an object which does have a Logging_Record property, then this test shall be skipped.

Test Steps:

1. MAKE (the Logging_Object acquire the Logging_Record)

2. Pvprior = present-value parameter in the Logging_Record

3. WRITE (either Value_Before_Change or Value_Set in the object that contains Logging_Record)

4. MAKE (the Logging_Object acquire another Logging_Record)

5. CHECK (Logging_Record list of values are:

 timestamp: the local date and time,

 present-value: Present_Value,

 accumulated-value: (Present_Val–e - Value_Set) + (Value_Before_Chan–e - Pvprior),

 accumulated-status: RECOVERED)

7.3.2.X37.1.5 Logging_Record in Accumulator STARTING Test

Reason for Change: New test for Accumulator object.

Purpose: To verify the correct values represented in Logging_Record of Accumulator when no data has been acquired since

startup by the object identified by Logging_Object.

Test Concept: The Logging_Record is observed when no data has been acquired by the object identified by

Logging_Object, to ensure that it matches the values expected.

Configuration Requirements: The IUT shall be in a state when no data has been acquired since startup by the object

identified by Logging_Object. If there is no Logging_Record property present in any Accumulator object, then this test

shall be skipped.

27. Test Steps1. CHECK (Logging_Record list of values are:

 timestamp: unspecified,

 present-value: Present_Value,

BACnet Testing Laboratories - Specified Tests

 90

 accumulated-value: 0,

 accumulated-status: STARTING)

2. MAKE (the Logging_Object acquire the Logging_Record)

3. CHECK (Logging_Record list of values are:

 timestamp: the local date and time,

 present-value: Present_Value,

 accumulated-value: same as present-value,

 accumulated-status: STARTING)

7.3.2.X37.1.6 Out_Of_Service Accumulator Test

Reason for Change: New test for Accumulator object.

Purpose: This test case verifies that Present_Value, Pulse_Rate, and the Reliability property are writable when

Out_Of_Service is TRUE.

Test Concept: Select one instance of each appropriate object type and test it as described. Verify the interrelationship

between the Out_Of_Service, Status_Flags, and Reliability properties. If the Out_Of_Service property of the object under

test is not writable, and the value of the property cannot be changed by other means, then this test shall be omitted. If the

Reliability property is not supported then step 5 shall be omitted.

28. Test Step1. IF (Out_Of_Service is writable) THEN

 WRITE Out_Of_Service = TRUE

 ELSE

 MAKE (Out_Of_Service TRUE)

2. VERIFY Out_Of_Service = TRUE

3. VERIFY Status_Flags = (?, FALSE, ?, TRUE)

4. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {

 WRITE Present_Value = X

 VERIFY Present_Value = X

 }

5. IF (Reliability is present and writable) THEN

 REPEAT X = (all values of the Reliability enumeration appropriate to the object type except

 NO_FAULT_DETECTED) DO {

 WRITE Reliability = X

 VERIFY Reliability = X

 VERIFY Status_Flags = (TRUE, TRUE, ?, TRUE)

 WRITE Reliability = NO_FAULT_DETECTED

 VERIFY Reliability = NO_FAULT_DETECTED

 VERIFY Status_Flags = (?, FALSE, ?, TRUE)

 }

6. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {

 WRITE Pulse_Rate = X

 VERIFY Pulse_Rate = X

 }

7. IF (Out_Of_Service is writable) THEN

 WRITE Out_Of_Service = FALSE

 ELSE

 MAKE (Out_Of_Service FALSE)

8. VERIFY Out_Of_Service = FALSE

9. VERIFY Status_Flags = (?, ?, ?, FALSE)

7.3.2.X37.1.7 Value_Set Writing Test

Reason for Change: New test for Accumulator object.

BACnet Testing Laboratories - Specified Tests

 91

Purpose: Verifying that writes to the Value_Set are reflected atomically into the obj’ct's properties.

Test Concept: Writing the Value_Set shall be reflected atomically in the Value_Set and Present_Value properties, while the

old Present_Value is stored into the Value_Before_Change property, and the Value_Change_Time shall update.

Test Steps:

1. READ OldV = Present_Value

2. WRITE Value_Set = (NewV, any valid value)

3. VERIFY Value_Set = NewV

4. VERIFY Present_Value = NewV

5. VERIFY Value_Before_Change = OldV

6. VERIFY Value_Change_Time = (approximately the current local time)

7.3.2.X37.1.8 Value_Before_Change Writing Test

Reason for Change: New test for Accumulator object.

Purpose: To verify the correct atomic operations of writing the Accumulator Value_Before_Change.

Test Concept: Write the Value_Before_Change and verify that it is reflected atomically in the Value_Before_Change

property, while the old Present_Value is stored into the Value_Set property, and the Value_Change_Time shall update.

Test Steps:

1. READ OldV = Present_Value

2. WRITE Value_Before_Change = (NewV, any valid value)

3. VERIFY Value_Before_Change = NewV

4. VERIFY Value_Set = OldV

5. VERIFY Value_Change_Time = (approximately the current local time)

7.3.2.X38 Pulse Converter Object Tests

7.3.2.X38.1.1 Adjust_Value Write Test

Purpose: To verify the correct write operation of a Pulse Conver’er's several properties, when writing the Adjust_Value.

Count_Before_Change reflects the prior Count before a write to the Adjust_Value property.

Test Steps:

1. READ OldV = Present_Value

2. READ OldC = Count

3. READ OldU = Update_Time

4. READ OldT = Count_Change_Time

5. READ OldA = Adjust_Value

6. READ OldS = Scale_Factor

7. READ OldB = Count_Before_Change

8. WRITE Adjust_Value = (NewA, any valid value, different from OldA so that it can be distinguished)

9. CHECK (Count is decremented by the value calculated by performing the integer division (NewA/OldS) and

discarding the remainder)

10. VERIFY Present_Value is decremented by the value NewA

11. VERIFY Count_Change_Time = (approximately the current local time, and different from OldT)

12. VERIFY Count_Before_Change = OldC and != OldB

BACnet Testing Laboratories - Specified Tests

 92

7.3.2.X38.1.2 Scale_Factor Test

Purpose: To verify the correct effect of Scale_Factor on the Present_Value in Pulse Converter.

Test Concept: The IUT shall be configured with a Scale_Factor whose influence on the behavior of Present_Value is

observable. After Present_Value is read, then the value derived from Count and Scale_Factor is compared to the expected

Present_Value.

29. Test Steps1. IF (Scale_Factor is writable) THEN

 WRITE Scale_Factor = (any valid value V1)

 ELSE

30. MAKE (Scale_Factor equal any valid value V2. VERIFY (Present_Value = conversion specified by Scale_Factor

V1 coefficient times the Count property)

7.3.2.X38.1.3 Out_Of_Service Pulse Converter Test

Purpose: This test case verifies that Present_Value and the Reliability property are writable when Out_Of_Service is

TRUE. It also verifies the interrelationship between the Out_Of_Service, Status_Flags, and Reliability properties. If the

PICS indicates that the Out_Of_Service property of the object under test is not writable, and if the value of the property

cannot be changed by other means, then this test shall be omitted.

Test Concept: The IUT will select one instance of each appropriate object type and test it as described. If the Reliabilit y

property is not supported then step 5 shall be omitted.

31. Test Step1. IF (Out_Of_Service is writable) THEN

 WRITE Out_Of_Service = TRUE

 ELSE

 MAKE (Out_Of_Service TRUE)

2. VERIFY Out_Of_Service = TRUE

3. VERIFY Status_Flags = (?, FALSE, ?, TRUE)

4. REPEAT X = (any values meeting the functional range requirements of 7.2.1) DO {

 WRITE Present_Value = X

 VERIFY Present_Value = X

 }

5. IF (Reliability is present and writable) THEN

 REPEAT X = (any values of the Reliability enumeration appropriate to the object type except

 NO_FAULT_DETECTED) DO {

 WRITE Reliability = X

 VERIFY Reliability = X

 VERIFY Status_Flags = (?, TRUE, ?, TRUE)

 WRITE Reliability = NO_FAULT_DETECTED

 VERIFY Reliability = NO_FAULT_DETECTED

 VERIFY Status_Flags = (?, FALSE, ?, TRUE)

 }

6. IF (Out_Of_Service is writable) THEN

 WRITE Out_Of_Service = FALSE

 ELSE

 MAKE (Out_Of_Service FALSE)

7. VERIFY Out_Of_Service = FALSE

8. VERIFY Status_Flags = (?, ?, ?, FALSE)

7.3.2.X38.1.5 Update_Time Reflects Change to the Count and is Updated Atomically Test

Purpose: To verify the correct atomic operations of change to the Pulse Conver’er's several properties, for an inherent

change in Count.

BACnet Testing Laboratories - Specified Tests

 93

Test Steps:

1. READ OldV = Present_Value

2. READ OldC = Count

3. READ OldU = Update_Time

4. READ OldT = Count_Change_Time

5. READ OldA = Adjust_Value

6. READ OldS = Scale_Factor

7. READ OldB = Count_Before_Change

8. WAIT (for a change in Count to any valid value, different from OldC so that it can be distinguished)

9. CHECK Present_Value is recalculated, increasing in proportion to the change in Count multiplied by OldS (or such

that Present_Value minus OldA is still the same fixed difference)

10. VERIFY Update_Time = (approximately the current local time, and different from OldU)

11. VERIFY Count_Change_Time = OldT

7.3.2.X38.2.1 Adjust_Value Out-of-Range WriteProperty Test

Purpose: To verify the correct atomic operations of change to the Pulse Converter Count property, when an attempt is made

to write Adjust_Value with a value that would cause an overflow or underflow condition in Count. The test is performed

once using WriteProperty and once using WritePropertyMultiple, if IUT supports both services.

Test Steps:

1. READ OldV = Present_Value

2. READ OldC = Count

3. READ OldU = Update_Time

4. READ OldT = Count_Change_Time

5. READ OldA = Adjust_Value

6. READ OldS = Scale_Factor

7. READ OldB = Count_Before_Change

8. TRANSMIT WriteProperty-Request‘ 'Property Identif’er' = Adjust_Value‘ 'Property Va’ue' = (NewA, a

valid value that would cause an overflow or underflow condition in Count)

9. RECEIVE BACnet-Error-PDU‘ 'Error Cl’ss' = PROPERTY‘ 'Error C’de' =

VALUE_OUT_OF_RANGE

10. VERIFY Update_Time = OldU

11. VERIFY Adjust_Value = OldA

12. VERIFY Count_Before_Change = OldB

BACnet Testing Laboratories - Specified Tests

 94

8. APPLICATION SERVICE INITIATION TESTS

8.1 AcknowledgeAlarm Service Initiation Tests

Dependencies: None.

BACnet Reference Clause: 13.5.

Purpose: To verify that the IUT is capable of acknowledging alarms and events that are reported to the IUT via the

ConfirmedEventNotification and UnconfirmedEventNotfication services.

Configuration: For this test, the tester shall choose 1 object, O1, in the TD, which is configured to send event notifications

to the IUT. The tester places O1 into an alarm state such that the transition requires an acknowledgment.

Test Steps:

1. TRANSMIT ConfirmedEventNotification-Request | UnconfirmedEventNotification-Request,‘ 'Subscriber Process

Identif’er' = (a value acceptable to the IUT configured in the Notification Class

32. object for the IUT),‘ 'Initiating Device Identif’er' = TD,‘ 'Event Object

Identif’er' = O1,‘ 'Time St’mp' = (any valid value, T1),‘ 'Notification Cl’ss' = (the

value configured in O1),‘ 'Prior’ty' = (any value selected by the TD),‘ 'Event T’pe' =

 (any value selected by the TD),‘ 'Notify T’pe' = ALARM | EVENT,‘ 'AckRequi’ed'

= TRUE,‘ 'From St’te' = (any valid value),‘ 'To St’te' = (any valid

value, S1),‘ 'Event Val’es' = (any event values appropriate to the event typ2. IF (the

ConfirmedEventNotification choice was selected) THEN

 RECEIVE BACnet-SimpleACK-PDU

3. MAKE (the IUT acknowledge O1)

4. RECEIVE AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (any process identifier),‘

 'Event Object Identif’er' = O1,‘ 'Event State Acknowled’ed' = S1, or OFFNORMAL if S1 is an

off-normal state‘ 'Time St’mp' = T1,‘ 'Acknowledgement Sou’ce' = (any valid value),‘

 'Time of Acknowledgem’nt' = (any valid value)

5. TRANSMIT BACnet-SimpleACK-PDU

8.2 ConfirmedCOVNotification Service Initiation Tests

8.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value,

Integer Value, and Positive Integer Value Object Present_Value Property

Reason for Change: Add more primitive value objects. Updated description of t‘e 'List of Val’es' to improve readability.

Updat‘d 'Configuration Requireme’ts'.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Present_Value property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and

Positive Integer Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less

than the COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an

amount greater than the COV increment and a notification shall be received. The Present_Value may be changed using the

WriteProperty service or by another means such as changing the input signal represented by an Analog Input object. For

some implementations it may be necessary to write to the Out_Of_Service property first to accomplish this task. For

implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger

mechanism to accomplish this task. All of these methods are equally acceptable.

BACnet Testing Laboratories - Specified Tests

 95

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control by more than COV_Increment

or which has a writable Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value, Large

Analog Value, Integer Value, and Positive Integer Value) DO1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber

Process Identif’er' = (any value 0 chosen by the TD),‘ 'Monitored Object Identif’er'

= X,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object

Identif’er' = X,‘ 'Time Remain’ng' = (any value appropriate for the Lifetime

selected),‘ 'List of Val’es' = (the initial Present_Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU

5. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = X,‘ 'Property Identif’er' =

 COV_Increment

6. RECEIVE BACnet-ComplexACK-PDU,‘ 'Object Identif’er' = X,‘ 'Property Identif’er' =

 COV_Increment,‘ 'Property Va’ue' = (a val“e "increm”nt" that will be used below)

7. IF (Out_Of_Service is writable) THEN

 WRITE X, Out_Of_Service = TRUE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = X,

 ‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

 ‘ 'List of Val’es' = (ReportedPV =any value appropriate for the current Present_Value, and

new Status_Flags)

 TRANSMIT BACnet-SimpleACK-PDU

8. IF (Present_Value is now writable) THEN

 WRITE X, Present_Value = (any value that differs fr“m "initial Present_Va”ue" ReportedPV by less th“n

"increm”nt")

 ELSE

 MAKE (Present_Value = any value that differs fr“m "initial Present_Va”ue" ReportedPV by less th“n

"increm”nt")

9. WAIT Notification Fail Time

10. CHECK (verify that no COV notification was transmitted)

11. IF (Present_Value is now writable) THEN

 WRITE X, Present_Value = (any value that differs fr“m "initial Present_Va”ue" ReportedPV by an amount greater

th“n "increm”nt")

 RECEIVE BACnet-SimpleACK-PDU

 ELSE

 MAKE (Present_Value = any value that differs fr“m "initial Present_Va”ue" ReportedPV by an amount greater

th“n "increm”nt")

12. BEFORE NotificationFailTime

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = X,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the new Present_Value and new Status_Flags)

BACnet Testing Laboratories - Specified Tests

 96

13. TRANSMIT BACnet-SimpleACK-PDU

14. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = X

15. RECEIVE BACnet-SimpleACK-PDU

16. IF (Out_Of_Service is writable) THEN

 WRITE X, Out_Of_Service = FALSE

 RECEIVE BACnet-SimpleACK-PDU

8.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value,

Integer Value, and Positive Integer Value Object Status_Flags Property

Reason for Change: Add more primitive value objects. Updat‘d 'Configuration Requireme’ts'. Removed extraneous

SimpleACKs after WRITE statements. Updated descriptive text f‘r 'List of Va’ue' property.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Status_Flags property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and

Positive Integer Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a

notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or

by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For

implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any

other means, this test shall be skipped

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control by more than COV_Increment

or which has a writable Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value, Large

Analog Value, Integer Value, and Positive Integer Value) DO 1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber

Process Identif’er' = (any value 0 chosen by the TD),‘ 'Monitored Object Identif’er'

= X,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

33. RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object Identif’er' = X,‘

 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘ 'List of Val’es' = (the

initial Present_Value and initial Status_Flag4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from initial Status_Flags) |

 MAKE (Status_Flags = any value that differs from initial Status_Flags)

6.IF (WriteProperty is used in step 5) THEN

 RECEIVE BACnet-SimpleACK-PDU

76. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = X,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the initialthe current Present_Value and new Status_Flags)

87. TRANSMIT BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 97

98. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = X

109. RECEIVE BACnet-SimpleACK-PDU

1110. IF (Out_Of_Service was changed in step 5) THEN

 WRITE X, Out_Of_Service = FALSE

 RECEIVE BACnet-SimpleACK-PDU

8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Present_Value

Property

Reason for Change: Updated t‘e 'Configuration Requireme’ts'. Removed extraneous SimpleACKs that appear after

WRITE statements. Modified descriptive text f‘r 'List of Val’es' properties.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Present_Value property of Binary Input, Binary Output, and Binary Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Present_Value of the monitored object is changed and a notification

shall be received. The Present_Value may be changed using the WriteProperty service or by another means such as

changing the input signal represented by a Binary Input object. For some implementations it may be necessary to write to

the Out_Of_Service property first to accomplish this task. For implementations where it is not possible to write to these

properties at all the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are

equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control or which has a writable

Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO 1.

 TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any value 0 chosen by the

TD),‘ 'Monitored Object Identif’er' = X,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘

 'Lifet’me' = L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object

Identif’er' = X,‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘

 'List of Val’es' = (the initial Present_Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU

5. IF (Out_Of_Service is writable) THEN

 WRITE X, Out_Of_Service = TRUE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = X,

 ‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

 ‘ 'List of Val’es' = (the initialReportedPV = the current Present_Value, and new Current

Status_Flags)

 TRANSMIT BACnet-SimpleACK-PDU

6. IF (Present_Value is now writable) THEN

BACnet Testing Laboratories - Specified Tests

 98

 WRITE X, Present_Value = (any value that differs fr“m "initial Present_Va”ue" ReportedPV)

 ELSE

 MAKE (Present_Value = any value that differs fr“m "initial Present_Va”ue" ReportedPV)

7. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = X,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the new Present_Value and new Current Status_Flags)

8. TRANSMIT BACnet-SimpleACK-PDU

9. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = X

10. RECEIVE BACnet-SimpleACK-PDU

11. IF (Out_Of_Service is writable) THEN

 WRITE X, Out_Of_Service = FALSE

 RECEIVE BACnet-SimpleACK-PDU

8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags

Property

Reason for Change: Updat‘d 'Test Conc’pt' to include case if finite lifetime is not supported. Updat‘d 'Configuration

Requireme’ts'.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Status_Flags property of Binary Input, Binary Output, and Binary Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. Removed extraneous

SimpleACKs after WRITE statements. L shall be set to a value less than 24 hours and large enough to complete the test.

The Status_Flags property of the monitored object is then changed and a notification shall be received. The value of the

Status-_Flags property can be changed by using the WriteProperty service or by another means. For some implementations

writing to the Out_Of_Service property will accomplish this task. For implementations where it is not possible to write to

Status_Flags or Out_Of_Service or change the Status_Flags by any other means, this test shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control or which has a writable

Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO 1.

 TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any value 0 chosen by the

TD),‘ 'Monitored Object Identif’er' = X,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' =

 L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object

Identif’er' = X,‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘

 'List of Val’es' = (the initial Present_Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from initial Status_Flags) |

 MAKE (Status_Flags = any value that differs from initial Status_Flags)

1. IF (WriteProperty is used in step 5) THEN

 RECEIVE BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 99

76. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = X,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the initialthe current Present_Value, and new Current Status_Flags)

87. TRANSMIT BACnet-SimpleACK-PDU

98. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = X

109. RECEIVE BACnet-SimpleACK-PDU

1110 IF (Out_Of_Service was changed in step 5) THEN

 WRITE X, Out_Of_Service = FALSE

 RECEIVE BACnet-SimpleACK-PDU

8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety

Point, or Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime

Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

Reason for Change: Added more primitive value objects. Updated text f‘r 'List of Val’es'. Updat‘d 'Configuration

Requireme’ts'. Removed extraneous SimpleACKs after WRITE statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone,

CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,

Time Value, or Time Pattern Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Present_Value of the monitored object is changed and a notification

shall be received. The Present_Value may be changed using the WriteProperty service or by another means such as

changing the input signal represented by the object. For some implementations it may be necessary to write to the

Out_Of_Service property first to accomplish this task. For implementations where it is not possible to write to these

properties at all, the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are

equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control or which has a writable

Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Multi-state Input, Multi-state Output, Multi-state Value, Life

Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime

Value, DateTime Pattern Value, Time Value, or Time Pattern Value) DO 1. TRANSMIT SubscribeCOV-Request,‘

 'Subscriber Process Identif’er' = (any value 0 chosen by the TD),‘ 'Monitored Object Identif’er'

= X,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object

Identif’er' = X,‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘

 'List of Val’es' = (the initial Present_Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU

5. IF (Out_Of_Service is writable) THEN

BACnet Testing Laboratories - Specified Tests

 100

 WRITE X, Out_Of_Service = TRUE

 RECEIVE BACSimpleACK-PDU

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = X,

 ‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

 ‘ 'List of Val’es' = (the initialReportedPV = the current Present_Value, and the new

Current Status_Flags)

 TRANSMIT BACnet-SimpleACK-PDU

6. IF (Present_Value is now writable) THEN

 WRITE X, Present_Value = (any value that differs fr“m "initial va”ue"ReportedPV)

 ELSE

 MAKE (Present_Value = any value that differs fr“m "initial va”ue"ReportedPV)

7. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = X,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the new Present_Value and new Current Status_Flags)

8. TRANSMIT BACnet-SimpleACK-PDU

9. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = X

10. RECEIVE BACnet-SimpleACK-PDU

11. IF (Out_Of_Service is writable) THEN

 WRITE X, Out_Of_Service = FALSE

 RECEIVE BACnet-SimpleACK-PDU

8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life Safety Point,

and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value,

DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

Reason for Change: Added more primitive value objects. Updated Configuration Requirements. Modified text f‘r 'List of

Val’es' in step 7. Removed extraneous SimpleACKs after WRITE statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Status_Flags property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone,

CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,

Time Value, or Time Pattern Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a

notification shall be received. The value of the Status_Flags property can be changed by using the WriteProperty service or

by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For

implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any

other means, this test shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control or which has a writable

Out_Of_Service.

Test Steps:

BACnet Testing Laboratories - Specified Tests

 101

REPEAT X = (one supported object of each type from the set Multi-state input, Multi-state Output, Multi-state Value, Life

Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime

Value, DateTime Pattern Value, Time Value, or Time Pattern Value) DO 1. TRANSMIT SubscribeCOV-Request,‘

 'Subscriber Process Identif’er' = (any value 0 chosen by the TD),‘ 'Monitored Object Identif’er'

= X,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object

Identif’er' = X,‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘

 'List of Val’es' = (the initial Present_Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from initial Status_Flags) |

 MAKE (Status_Flags = any value that differs from initial Status_Flags)

2. IF (WriteProperty is used in step 5) THEN

 RECEIVE BACnet-SimpleACK-PDU

6. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = X,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the initialthe current Present_Value, and new Current Status_Flags)

87. TRANSMIT BACnet-SimpleACK-PDU

98. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = X

109. RECEIVE BACnet-SimpleACK-PDU

1110. IF (Out_Of_Service was changed in step 5) THEN

 WRITE X, Out_Of_Service = FALSE

RECEIVE BACnet-SimpleACK-PDU

8.2.7 Change of Value Notification from Loop Object Present_Value Property

Reason for Change: Add‘d 'Configuration Requireme’ts'. Corrected object reference in step 11. Updated wording f‘r 'List

of Val’es' properties. Removed extraneous SimpleACKs after WRITE statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Present_Value property of a loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less

than the COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an

amount greater than the COV increment and a notification shall be received.

The Present_Value may be changed by placing the Loop Out_Of_Service and writing directly to the Present_Value. For

implementations where this option is not possible an alternative trigger mechanism shall be provided to accomplish this

task, such as changing the Setpoint or the Setpoint_Reference. All of these methods are equally acceptable.

The object identifier of the Loop object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select

an object where Present_Value is not expected to change outside the tes’er's control by more than COV_Increment or

which has a writable Out_Of_Service.

BACnet Testing Laboratories - Specified Tests

 102

Test Steps1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any value 0 chosen by

the TD),‘ 'Monitored Object Identif’er' = O1,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘

 'Lifet’me' = L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object

Identif’er' = O1,‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘

 'List of Val’es' = (the initial Present_Value, initial Status_Flags, initial Setpoint, and

 initial Controlled_Variable_Value)

4. TRANSMIT BACnet-SimpleACK-PDU

5. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = O1,‘ 'Property Identif’er' =

 COV_Increment

6. RECEIVE BACnet-ComplexACK-PDU,‘ 'Object Identif’er' = O1,‘ 'Property Identif’er' =

 COV_Increment,‘ 'Property Va’ue' = (a val“e "increm”nt" that will be used below)

7. IF (Out_Of_Service is writable) THEN

 WRITE O1, Out_Of_Service = TRUE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = O1,

 ‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

 ‘ 'List of Val’es' = (the initialReportedPV = the current Present_Value, new Status_Flags,

initialcurrent Setpoint, and initialcurrent Controlled_Variable_Value)

8. TRANSMIT BACnet-SimpleACK-PDU

9. IF (Present_Value is now writable) THEN

 WRITE O1, Present_Value = (any value that differs fr“m "initial Present_Va”ue" ReportedPV by less th“n

"increm”nt")

 ELSE

 MAKE (Present_Value = any value that differs fr“m "initial Present_Va”ue" ReportedPV by less th“n

"increm”nt")

10. WAIT Notification Fail Time

11. CHECK (verify that no COV notification was transmitted)

12. IF (Present_Value is now writable) THEN

 WRITE O1, Present_Value = (any value that differs fr“m "initial Present_Va”ue"ReportedPV by an amount

greater th“n "increm”nt")

 RECEIVE BACnet-SimpleACK-PDU

 ELSE

 MAKE (Present_Value = any value that differs fr“m "initial Present_Va”ue"ReportedPV by an amount greater

th“n "increm”nt")

13. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = O1,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the new Present_Value, new Status_Flags, initialcurrent Setpoint, and

initial currentControlled_Variable_Value)

14. TRANSMIT BACnet-SimpleACK-PDU

15. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = O1

16. RECEIVE BACnet-SimpleACK-PDU

17. IF (Out_Of_Service is writable) THEN

 WRITE LO1, Out_Of_Service = FALSE

BACnet Testing Laboratories - Specified Tests

 103

 RECEIVE BACnet-SimpleACK-PDU

8.2.8 Change of Value Notification from a Loop Object Status_Flags Property

Reason for Change: Updated t‘e 'Configuration Requireme’ts' to clarify the restrictions on the object selected. Updated

descriptions ‘n 'List of Val’es' property. Fixed object reference in step 11. Removed extraneous SimpleACKs after WRITE

statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Status_Flags property of a Loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a

notification shall be received. The value of the Status_-Flags property can be changed by using the WriteProperty service or

by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For

implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any

other means, this test shall be skipped.

The object identifier of the Loop object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control by more than COV_Increment

or which has a writable Out_Of_Service.

Test Steps1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any value 0 chosen by the

TD),‘ 'Monitored Object Identif’er' = O1,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' =

 L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the same value

used in step 1),‘ 'Initiating Device Identif’er' = IUT,‘ 'Monitored Object

Identif’er' = O1,‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘

 'List of Val’es' = (the initial Present_Value, initial Status_Flags, initial Setpoint, and

 initial Controlled_Variable_Value)

4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE O1, Out_Of_Service = TRUE | WRITE O1, Status_Flags = (a value that differs from initial Status_Flags) |

 MAKE (Status_Flags = any value that differs from initial Status_Flags)

3. IF (WriteProperty is used in step5) THEN

 RECEIVE BACnet-SimpleACK-PDU

6. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = O1,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the initialthe current Present_Value, new Status_Flags, initialcurrent

Setpoint, and initial current Controlled_Variable_Value)

87. TRANSMIT BACnet-SimpleACK-PDU

98. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = O1

109. RECEIVE BACnet-SimpleACK-PDU

1110. IF (Out_Of_Service was changed in step 5) THEN

 WRITE LO1, Out_Of_Service = FALSE

 RECEIVE BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 104

8.2.X9 ConfirmedCOVNotification Pulse Converter changing Present_Value

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV

Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that

this object type generates due to changes in the Present_Value property.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less

than the COV increment and it is verified that no COV notification is received. The Present_Value property can be

changed by using the WriteProperty service or by another means. For some implementations writing to the Out_Of_Service

property will enable the Present_Value property to be changed by the WriteProperty service. The object identifier of the

Pulse Converter object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control by more than COV_Increment

or which has a writable Out_Of_Service.

Test Steps1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any value 0 chosen by the

TD),‘ 'Monitored Object Identif’er' = O1,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' =

 L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = O1,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the initial Present_Value, initial Status_Flags, and

 Update_Time)

4. TRANSMIT BACnet-SimpleACK-PDU

5. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = O1,‘ 'Property Identif’er'

= COV_Increment

6. RECEIVE BACnet-ComplexACK-PDU,‘ 'Object Identif’er' = O1,‘ 'Property

Identif’er' = COV_Increment,‘ 'Property Va’ue' = (a val“e "increm”nt" that

will be used below)

7. IF (Out_Of_Service is writable) THEN

 WRITE O1, Out_Of_Service = TRUE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = O1,

 ‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

 ‘ 'List of Val’es' = (ReportedPV = the current Present_Value, new Status_Flags, and current

Update_Time)

8. TRANSMIT BACnet-SimpleACK-PDU

9. IF (Present_Value is now writable) THEN

 WRITE O1, Present_Value = (any value that differs from ReportedPV by less th“n "increm”nt")

 ELSE

 MAKE (Present_Value = any value that differs from ReportedPV by less th“n "increm”nt")

10. WAIT Notification Fail Time

11. CHECK (verify that no COV notification was transmitted)

12. IF (Present_Value is now writable) THEN

 WRITE O1, Present_Value = (any value that differs from ReportedPV by an amount greater th“n "increm”nt")

 ELSE

 MAKE (Present_Value = any value that differs from ReportedPV by an amount greater th“n "increm”nt")

BACnet Testing Laboratories - Specified Tests

 105

13. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = O1,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the new Present_Value, new Status_Flags, and current Update_Time)

14. TRANSMIT BACnet-SimpleACK-PDU

15. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = O1

16. RECEIVE BACnet-SimpleACK-PDU

17. IF (Out_Of_Service was changed in step 7) THEN

 WRITE O1, Out_Of_Service = FALSE

8.2.X10 ConfirmedCOVNotification Pulse Converter changing Status_Flags

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV

Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that

this object type generates due to changes in the Status_Flags property.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a

notification shall be received. The value of the Status_-Flags property can be changed by using the WriteProperty service or

by another means. For some implementations writing to the Out_Of_Service property will accomplish this task. For

implementations where it is not possible to write to Status_Flags or Out_Of_Service or change the Status_Flags by any

other means, this test shall be skipped. The object identifier of the Pulse Converter object being tested is designated as

O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.

Select an object where Present_Value is not expected to change outside the tes’er's control by more than COV_Increment

or which has a writable Out_Of_Service.

Test Steps1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any value 0 chosen by the

TD),‘ 'Monitored Object Identif’er' = O1,‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' =

 L

2. RECEIVE BACnet-SimpleACK-PDU

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = O1,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the initial Present_Value, initial Status_Flags, and

 Update_Time)

4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE O1, Out_Of_Service = TRUE | WRITE O1, Status_Flags = (a value that differs from initial Status_Flags) |

 MAKE (Status_Flags = any value that differs from initial Status_Flags)

6. BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the same value used in step 1),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = O1,

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (the current Present_Value, new Status_Flags, and Update_Time)

7. TRANSMIT BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 106

8. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (the same value used in step 1),‘

 'Monitored Object Identif’er' = O1

9. RECEIVE BACnet-SimpleACK-PDU

10. IF (Out_Of_Service was changed in step 5) THEN

 WRITE O1, Out_Of_Service = FALSE

8.3 UnconfirmedCOVNotification Service Initiation Tests

8.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value,

Integer Value, and Positive Integer Value Object Present_Value Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Present_Value property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and

Positive Integer Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.1 except that the SubscribeCOV service request in

step 1 shall have a value of FALSE for t‘e 'Issue Confirmed Notificati’ns' parameter, all of the ConfirmedCOVNotification

requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value,

Integer Value, and Positive Integer Value Object Status_Flags Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Status_Flags property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and

Positive Integer Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.2 except that the SubscribeCOV service request in

step 1 shall have a value of FALSE for t‘e 'Issue Confirmed Notificati’ns' parameter, all of the ConfirmedCOVNotification

requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety

Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime

Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone,

CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,

Time Value, or Time Pattern Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.5 except that the SubscribeCOV service request in

step 1 shall have a value of FALSE for t‘e 'Issue Confirmed Notificati’ns' parameter, all of the ConfirmedCOVNotification

requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.

BACnet Testing Laboratories - Specified Tests

 107

8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety

Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime

Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the

Status_Flags property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone,

CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,

Time Value, or Time Pattern Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.6 except that the SubscribeCOV service request in

step 1 shall have a value of FALSE for t‘e 'Issue Confirmed Notificati’ns' parameter, all of the ConfirmedCOVNotification

requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The

MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.X1 COVU_Recipients Notifications

Reason for Change: No existing test in the standard.

Purpose: To verify that the IUT initiates UnconfirmedCOVNotification service requests to each entry in its

COVU_Recipients property based on COVU_Period.

Test Concept: The IUT contains a Global Group object, O1, that is configured to periodically send

UnconfirmedCOVNotification using COVU_Period and COVU_Recipients. The TD checks for these notifications.

Configuration Requirements: COVU_Recipients property shall be non-empty and contain at least one device and one

address based recipient. The COVU_Period shall be non-zero.

34. Test Steps1. REPEAT X = (each entry in the COVU_Recipients) DO {

 BEFORE COVU_Period + Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 DESTINATION = X,

 ‘ 'Subscriber Process Identif’er' = 0,

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = O1,

 ‘ 'Time Remain’ng' = 0,

 ‘ 'List of Val’es' = (Member_Status_Flags,

 Elements of Present_Value)

 IF (X is the first entry in the COVU_Recipients) THEN

 READ T1 = Local_Time

 }

2. READ T1 = Local_Time

3. REPEAT X = (each entry in the COVU_Recipients) DO {

 BEFORE COVU_Period + Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 DESTINATION = X,

 ‘ 'Subscriber Process Identif’er' = 0,

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = O1,

 ‘ 'Time Remain’ng' = 0,

 ‘ 'List of Val’es' = (Member_Status_Flags,

 Elements of Present_Value)

 IF (X is the first entry in the COVU_Recipients) THEN

 READ T2 = Local_Time

 }

4. CHECK (–2 - T1 ~= COVU_Period)

BACnet Testing Laboratories - Specified Tests

 108

Note to tester: The test shall pass regardless of the order in which the IUT generates the UnconfirmedCOVNotification-

Requests in each step.

8.3.X11 Unsubscribed COV Service Initiation Test

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the IUT initiates UnconfirmedCOVNotification service requests.

Test Concept: Configure one or more objects in IUT to produce unsubscribed UnconfirmedCOVNotifications.

Test Steps:

1. MAKE (the IUT issue an unsubscribed UnconfirmedCOVNotification)

2. BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 DESTINATION = (any valid address),

‘ 'Subscriber Process Identif’er' = 0,

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = (any object present in IUT),

‘ 'Time Remain’ng' = 0,

‘ 'List of Val’es' = (any valid set of values)

8.3.X12 UnconfirmedCOVNotification Pulse Converter changing Present_Value

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV

Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that

this object type generates due to changes in the Present_Value property.

Test Concept: This test is the same as 8.2.X9 except that the SubscribeCOV service request in step 1 shall have a value of

FALSE for t‘e 'Issue Confirmed Notificati’ns' parameter, all of the ConfirmedCOVNotification requests shall be

UnconfirmedCOVNotification requests, and there is no BACnet-SimpleACK-PDU returned in acknowledgment of the

unconfirmed services.

8.3.X13 UnconfirmedCOVNotification Pulse Converter changing Status_Flags

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV

Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that

this object type generates due to changes in the Status_Flags property.

Test Concept: This test is the same as 8.2.X10 except that the SubscribeCOV service request in step 1 shall have a value of

FALSE for t‘e 'Issue Confirmed Notificati’ns' parameter, all of the ConfirmedCOVNotification requests shall be

UnconfirmedCOVNotification requests, and there is no BACnet-SimpleACK-PDU returned in acknowledgment of the

unconfirmed services.

8.4 ConfirmedEventNotification Service Initiation Tests

Reason for Change: This test was incorrect when used to test an Event Enrollment Object. This change is not included in

any SSPC proposal.

8.4.4 COMMAND_FAILURE Tests

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.7, 12.12, 12.19, 13.2, 13.3.4, and 13.8.

Purpose: To verify the correct operation of the COMMAND_FAILURE algorithm.

BACnet Testing Laboratories - Specified Tests

 109

Test Concept: The Feedback_Value (Feedback_Property_Reference) shall be decoupled from the input signal that is

normally used to verify the output. Initially Present_Value (referenced property) and Feedback_Value

(Feedback_Property_Reference) are in agreement. Present_Value (the referenced property) is changed and an event

notification should be transmitted indicating a transition to an OFFNORMAL state. The Feedback_Value

(Feedback_Property_Reference) is changed to again agree with the Present_Value (referenced property). A second event

notification is transmitted indicating a return to a NORMAL state.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the

TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of

TRUE. The event-generating object shall be in a NORMAL state at the start of the test. The Feedback_Value property shall

be decoupled from the input signal that is normally used to verify the output so that it can be independently manipulated.

In the test description below Present_Value is used as the referenced property and Feedback_Value is used to verify the

output. If an Event Enrollment object is being tested these properties shall be replaced by the appropriate property

reference.

Test Steps:

1. VERIFY Event_State = NORMAL

2. IF (the object being tested is not an Event Enrollment object) THEN

35. VERIFY Status_Flags = (FALSE, FALSE, FALSE, FALSE)(FALSE, FALSE, ?, 3. IF (Present_Value is

writable) THEN

 WRITE Present_Value = (a different value)

 ELSE

 MAKE (Present_Value take on a different value)

4. WAIT (Time_Delay)

5. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object being tested),

‘ 'Time St’mp' = (the current local time),

‘ 'Notification Cl’ss' = (the configured notification class),

‘ 'Prior’ty' = (the value configured to correspond to a TO-OFFNORMAL transition),

‘ 'Event T’pe' = COMMAND_FAILURE,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = OFFNORMAL,

‘ 'Event Val’es' = Present_Value, Status_Flags, Feedback_Value

6. TRANSMIT BACnet-SimpleACK-PDU

7. IF (the object being tested is not an Event Enrollment object) THEN

 VERIFY Status_Flags = (TRUE, FALSE, ?, ?)

8. VERIFY Event_State = OFFNORMAL

9. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 VERIFY Event_Time_Stamps = (the timestamp in step 5, *, *)

10. IF (Feedback_Value is writable) THEN

 WRITE Feedback_Value = (a value consistent with Present_Value)

 ELSE

 MAKE (Feedback_Value take on a value consistent with Present_Value)

11. WAIT (Time_Delay)

12. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

BACnet Testing Laboratories - Specified Tests

 110

‘ 'Event Object Identif’er' = (the object being tested),

‘ 'Time St’mp' = (the current local time),

‘ 'Notification Cl’ss' = (the configured notification class),

‘ 'Prior’ty' = (the value configured to correspond to a TO-NORMAL transition),

‘ 'Event T’pe' = COMMAND_FAILURE,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = OFFNORMAL,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = Present_Value, Status_Flags, Feedback_Value

13. TRANSMIT BACnet-SimpleACK-PDU

14. IF (the object being tested is not an Event Enrollment object) THEN

 VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

15. VERIFY Event_State = NORMAL

16. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 VERIFY Event_Time_Stamps = (the timestamp in step 5, *, the timestamp in step 12)

Notes to Tester: T‘e 'Message T’xt' parameter is omitted in the test description because it is optional. The IUT may include

this parameter in the notification messages. The time stamps indicated “y”"*" in steps 9 and 16 can have a value that

indicates an unspecified time or a time that precedes the timestamp in step 5.

8.4.X1 DOUBLE_OUT_OF_RANGE Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the DOUBLE_OUT_OF_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of DOUBLE_OUT_OF_RANGE and to object types that generate this event type

intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is DOUBLE_OUT_OF_RANGE instead of

OUT_OF_RANGE.

8.4.X2 SIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the SIGNED_OUT_OF_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of SIGNED_OUT_OF_RANGE and to object types that generate this event type

intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is SIGNED_OUT_OF_RANGE instead of

OUT_OF_RANGE.

8.4.X3 UNSIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

BACnet Testing Laboratories - Specified Tests

 111

Purpose: To verify the correct operation of the UNSIGNED_OUT_OF_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of UNSIGNED_OUT_OF_RANGE and to object types that generate this event

type intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is UNSIGNED_OUT_OF_RANGE instead of

OUT_OF_RANGE.

8.4.X4 CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_CHARACTERSTRING event algorithm. This test applies to

Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting

for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a

value that is one of the values designated in List_Of_Values. After the time delay expires the object should enter the

OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed

to a different value in the List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and

transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding

to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification

message. The transition to and from FAULT is also tested.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the

TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a

value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if

possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested

Present_Value should be replaced by the appropriate property reference.

Test Steps:

1. VERIFY Event_State = NORMAL

2. IF (the object, or referenced object, if using Event Enrollment, has a non-empty Alarm_Values property) THEN

3. IF (Present_Value is writable) THEN

 WRITE Present_Value = (a value x: x = one of the Alarm_Values)

 ELSE

 MAKE (Present_Value have a value x: x = one of the Alarm_Values)

4. WAIT (Time_Delay)

5. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (any valid process ID),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the intrinsic reporting object being tested or the Event Enrollment object

 being tested),

 ‘ 'Time St’mp' = (Toffnormal: the current local time),

 ‘ 'Notification Cl’ss' = (the configured notification class),

 ‘ 'Prior’ty' = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘ 'Event T’pe' = CHANGE_OF_CHARACTERSTRING,

 ‘ 'Notify T’pe' = EVENT | ALARM,

BACnet Testing Laboratories - Specified Tests

 112

 ‘ 'AckRequi’ed' = TRUE | FALSE,

 ‘ 'From St’te' = NORMAL,

 ‘ 'To St’te' = OFFNORMAL,

 ‘ 'Event Val’es' = Present_Value, Status_Flags

6. TRANSMIT BACnet-SimpleACK-PDU

7. IF (the object being tested is NOT an Event Enrollment object) THEN

 VERIFY Status_Flags = (TRUE, FALSE,?,?)

8. VERIFY Event_State = OFFNORMAL

9. VERIFY Event_Time_Stamps = (Toffnormal, *, *)

10. IF (the object, or referenced object, if using Event Enrollment, has a Alarm_Values property with more than 1 entry)

THEN

11. IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Alarm_Values not used in prior steps)

 ELSE

MAKE (Present_Value have a value x: x = one of the Alarm_Values not used in prior steps)

12. WAIT (Time_Delay)

13. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (any valid process ID),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the intrinsic reporting object being tested or the Event Enrollment object

 being tested),

 ‘ 'Time St’mp' = (Toffnormal: the current local time),

 ‘ 'Notification Cl’ss' = (the configured notification class),

 ‘ 'Prior’ty' = (the value configured to correspond to a TO-OFFNORMAL transition),

 ‘ 'Event T’pe' = CHANGE_OF_CHARACTERSTRING,

 ‘ 'Notify T’pe' = EVENT | ALARM,

 ‘ 'AckRequi’ed' = TRUE | FALSE,

 ‘ 'From St’te' = NORMAL,

 ‘ 'To St’te' = OFFNORMAL,

 ‘ 'Event Val’es' = Present_Value, Status_Flags

14. TRANSMIT BACnet-SimpleACK-PDU

15. IF (the object being tested is NOT an Event Enrollment object) THEN

 VERIFY Status_Flags = (TRUE, FALSE,?,?)

16. VERIFY Event_State = OFFNORMAL

17. VERIFY Event_Time_Stamps = (Toffnormal, *, *)

18. IF (the object, or referenced object, if using Event Enrollment, has a non-empty Alarm_Values property) THEN

19. IF (Present_Value is writable) THEN

 WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

 ELSE

 MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

20. WAIT (Time_Delay)

21. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the intrinsic reporting object being tested or the object referenced by the

Event Enrollment object being tested),

‘ 'Time St’mp' = (Tnormal: the current local time),

‘ 'Notification Cl’ss' = (the configured notification class),

‘ 'Prior’ty' = (the value configured to correspond to a TO-NORMAL transition),

‘ 'Event T’pe' = CHANGE_OF_CHARACTERSTRING,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = OFFNORMAL,

BACnet Testing Laboratories - Specified Tests

 113

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = Present_Value, Status_Flags

22. TRANSMIT BACnet-SimpleACK-PDU

23. IF (the object being tested is NOT an Event Enrollment object) THEN

 VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

24. VERIFY Event_State = NORMAL

25. VERIFY Event_Time_Stamps = (Toffnormal, *, Tnormal)

26. IF (the object, or referenced object, if testing Event Enrollment, is configured with a non-empty Fault_Values property)

THEN

27. IF (Present_Value is writable) THEN

 WRITE Present_Value = (a value x: x = one of the Fault_Values)

 ELSE

 MAKE (Present_Value have a value x: x = one of the Fault_Values)

28. WAIT (Time_Delay)

29. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (any valid process ID),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the intrinsic reporting object being tested),

 ‘ 'Time St’mp' = (Tfault: the current local time),

 ‘ 'Notification Cl’ss' = (the configured notification class),

 ‘ 'Prior’ty' = (the value configured to correspond to a TO-FAULT transition),

 ‘ 'Event T’pe' = CHANGE_OF_CHARACTERSTRING,

 ‘ 'Notify T’pe' = EVENT | ALARM,

 ‘ 'AckRequi’ed' = TRUE | FALSE,

 ‘ 'From St’te' = NORMAL,

 ‘ 'To St’te' = FAULT,

 ‘ 'Event Val’es' = Present_Value, Status_Flags

30. TRANSMIT BACnet-SimpleACK-PDU

31. IF (the object being tested is NOT an Event Enrollment object) THEN

 VERIFY Status_Flags = (TRUE, TRUE, ?, ?)

32. VERIFY Event_State = FAULT

33. VERIFY Event_Time_Stamps = (Toffnormal,, Tfault, Tnormal)

34. VERIFY Reliability = MULTI_STATE_FAULT

35. IF (Present_Value is writable) THEN

 WRITE Present_Value = (a value x: x corresponds to a NORMAL state)

 ELSE

 MAKE (Present_Value have a value x: x corresponds to a NORMAL state)

36. WAIT (Time_Delay)

37. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (any valid process ID),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the intrinsic reporting object being tested),

 ‘ 'Time St’mp' = (Tfault: the current local time),

 ‘ 'Notification Cl’ss' = (the configured notification class),

 ‘ 'Prior’ty' = (the value configured to correspond to a TO-NORMAL transition),

 ‘ 'Event T’pe' = CHANGE_OF_CHARACTERSTRING,

 ‘ 'Notify T’pe' = EVENT | ALARM,

 ‘ 'AckRequi’ed' = TRUE | FALSE,

 ‘ 'From St’te' = FAULT,

 ‘ 'To St’te' = NORMAL,

 ‘ 'Event Val’es' = Present_Value, Status_Flags

38. TRANSMIT BACnet-SimpleACK-PDU

39. IF (the object being tested is NOT an Event Enrollment object) THEN

 VERIFY Status_Flags = (FALSE, FALSE, ?, ?)

BACnet Testing Laboratories - Specified Tests

 114

40. VERIFY Event_State = NORMAL

41. VERIFY Event_Time_Stamps = (Toffnormal, Tfault, Tnormal)

Notes to Tester: T‘e 'Message T’xt' parameter is omitted in the test description because it is optional. The IUT may include

this parameter in the notification messages. The time stamps indicated “y”"*" can have a value that indicates an unspecified

time or a time that precedes the timestamp of the first received notification.

8.4.X5 Proprietary Algorithm Tests (ConfirmedEventNotifications)

This test has not be developed and shall be skipped.

8.4.X6 Extended Algorithm Tests (ConfirmedEventNotifications)

This test has not be developed and shall be skipped.

8.4.X7 UNSIGNED_RANGE ConfirmedEventNotification Test

Reason for Change: New algorithm test.

Purpose: To verify the correct operation of the UNSIGNED_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of UNSIGNED_RANGE and to object types that generate this event type

intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is UNSIGNED_RANGE instead of

OUT_OF_RANGE, and there is no Deadband. If the pMonitoredValue property is not under the tes’er's control in IUT,

then pHighLimit and/or pLowLimit are modified to generate Event notifications. The object begins the test in a NORMAL

state. The pMonitoredValue is raised to a value that is above the high limit. After the time delay expires the object should

enter the HIGH_LIMIT state and transmit an event notification message. The pMonitoredValue is lowered to a value that is

below the high limit. After the time delay expires the object should enter the NORMAL state and issue an event

notification. The same process is repeated to test the low limit.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the

TO_OFFNORMAL and TO_NORMAL transitions, if possible. pLimitEnable property shall have a value of TRUE for both

HighLimit and LowLimit events, if possible. T‘e 'Issue Confirmed Notificati’ns' parameter in the Recipient_List of the

configured Notification Class shall have a value of TRUE. The Recipient_List of the configured Notification Class shall

contain recipients, thus ensuring that notifications are emitted. The event-generating objects shall be in a NORMAL state at

the start of the test.

Test Steps:

1. VERIFY pCurrentState = NORMAL

2. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = (a value x: (x > pHighLimit))

 ELSE

 MAKE (pMonitoredValue have a value x: (x > pHighLimit))

3. WAIT (pTimeDelay)

4. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object being tested),

‘ 'Time St’mp' = (Toffnormal: the current local time),

‘ 'Notification Cl’ss' = (the configured notification class),

‘ 'Prior’ty' = (the value configured to correspond to a TO_OFFNORMAL transition),

‘ 'Event T’pe' = UNSIGNED_RANGE,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

BACnet Testing Laboratories - Specified Tests

 115

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = HIGH_LIMIT,

‘ 'Event Val’es' = pMonitoredValue, pStatusFlags, pHighLimit

5. TRANSMIT BACnet-SimpleACK-PDU

6. IF (the object being tested is not an Event Enrollment object OR

 (Protocol_Revision is present AND Protocol_Revision 13)) THEN

 VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)

7. VERIFY pCurrentState = HIGH_LIMIT

8. IF (Protocol_Revision is present AND Protocol_Revision 1) THEN

 VERIFY Event_Time_Stamps = (Toffnormal, *, *)

9. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = (a value x: (pLowLimit < x < pHighLimit))

 ELSE

 MAKE (pMonitoredValue have a value x: (pLowLimit < x < pHighLimit))

10. WAIT (pTimeDelayNormal)

11. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object being tested),

‘ 'Time St’mp' = (Tnormal: the current local time),

‘ 'Notification Cl’ss' = (the configured notification class),

‘ 'Prior’ty' = (the value configured to correspond to a TO_NORMAL transition),

‘ 'Event T’pe' = UNSIGNED_RANGE,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = HIGH_LIMIT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = pMonitoredValue, pStatusFlags, pHighLimit

12. TRANSMIT BACnet-SimpleACK-PDU

13. IF (the object being tested is not an Event Enrollment object OR

 (Protocol_Revision is present AND Protocol_Revision 13)) THEN

 VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)

14. VERIFY pCurrentState = NORMAL

15. IF (Protocol_Revision is present AND Protocol_Revision 1) THEN

 VERIFY Event_Time_Stamps = (Toffnormal, *, Tnormal)

16. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = (a value x: (x < pLowLimit))

 ELSE

 MAKE (pMonitoredValue have a value x: (x < pLowLimit))

17. WAIT (pTimeDelay)

18. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object being tested),

‘ 'Time St’mp' = (Tlowlimit: the current local time),

‘ 'Notification Cl’ss' = (the configured notification class),

‘ 'Prior’ty' = (the value configured to correspond to a TO_OFFNORMAL transition),

‘ 'Event T’pe' = UNSIGNED_RANGE,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = LOW_LIMIT,

‘ 'Event Val’es' = pMonitoredValue, pStatusFlags, pLowLimit

19. TRANSMIT BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 116

20. IF (the object being tested is not an Event Enrollment object OR

 (Protocol_Revision is present AND Protocol_Revision 13)) THEN

 VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)

21. VERIFY pCurrentState = LOW_LIMIT

22. IF (Protocol_Revision is present AND Protocol_Revision 1) THEN

 VERIFY Event_Time_Stamps = (Tlowlimit, *, Tnormal)

23. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = (a value x: (Low_Limit < x < High_Limit))

 ELSE

 MAKE (pMonitoredValue have a value x: (Low_Limit < x < High_Limit))

24. WAIT (pTimeDelayNormal)

25. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object being tested),

‘ 'Time St’mp' = (Tlowtonormal: the current local time),

‘ 'Notification Cl’ss' = (the configured notification class),

‘ 'Prior’ty' = (the value configured to correspond to a TO_NORMAL transition),

‘ 'Event T’pe' = UNSIGNED_RANGE,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = LOW_LIMIT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = pMonitoredValue, pStatusFlags, pLowLimit

26. TRANSMIT BACnet-SimpleACK-PDU

27. IF (the object being tested is not an Event Enrollment object OR

 (Protocol_Revision is present AND Protocol_Revision 13)) THEN

 VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)

28. VERIFY pCurrentState = NORMAL

29. IF (Protocol_Revision is present AND Protocol_Revision 1) THEN

 VERIFY Event_Time_Stamps = (Tlowlimit, *, Tlowtonormal)

Notes to Tester: T‘e 'Message T’xt' parameter is omitted in the test description because it is optional. The IUT may include

this parameter in the notification messages. The time stamps indicated “y”"*" can have a value that indicates an unspecified

time or a time that precedes the timestamp of the first received notification.

8.4.X8 CHANGE_OF_STATUS_FLAGS Test (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 13.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_STATUS_FLAGS event algorithm. This test applies to

objects that support an Event_Type of CHANGE_OF_STATUS_FLAGS.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed such that a logical

AND of pMonitoredValue and pSelectedFlags results in at least one bits set. After pTimeDelay expires the object shall

enter the OFFNORMAL state and transmit an event notification message. The pMonitoredValue is then changed such that

a logical AND of pMonitoredValue and pSelectedFlags results in no bits set. After pTimeDelayNormal expires the object

shall enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the

TO-OFFNORMAL and TO-NORMAL transitions. T‘e 'Issue Confirmed Notificati’ns' parameter in the Recipient_List of

BACnet Testing Laboratories - Specified Tests

 117

the configured Notification Class Issue_Confirmed_Notifications property shall have a value of TRUE. The Recipient_List

of the configured Notification Class shall contain recipients. The event-generating object shall be in a NORMAL state at

the start of the test.

Test Steps:

1. VERIFY Event_State = NORMAL

2. MAKE (pMonitoredValue AND pSelectedFlags <> {FALSE, FALSE, FALSE, FALSE})

3. WAIT (pTimeDelay)

4. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local datetime or time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_STATUS_FLAGS,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'Message T’xt' = (any valid message text),

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = OFFNORMAL,

‘ 'Event Val’es' = pPresentValue, pMonitoredValue

5. TRANSMIT BACnet-SimpleACK-PDU

6. VERIFY Status_Flags = {TRUE, FALSE,?,?}

7. VERIFY Event_State = OFFNORMAL

8. MAKE (pMonitoredValue AND pSelectedFlags = {FALSE, FALSE, FALSE, FALSE})

9. WAIT (pTimeDelayNormal)

10. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1

‘ 'Time St’mp' = (the current local datetime or time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_STATUS_FLAGS,

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'Message T’xt' = (any valid message text),

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = OFFNORMAL,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = pPresentValue, pMonitoredValue

11. TRANSMIT BACnet-SimpleACK-PDU

12. VERIFY Status_Flags = {FALSE, FALSE, ?, ?}

13. VERIFY Event_State = NORMAL

8.5 UnconfirmedEventNotification Service Initiation Tests

8.5.X1 DOUBLE_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Testing Laboratories - Specified Tests

 118

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the DOUBLE_OUT_OF_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of DOUBLE_OUT_OF_RANGE and to object types that generate this event type

intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event_Type is DOUBLE_OUT_OF_RANGE instead of

OUT_OF_RANGE.

8.5.X2 SIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the SIGNED_OUT_OF_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of SIGNED_OUT_OF_RANGE and to object types that generate this event type

intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event_Type is SIGNED_OUT_OF_RANGE instead of

OUT_OF_RANGE.

8.5.X3 UNSIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the UNSIGNED_OUT_OF_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of UNSIGNED_OUT_OF_RANGE and to object types that generate this event

type intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event_Type is UNSIGNED_OUT_OF_RANGE instead of

OUT_OF_RANGE.

8.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>.

Purpose: To verify the correct operation of the CHANGE_OF_CHARACTERSTRING event algorithm. This test applies to

Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting

for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a

value that is one of the values designated in List_Of_Values. After the time delay expires the object should enter the

OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed

to a different value in the List_Of_Values. After the time delay expires the object should enter the OFFNORMAL state and

transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding

to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification

message. The transition to and from FAULT is also tested.

BACnet Testing Laboratories - Specified Tests

 119

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the

TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a

value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if

possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested

Present_Value should be replaced by the appropriate property reference.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X4 except that the event notification requests

are UnconfirmedEventNotification requests and the TD does not acknowledge receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X4 except that the event notifications

shall be conveyed using an UnconfirmedEventNotification service request.

8.5.X5 Proprietary Algorithm Tests (UnconfirmedEventNotifications)

This test has not be developed and shall be skipped.

8.5.X6 Extended Algorithm Tests (UnconfirmedEventNotifications)

This test has not be developed and shall be skipped.

8.5.X7 UNSIGNED_RANGE UnconfirmedEventNotification Test

Reason for Change: New algorithm test.

Purpose: To verify the correct operation of the UNSIGNED_RANGE event algorithm. This test applies to Event

Enrollment objects with an Event_Type of UNSIGNED_RANGE and to object types that generate this event type

intrinsically.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the

TO-OFFNORMAL and TO-NORMAL transitions, if possible. pLimitEnable shall have a value of TRUE for both

HighLimit and LowLimit events, if possibl‘. 'Issue Confirmed Notificati’ns' parameter in the Recipient_List of the

configured Notification Class shall have a value of FALSE. The Recipient_List of the configured Notification Class shall

contain recipients, thus ensuring that notifications are emitted. The event-generating objects shall be in a NORMAL state at

the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X7 except that the

ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge

receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X7 except that the event notifications

shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall

be either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.5.X8 CHANGE_OF_STATUS_FLAGS Test (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 13.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_STATUS_FLAGS event algorithm. This test applies to

objects that support an Event_Type of CHANGE_OF_STATUS_FLAGS.

BACnet Testing Laboratories - Specified Tests

 120

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed such that a logical

AND of pMonitoredValue and pSelectedFlags results in at least one bits set. After pTimeDelay expires the object shall

enter the OFFNORMAL state and transmit an event notification message. The pMonitoredValue is then changed such that

a logical AND of pMonitoredValue and pSelectedFlags results in no bits set. After pTimeDelayNormal expires the object

shall enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the

TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of

FALSE. The event-generating object shall be in a NORMAL state at the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X8 except that the

ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge

receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X8 except that the event notifications

shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall

be either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.5.X9 CHANGE_OF_RELIABILITY Tests

8.5.X9.1 CHANGE_OF_RELIABILITY with No Fault Algorithm

Purpose: To verify the correct operation of an object that supports first stage reliability evaluation and does not apply a

standardized fault algorithm.

Test Concept: Select an object, O1 that supports first stage reliability evaluation and does not apply a standardized fault

algorithm. Ensure that no other fault conditions exist for the object. Create a fault condition. Verify the transition to fault is

generated with Reliability set to R1. Remove the fault condition and verify the object transitions out of fault.

Test Configuration: O1 is configured to detect and report faults using unconfirmed event notifications. O1 is configured to

have no fault conditions present and the Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(O1 enter a fault condition)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = (R1 any valid BACnetReliability,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

BACnet Testing Laboratories - Specified Tests

 121

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

7. MAKE(O1clear the fault condition)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

Notes to Tester: The mechanism to enter the NONE fault algorithm is a local matter.

8.5.X9.2 CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING Algorithm

Purpose: To verify the correct operation of the FAULT_CHARACTERSTRING fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_CHARACTERSTRING algorithm,

and no other fault conditions exist for the object. pMonitoredValue is changed to a fault string and back to a non-fault

string. It is verified that O1 generates the correct transitions.

Test Configuration: O1 is configured to detect and report faults, to have no fault conditions present, and to be in the

NORMAL state. FVSET is the set of character strings defined as fault values for O1. ONVSET is the set of character

strings defined as offnormal values for O1. FV1 contain a substring that exists in FVSET. If the empty string is included in

the FVSET, then FV1 should be the empty string. NFV1 is a string value that does not contain substrings from FVSET or

ONVSET.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

36. MAKE (pMonitoredValue = FV4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

BACnet Testing Laboratories - Specified Tests

 122

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = (MULTI_STATE_FAULT,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MULTI_STATE_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NFV1

 ELSE

 MAKE (pMonitoredValue = NFV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

Notes to Tester: Note that a string is considered a substring of itself. Values required and allowed for O1 are described in

standard 135 “s "Properties Reported in CHANGE_OF_RELIABILITY Notificati”ns" (Table 13-5 in 135-2016) along with

supporting paragraphs.

8.5.X9.3 CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm

Purpose: To verify the correct operation of the FAULT_EXTENDED fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_EXTENDED algorithm, and either

pMonitoredValue is configured. Ensure that no other fault conditions exist for the object. In object O1, a condition is

created that is detected as a fault by the FAULT_EXTENDED algorithm configured. The fault condition is then removed. It

is verified that O1 generates the correct notifications.

Test Configuration: O1 is configured to detect and report faults. O1 is configured to have no fault conditions present, and

has an Event_State of NORMAL.

BACnet Testing Laboratories - Specified Tests

 123

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (a fault condition exist)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = ((R1: any valid reliability value),

 (T, T, ?, ?),

 (a vendor specified set of values)

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

7. MAKE (remove the fault condition)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (a vendor specified set of values)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X9.4 CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm

Purpose: To verify the correct operation of the FAULT_LIFE_SAFETY fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_LIFE_SAFETY algorithm. Ensure

that no other fault conditions exist in the object. Set pMonitoredValue to FV1, a value which indicates a

FAULT_LIFE_SAFETY fault condition. Verify the correct transition is generated. The fault condition is removed by

BACnet Testing Laboratories - Specified Tests

 124

setting pMonitoredValue to NV1, a value which indicates NO_FAULT_DETECTED and verify the correct transition is

generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is

initially configured to have no fault conditions present, and has an Event_State of NORMAL. FV1 is a value for

pMonitoredValue which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a

fault condition.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

37. MAKE (pMonitoredValue = FV4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = (MULTI_STATE_FAULT,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MULTI_STATE_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NV1

 ELSE

 MAKE (pMonitoredValue = NV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

BACnet Testing Laboratories - Specified Tests

 125

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X9.5 CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm

Purpose: To verify the correct operation of the FAULT_STATE fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_STATE algorithm. Ensure that no

other fault conditions exist in the object. Set pMonitoredValue to FV1, a value which indicates a FAULT_STATE fault

condition. Verify the correct transition is generated. The fault condition is removed by setting pMonitoredValue to NV1, a

value which indicates NO_FAULT_DETECTED and verify the correct transition is generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is

initially configured to have no fault conditions present, and an Event_State of NORMAL. FV1 is a value for

pMonitoredValue which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a

fault condition.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

38. MAKE (pMonitoredValue = FV4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = (MULTI_STATE_FAULT,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MULTI_STATE_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NV1

 ELSE

 MAKE (pMonitoredValue = NV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

BACnet Testing Laboratories - Specified Tests

 126

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X9.6 CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm

Purpose: To verify the correct operation of the FAULT_STATUS_FLAGS fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_STATUS_FLAGS algorithm.

Ensure that no other fault conditions exist for the object. Set pMonitoredValue to FV1, a value which indicates a

FAULT_STATUS_FLAGS fault condition. Verify the correct transition is generated. The fault condition is removed by

setting pMonitoredValue to NV1, a value which indicates NO_FAULT_DETECTED and verify the correct transition is

generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is

initially configured to have no fault conditions present, and Event_State is NORMAL. FV1 is a value for pMonitoredValue

which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

39. MAKE (pMonitoredValue = FV4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = (MEMBER_FAULT,

 (T, T, ?, ?),

BACnet Testing Laboratories - Specified Tests

 127

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MEMBER_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NV1

 ELSE

 MAKE (pMonitoredValue = NV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X9.7 Event Enrollment Fault Condition Precedence Tests

8.5.X9.7.1 Internal Faults Take Precedence Over Monitored Object Faults

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational

faults over faults in the monitored object.

Test Concept: Select an Event Enrollment object EE1 which can detect internal faults and which monitors an object O1 that

can detect faults. Test that an internal unreliable operational fault takes precedence over a monitored object fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(a condition exist which will cause O1 to transition into fault)

4. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

5. VERIFY Event_State = FAULT

6. MAKE(a condition exist which will cause EE1 to transition into internal fault R1)

7. VERIFY pCurrentReliability = R1

8. MAKE(clear the condition that caused EE1 to enter into an internal fault)

9. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

10. MAKE(clear the condition that caused O1 to transition into fault)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

BACnet Testing Laboratories - Specified Tests

 128

12. VERIFY Event_State = NORMAL

8.5.X9.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to faults in the monitored object over

faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object EE1 which applies a fault algorithm and which monitors an object O1 that

can detect faults. Test that a monitored object fault takes precedence over a standard fault algorithm fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)

4. VERIFY pCurrentReliability = R1

5. VERIFY Event_State = FAULT

6. MAKE(a condition exist which will cause O1 to transition into fault)

7. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

8. MAKE(clear the condition that caused O1 to transition into fault)

9. VERIFY pCurrentReliability = R1

10. MAKE(clear the condition for the fault algorithm)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

12. VERIFY Event_State = NORMAL

8.5.X9.7.3 Internal Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational

faults over faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object EE1 which can detect internal faults and which applies a fault algorithm.

Test that an internal unreliable operational fault takes precedence over a standard fault algorithm fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)

4. VERIFY pCurrentReliability = R1

5. VERIFY Event_State = FAULT

6. MAKE(a condition exist which will cause EE1 to transition into internal fault R2, different from R1)

7. VERIFY pCurrentReliability = R2

8. MAKE(clear the condition that caused EE1 to enter into an internal fault)

9. VERIFY pCurrentReliability = R1

10. MAKE(clear the condition for the fault algorithm)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

12. VERIFY Event_State = NORMAL

BACnet Testing Laboratories - Specified Tests

 129

8.5.X9.8 CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object Fault

Purpose: To verify the proper operation of the Event Enrollment object’s fault detection when the monitored object enters

the fault state.

Test Concept: Select an Event Enrollment object EE1 that monitors an object M1 that can transition into FAULT. Starting

with both objects in a NORMAL state, cause a condition which results in a fault in M1. Verify EE1 reports the fault. Clear

the condition and verify EE1 reports the return to NORMAL.

Test Configuration: EE1 is configured to process faults in M1 and to report those using unconfirmed event notifications.

EE1 and M1 are each initially configured to have no fault conditions present, and Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (M1 enter any fault state)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = EE1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for EE1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = (MONITORED_OBJECT_FAULT,

 (T, T, ?, ?),

 M1,

 (optional, property value of M1),

 (optional, M1 Status_Flags, (T, T, ?, ?)),

 (0 or more other properties of M1)

)

5. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

6. VERIFY Event_State = FAULT

7. MAKE (M1 clear fault state)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = EE1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for EE1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

BACnet Testing Laboratories - Specified Tests

 130

 M1,

 (optional, property value of M1),

 (optional, M1 Status_Flags, (?, F, ?, ?)),

 (0 or more other properties of M1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X9.9 CHANGE_OF_RELIABILITY of Event Enrollment Object Fault

Purpose: To verify the Event Enrollment object generates a fault event when the object enters into fault due to an internal

unreliable operation.

Test Concept: Select an Event Enrollment object EE1 that can be made to enter into fault due to an internal unreliable

operation. Starting EE1 in a NORMAL state, cause a condition which results in an internal fault. Verify that EE1 reports

the fault. Clear the condition and verify that EE1 reports the return to NORMAL.

Test Configuration: EE1 is configured to be able to enter a fault state and to report those using unconfirmed event

notifications. EE1 is initially configured to have no fault conditions present, and Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (EE1 enter any internal fault state)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = EE1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for EE1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = ((R1: any value other than

 MONITORED_OBJECT_FAULT

 and NO_FAULT_DETECTED),

 (T, T, ?, ?),

 (M1, any valid monitored object),

 (optional, property value of M1),

 (optional, M1 Status_Flags, (?, F, ?, ?)),

 (0 or more other properties of M1)

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

7. MAKE (EE1 clear fault state)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

BACnet Testing Laboratories - Specified Tests

 131

‘ 'Event Object Identif’er' = EE1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for EE1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 M1,

 (optional, property value of M1),

 (optional, M1 Status_Flags, (?, F, ?, ?)),

 (0 or more other properties of M1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X9.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL

Purpose: To verify that objects go to the NORMAL state after leaving the FAULT state, then transition to OFFNORMAL if

the condition still exists.

Test Concept: Select a fault detecting object O1 which is able to detect OFFNORMAL conditions. Make O1 transition to an

OFFNORMAL state and then transition to FAULT. Remove the condition causing the FAULT and verify O1 transitions

from FAULT to NORMAL, then verify that the object transitions from NORMAL to the original OFFNORMAL state.

Test Configuration: O1 is configured to detect and report unconfirmed events and faults. O1 is configured to have no fault

conditions present, and Event_State is OFFNORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(O1transition to an off normal state)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = (ET1, any valid off normal event type),

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = OFFNORMAL,

‘ 'Event Val’es' = (property-values appropriate for O1)

5. VERIFY Event_State = OFFNORMAL

6. MAKE(O1 enter a fault state)

BACnet Testing Laboratories - Specified Tests

 132

7. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = OFFNORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = ((R1 any valid BACnetReliability),

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

8. MAKE(O1 clear the fault condition)

9. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

10. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = ET1,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = OFFNORMAL,

‘ 'Event Val’es' = (property-values appropriate for O1)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

12. VERIFY Event_State = OFFNORMAL

BACnet Testing Laboratories - Specified Tests

 133

8.5.X9.11 CHANGE_OF_RELIABILITY with First Stage Object Fault

Purpose: To verify that fault conditions due to first stage faults are detected and reported.

Test Concept: An object in the IUT, O1, which can detect at least one first stage fault is selected. One of O1’s detectable

first stage faults, R1, is selected for the test. O1 begins the test in the NORMAL state with pCurrentReliability equal to

NO_FAULT_DETECTED. The first stage fault condition, R1, is made to exist and it is verified that the pCurrentReliability

changes to R1. It is verified that O1 generates the appropriate event notification. The fault condition is removed, and it is

verified that the pCurrentReliability returns to NO_FAULT_DETECTED and the appropriate event notification message is

generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is

initially configured to have no fault conditions present, and Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (pCurrentReliability = R1)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = FAULT,

‘ 'Event Val’es' = (R1,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

7. MAKE (pCurrentReliability = NO_FAULT_DETECTED)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any valid process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (the current local time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for O1),

‘ 'Prior’ty' = (the value configured for the transition),

‘ 'Event T’pe' = CHANGE_OF_RELIABILITY,

‘ 'Message T’xt' = (optional, any valid message text),

‘ 'Notify T’pe' = EVENT | ALARM,

‘ 'AckRequi’ed' = TRUE | FALSE,

‘ 'From St’te' = FAULT,

BACnet Testing Laboratories - Specified Tests

 134

‘ 'To St’te' = NORMAL,

‘ 'Event Val’es' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.11 SubscribeCOVProperty Service Initiation Tests

8.11.1 Confirmed Notifications Subscription

Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for confirmed notifications to any

valid object, X.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

40. 2. RECEIVE SubscribeCOVProperty-Request‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any valid object identifier)X‘ 'Issue Confirmed

Notificati’ns' = TRUE,‘ 'Lifet’me' = (any non-zero value)L,‘ 'Monitored Property

Identif’er' = (any valid property identifier)(the property Y to be monitored),‘ 'COV Increm’nt' =

 (any valid valueany REAL val– -- optiona3. TRANSMIT BACnet-SimpleACK-PDU

8.11.2 Unconfirmed Notifications Subscription

Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for unconfirmed notifications to any

valid object, X.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

41. 2. RECEIVE SubscribeCOVProperty-Request‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any valid object identifier)X‘ 'Issue Confirmed

Notificati’ns' = FALSE,‘ 'Lifet’me' = (any non-zero value)L,‘ 'Monitored

Property Identif’er' = (any valid property identifier)(the property Y to be monitored),‘ 'COV Increm’nt' =

 (any valid valudAany REAL val– -- optiona3. TRANSMIT BACnet-SimpleACK-PDU

8.11.3 Canceling a Subscription

Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request to cancel a subscription to any valid

object, X.

BACnet Testing Laboratories - Specified Tests

 135

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

42. 2. RECEIVE SubscribeCOVProperty-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any valid object identifier)X‘ 'Monitored Property Identif’er' =

 (any valid property identifier)(the property Y to be monitored),‘ 'COV Increm’nt' = (any valid

valueany REAL val– -- optiona3. TRANSMIT BACnet-SimpleACK-PDU

8.11.X1 Change of Value Notification Tests

8.11.X1.1 Change of Value Notification

Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that the IUT can execute COVNotification requests from object types that provides a Property and

Status_Flags properties in COV notifications.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request‘ 'Subscriber Process Identif’er' = (any valid process identifier),‘

 'Monitored Object Identif’er' = X‘ 'Issue Confirmed Notificati’ns' = TRUE | FALSE,‘ 'Lifet’me' =

 L,‘ 'Monitored Property Identif’er' = (the property Y to be monitored),‘ 'COV

Increm’nt' = (Any REAL val– -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

4. BEFORE Notification Fail Time

 IF (the subscription was for confirmed notifications) THEN

 TRANSMIT ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the process identifier used in step 1),

‘ 'Initiating Device Identif’er' = TD,

‘ 'Monitored Object Identif’er' = X

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (values appropriate to the property Y subscribed to, and any other

 properties the IUT provides with it, such as Status_Flags)

 RECEIVE BACnet-SimpleACK-PDU

 ELSE

 TRANSMIT UnconfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the process identifier used in step 1),

‘ 'Initiating Device Identif’er' = TD,

‘ 'Monitored Object Identif’er' = X

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

‘ 'List of Val’es' = (values appropriate to the property Y subscribed to, and any other

 properties the IUT provides with it, such as Status_Flags)

5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying information on

a workstation screen are carried out)

8.11.X1.2 Change of Value Notifications with Invalid Process Identifier

Reason for Change: Added new test to support DS-COVP-A testing.

BACnet Testing Laboratories - Specified Tests

 136

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that

does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request‘ 'Subscriber Process Identif’er' = (any valid process identifier),‘

 'Monitored Object Identif’er' = X‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L,‘

 'Monitored Property Identif’er' = (the property Y to be monitored),‘ 'COV Increm’nt' = (Any REAL

val– -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

4. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (a process identifier

different from the one used in step 1),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er'

= X‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘ 'List of Val’es' =

 (values appropriate to the property Y subscribed to, and any other

43. properties the IUT provides with it, such as Status_Flags5. IF (Protocol_Revision is present and

Protocol_Revision 10) THEN

 RECEIVE

 BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (UNKNOWN_SUBSCRIPTION) |

 (BACnet-SimpleACK-PDU)

 ELSE

 RECEIVE

 BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (any valid error code for class SERVICES) |

 (BACnet-SimpleACK-PDU)

8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired

Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has

expired.

Test Concept: A subscription for COV notifications is established and then cancelled or allowed to expire. A

ConfirmedCOVNotification is then sent to the IUT to verify it returns the appropriate error or a Somple-Ack.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request‘ 'Subscriber Process Identif’er' = (any valid process identifier),‘

 'Monitored Object Identif’er' = X‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L,‘

 'Monitored Property Identif’er' = (the property Y to be monitored),‘ 'COV Increm’nt' = (Any REAL

val– -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

4. BEFORE Notification Fail Time

 TRANSMIT ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = (the process identifier used in step 1),

‘ 'Initiating Device Identif’er' = TD,

‘ 'Monitored Object Identif’er' = X

‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),

BACnet Testing Laboratories - Specified Tests

 137

‘ 'List of Val’es' = (values appropriate to the property Y subscribed to, and any other

 properties the IUT provides with it, such as Status_Flags)

44. RECEIVE BACnet-SimpleACK-PD5. IF (the IUT can cancel the subscription)

 RECEIVE SubscribeCOVProperty – Request,

‘ 'Subscriber Process Identif’er' = (the process identifier used in step 1),

‘ 'Monitored Object Identif’er' = X

‘ 'Monitored Property Identif’er' = Y

‘ 'COV Increm’nt' = (Any REAL value –optional)

 ELSE

 WAIT (a value two times Lifetime)

6. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the process identifier

used in step 1),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er'

= X‘ 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘ 'List of Val’es' =

 (values appropriate to the property Y subscribed to, and any other

 properties the IUT provides with it, such as Status_Flags)

7. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 RECEIVE

 BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (UNKNOWN_SUBSCRIPTION) |

 (BACnet-SimpleACK-PDU)

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (any valid error code for class SERVICES) |

 (BACnet-SimpleACK-PDU)

BACnet Testing Laboratories - Specified Tests

 138

8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier

Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object

identifier that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request‘ 'Subscriber Process Identif’er' = (any valid process identifier),‘

 'Monitored Object Identif’er' = X‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L,‘

 'Monitored Property Identif’er' = (the property Y to be monitored),‘ 'COV Increm’nt' = (Any REAL

val– -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

45. 4. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the process

identifier used in step 1),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er' = (any object

Y supporting COV notification except X),‘ 'Time Remain’ng' = (any value appropriate for the Lifetime

selected),‘ 'List of Val’es' = (any valu5. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 RECEIVE

 BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (UNKNOWN_SUBSCRIPTION) |

 (BACnet-SimpleACK-PDU)

 ELSE

 RECEIVE

 BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (any valid error code for class SERVICES) |

 (BACnet-SimpleACK-PDU)

8.11.X1.5 Change of Value Notifications with Invalid Monitored property

Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object

identifier that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request‘ 'Subscriber Process Identif’er' = (any valid process identifier),‘

 'Monitored Object Identif’er' = X‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = L,‘

 'Monitored Property Identif’er' = (the property Y to be monitored),‘ 'COV Increm’nt' = (Any REAL

val– -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

46. 4. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the process

identifier used in step 1),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er' = X‘

BACnet Testing Laboratories - Specified Tests

 139

 'Time Remain’ng' = (any value appropriate for the Lifetime selected),‘ 'List of Val’es' = (any property

supporting COV notification except Y5. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 RECEIVE

 BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (UNKNOWN_SUBSCRIPTION) |

 (BACnet-SimpleACK-PDU)

 ELSE

 RECEIVE

 BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (any valid error code for class SERVICES) |

 (BACnet-SimpleACK-PDU)

8.11.X4 Requests 8 Hour Lifetimes

Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that the IUT correctly generates subscription requests with lifetimes less than or equal to 8 hours. Either

confirmed or unconfirmed notifications may be used, but at least one of these options shall be supported by the IUT.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = X‘ 'Issue Confirmed Notificati’ns' = TRUE | FALSE,‘

 'Lifet’me' = (any valid lifetime between 1 and 28800),‘ 'Monitored Property Identif’er' = (the

property Y to be monitored),‘ 'COV Increm’nt' = (Any REAL val– -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 140

8.20 ReadPropertyMultiple Service Initiation Tests

8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails

The tests defined in this clause are used to verify that an IUT which intiates ReadPropertyMultiple is able to obtain external

property values via the ReadProperty service when interoperating with a device that does not support the

ReadPropertyMultiple service.

8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service

Reason for Change: Modified test to allow multiple objects in addition to single objects.

Purpose: Verifies the ’UT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty

when the IUT determines the TD does not support the ReadPropertyMultiple service.

Test Concept: The IUT is configured in a manner that would normally cause it to access one or more properties in the TD

via the ReadPropertyMultiple service. Prior to sending a ReadPropertyMultiple request, however, the IUT determines that

the TD does not support the ReadPropertyMultiple service. The IUT instead attempts to access the’TD's property values via

the ReadProperty service (it is assumed that the IUT will make this determination by reading the’TD's

Protocol_Services_Supported property, but this test specifically does not attempt to verify this behavior).

Configuration Requirements: The TD is configured so that it does not support the ReadPropertyMultiple service. The IUT

is configured such that it is capable of accessing one or more properties of a single or multiple objects in the TD via the

ReadProperty and ReadPropertyMultiple services. If the IUT cannot be configured in this way, then this test shall be

omitted.

47. Test Steps1. MAKE (a condition in the IUT that would normally cause it to send a ReadPropertyMultiple request to

the TD to

48. access one or more propertyies values of a single object2. WAIT (a time interval specified by the vendor

as sufficient for the IUT to determine that the TD does not support the

49. ReadPropertyMultiple servic3. REPEAT X = (the properties that the IUT is to read) DO {

 RECEIVE ReadProperty-Request,

‘ 'Object Identif’er' = (object identifier referenced by X),

‘ 'Property Identif’er' = (property identifier referenced by X)

 TRANSMIT ReadProperty-Ack,

‘ 'Object Identif’er' = (object identifier referenced by X),

‘ 'Property Identif’er' = (property identifier referenced by X),

‘ 'Property Va’ue' = (any valid value)

8.21 ReadRange Service Initiation Tests

8.21.1 Reading Values with no Specified Range

Reason for change: 135-2008u-3.

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that does not specify any range of values

to be returned.

Test Steps1. RECEIVE ReadRange-Request,‘ 'Object Identif’er' = (O, any Trend Log object),‘ 'Property

Identif’er' = Log_Buffer(P, any list property the IUT can rea2. TRANSMIT ReadRange-ACK‘ 'Object Identif’er' =

 O,‘ 'Property Identif’er' = P,

 ‘Result Flags’ = (TRUE, (bLast), (NOT bLast)),

 ‘Item Count’ = (C: any valid value)

 ‘Item Data’ = (C valid records for the requested property)

3. CHECK(that the IUT performs the vendor specified action)

BACnet Testing Laboratories - Specified Tests

 141

8.21.3 Reading a Range of Values by Position

Reason for change: 135-2008u-3.

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that specifies the range of values to be

returned by position.

Test Steps1. RECEIVE ReadRange-Request,‘ 'Object Identif’er' = (O, any Trend Log object),‘ 'Property

Identif’er' = Log_Buffer(P, any list property),‘ 'Reference In’ex' = (any Unsigned value),‘ 'Co’nt' = (C1,

any INTEGER valu2. TRANSMIT ReadRange-ACK‘ 'Object Identif’er' = O,‘ 'Property Identif’er' = P,

 ‘Result Flags’ = ((TRUE if the first was requested, FALSE otherwise), ?, ?),

 ‘Item Count’ = (C2: any valid value <= |C|)

 ‘Item Data’ = (C2 valid records for the requested property)

3. CHECK(that the IUT performs the vendor specified action)

8.21.9 Presents Log Records Containing a Specific Datatype

Reason for Change: Modified the name of the test and improved the wording of the Purpose.

Purpose: To verify that the IUT can initiate one or more ReadRange requests that access and present a tester-specified

portion of log records having a specific datatype, using any valid range. It is a generic test used to test data presentation

requirements.

Test Concept: Run test in Clause 135.1-20–3 - 8.21.8X3 and verify that the data presentation meets the criteria specified by

the BIBB being tested.

Note to Tester: The values presented by the IUT may differ from the values transmitted on the wire due to rounding,

truncation, formatting, language, conversion, etc.

Note to Tester: The IUT is not required to display records containing log-status values.

8.22 WriteProperty Service Initiation Tests

8.22.X4 Writing Array Properties as a Whole Array

Reason for Change: No test exists for this functionality. This test is not included in any SSPC proposal.

Purpose: This test verifies that the IUT is writing the entire array to the TD without the use of the array index.

Configuration Requirements: For this test, the tester shall choose a property, P1, from an object, O1. The TD shall be

configured to not support execution of WritePropertyMultiple.

The WriteProperty request initiated by IUT shall contain array of elements in P1, which shall fit in the APDU and segment

limitations of the IUT.

Test Steps:

1. MAKE (the IUT accept a new value for P1 including all elements of the array from the user)

50. 2. RECEIVE WriteProperty-Request,‘ 'Object Identif’er' = O1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (the value provided to the IUT for P3. TRANSMIT BACnet-SimpleACK-PDU

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding,

truncation, formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that the TD does not support execution of WritePropertyMultiple,

the IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall pass the test only if it automatically falls back to

BACnet Testing Laboratories - Specified Tests

 142

using WriteProperty upon receipt of the correct BACnetReject-PDU from the TD, indicating that WritePropertyMultiple is

not supported.

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in

the range 1-16, excluding 6.

8.24 DeviceCommunicationControl Service Initiation Tests

8.24.1 Indefinite Duration, Disable, No Password

Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication

should cease for an indefinite time duration and do not convey a password.

51. Test Steps1. RECEIVE DeviceCommunicationControl-Request,‘ 'Enable/Disa’le' = DISABL2. TRANSMIT

BACnet-SimpleACK-PDU

8.24.2 Indefinite Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the

requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication

should cease for an indefinite time duration and convey a password.

52. Test Steps1. RECEIVE DeviceCommunicationControl-Request,‘ 'Enable/Disa’le' = DISABLE,‘ 'Passw’rd'

= (a password of at least 5 characters) (a password of up to 20 character2. TRANSMIT BACnet-SimpleACK-PDU

8.24.3 Time Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the

requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication

should cease for a specific time duration and convey a password.

53. Test Steps1. RECEIVE DeviceCommunicationControl-Request,‘ 'Time Durat’on' = (any unsigned value > 0), ‘

 'Enable/Disa’le' = DISABLE,‘ 'Passw’rd' = (a password of at least 5 characters) (a password of up to 20

character2. TRANSMIT BACnet-SimpleACK-PDU

8.24.4 Enable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the

requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication

should resume and convey a password.

54. Test Steps1. RECEIVE DeviceCommunicationControl-Request,‘ 'Enable/Disa’le' = ENABLE,‘ 'Passw’rd'

= (a password of at least 5 characters) (a password of up to 20 character2. TRANSMIT BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 143

8.24.5 Enable, No Password

Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication

should resume and do not convey a password.

Test Steps1. RECEIVE DeviceCommunicationControl-Request,‘ 'Enable/Disa’le' = ENABLE,

2. TRANSMIT BACnet-SimpleACK-PDU

8.24.6 Time Duration, Disable, No Password

Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication

should cease for a specific time duration and do not convey a password. If the IUT does not support the “no password”

option, this test shall not be performed.

55. Test Steps1. RECEIVE DeviceCommunicationControl-Request,‘ 'Time Durat’on' = (any unsigned value > 0), ‘

 'Enable/Disa’le' = DISAB2. TRANSMIT BACnet-SimpleACK-PDU

8.24.7 Time Duration, Disable-Initiation, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the

requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication

should cease for a specific time duration and that convey a password.

56. Test Steps1. RECEIVE DeviceCommunicationControl-Request,‘ 'Time Durat’on' = (any unsigned value in the

range from 1 to 65535), ‘ 'Enable/Disa’le' = DISABLE‘ 'Passw’rd' = (a password of up to 20 character2.

 TRANSMIT BACnet-SimpleACK-PDU

8.27 ReinitializeDevice Service Initiation Tests

8.27.2 COLDSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the

requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a COLDSTART should be

performed and convey a password.

57. Test Steps1. RECEIVE ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = COLDSTART,‘

 'Passw’rd' =(a password of at least 5 characters) (a password of up to 20 character2. TRANSMIT BACnet-

SimpleACK-PDU

8.27.4 WARMSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the

requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a WARMSTART should be

performed and convey a password.

BACnet Testing Laboratories - Specified Tests

 144

58. Test Steps1. RECEIVE ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = WARMSTART,‘

 'Passw’rd' =(a password of at least 5 characters) (a password of up to 20 character2. TRANSMIT BACnet-

SimpleACK-PDU

8.32 Who-Has Service Initiation Tests

8.32.1 Object Identifier Selection with no Device Instance Range

Reason for Change: The BACnet standard (per addendum 135-2012ar-5) now allows the IUT to send and receive a unicast

response for IUT’s claiming Protocol Revision equal or greater than 15.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object identifier form with no device

instance range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

59. Test Step1. RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = IUT,

60. Who-Has-Request,‘ 'Object Identif’er' = Object1 (any object identifie2. IF (Protocol_Revision is present

and Protocol_Revision >= 15) THEN

 TRANSMIT

 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

‘ 'Object Identifier’ = Object1

 ELSE

 TRANSMIT

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

‘ 'Object Identif’er' = Object1

3 CHECK (for any vendor-defined observable actions)

Notes to Tester: If there is no vendor-defined observable action, then test step 3 can be skipped.

8.32.2 Object Name Selection with no Device Instance Range

Reason for Change: The BACnet standard (per addendum 135-2012ar-5) now allows the IUT to send and receive a unicast

response for IUT’s claiming Protocol Revision equal or greater than 15.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object name form with no device instance

range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

61. Test Step1. RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,

 SOURCE = IUT,

62. Who-Has-Request,‘ 'Object N’me' = V1 (any CharacterStrin2. IF (Protocol_Revision is present and

Protocol_Revision >= 15) THEN

 TRANSMIT

 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

‘ 'Object N’me' = V1

BACnet Testing Laboratories - Specified Tests

 145

 ELSE

 TRANSMIT

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

63. ‘ 'Object N’me' = 3. CHECK (for any vendor-defined observable actions)

Notes to Tester: If there is no vendor-defined observable action, then test step 3 can be skipped.

8.32.3 Object Identifier Selection with a Device Instance Range

Reason for Change: The allowed device instance range is from–0 - 4194303 and is specified in sections 16.9.1.1.1 and

16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object identifier form with a device

instance range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

64. Test Step1. RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,

 SOURCE = IUT,

65. Who-Has-Request,‘ 'Device Instance Range Low Li’it' = (any integer X: 10 <= X ‘= 'Device Instance Range

High Li’it'),‘ 'Device Instance Range High Li’it' = (any integer ‘: 'Device Instance Range Low Li’it' <= Y <=

4,194,303),‘ 'Object Identif’er' = Object1 (any object identifie2. IF (Protocol_Revision is present and

Protocol_Revision >= 15) THEN

 TRANSMIT

 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

‘ 'Object Identif’er' = Object1

 ELSE

 TRANSMIT

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

66. ‘ 'Object Identif’er' = Objec3. CHECK (for any vendor-defined observable actions)

Notes to Tester: Device instance range should be selected to cover TD’s device object identifier. If there is no vendor-

defined observable action, then test step 3 can be skipped.

8.32.4 Object Name Selection with a Device Instance Range

Reason for Change: The allowed device instance range is from–0 - 4194303 and is specified in sections 16.9.1.1.1 and

16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object name form with a device instance

range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

67. Test Step1. RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,

 SOURCE = IUT,

BACnet Testing Laboratories - Specified Tests

 146

68. Who-Has-Request,‘ 'Device Instance Range Low Li’it' = (any integer X: 10 <= X ‘= 'Device Instance Range

High Li’it'),‘ 'Device Instance Range High Li’it' = (any integer ‘: 'Device Instance Range Low Li’it' <= Y <=

4,194,303),‘ 'Object N’me' = V1 (any CharacterStrin2. IF (Protocol_Revision is present and Protocol_Revision

>= 15) THEN

 TRANSMIT

 DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

‘ 'Object N’me' = V1

 ELSE

 TRANSMIT

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST

 SOURCE = TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the TD’s Device object)

69. ‘ 'Object N’me' = 3. CHECK (for any vendor-defined observable actions)

Notes to Tester: Device instance range should be selected to cover TD’s device object identifier. If there is no vendor-

defined observable action, then test step 3 can be skipped.

8.34 Who-Is Service Initiation Tests

8.34.2 Who-Is Request with a Device Instance Range

Reason for Change: The allowed device instance range is from–0 - 4194303 and is specified in sections 16.9.1.1.1 and

16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1.

Purpose: To verify that the IUT can initiate Who-Is service requests with a device instance range. If the IUT cannot be

caused to issue a Who-Is request of this form, then this test shall be omitted.

70. Test Step1. RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,

 SOURCE = IUT,

 Who-Is-Request,‘ 'Device Instance Range Low Li’it' = (any integer X: 10 <= X ‘= 'Device Instance Range

High Li’it'),‘ 'Device Instance Range High Li’it' = (any integer ‘: 'Device Instance Range Low Li’it' <= Y <=

4,194,303)

9. APPLICATION SERVICE EXECUTION TESTS

The test cases defined in this clause shall be used to verify that a BACnet device correctly implements the service

procedure for the specified application service. BACnet devices shall be tested for the proper execution of each application

service for which the PICS indicates execution is supported.

For each application service included in this clause several test cases are defined that collectively test the various options

and features defined for the service in the BACnet standard. A test case is a sequence of one or more messages that are

exchanged between the implementation under test (IUT) and the testing device (TD) in order to determine if a particular

option or feature is correctly implemented. Multiple test cases that have a similar or related purpose are collected into test

groups.

Under some circumstances an IUT may be unable to demonstrate conformance to a particular test case because the test

applies to a feature that requires a particular BACnet object or optional property that is not supported in the IUT. For

example, a device may support the File Access services but restrict files to stream access only. Such a device would have

no way to demonstrate that it could implement the record access features of the File Access services. When this type of

BACnet Testing Laboratories - Specified Tests

 147

situation occurs the IUT shall be considered to be in conformance with BACnet provided the PICS documentation clearly

indicates the restriction. Failure to document the restriction shall constitu on-conformancence to the BACnet standard. All

features and optional parameters for BACnet application services shall be supported unless a conflict arises because of

unsupported objects or unsupported optional properties.

For each application service the tests are divided into two types, positive tests and negative tests. The positive tests verify

that the IUT can correctly handle cases where the service is expected to be successfully completed. The negative tests

verify correct handling for various error cases that may occur. Negative tests include inappropriate service parameters but

they do not include cases with encoding errors or otherwise malformed PDUs. Tests to ensure that the IUT can handle

malformed PDUs are defined in 13.4.

Many test cases allow flexibility in the value to be used in a service parameter. The tester is free to choose any value within

the constraints defined in the test case. The IUT shall be able to respond correctly to any valid selection the tester might

make. The EPICS is considered to be a definitive reference indicating the BACnet functionality supported and the

configuration of the object database. Any discrepancies between the BACnet functionality or the value of properties in the

object database as defined in the EPICS, and the values returned in messages defined for a test case constitutes a failure of

the test. For example, if a test step involved reading a property of an object in the database the returned value must match

the value provided in the EPICS. Defined in the EPICS and the functionality demonstrated by the device during testing

shall constitute a failure. For example, it is considered a failure if a test step involves writing to a property and the EPICS

indicates the property is writable but the device returns an error indicati‘g 'write access den’ed'.

9.1 AcknowledgeAlarm Service Execution Tests

9.1.1 Positive AcknowledgeAlarm Service Execution Tests

9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of t‘e 'Time of

Acknowledgm’nt' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status. The Time form of t‘e 'Time of

Acknowledgm’nt' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device all other recipients in

the Recipient_List. The TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT.

The IUT notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have been

acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be recipients of

the alarm notification.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)

2. WAIT (Time_Delay)

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

BACnet Testing Laboratories - Specified Tests

 148

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for this event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate non-normal event state),

‘ 'Event Val’es' = (the values appropriate to the event type)

4. TRANSMIT BACnet-SimpleACK-PDU

5. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,‘ 'Process Identif’er' = (the process identifier configured for this

event),‘ 'Initiating Device Identif’er' = IUT,‘ 'Event Object Identif’er' = (the object detecting the alarm),‘

 'Time St’mp' = (the timestamp or sequence number received in step 3),‘

 'Notification Cl’ss' = (the notification class configured for this event),‘ 'Prior’ty' =

 (the priority configured for this event),‘ 'Event T’pe' = (any valid event type),‘ 'Notify T’pe' =

 (the notify type configured for this event),‘ 'AckRequi’ed' = TRUE,‘ 'From St’te' = NORMAL,‘

 'To St’te' = (any appropriate non-normal event state),‘ 'Event Val’es' = (the

values appropriate to the event type)

6. TRANSMIT BACnet-SimpleACK-PDU

7. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (FALSE, TRUE, TRUE)

8. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event

 notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object

Identif’er' from the event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Time of Acknowledgm’nt' = (the TD’s current time using a Time format)

9. RECEIVE BACnet-Simple-ACK-PDU

10. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event),

 ‘ 'Event T’pe' = (the event type included in step 3),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

 ELSE

 BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event),

 ‘ 'Event T’pe' = (the event type included in step 3),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

11. TRANSMIT BACnet-SimpleACK-PDU

12. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 BEFORE Notification Fail Time

 RECEIVE

 DESTINATION = (at least one device other than the TD),

BACnet Testing Laboratories - Specified Tests

 149

 SOURCE = IUT,

 ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the timestamp or sequence number received in step 10),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event),

 ‘ 'Event T’pe' = (the event type included in step 3),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

 ELSE

 BEFORE Notification Fail Time

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the timestamp or sequence number received in step 10),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event),

 ‘ 'Event T’pe' = (the event type included in step 3),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION

13. TRANSMIT BACnet-SimpleACK-PDU

14. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 12 shall be the same address used

in step 5. Inclusion of t‘e 'To St’te' parameter in acknowledgement notifications was added in protocol version 1, protocol

revision 1. Implementations that precede this version will not include this parameter. When multiple event notifications are

expected for a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with

one recipient in the Recipient_List property of the issuing Notification_class object, skip all steps related to receipt of the

second notification.

9.1.1.2 Successful Alarm Acknowledgment of Confirmed Event Notifications using the Sequence Number Form of

t‘e 'Time of Acknowledgm’nt' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status. The Sequence Number form of t‘e 'Time of

Acknowledgm’nt' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device one other device. The

TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other

recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have been

acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be recipients of

the alarm notification.

Test Steps: The test steps defined in 9.1.1.1 shall be followed except that t‘e 'Time of Acknowledgm’nt' parameter of the

AcknowledgeAlarm service request shall be a sequence number.

BACnet Testing Laboratories - Specified Tests

 150

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.1. If the IUT can

only be configured with one recipient in the Recipient_List property of the issuing Notification_Class object, skip all steps

related to receipt of the second notification.

9.1.1.3 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Date Time Form of t‘e

'Time of Acknowledgm’nt' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status. The Date Time form of t‘e 'Time of

Acknowledgm’nt' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device one other device. The

TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other

recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have been

acknowledged. The TD and at least one other BACnet if the IUT supports multiple recipients device shall be recipients of

the alarm notification.

Test Steps: The test steps defined in 9.1.1.1 shall be followed except that t‘e 'Time of Acknowledgm’nt' parameter of the

AcknowledgeAlarm service request shall convey the current time using a BACnetDateTime format.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.1. If the IUT can

only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, skip all steps

related to receipt of the second notification.

9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of t‘e 'Time

of Acknowledgm’nt' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status. The Time form of t‘e 'Time of

Acknowledgm’nt' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other

recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

unconfirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have

been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be

recipients of the alarm notification.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)

2. WAIT (Time_Delay)

3. BEFORE Notification Fail Time

BACnet Testing Laboratories - Specified Tests

 151

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event type),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for this event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate non-normal event state),

71. ‘ 'Event Val’es' = (the values appropriate to the event typ4. IF (the

notification in step 3 was not a broadcast) THEN

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the timestamp or sequence number received in step 3),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event type),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for this event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate non-normal event state),

‘ 'Event Val’es' = (the values appropriate to the event type)

5. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)

6. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Time of Acknowledgm’nt' = (the TD’s current time using a Time format)

7. RECEIVE BACnet-Simple-ACK-PDU

8. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 BEFORE Notification Fail Time

 RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3 or 4)

 ELSE

 BEFORE Notification Fail Time

 RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

BACnet Testing Laboratories - Specified Tests

 152

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION

9. IF (the notification in step 8 was not broadcast) THEN

 IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the timestamp or sequence number from the notification in step 8),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3 or 4)

 ELSE

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the timestamp or sequence number from the notification in step 8),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

10. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 8 shall be the same address used

in step 3. The destination address used for the acknowledgment notification in step 9 shall be the same address used in step

4. Inclusion of t‘e 'To St’te' parameter in acknowledgement notifications was added in protocol version 1, protocol revision

1. Implementations that precede this version will not include this parameter. When multiple event notifications are expected

for a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with one

recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4 and 9.

9.1.1.5 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Sequence Number Form

of t‘e 'Time of Acknowledgm’nt' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

BACnet Testing Laboratories - Specified Tests

 153

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status. The Sequence Number form of t‘e 'Time of

Acknowledgm’nt' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other

recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

unconfirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have

been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be

recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.4 shall be followed except that t‘e 'Time of Acknowledgm’nt' parameter of the

AcknowledgeAlarm service request shall be a sequence number.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.4. If the IUT can

only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4

and 9.

9.1.1.6 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Date Time Form of t‘e

'Time of Acknowledgm’nt' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status. The Date Time form of t‘e 'Time of

Acknowledgm’nt' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other

recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

unconfirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have

been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be

recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.4 shall be followed except that t‘e 'Time of Acknowledgm’nt' parameter of the

AcknowledgeAlarm service request shall convey the current time using a BACnetDateTime format.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.4. If the IUT can

only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4

and 9.

9.1.1.8 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unkno‘n 'Acknowledging

Process Identif’er' Parameter

Reason for Change: Add‘d 'Notes to Tes’er' to clarify what to do if the TD only supports one recipient. Modifi‘d

'Configuration Requireme’ts' to allow for only one recipient.

BACnet Testing Laboratories - Specified Tests

 154

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, when the

acknowledgement contains a mismatched or unmatch‘d 'Acknowledging Process Identif’er' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm with a mismatch‘d 'Acknowledging Process Identif’er' (the Process Identifier associated with

another recipient), or an unkno‘n 'Acknowledging Process Identif’er' (a Process Identifier not associated with any

recipient), and verifies that the acknowledgment is properly noted by the IUT. This test should be performed twice, once

with a mismatched Process Identifier and once with an unknown Process Identifier.

Configuration Requirements: The IUT shall be configured with at least one object, Object1, that can detect alarm conditions

and send confirmed notifications. The Acked_Transitions property shall have the value (TRUE,TRUE,TRUE), indicating

that all transitions have been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple

recipients shall be recipients of the alarm notification, and shall use different Process Identifiers.

This test is recommended for all BACnet devices that execute AcknowledgeAlarm but is required only for those that claim

conformance to Protocol_Revision 5 or greater.

Test Steps:

1. VERIFY (Object1), Acked_Transitions = (TRUE,TRUE,TRUE)

2. MAKE (a change that triggers the detection of an alarm event in the IUT)

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any Process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = Object1,

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the Notification Class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = ALARM or EVENT,

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = (any appropriate event state),

‘ 'To St’te' = (any appropriate event state),

‘ 'Event Val’es' = (values appropriate to the event type)

4. TRANSMIT BACnet-SimpleACK-PDU

5. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,‘ 'Process Identif’er' = (any Process ID),‘ 'Initiating

Device Identif’er' = IUT,‘ 'Event Object Identif’er' = Object1,‘

 'Time St’mp' = (the current time or sequence number),‘ 'Notification Cl’ss' =

 (the notification class configured for this event),‘ 'Prior’ty' = (the priority configured for this

event),‘ 'Event T’pe' = (any valid event type),‘ 'Notify T’pe' = ALARM |

EVENT,‘ 'AckRequi’ed' = TRUE,‘ 'From St’te' = (any

appropriate event state),‘ 'To St’te' = (any appropriate event state),‘ 'Event Val’es' =

 (values appropriate to the event type)

6. TRANSMIT

 DESTINATION = IUT,

 SOURCE = (DESTINATION in step 5),

 BACnet-SimpleACK-PDU

7. VERIFY (Object1), Acked_Transitions = (one bit FALSE, the others TRUE)

8. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (Any mismatched or

unknown value),‘ 'Event Object Identif’er' = Object1,‘ 'Event State

Acknowled’ed' = (the state specified in t‘e 'To St’te' parameter of the notification),‘

 'Time St’mp' = (the timestamp conveyed in the notification),‘ 'Time of

Acknowledgm’nt' = (the current timestamp)

9. RECEIVE BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 155

10. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any Process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = Object1,

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the Notification Class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (any appropriate event state)

11. TRANSMIT BACnet-SimpleACK-PDU

12. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,‘ 'Process Identif’er' = (any Process ID),‘ 'Initiating

Device Identif’er' = IUT,‘ 'Event Object Identif’er' = Object1,‘

 'Time St’mp' = (the current time or sequence number),‘ 'Notification Cl’ss' =

 (the notification class configured for this event),‘ 'Prior’ty' = (the priority configured for this

event),‘ 'Event T’pe' = (any valid event type),‘ 'Notify T’pe' =

 ACK_NOTIFICATION,‘ 'To St’te' = (any appropriate event state)

13. TRANSMIT

 DESTINATION = IUT,

 SOURCE = (DESTINATION in step 5),

 BACnet-SimpleACK-PDU

14. VERIFY (Object1), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The ConfirmedEventNotification-Request messages can be received in either order. If the IUT can only be

configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit steps 5 and 6.

9.1.1.9 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an Unkno‘n 'Acknowledging

Process Identif’er' Parameter

Reason for Change: Add‘d 'Notes to Tes’er' to handle cases with only one recipient. Updat‘d 'Test Conc’pt' to handle

cases with only one recipient.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, when the

acknowledgement contains a mismatched or unmatch‘d 'Acknowledging Process Identif’er' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm with a mismatch‘d 'Acknowledging Process Identif’er' (the Process Identifier associated with

another recipient), or unknown (a Process Identifier not associated with any recipient), and verifies that the

acknowledgment is properly noted by the IUT. This test should be performed twice, once with a mismatched Process

Identifier and once with an unknown Process Identifier.

Configuration Requirements: The IUT shall be configured with at least one object, Object1, that can detect alarm conditions

and send unconfirmed notifications. The Acked_Transitions property shall have the value (TRUE,TRUE,TRUE), indicating

that all transitions have been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple

recipients shall be recipients of the alarm notification, configured to receive different Process Identifiers.

This test is recommended for all BACnet devices that execute AcknowledgeAlarm but is required only for those that claim

conformance to Protocol_Revision 5 or greater.

Test Steps:

1. VERIFY (Object1), Acked_Transitions = (TRUE,TRUE,TRUE)

2. MAKE (a change that triggers the detection of an alarm event in the IUT)

BACnet Testing Laboratories - Specified Tests

 156

3. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any Process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = Object1,

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the Notification Class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = ALARM or EVENT,

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = (any appropriate event state),

‘ 'To St’te' = (any appropriate event state),

72. ‘ 'Event Val’es' = (values appropriate to the event typ4. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,‘ 'Process Identif’er' = (any Process ID),‘

 'Initiating Device Identif’er' = IUT,‘ 'Event Object Identif’er' = (the object detecting

the alarm),‘ 'Time St’mp' = (the current time or sequence number),‘

 'Notification Cl’ss' = (the notification class configured for this event),‘ 'Prior’ty' =

 (the priority configured for this event),‘ 'Event T’pe' = (any valid event type),‘ 'Notify

T’pe' = ALARM | EVENT,‘ 'AckRequi’ed' = TRUE,‘ 'From St’te' =

 (any appropriate event state),‘ 'To St’te' = (any appropriate event state),‘ 'Event

Val’es' = (values appropriate to the event type)

5. VERIFY (Object1), Acked_Transitions = (one bit FALSE, the others TRUE)

6. TRANSMIT AcknowledgeAlarm-Request,

 ‘ 'Acknowledging Process Identif’er' = (Any mismatched or unknown value),

 ‘ 'Event Object Identif’er' = Object1,

 ‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te' parameter of the notification),

 ‘ 'Time St’mp' = (the timestamp conveyed in the notification),

 ‘ 'Time of Acknowledgm’nt' = (the current timestamp)

7. RECEIVE BACnet-SimpleACK-PDU

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any Process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = Object1,

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the Notification Class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (any appropriate event state)

9. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (any Process ID),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = Object1,

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (any appropriate event state)

BACnet Testing Laboratories - Specified Tests

 157

10. VERIFY (Object1), Acked_Transitions = (TRUE,TRUE,TRUE)

Note to Tester: The UnconfirmedEventNotification-Request messages can be received in either order. If the IUT can only

be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit step 4.

9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful re-acknowledgment of an event signaled by a ConfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status.

Test Concept: An event is triggered and, after the specified Time_Delay of the event-generating object, the IUT notifies the

TD and at least one other device. The TD acknowledges the event and verifies that the acknowledgment is properly noted

by the IUT. The IUT notifies all recipients that the event has been acknowledged. The TD then acknowledges the event

again, and the IUT again notifies all recipients. This behavior was not defined before Protocol_Revision 7 and so this test

shall only be performed if Protocol_Revision is present (i.e., Protocol_Revision ≥ 7).

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal

transitions and sends confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11', indicating that all

transitions have been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients

shall be recipients of the event notification.

Test Steps:

1. MAKE (a change that triggers the detection of an event in the IUT)

2. WAIT (Time_Delay)

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for this event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate offnormal event state),

‘ 'Event Val’es' = (the values appropriate to the event type)

4. TRANSMIT BACnet-SimpleACK-PDU

5. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,‘ 'Process Identif’er' = (the process identifier configured for this

event),‘ 'Initiating Device Identif’er' = IUT,‘ 'Event Object Identif’er' = (the event-initiating

object), ‘ 'Time St’mp' = (the timestamp or sequence number received in step 3),‘

 'Notification Cl’ss' = (the notification class configured for this event),‘ 'Prior’ty' =

 (the priority configured for this event),‘ 'Event T’pe' = (any valid event type),‘ 'Notify T’pe' =

 (the notify type configured for this event),‘ 'AckRequi’ed' = TRUE,‘ 'From St’te' =

 NORMAL,‘ 'To St’te' = (any appropriate offnormal event state),‘ 'Event

Val’es' = (the values appropriate to the event type)

6. TRANSMIT BACnet-SimpleACK-PDU

BACnet Testing Laboratories - Specified Tests

 158

7. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions ’ B'’11'(FALSE, TRUE, TRUE)

8. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Acknowledgment Sou’ce' = (a character string)‘ 'Time of Acknowledgm’nt' = (any of the

forms specified for this parameter)

9. RECEIVE BACnet-Simple-ACK-PDU

10. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

11. TRANSMIT BACnet-SimpleACK-PDU

12. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the timestamp or sequence number received in step 10),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

13. TRANSMIT BACnet-SimpleACK-PDU

14. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions ’ B'’11'(TRUE, TRUE, TRUE)

15. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Acknowledgment Sou’ce' = (a character string)‘ 'Time of Acknowledgm’nt' = (any of the

forms specified for this parameter)

16. RECEIVE BACnet-SimpleACK-PDU

17. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

18. TRANSMIT BACnet-SimpleACK-PDU

19. RECEIVE

 DESTINATION = (at least one device other than the TD),

BACnet Testing Laboratories - Specified Tests

 159

 SOURCE = IUT,

 ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the timestamp or sequence number received in step 17),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

20. TRANSMIT BACnet-SimpleACK-PDU

21. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions ’ B'’11'(TRUE, TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in steps 12 and 19 shall be the same

address used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits

them in is irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing

Notification_class object, omit steps 5, 6, 12, 13, 19, and 20.

9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful re-acknowledgment of an event signaled by an UnconfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status.

Test Concept: An event is triggered and, after the specified Time_Delay of the event-generating object, the IUT notifies the

TD and at least one other device. The TD acknowledges the event and verifies that the acknowledgment is properly noted

by the IUT. The IUT notifies all recipients that the event has been acknowledged. The TD then acknowledges the event

again, and the IUT again notifies all recipients. This behavior was not defined before Protocol_Revision 7 and so this test

shall only be performed if Protocol_Revision is present (i.e., Protocol_Revision ≥ 7).

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal

transitions and sends unconfirmed notifications. The Acked_Transitions property shall have the valu’ B'’11', indicating that

all transitions have been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple

recipients shall be recipients of the event notification.

Test Steps:

1. MAKE (a change that triggers the detection of an offnormal event in the IUT)

2. WAIT (Time_Delay)

3. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for this event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate offnormal event state),

73. ‘ 'Event Val’es' = (the values appropriate to the event typ4. RECEIVE

BACnet Testing Laboratories - Specified Tests

 160

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the timestamp or sequence number received in step 3),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for this event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate offnormal event state),

‘ 'Event Val’es' = (the values appropriate to the event type)

5. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions ’ B'’11'(FALSE, TRUE, TRUE)

6. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Acknowledgment Sou’ce' = (a character string)‘ 'Time of Acknowledgm’nt' = (any of the

forms specified for this parameter)

7. RECEIVE BACnet-SimpleACK-PDU

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

9. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the timestamp or sequence number received in step 8),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

10. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions ’ B'’11'(TRUE, TRUE, TRUE)

11. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Acknowledgment Sou’ce' = (a character string)‘ 'Time of Acknowledgm’nt' = (any of the

forms specified for this parameter)

12. RECEIVE BACnet-SimpleACK-PDU

13. BEFORE Notification Fail Time

BACnet Testing Laboratories - Specified Tests

 161

 RECEIVE UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

14. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the event-initiating object),

‘ 'Time St’mp' = (the timestamp or sequence number received in step 13),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event),

‘ 'Event T’pe' = (the event type included in step 3),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3)

15. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions ’ B'’11'(TRUE, TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in steps 9 and 14 shall be the same

address used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits

them in is irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing

Notification_class object, omit steps 4, 9, and 14.

9.1.1.X3 Successful Alarm Acknowledgment of Confirmed Event Notifications wh‘n 'To St’te' is either High-Limit

or Low-Limit

Reason for Change: No test exists for this functionality. There is no new SSPC proposal. The differences shown are from

135.1-2011 for clarity. Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status when t‘e 'To St’te' parameter is either High-

Limit or Low-Limit and t‘e 'Event State Acknowled’ed' parameter is Off-Normal.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device with ‘n 'To St’te'

event of either High-Limit or Low-Limit. The TD acknowledges the alarm using all of the correct parameters and using ‘n

'Event State Acknowled’ed' parameter ‘f 'Off-Nor’al' and verifies that the acknowledgment is properly noted by the IUT.

The IUT notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have been

acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipeients shall be recipients of

the alarm notification.

Test Steps: The test steps defined in 9.1.1.1 shall be followed except that t‘e 'To St’te' parameter shall be either High-Limit

or Low-Limit. When acknowledging the alarm the TD shall use ‘n 'Event State Acknowled’ed' parameter of Off-Normal.

BACnet Testing Laboratories - Specified Tests

 162

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.1. If the IUT can

only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, skip all steps

related to receipt of the second notification.

9.1.2 Negative AcknowledgeAlarm Service Execution Tests

9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because t‘e 'Time St’mp' is Too

Old

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the

most recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that

the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the

proper time stamp and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients

that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have been

acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be recipients of

the alarm notification.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)

2. WAIT (Time_Delay)

3. BEFORE Notification Fail Time

 RECEIVE ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event type),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for the event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate non-normal event state),

‘ 'Event Val’es' = (the values appropriate to the event type)

4. TRANSMIT BACnet-SimpleACK-PDU

5. RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,‘ 'Process Identif’er' = (the process identifier configured for this

event),‘ 'Initiating Device Identif’er' = IUT,‘ 'Event Object Identif’er' = (the object detecting the

alarm),‘ 'Time St’mp' = (the timestamp or sequence number received in step 3),‘

 'Notification Cl’ss' = (the notification class configured for this event),‘ 'Prior’ty' =

 (the priority configured for this event type),‘ 'Event T’pe' = (any valid event type),‘ 'Notify T’pe' =

BACnet Testing Laboratories - Specified Tests

 163

 (the notify type configured for the event),‘ 'AckRequi’ed' = TRUE,‘ 'From St’te' =

 NORMAL,‘ 'To St’te' = (any appropriate non-normal event state),‘ 'Event

Val’es' = (the values appropriate to the event type)

6. TRANSMIT BACnet-SimpleACK-PDU

7. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)

8. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (a time stamp older than the one conveyed in the

notification),‘ 'Time of Acknowledgm’nt' = (the current time using a Time format)

9. RECEIVE BACnet-Error-PDU

 Error Class = SERVICES,

 Error Code = INVALID_TIME_STAMP

10. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)

11. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the process identifier

configured for this event),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Time of Acknowledgm’nt' = (the current time using a Time format)

12. RECEIVE BACnet-Simple-ACK-PDU

13. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 BEFORE Notification Fail Time

 RECEIVE

 ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3 or 5)

 ELSE

 BEFORE Notification Fail Time

 RECEIVE

 ConfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION

14. TRANSMIT BACnet-SimpleACK-PDU

15. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the timestamp or sequence number from the notification in step 13),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

BACnet Testing Laboratories - Specified Tests

 164

‘ 'Prior’ty' = (the priority configured for this event type),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = (t‘e 'To St’te' used in step 3 or 5)

 ELSE

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 ConfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the timestamp or sequence number from the notification in step 13),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event type),‘ 'Event T’pe' =

 (any valid event type),

‘ 'Notify T’pe' = ACK_NOTIFICATION

16. TRANSMIT BACnet-SimpleACK-PDU

17. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used

in step 3. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing

Notification_class object, omit steps 5, 6, 15, and 16.

9.1.2.3 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because t‘e 'Event Object

Identif’er' is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal.

Purpose: To verify that an alarm remains unacknowledged if t‘e 'Event Object Identif’er' represents an object that does not

exist or is not consistent with the other parameters that define the alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm using an improp‘r 'Event Object Identif’er' and verifies that the acknowledgment is not accepted by

the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the

alarm using the prop‘r 'Event Object Identif’er' and verifies that the acknowledgment is properly noted by the IUT. The IUT

notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have been

acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be recipients of

the alarm notification.

Test Steps: The test steps defined in 9.1.2.1 shall be followed except that in the first AcknowledgeAlarm request t‘e 'Time

St’mp' shall have the same value as t‘e 'Time St’mp' from the event notification and t‘e 'Event Object Identif’er' shall

specify an object that does not support or is not configured for alarming, or which does not exist..

Notes to Tester: A passing result is the same message sequence described in 9.1.2.1 except that the Error Class and Error

Code in step 7 shall be OBJECT and UNKNOWN_OBJECT if the object referenced by ‘Event Object Identifier’ does not

exist or OBJECT and NO_ALARM_CONFIGURED if the object exists but does not support or is not configured for

alarming. For devices claiming a Protocol Revision less than 5, an Error Class and Error Code of SERVICES and

INCONSISTENT_PARAMETERS or Error Class of OBJECT and Error Code of OTHER shall also be allowed. If the

IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit

steps 5, 6, 15, and 16.

BACnet Testing Laboratories - Specified Tests

 165

9.1.2.4 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because t‘e 'Event State

Acknowled’ed' is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal.

Purpose: To verify that an alarm remains unacknowledged if t‘e 'Event State Acknowled’ed' is inconsistent with the other

parameters Event_State that define was provided in the notification which isthe alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm using an invalid event state and verifies that the acknowledgment is not accepted by the IUT and

that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the

proper event state and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients

that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

confirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have been

acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be recipients of

the alarm notification.

Test Steps: The test steps defined in 9.1.2.1 shall be followed except that in the first AcknowledgeAlarm request th‘ 'Time

St’mp' shall have the same value as t‘e 'Time St’mp' from the event notification, the ‘To State’ in the notification shall be

any offnormal transition and t‘e 'Event State Acknowled’ed' shall have an offnormal value that is different from t‘e 'To

St’te' in the event notification and shall not be OFFNORMAL (2).

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.1 except that the

error reported shall have an Error Class of SERVICES and Error Code in step 7 shall be of INVALID_EVENT_STATE.

For devices claiming a Protocol Revision less than 5, Error Class of SERVICES and an Error Code of

INCONSISTENT_PARAMETERS shall also be allowed. If the IUT can only be configured with one recipient in the

Recipient_List property of the issuing Notification_class object, omit steps 5, 6, 15, and 16.

9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because t‘e 'Time St’mp' is Too

Old

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the

most recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that

the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the

proper time stamp and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients

that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

unconfirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have

been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be

recipients of the alarm notification.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)

2. WAIT Time_Delay

3. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

BACnet Testing Laboratories - Specified Tests

 166

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the current time or sequence number),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event type),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for the event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate non-normal event state),

74. ‘ 'Event Val’es' = (the values appropriate to the event typ4. IF

(the notification in step 3 was not a broadcast) THEN

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

‘ 'Process Identif’er' = (the process identifier configured for this event),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = (the object detecting the alarm),

‘ 'Time St’mp' = (the timestamp or sequence number from step 3),

‘ 'Notification Cl’ss' = (the notification class configured for this event),

‘ 'Prior’ty' = (the priority configured for this event type),

‘ 'Event T’pe' = (any valid event type),

‘ 'Notify T’pe' = (the notify type configured for the event),

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = NORMAL,

‘ 'To St’te' = (any appropriate non-normal event state),

‘ 'Event Val’es' = (the values appropriate to the event type)

5. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)

6. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the value of t‘e 'Process

Identif’er' parameter in the event notification),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (a time stamp older than the one conveyed in the

notification),‘ 'Time of Acknowledgm’nt' = (the TD’s current time using a Time

format)

7. RECEIVE BACnet-Error-PDU

 Error Class = SERVICES,

 Error Code = INVALID_TIME_STAMP

8. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (FALSE,TRUE,TRUE)

9. TRANSMIT AcknowledgeAlarm-Request,‘ 'Acknowledging Process Identif’er' = (the process identifier

configured for this event),‘ 'Event Object Identif’er' = (t‘e 'Event Object Identif’er' from the

event notification),‘ 'Event State Acknowled’ed' = (the state specified in t‘e 'To St’te'

parameter of the notification),‘ 'Time St’mp' = (the time stamp conveyed in the notification),‘

 'Time of Acknowledgm’nt' = (the TD’s current time using a Time format)

10. RECEIVE BACnet-Simple-ACK-PDU

11. IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 BEFORE Notification Fail Time

 RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

BACnet Testing Laboratories - Specified Tests

 167

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3 or 4)

 ELSE

 BEFORE Notification Fail Time

 RECEIVE

 DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the current time or sequence number),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION

12. IF (the notification in step 11 was not broadcast) THEN

 IF (Protocol_Revision is present and Protocol_Revision 1) THEN

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the timestamp or sequence number from the notification in step 11),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION,

 ‘ 'To St’te' = (t‘e 'To St’te' used in step 3 or 4)

 ELSE

 RECEIVE

 DESTINATION = (at least one device other than the TD),

 SOURCE = IUT,

 UnconfirmedEventNotification-Request,

 ‘ 'Process Identif’er' = (the process identifier configured for this event),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Event Object Identif’er' = (the object detecting the alarm),

 ‘ 'Time St’mp' = (the timestamp or sequence number from the notification in step 11),

 ‘ 'Notification Cl’ss' = (the notification class configured for this event),

 ‘ 'Prior’ty' = (the priority configured for this event type),

 ‘ 'Event T’pe' = (any valid event type),

 ‘ 'Notify T’pe' = ACK_NOTIFICATION

13. VERIFY (t‘e 'Event Object Identif’er' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used

in step 3. The destination address used for the acknowledgment notification in step 12 shall be the same address used in

step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is

irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing

Notification_class object, omit steps 4 and 12.

BACnet Testing Laboratories - Specified Tests

 168

9.1.2.6 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the Referenced Object

Does Not Exist

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if t‘e 'Event Object Identif’er' represents an object that does not

exist.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm using an invalid event object identifier and verifies that the acknowledgment is not accepted by the

IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm

using the proper event object identifier and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies

all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

unconfirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have

been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be

recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.5 shall be followed except that in the first AcknowledgeAlarm request th‘ 'Time

St’mp' shall have the same value as t‘e 'Time St’mp' from the event notification and t‘e 'Event Object Identif’er' shall have

a value that is different from t‘e 'Event Object Identif’er' in the event notification and for which no object exists in the IUT.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.5 except that the

Error Class in step 7 shall be OBJECT and the Error Code in step 7 shall be UNKNOWN_OBJECT. For devices that claim

a Protocol_Revision of 5 or prior, an Error Class of SERVICES with an Error Code of INCONSISTENT_PARAMETERS

or Error Class of OBJECT and Error Code of OTHER shall also be accepted. If the IUT can only be configured with one

recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4 and 12.

9.1.2.7 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because t‘e 'Event State

Acknowled’ed' is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal. Made

changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if t‘e 'Event State Acknowled’ed' is inconsistent with the other

parametersEvent_State that define was provided in the notification which is the alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD

acknowledges the alarm using an inval‘d 'Event State Acknowled’ed' and verifies that the acknowledgment is not accepted

by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the

alarm using the prop‘r 'Event State Acknowled’ed' and verifies that the acknowledgment is properly noted by the IUT. The

IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send

unconfirmed notifications. The Acked_Transitions property shall have the valu’ B'’11' indicating that all transitions have

been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple recipients shall be

recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.5 shall be followed except that in the first AcknowledgeAlarm request t‘e 'Time

St’mp' shall have the same value as t‘e 'Time St’mp' from the event, the ‘To State’ in the notification shall be any offnormal

transition and t‘e 'Event State Acknowled’ed' shall have an offnormal value that is different from t‘e 'To St’te' in the event

notification and shall not be OFFNORMAL (2).

BACnet Testing Laboratories - Specified Tests

 169

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.5 except that the

error reported shall have an Error Class of SERVICES and Error Code in step 7 shall be of INVALID_EVENT_STATE. For

devices claiming a Protocol Revision less than 5, an Error Class of SERVICES and an Error Code of

INCONSISTENT_PARAMETERS shall also be allowed. If the IUT can only be configured with one recipient in the

Recipient_List property of the issuing Notification_class object, omit steps 4 and 12.

9.1.X1 Unsupported Message Text Character Set AcknowledgeAlarm Test

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported

character sets.

Reference: 13.5.2

Purpose: To verify that the IUT does not fail to process an AcknowledgeAlarm request because the Acknowledgment

Source parameter is of a character set that the IUT does not support.

Test Concept: Cause an event-initiating object, O1, in the IUT to transition to Event_State ES1. Acknowledge the transition

and, in the AcknowledgeAlarm service, provide an ‘Acknowledgment Source’ parameter, AS1, which has a character set

that the IUT does not support. Verify that the IUT processes the request even if the ‘Acknowledgment Source’ uses a

character set that the IUT does not support, and that the IUT accepts and applies that Acknowledgment request, irrespective

of the ‘Acknowledgment Source’.

Configuration Requirements: Configure an event-initiating object, O1 which references a Notification Class object N1.

Configure O1 such that it needs an acknowledgment when it transitions out of its current state. DELAY shall represent the

time delay appropriate to the transition being tested (i.e. Time_Delay for to-offnormal, 0 for to-fault, and either

Time_Delay or To_Normal_Time_Delay for to-normal). AS1 shall be a character string short enough for the IUT to receive

and encoded in a character set that the IUT does not support. If the IUT supports all character sets, this test shall be skipped.

Test Steps:

1. MAKE(a condition exist which will cause O1 to transition)

2. WAIT DELAY

3. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = (TS1: any valid timestamp),

 Notification Cl’ss' = (N1: the Notification_Class configured in O1),

‘ 'Prior’ty' = (any valid priority),

‘ 'Event T’pe' = (any standard event type),

‘ 'Message T’xt' = (any valid text),

‘ 'Notify T’pe' = ALARM | EVENT,

‘ 'AckRequi’ed' = TRUE,

‘ 'From St’te' = (any valid event state),

‘ 'To St’te' = (ES1: any valid event state),

75. ‘ 'Event Val’es' = (any values appropriate to the event typ4. IF (ES1 = NORMAL) THEN

 VERIFY Acked_Transitions = (?,?,F)

 ELSE IF (ES1 = FAULT) THEN

 VERIFY Acked_Transitions = (?,F,?)

 ELSE

76. VERIFY Acked_Transitions = (F,?,5. TRANSMIT AcknowledgeAlarm-Request

‘ 'Acknowledging Process Identif’er' = (any valid value),

‘ 'Event Object Identif’er' = O1,

‘ 'Event State Acknowled’ed' = ES1,

‘ 'Time St’mp' = TS1,

‘ 'Acknowledgment Sou’ce' = AS1,

BACnet Testing Laboratories - Specified Tests

 170

‘ 'Time of Acknowledgm’nt' = (any valid timestamp)

6. RECEIVE BACnet-SimpleACK-PDU

7. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

‘ 'Process Identif’er' = (any valid process identifier),

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Event Object Identif’er' = O1,

‘ 'Time St’mp' = TS1

 Notification Cl’ss' = (N1: the Notification_Class configured in O1),

‘ 'Prior’ty' = (any valid priority),

‘ 'Event T’pe' = (any standard event type),

‘ 'Message T’xt' = (any valid text),

‘ 'Notify T’pe' = ACK_NOTIFICATION,

‘ 'To St’te' = ES1

8. IF (ES1 = NORMAL) THEN

 VERIFY Acked_Transitions = (?,?,T)

 ELSE IF (ES1 = FAULT) THEN

 VERIFY Acked_Transitions = (?,T,?)

 ELSE

 VERIFY Acked_Transitions = (T,?,?)

Notes to Tester: The use of UnconfirmedEventNotification is specified in this test, solely to simplify the expression of the

test. The behavior being tested applies to the ConfirmedEventNotification service as well.

9.2 ConfirmedCOVNotification Service Execution Tests

9.2.1 Positive ConfirmedCOVNotification Service Execution Tests

9.2.1.X4 Change of Value Notification from Proprietary Objects

This test has not been developed and shall be skipped.

9.2.2 Negative ConfirmedCOVNotification Service Execution Tests

9.2.2.1 Change of Value Notification Arrives after Subscription has Expired

Reason for Change: Corrected tests per BTL-CR-0299 and added Configuration Requirements section.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has

expired.

Test Steps:

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request wi‘h 'Issue Confirmed

Notificati’ns' equal to TRUE, then this test shall be skipped1. RECEIVE SubscribeCOV-Request,‘ 'Subscriber

Process Identif’er' = (any valid process identifier, P1),‘ 'Monitored Object Identif’er' = (any object X

of a type that supports COV notification),‘ 'Issue Confirmed Notificatio‘s ' = TRUE,‘ 'Lifet’me' =

 (a value no greater than one minuteany valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU

77. 3. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the process

identifier used in step 1, P1),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er' =

 X,‘ 'Time Remain’ng' = (any amount of time greater than 0),‘ 'List of Val’es' =

 (a list of values appropriate to object 4. IF (the IUT can cancel the subscription)

 RECEIVE SubscribeCOV – Request,

‘ 'Subscriber Process Identif’er' = (PI),

‘ 'Monitored Object Identif’er' = X

 ELSE

BACnet Testing Laboratories - Specified Tests

 171

 MAKE (the IUT stop resubscribing, if it resubscribes automatically)

53. WAIT (a value two times at least Lifetime, but sufficient to ensure the subscription has expired)

64. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the process identifier

used in step 2P1),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er' = X,‘

 'Time Remain’ng' = (any amount of time greater than 0),‘ 'List of Val’es' = (a

list of values appropriate to object X)

75. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = UNKNOWN_SUBSCRIPTION |

 (BACnet-SimpleACK-PDU)

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (any valid error code for class SERVICES) |

 (BACnet-SimpleACK-PDU)

9.2.2.2 Change of Value Notifications with Invalid Process Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that

does not match any current subscriptions.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request wi‘h 'Issue Confirmed

Notificati’ns' equal to TRUE, then this test shall be skipped.

Test Steps1. RECEIVE SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any object X of a type that supports COV notification),‘

 'Issue Confirmed Notificatio‘s ' = TRUE,‘ 'Lifet’me' = (a value no greater than

one minuteany valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU

78. 3. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (a process identifier

different from the one used in step 21),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object

Identif’er' = X,‘ 'Time Remain’ng' = (any amount of time greater than 0),‘ 'List of

Val’es' = (a list of values appropriate to object 4. IF (Protocol_Revision is present and

Protocol_Revision >= 10) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = UNKNOWN_SUBSCRIPTION |

 (BACnet-SimpleACK-PDU)

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (any valid error code for class SERVICES) |

 (BACnet-SimpleACK-PDU)

9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object

identifier that does not match any current subscriptions.

BACnet Testing Laboratories - Specified Tests

 172

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request wi‘h 'Issue Confirmed

Notificati’ns' equal to TRUE, then this test shall be skipped.

Test Steps1. RECEIVE SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any object X of a type that supports COV notification),‘ 'Issue

Confirmed Notificatio‘s ' = TRUE,‘ 'Lifet’me' = (a value no greater than one minuteany

valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU

79. 3. TRANSMIT ConfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = (the process

identifier used in step 21),‘ 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er' =

 (any object Y in the IUT supporting COV notification except X, and for which IUT does not already have an

active subscription),‘ 'Time Remain’ng' = (any amount of time greater than 0),‘ 'List of

Val’es' = (a list of values appropriate to object 4. IF (Protocol_Revision is present and

Protocol_Revision >= 10) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = UNKNOWN_SUBSCRIPTION |

 (BACnet-SimpleACK-PDU)

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = (any valid error code for class SERVICES) |

 (BACnet-SimpleACK-PDU)

Notes to Tester: If possible, select an object Y for which IUT supports COV Subscription.

9.3 UnconfirmedCOVNotification Service Execution Tests

9.3.X9 Change of Value Notification from Proprietary Objects

This test has not been developed and shall be skipped.

9.4 ConfirmedEventNotification Service Execution Tests

9.4.5 ConfirmedEventNotification Simple Presentation

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported

character sets.

Purpose: This test case verifies that the IUT is capable of minimally displaying ConfirmedEventNotifications.

Configuration: For this test, the tester shall choose one event-generating object, O1.

Test Steps1. TRANSMIT ConfirmedEventNotification-Request,‘ 'Process Identif’er' = (a valid process identifier

specified by the IUT vendor),‘ 'Initiating Device Identif’er' = TD,‘ 'Event Object Identif’er' =

 O1,‘ 'Time St’mp' = (current time in any format),‘ 'Notification Cl’ss' = (any valid

notification class),‘ 'Prior’ty' = (any valid priority),‘ 'Event T’pe' = (any standard event

type),‘ 'Message T’xt' = (any character string),‘ 'Notify T’pe' = ALARM | EVENT,‘

 'AckRequi’ed' = TRUE | FALSE,‘ 'From St’te' = (state S1, any valid state for this

event type),‘ 'To St’te' = (state S2, any valid state for this event type that can follow S1),‘

 'Event Val’es' = (any values appropriate to the event type)

2. RECEIVE BACnet-SimpleACK-PDU

3. CHECK (that the IUT indicates the notification to the operator and that the indication includes identification of the

event generating object or the monitored object, the event timestamp, and the event Message Text)

4. CHECK (that all information indicated to the user is consistent with the information provided in step 1)

BACnet Testing Laboratories - Specified Tests

 173

Passing Result: The IUT shall truncate the message text if it is longer than the maximum length displayable by the IUT.

The IUT is allowed to include characters in the displayed text that indicate the message has been truncated, even if the

truncated message is then shorter than 32 characters. The IUT shall not truncate Message Text that is less than or equal to

32 characters in length. A device shall not fail to process an EventNotification service request containing a ‘Message Text’

parameter in an unsupported character set. It is a local matter whether the parameter is used as provided or whether a

character string, in a supported character set, of length 0 is used in its place.

9.4.6 ConfirmedEventNotification Full Presentation

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported

character sets.

Purpose: This test case verifies that the IUT is capable of displaying ConfirmedEventNotifications.

Configuration: For this test, the tester shall choose one event generating object, O1.

Test Steps1. TRANSMIT ConfirmedEventNotification-Request,‘ 'Process Identif’er' = (a valid process identifier

specified by the IUT vendor),‘ 'Initiating Device Identif’er' = TD,‘ 'Event Object Identif’er' =

 O1,‘ 'Time St’mp' = (current time in any format),‘ 'Notification Cl’ss' = (any valid

notification class),‘ 'Prior’ty' = (any valid priority),‘ 'Event T’pe' = (any standard event

type),‘ 'Message T’xt' = (any character string),‘ 'Notify T’pe' = ALARM | EVENT,‘

 'AckRequi’ed' = TRUE | FALSE,‘ 'From St’te' = (state S1, any valid state for this

event type),‘ 'To St’te' = (state S2, any valid state for this event type that can follow S2),‘

 'Event Val’es' = (any values appropriate to the event type)

2. RECEIVE BACnet-SimpleACK-PDU

3. CHECK (that the IUT indicates the notification to the operator and that the indication includes identification of the

event generating object or the monitored object, the event timestamp, the event Message Text, Notification Class, Priority,

Notify Type, Ack Required, To State and Event Values)

4. CHECK (that all information indicated to the user is consistent with the information provided in step 1)

Passing Result: The IUT shall truncate the message text if it is longer than the maximum length displayable by the IUT.

The IUT is allowed to include characters in the displayed text that indicate the message has been truncated, even if the

truncated message is then shorter than 255 characters. The IUT shall not truncate Message Text that is less than or equal to

255 characters in length. A device shall not fail to process an EventNotification service request containing a ‘Message Text’

parameter in an unsupported character set. It is a local matter whether the parameter is used as provided or whether a

character string, in a supported character set, of length 0 is used in its place.

9.4.X1 Unsupported Message Text Character Set ConfirmedEventNotificationTest

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported

character sets.

Reference: 13.8.2

Purpose: To verify that the IUT correctly receives and processes ConfirmedEventNotifications when the Message Text

parameter is of a character set that the IUT does not support.

Test Concept: Send a notification to the IUT, from an event-initiating object, O1, which contains a Message Text parameter

value, T1, which uses a character set that the IUT does not support. Verify that the IUT processes the request even if the

‘Message Text’ uses a character set that the IUT does not support, and that the IUT returns a Result(+) and performs the

vendor specified actions.

Configuration Requirements: Configure the TD as though it has an event-initiating object, O1 which references a

Notification Class object N1. Configure N1 to direct notifications to the IUT using a vendor specified Process Id, PID1. If

the IUT supports all character sets, this test shall be skipped.

BACnet Testing Laboratories - Specified Tests

 174

Test Step1. TRANSMIT ConfirmedEventNotification-Request,‘ 'Process Identif’er' = PID1,‘ 'Initiating

Device Identif’er' = TD,‘ 'Event Object Identif’er' = O1,‘ 'Time St’mp' = (any valid

timestamp),

 Notification Cl’ss' = (N1: the Notification_Class configured in O1),‘ 'Prior’ty' = (any valid

priority),‘ 'Event T’pe' = (the standard event type associated with O1),‘ 'Notify T’pe' =

 ALARM | EVENT,‘ 'Message T’xt' = T1,‘ 'AckRequi’ed' = FALSE,‘ 'From St’te'

= (any valid event state),‘ 'To St’te' = (any valid event state),‘ 'Event Val’es' =

 (any values appropriate to the event type)

2. RECEIVE BACnet-SimpleACK-PDU

3. CHECK (for any vendor-defined observable actions)

9.5 UnconfirmedEventNotification Service Execution Tests

9.5.X1 Unsupported Message Text Character Set UnconfirmedEventNotificationTest

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported

character sets.

Reference: 13.9.2

Purpose: To verify that the IUT correctly receives and processes UnconfirmedEventNotifications when the Message Text

parameter is of a character set that the IUT does not support.

Test Concept: Send a notification to the IUT, from an event-initiating object, O1, which contains a Message Text parameter

value, T1, which uses a character set that the IUT does not support. Verify that the IUT processes the request even if the

‘Message Text’ uses a character set that the IUT does not support, and that the IUT performs the vendor specified actions.

Configuration Requirements: Configure TD to direct notifications to the IUT using a vendor specified Process Identifier,

PID1. If the IUT supports all character sets, this test shall be skipped.

Test Steps: The test steps for this test case are identical to the test steps in 9.4.X1 except that the

UnconfirmedEventNotification requests are used instead of ConfirmedEventNotification requests and the IUT does not

acknowledge receiving the notifications.

9.7 GetEnrollmentSummary Service Execution Tests

9.7.1 Required GetEnrollmentSummary Filters

9.7.1.1 Enrollment Summary with Zero Summaries

Reason for change: BTL-CRR-0089_9.7.1.1.doc clarified that it is not important what filter parameter or parameter is used

to engender the return of a summary with zero summaries.

Purpose: To verify that the IUT can execute the GetEnrollmentSummary request when there are no enrollments to report.

Configuration Requirements: The IUT shall be configured with no enrollments to report.

Test Steps1. TRANSMIT GetEnrollmentSummary-Request,‘ 'Acknowledgment Fil’er' = ALL NOT_ACK2.

 RECEIVE GetEnrollmentSummary-ACK,‘ 'List of Enrollment Summar’es' = (an empty list)

Notes to Tester: If the IUT cannot be configured with no enrollments to report, then the GetEnrollmentSummary-Request

shall be transmitted with a further constrained argument so that the resulting filtered enrollment summary yields zero

summaries.

BACnet Testing Laboratories - Specified Tests

 175

9.7.2 User Selectable GetEnrollmentSummary Filters

9.7.2.3 Event Type Filter

Reason for Change: Revise test for new Event Types.

Purpose: To verify that the IUT can execute the GetEnrollmentSummary request when t‘e 'Event Type Fil’er' is used.

Configuration Requirements: If possible, the IUT shall be configured so that it has one or more event-generating objects for

each of the event types CHANGE_OF_BITSTRING, CHANGE_OF_STATE, CHANGE_OF_VALUE,

COMMAND_FAILURE, FLOATING_LIMIT, and OUT_OF_RANGE. If only a subset of these event types are supported

as many of them as possible shall be configured.

80. Test Steps1. TRANSMIT GetEnrollmentSummary-Reques‘,

'Acknowledgment Fil’er' = AL‘,

81. 'Event Type Fil’er' = CHANGE_OF_BITSTRI2. RECEIVE GetEnrollmentSummary-AC‘,

'List of Enrollment Summar’es' = (all configured event-generating objects with

82. Event_Type = CHANGE_OF_BITSTRIN3. TRANSMIT GetEnrollmentSummary-Reques‘,

'Acknowledgment Fil’er' = AL‘,

83. 'Event Type Fil’er' = CHANGE_OF_STA4. RECEIVE GetEnrollmentSummary-AC‘,

'List of Enrollment Summar’es' = (all configured event-generating objects with

84. Event_Type = CHANGE_OF_STAT5. TRANSMIT GetEnrollmentSummary-Reques‘,

'Acknowledgment Fil’er' = AL‘,

'Event Type Fil’er' = CHANGE_OF_VALUE

6. RECEIVE GetEnrollmentSummary-AC‘,

'List of Enrollment Summar’es' = (all configured event-generating objects with

Event_Type = CHANGE_OF_VALUE)

7. TRANSMIT GetEnrollmentSummary-Reques‘,

'Acknowledgment Fil’er' = AL‘,

'Event Type Fil’er' = FLOATING_LIMIT

8. RECEIVE GetEnrollmentSummary-AC‘,

'List of Enrollment Summar’es' = (all configured event-generating objects with

 Event_Type = FLOATING_LIMIT)

Configuration Requirements: If possible, the IUT shall be configured so that it has one or more event-generating objects

for each of its supported event types. If the IUT cannot be configured in such a way all at once,

then the test shall be repeated so that each of its supported event types is tested. If only a subset of these event types are

supported as many of them as possible shall be configured.

85. Test Steps1. REPEAT Y = (All the configurations that will be tested) DO {

 REPEAT X = (All the Event Types currently configured) DO {

 TRANSMIT GetEnrollmentSummary-Request,

 ‘ 'Acknowledgment Fil’er' = ALL,

 ‘ 'Event Type Fil’er' = X

 RECEIVE GetEnrollmentSummary-ACK,

 ‘ 'List of Enrollment Summar’es' = (all configured event-generating objects with

 Event_Type = X)

 }

 }

9.8 GetEventInformation Service Execution Tests

9.8.6 Chaining Test

Reason for Change: Corrects t‘e 'max=APDU-length-accep’ed' value to represent 128 bytes instead of 50 bytes.

BACnet Testing Laboratories - Specified Tests

 176

Purpose: This test case exercises the chaining capabilities using multiple GetEventInformation messages.

Configuration Requirements: The IUT shall be configured so that there are more event states than can be conveyed in a

single APDU of 128 bytes. The IUT shall be configured to contain enough events to trigger the chaining effect. If the IUT

can not be configured to contain enough active events to trigger chaining, this test may be skipped.

Test Concept: In steps 1-4, the test first tests proper chaining by requesting two lists from the IUT and verifying that the

second list is properly distinct from the first. In steps 5-9, to test the “fixed object processing order” as defined in BACnet

13.12.1.1.1, it requests the first list again, and then, before requesting the second list, the tester makes the last object in the

first list no longer have any active event states. When the TD requests the second list using the object identifier of the now-

normal device, the IUT should respond with the same second list as it did before.

Test Steps1. TRANSMIT GetEventInformation-Request,‘ 'max-APDU-length-

accep’ed' ’ B'0’0’'B'0’01',‘ 'segmented-response-accep’ed' = FAL2. RECEIVE

GetEventInformation-ACK,‘ 'List of Event Summar’es' = (an arbitrary list),‘ 'More Eve’ts' =

TR3. TRANSMIT GetEventInformation-Request,‘ 'Last Received Object Identif’er' = the last object identifier

of the list received in step 4. RECEIVE GetEventInformation-ACK,‘ 'List of Event Summar’es' = (a

list of object identifiers not including any received in step 5. TRANSMIT GetEventInformation-Request,‘ 'max-

APDU-length-accep’ed' =’ B'0’0’'B'0’01',‘ 'segmented-response-accep’ed' = FALSE

6. RECEIVE GetEventInformation-ACK,‘ 'List of Event Summar’es' = (an arbitrary list),‘ 'More Eve’ts' =

 TRUE

7. MAKE (the object identified by the last object identifier in the list received in step 6 have no active event states)

8. TRANSMIT GetEventInformation-Request,‘ 'Last Received Object Identif’er' = (the last object identifier of

the list received in step 6)

9. RECEIVE GetEventInformation-ACK,‘ 'List of Event Summar’es' = (the same list received in step 4)

9.10 SubscribeCOV Service Execution Tests

9.10.1 Positive SubscribeCOV Service Execution Tests

The purpose of this test group is to verify the correct execution of the SubscribeCOV service request under circumstances

where the service is expected to be successfully completed.

9.10.1.7 Finite Lifetime Subscriptions

Reason for change: Updates description ‘f 'Time Remain’ng' and adds validation that this value counts down as expected.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription with a temporary

lifetime. Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by

the IUT1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any object supporting COV notifications),‘ 'Issue Confirmed

Notificati’ns' = TRUE | FALSE,‘ 'Lifet’me' = (a value between 60 seconds and 300 seconds)

2. RECEIVE BACnet-SimpleACK-PDU

3. IF (the subscription was for confirmed notifications) THEN

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same identifier used in the subscription),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘ 'Time Remain’ng' = (A value approximately equal to, but not greater than, the requested

 subscription lifetime)

 ‘ 'List of Val’es' = (values appropriate to the object type of the monitored object)

 TRANSMIT BACnet-SimpleACK-PDU

 ELSE

 BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

BACnet Testing Laboratories - Specified Tests

 177

 ‘ 'Subscriber Process Identif’er' = (the same identifier used in the subscription),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘ 'Time Remain’ng' = (A value approximately equal to, but not greater than, the requested

 subscription lifetime),

 ‘ 'List of Val’es' = (values appropriate to the object type of the monitored object)

4. MAKE (a change to the monitored object that should causes a COV notification)

5. IF (the subscription was for confirmed notifications) THEN

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same identifier used in the subscription),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘ 'Time Remain’ng' = (TR: a value greater than 0 and less than or equal to the requested

 subscription lifetime),

 ‘ 'List of Val’es' = (values appropriate to the object type of the monitored object)

 TRANSMIT BACnet-SimpleACK-PDU

 ELSE

 BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same identifier used in the subscription),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘ 'Time Remain’ng' = (TR: a value greater than 0 and less than or equal to the requested

 subscription lifetime),

 ‘ 'List of Val’es' = (values appropriate to the object type of the monitored object

 including the changed value of that triggered the notification)

6. WAIT (a time that should change the ‘Time Remaining’ and which is less than the lifetime of the subscription)

7. MAKE (a change to the monitored object that causes a COV notification)

8. IF (the subscription was for confirmed notifications) THEN

 BEFORE Notification Fail Time

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same identifier used in the subscription),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘ 'Time Remain’ng' = (a value greater than 0 and less than the TR),

 ‘ 'List of Val’es' = (values appropriate to the object type of the monitored object)

 TRANSMIT BACnet-SimpleACK-PDU

 ELSE

 BEFORE Notification Fail Time

 RECEIVE UnconfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = (the same identifier used in the subscription),

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘ 'Time Remain’ng' = (a value greater than 0 and less than TR),

 ‘ 'List of Val’es' = (values appropriate to the object type of the monitored object

 including the changed value that triggered the notification)

79. WAIT (the lifetime of the subscription)

810. MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)

911. CHECK (verify that the IUT did not transmit a COV notification message)

9.10.1.X1 Ensuring 5 Concurrent COV Subscribers

Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can support 5 concurrent subscriptions.

BACnet Testing Laboratories - Specified Tests

 178

Test Concept: Have the TD subscribe with 5 different process identifiers, V1 through V5, and then check to ensure that 5

notifications are sent when the monitored object changes.

86. Test Ste1. REPEAT (X=V1 to V5) DO {

 TRANSMIT SubscribeCOV-Request,

‘ 'Subscriber Process Identif’er' = X,

‘ 'Monitored Object Identif’er' = (any object supporting COV notifications),

‘ 'Issue Confirmed Notificati’ns' = FALSE,

‘ 'Lifet’me' = (any valid value that will allow the subscription to outlast the test)

 RECEIVE BACnet-SimpleACK-PDU

 WAIT Notification Fail Time

 IF (if confirmed notifications were requested) THEN

 RECEIVE ConfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = X,

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

‘ 'Time Remain’ng' = (any valid value),

‘ 'List of Val’es' = (the initial Present_Value and initial Status_Flags)

 TRANSMIT BACnet-SimpleACK-PDU

 ELSE

 RECEIVE UnconfirmedCOVNotification-Request,

‘ 'Subscriber Process Identif’er' = X,

‘ 'Initiating Device Identif’er' = IUT,

‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

‘ 'Time Remain’ng' = (any valid value),

‘ 'List of Val’es' = (the initial Present_Value and initial Status_Flags)

 }

2. MAKE (Present_Value = any value that differs fr“m "initial Present_Va”ue" such that a COV notification would be

generated)

3. REPEAT (X=V1 to V5) DO {

 IF (if confirmed notifications were requested) THEN

 RECEIVE ConfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = X,

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘Time Remain’ng' = (any valid value),

 ‘ 'List of Val’es' = (the new Present_Value and Status_Flags)

 TRANSMIT BACnet-SimpleACK-PDU

 ELSE

 RECEIVE UnconfirmedCOVNotification-Request,

 ‘ 'Subscriber Process Identif’er' = X,

 ‘ 'Initiating Device Identif’er' = IUT,

 ‘ 'Monitored Object Identif’er' = (the same object used in the subscription),

 ‘ 'Time Remain’ng' = (any valid value),

 ‘ 'List of Val’es' = (the new Present_Value and Status_Flags)

 }

Passing Result: The notification in step 3 can be received in any order by the TD.

BACnet Testing Laboratories - Specified Tests

 179

9.10.2 Negative SubscribeCOV Service Execution Tests

9.10.2.1 The Monitored Object Does Not Support COV Notification

Reason For Change: Added configuration requirements.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the

monitored object does not support COV notifications.

Configuration Requirements: This test shall only be executed if IUT contains objects which will not accept a COV

subscription. If every object in IUT will accept a COV subscription, then this test shall be skipped.

87. Test Steps1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any object that does not support COV notifications),‘ 'Issue

Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' = 2. IF (Protocol_Revision is present and

Protocol_Revision 10) THEN

 RECEIVE BACnet-Error PDU,

‘ 'Error Cl’ss' = OBJECT,

‘ 'Error C’de' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

 ELSE

 RECEIVE

 (BACnet-Error PDU,

 ‘ 'Error Cl’ss' = OBJECT,

 ‘ 'Error C’de' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED) |

 (BACnet-Error PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED | OTHER) |

 (BACnet-Error PDU,

 ‘ 'Error Cl’ss' = PROPERTY,

 ‘ 'Error C’de' = NOT_COV_PROPERTY)

9.10.2.X1 The Monitored Object Does Not Exist

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the

monitored object does not exist.

Test Steps1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any object of a type that supports COV and an instance which does

not exist

88. in the IUT),‘ 'Issue Confirmed Notificati’ns' = TRUE,‘ 'Lifet’me' =

 2. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

 RECEIVE BACnet-Error PDU,

 Error Class = OBJECT,

 Error Code = UNKNOWN_OBJECT

 ELSE

 RECEIVE BACnet-Error PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED | OTHER

 | (BACnet-Error PDU,

 Error Class = OBJECT,

 Error Code = UNKNOWN_OBJECT)

Note to tester: If the IUT is able to support objects other than those that currently exist, and none of those objects that

currently do not exist would support COV notification if they did, then the IUT may return an error code of

OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED instead of UNKNOWN_OBJECT.

BACnet Testing Laboratories - Specified Tests

 180

9.10.2.X2 There Is No Space For A Subscription

Reason for Change: 135-2008h.5.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when there is no

space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out

of resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol_Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept

is less than 10000, then this test may be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1, or until the IUT returns

89. an Error-PDU)1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = PID,‘

 'Monitored Object Identif’er' = (any object of that supports COV),‘ 'Issue Confirmed Notificati’ns' =

 TRUE,‘ 'Lifet’me' = 602. RECEIVE BACnet-SimpleACK-PDU |

 (BACnet-Error-PDU,

 Error Class = RESOURCES,

 Error Code = NO_SPACE_TO_ADD_LIST_ELEMENT)

3. READ ACS = (Active_COV_Subscriptions)

4. IF (a BACnet-Simple-Ack was received in step 2) THEN

 CHECK (that the subscription is in ACS)

 ELSE

 CHECK (that the subscription is not in ACS)

}

9.10.2.X3 The Lifetime Parameter is Out of Range

Reason for Change: 135-2008h.5. Modified to relax allowed rejection response.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the Lifetime

parameter is out of range.

90. Test Steps1. TRANSMIT SubscribeCOV-Request,‘ 'Subscriber Process Identif’er' = (any valid process

identifier),‘ 'Monitored Object Identif’er' = (any object in the IUT that supports COV),‘ 'Issue Confirmed

Notificati’ns' = TRUE,‘ 'Lifet’me' = (a value larger than that supported by the IU2. IF

(Protocol_Revision is present and Protocol_Revision >= 10) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = VALUE_OUT_OF_RANGE

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = VALUE_OUT_OF_RANGE | SERVICE_REQUEST_DENIED | OTHER

 | (RECEIVE BACnet-Reject-PDU,

 Reject Reason = PARAMETER_OUT_OF_RANGE)

9.10.3 Positive Unsubscribed COVNotification Execution Tests

9.10.3.X1 Unsubscribed COVNotification Execution Test

Reason for Change: This test is not specified in any SSPC proposal.

BACnet Testing Laboratories - Specified Tests

 181

Purpose: To verify that the IUT executes UnconfirmedCOVNotification service requests, wi‘h 'Process Identif’er' equal to

0.

Test Concept: Using any received and supported unsubscribed UnconfirmedCOVNotification, observe the effect of its

execution.

Test Step1. TRANSMIT UnconfirmedCOVNotification-Request,‘ 'Subscriber Process Identif’er' = 0,‘

 'Initiating Device Identif’er' = TD,‘ 'Monitored Object Identif’er' = (any object present in TD),‘ 'Time

Remain’ng' = 0,‘ 'List of Val’es' = (any valid set of values)

2. CHECK (for any vendor-defined observable actions)

BACnet Testing Laboratories - Specified Tests

 182

9.14 AddListElement Service Execution Tests

9.14.2 Negative AddListElement Service Execution Tests

9.14.2.2 Adding a List Element With an Invalid Datatype

Reason for change: Added the additional error conditions that are now accepted. Add‘d 'Note to Tes’er' that was missing in

135.1-2013.

Purpose: To verify the ability of the IUT to correctly respond to an AddListElement service request to add an element with

an invalid datatype to a list.

91. Test Steps: 1. TRANSMIT AddListElement-Request, ‘ 'Object Identif’er' = L, ‘ 'Property

Identif’er' = ListProp, ‘ 'List of Eleme’ts' = (a single element with a datatype inappropriate for this

property2. RECEIVE AddListElement-Error,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE, ‘ 'First Failed Elem’nt' = 1 |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_PARAMETER_DATATYPE) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_TAG)

Notes to Tester: value selected for step 1 ‘s 'inappropri’te', not a value which ‘s 'allo’ed' but not supported by this instance

of the property. I.e. it is not one of the datatypes that would ever be supported by an instance of this property in this object

type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example in a

CHOICE, by this property in this object type, but not supported by this instance of the property.

9.14.2.3 An AddListElement Failure Part Way Through a List

Reason For Change: Updated test to include additional error codes. Add‘d 'Notes to Tes’er' which was missing in 135.1-

2013.

Purpose: To verify the ability of the IUT to respond to an AddListElement service request to add multiple elements to a list

where one of the elements cannot be added. Upon failure, the AddListElement service should leave the list unchanged.

Test Steps:

1. READ InitialList = (L), ListProp2

2. TRANSMIT AddListElement-Request,‘ 'Object Identif’er' = L,‘ 'Property Identif’er' = ListProp‘

 'List of Eleme’ts' = (two or more elements to be added to the list with the second element

92. having an inappropriate datatyp3. IF (Protocol_Revision is present and

Protocol_Revision >= 7) THEN

 RECEIVE AddListElement-Error,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE,

‘ 'First Failed Elem’nt' = 2

 | (RECEIVE BACnet-Reject-PDU,

 Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)

 ELSE

 RECEIVE AddListElement-Error,

 Error Class = SERVICES,

 Error Code = INVALID_PARAMETER_DATATYPE

‘ 'First Failed Elem’nt' = 2

 | (AddListElement-Error,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE)

BACnet Testing Laboratories - Specified Tests

 183

‘ 'First Failed Elem’nt' = 2

 | (BACnet-Reject-PDU,

 Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)

4. VERIFY (L), ListProp = InitialList

Notes to Tester: value selected for step 3 ‘s 'inappropri’te', not a value which ‘s 'allo’ed' but not supported by this instance

of the property. I.e. it is not one of the datatypes that would ever be supported by an instance of this property in this object

type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example in a

CHOICE, by this property in this object type, but not supported by this instance of the property.

9.15 RemoveListElement Service Execution Tests

9.15.2 Negative RemoveListElement Service Execution Tests

9.15.2.2 A RemoveListElement Failure Part Way Through a List

Reason For Change: The test specified an incorrect error code. .

Purpose: To verify the ability of the IUT to respond to a RemoveListElement service request to remove multiple elements

from a list where one of the elements cannot be removed. Upon failure, the RemoveListElement service should leave the

list unchanged.

Test Steps:

1. READ InitialList = (L), ListProp

2. TRANSMIT RemoveListElement-Request,‘ 'Object Identif’er' = L,‘ 'Property Identif’er' =

 ListProp‘ 'List of Eleme’ts' = (one element from InitialList, followed by an element of the correct

 datatype that is not in InitialList, followed by one or more elements from

93. InitialLis3. If (Protocol_Revision is present and Protocol_Revision >= 7) THEN

 RECEIVE RemoveListElement-Error,

 Error Class = PROPERTY SERVICES,

 Error Code = INVALID_DATA+TYPELIST_ELEMENT_NOT_FOUND

‘ 'First Failed Elem’nt' = 2

 ELSE

 RECEIVE RemoveListElement-Error

 Error Class = SERVICES | PROPERTY,

 Error Code = OTHER

94. ‘ 'First Failed Elem’nt' = 4. VERIFY (L), ListProp = InitialList

9.16 CreateObject Service Execution Tests

9.16.1 Positive CreateObject Service Execution Tests

9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values

Reason For Change: Added clarification that the IUT can place a restriction on the instance used. This correction is not in

any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object

specifier.

Test Steps1. TRANSMIT CreateObject-Request,‘ 'Object Specif’er' = (any unique object

identifier of a type that is creatable and an

95. instance number that is creatabl2. RECEIVE CreateObject-ACK,‘ 'Object

Identif’er' = (the object identifier specified in step 3. VERIFY (the object identifier of the newly created object),

 (any required property of the specified object) = (any value of the correct datatype for the specified

BACnet Testing Laboratories - Specified Tests

 184

 property)

4. VERIFY (the ’UT's Device object), Object_List = (any object list containing the newly created object)

9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values

Reason For Change: Added clarification that the IUT can place restrictions on the instance and initial values allowed for

creation. This change is not in any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object

specifier and a list of initial property values is provided.

Test Steps1. TRANSMIT CreateObject-Request,‘ 'Object Specif’er' = (any unique object

identifier of a type that is creatable and an

 instance number that is creatable)‘ 'List Of Initial Val’es' = (a list

of one or more properties and their initial values, that the IUT will

96. accept2. RECEIVE CreateObject-ACK,‘ 'Object Identif’er' =

 (the object identifier specified in step 3. REPEAT X = (properties initialized in the

CreateObject-Request) DO {

 VERIFY (the object identifier for the newly created object),

 X = (the value specified in t‘e 'List Of Initial Val’es' parameter of the CreateObject-Request)

97. 4. VERIFY (the ’UT's Device object), Object_List = (any object list containing the newly created object)

9.16.2 Negative CreateObject Service Execution Tests

The purpose of this test group is to verify correct execution of the CreateObject service requests under circumstances where

the service is expected to fail.

9.16.2.1 Attempting to Create an Object That Does Not Have a Unique Object Identifier

Reason For Change: Corrected the parameter used in the service request. This is not in any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when t‘e 'Object Specif’er' parameter conveys

an object identifier that already exists in the IUT.

Test Steps1. TRANSMIT CreateObject-Request,‘ 'Object Specif’er' = (any object identifier

representing an object that already exists

98. having an object type for which dynamic creation is supporte2. RECEIVE

CreateObject-Error,

 Error Class = OBJECT,

 Error Code = OBJECT_IDENTIFIER_ALREADY_EXISTS‘ 'First Failed Element

Num’er' = 0

9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values

Reason for Change: Added Test Concept and Configuration Requirements.

Purpose: To verify the correct execution of the CreateObject service request when an object type is used as the object

specifier and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and t‘e 'List Of Initial Val’es'

parameter containing a value which is out of range. The TD then attempts to create an object with a value of an

inappropriate datatype in t‘e 'List Of Initial Val’es' parameter. The selected datatype is not compliant with the property

definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property

definition, but which is not supported for P1 by the IUT. For instance, Schedule_Default which is defined to be of Any

BACnet Testing Laboratories - Specified Tests

 185

primitive datatype, would not be used in this test along with BitString datatype, even where the ’UT's Schedule object

cannot be configured for scheduling BitString values.

Test Steps:

1. READ X1 = Object_List

99. 2. TRANSMIT CreateObject-Request,‘ 'Object TypeSpecif’er' = (any creatable object type),‘ 'List

Of Initial Val’es' = (a list of one or more properties and their initial values, that the IUT will

 accept initial values for, with one of the values being out of rang3. IF (Protocol_Revision is present and

Protocol_Revision 4) THEN

 RECEIVE CreateObject-Error PDU,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE

‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offending value)

 ELSE

 RECEIVE CreateObject-Error,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE |

 OTHER

‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offending value)

4. CHECK(Verify that the new object was not created)

5. TRANSMIT CreateObject-Request,‘ 'Object TypeSpecif’er' = (object type of step 2),‘ 'List Of Initial

Val’es' = (a list of one or more properties and their initial values, that the IUT will accept initial

values for, with one of the values being an inappropriate datatype)

6. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

 RECEIVE

 CreateObject-Error,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE

‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offending value) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)

 ELSE

 RECEIVE CreateObject-Error,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE | INVALID_DATATYPE |

 OTHER

‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offending value) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)

7. READ X2 = Object_List

8. CHECK (X1=X2)

9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial

Values

Reason for Change: Added Test Concept and Configuration Requirements to clarify usage.

Purpose: To verify the correct execution of the CreateObject service request when an object identifier is used as the object

specifier and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and t‘e 'List Of Initial Val’es'

parameter containing a value which is out of range. The TD then attempts to create an object with a value of an

inappropriate datatype in t‘e 'List Of Initial Val’es' parameter. The selected datatype is not compliant with the property

definition given by the BACnet standard.

BACnet Testing Laboratories - Specified Tests

 186

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property

definition, but which is not supported for P1 by the IUT. For instance, Schedule_Default which is defined to be of Any

primitive datatype, would not be used in this test along with BitString datatype, even where the ’UT's Schedule object

cannot be configured for scheduling BitString values.

Test Steps1. TRANSMIT CreateObject-Request,‘ 'Object IdentifierSpecif’er' = (any unique object identifier

of a type that is creatable and an

 instance number that is creatable),‘ 'List Of Initial Val’es' = (a list of one or

more properties and their initial values, that the IUT will

100. accept initial values for, with one of the values being out of rang2. IF

(Protocol_Revision is present and Protocol_Revision 4) THEN

 RECEIVE CreateObject-Error PDU,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE

‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offending value)

 ELSE

 RECEIVE CreateObject-Error,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE | OTHER

‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offending value)

3. CHECK(Verify that the new object was not created)

4. TRANSMIT CreateObject-Request,‘ 'Object Specif’er' = (object identifier from step 1),‘ 'List Of Initial

Val’es' = (a list of twoone or more properties and their initial values, that the

 IUT will accept initial values for, with one of the values being an

101. inappropriate datatyp5. IF (Protocol_Revision is present and Protocol_Revision 4)

THEN

 RECEIVE

 CreateObject-Error,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE

 ‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offending value) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_PARAMETER_DATATYPE) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_TAG)

 ELSE

 RECEIVE

 CreateObject-Error,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE | INVALID_DATATYPE | OTHER

 ‘ 'First Failed Element Num’er' = (the position in t‘e 'List Of Initial Val’es' with the offendingvalue) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)

6. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (t‘e 'Object Identif’er' used in step 1),‘

 'Property Identif’er' = Object_Name

7. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = OBJECT,

 Error Code = UNKNOWN_OBJECT

 ELSE

 RECEIVE BACnet-Error-PDU

 Error Class = OBJECT,

 Error Code = UNKNOWN_OBJECT | NO_OBJECTS_OF_SPECIFIED_TYPE | OTHER

BACnet Testing Laboratories - Specified Tests

 187

9.16.2.6 Attempting to Create an Object with an instance of 4194303

Reason For Change: Corrected parameter for service request. This change is not in any SSPC proposal.

Purpose: This test case verifies the correct execution of the CreateObject service request when t‘e 'Object Specif’er'

parameter conveys an object identifier with an instance of 4194303. This test shall be performed only if the

Protocol_Revision property is present in the Device object and has a value greater than or equal to 4.

Test Steps1. TRANSMIT CreateObject-Request,‘ 'Object Specif’er' = (any object identifier

representing a creatable object-type with

 an instance of 4194302. RECEIVE BACnet-Reject-PDU,‘ 'Reject Rea’on' =

 PARAMETER_OUT_OF_RANGE

9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type)

Reason for Change: Addendum 135-2008u-2

Purpose: To verify the correct execution of the CreateObject service request when t‘e 'Object Specif’er' parameter conveys

an object type that is not supported in the IUT.

102. Test Steps1. TRANSMIT CreateObject-Request,‘ 'Object Specif’er' = (any unsupported object typ2. IF

(Protocol_Revision >= 10)

 RECEIVE CreateObject-Error,

 Error Class = OBJECT,

 Error Code = UNSUPPORTED_OBJECT_TYPE

‘ 'First Failed Element Num’er' = 0.

 ELSE

 RECEIVE CreateObject-Error,

 Error Class = (any valid error class),

 Error Code = (any valid error code)

103. ‘First Failed Element Number’ =3. VERIFY (the ’UT's Device object),

 Object_List = (any object list that does not contain the object specified in step 1)

9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier)

Reason for Change: Addendum 135-2008u-2

Purpose: To verify the correct execution of the CreateObject service request when t‘e 'Object Specif’er' parameter conveys

an object identifier for an object type that is not supported in the IUT.

Test Steps:

104. TRANSMIT CreateObject-Request,‘ 'Object Specif’er' = (any object identifier having an unsupported object

typ2. IF (Protocol_Revision >= 10)

 RECEIVE CreateObject-Error,

 Error Class = OBJECT,

 Error Code = UNSUPPORTED_OBJECT_TYPE

‘ 'First Failed Element Num’er' = 0

 ELSE

 RECEIVE CreateObject-Error,

 Error Class = (any valid error class),

 Error Code = (any valid error code)

105. ‘First Failed Element Number’ =3. VERIFY (the ’UT's Device object),

 Object_List = (any object list that does not contain the object specified in step 1)

BACnet Testing Laboratories - Specified Tests

 188

Notes to tester: If the IUT limits the instances that can be created, this shall be taken into account when selecting an object

identifier in step 1.

9.17 DeleteObject Service Execution Tests

9.17.2 Negative DeleteObject Service Execution Tests

9.17.2.1 Attempting to Delete an Object That is Not Deletable

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct response to an attempt to delete an object that is not deletable.

Configuration Requirements: The IUT shall be configured with an object X that cannot be deleted.

Test Steps:

1. READ V1 = Object_Name

106. 2. TRANSMIT DeleteObject-Request,‘ 'Object Identif’er' =3. RECEIVE BACnet-Error-PDU,

 Error Class = OBJECT,

 Error Code = OBJECT_DELETION_NOT_PERMITTED

4. VERIFY (X), Object_Name = V1 (the Object_Name specified in the EPICS)

5. VERIFY (X), Object_List = (any object list that contains X)

9.18 ReadProperty Service Execution Tests

9.18.1 Positive ReadProperty Service Execution Tests

9.18.1.2 Reading a Single Element of an Array

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute ReadProperty service requests when the requested property is an array and a

single element of the array is requested.

Test Steps:

1. READ V = (Device, X), Object_List ARRAY_INDEX=1

107. CHECK (V is of type object-identifie1. VERIFY (Device, X),

Object_List = (the first element of the Object_List array as specified in the EPICS),

ARRAY INDEX = 1

Passing Result: The returned value should be of type object-identifier.

9.18.1.X1 Reading Properties Based on Data Type

Reason for Change: A general ReadProperty test is not supplied by 135.1 that can be used in a variety of situations. The

BTL-WG has kept this test to ensure that all data types are tested. Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of

the supported base data types.

Test Concept: This test is repeated once for each base data type that the IUT supports. For each execution of the test a

property, P1, shall be selected that is of the data type being tested and the object containing P1 is designated Object1 in the

test description.

Test Steps:

1. READ V = (Object1), P1

BACnet Testing Laboratories - Specified Tests

 189

2. CHECK (V returns any valid value of the correct data type for property P1)

9.18.1.X3 Respects max-segments-accepted bit pattern

Reason for Change: There is no SSPC proposal for this change.

Purpose: To verify that the IUT abides by t‘e 'max-segments-accep’ed' parameter, when the size of the response does

require segmentation.

Configuration Requirements: Use a very small 50 octe‘ 'max-APDU-length-accep’ed' size in the request. The BACnet-

Confirmed-Request-PDU shall be one where the response size will exceed 2 tim‘s 'max-APDU-length-accep’ed' and so

require at least three segments. If the largest response that the IUT can return is 100 or fewer octets, then this test shall be

skipped.

Test Steps1. TRANSMIT BACnet-Confirmed-Request-PDU,‘ 'segmented-response-accep’ed' = TRUE‘ 'max-

segments-accep’ed' =2. RECEIVE BACnet-Abort-PDU,‘ 'Abort Rea’on' = BUFFER_OVERFLOW

Hints to Tester: An attempt to read the whole Object_List might suffice. Or a ReadRange or ReadPropertyMultiple or

AtomicReadFile request, if any of those services are executed.

9.20 ReadPropertyMultiple Service Execution Tests

9.20.1 Positive ReadPropertyMultiple Service Execution Tests

9.20.1.1 Reading a Single Property from a Single Object

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read a single property from a single object.

Test Concept: A single supported property is read from the Device object. The property is selected by the TD and is

designated as P1 in the test description.

Test Step1. TRANSMIT ReadPropertyMultiple-Request,‘ 'Object Identif’er' = Object1 | Object2,‘ 'Property

Identif’er' = 2. RECEIVE ReadPropertyMultiple-ACK,‘ 'Object Identif’er' = (the object selected in step 1),‘

 'Property Identif’er' = P1,‘ 'Property Va’ue' = (any valid valuethe value of P1 specified in the EPICS)

9.20.1.2 Reading Multiple properties from a Single Object

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read multiple properties from a single object.

Test Steps1. TRANSMIT ReadPropertyMultiple-Request,‘ 'Object Identif’er' = Object1 | Object 2,‘ 'Property

Identif’er' = P1,‘ 'Property Identif’er' = P2

-- ... (Two properties are required but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,‘ 'Object Identif’er' = (the object selected in step 1),‘ 'Property

Identif’er' = P1,‘ 'Property Va’ue' = (any valid value for P1the value of P1 specified in the EPICS),‘ 'Property

Identif’er' = P2,‘ 'Property Va’ue' = (any valid value for P2the value of P2 specified in the EPICS)

-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.3 Reading a Single Property from Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read a single property from multiple objects.

BACnet Testing Laboratories - Specified Tests

 190

Test Steps1. TRANSMIT ReadPropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er'

= P1,‘ 'Object Identif’er' = Object2,‘ 'Property Identif’er' = P2

-- … (Two properties are required but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value for P1the value of P1 specified in the EPICS),‘ 'Object Identif’er' = Object2,‘

 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value for P2the value of P2 specified in the EPICS)

-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.4 Reading Multiple Properties from Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read multiple properties from multiple objects.

Test Steps1. TRANSMIT ReadPropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er'

= P1,‘ 'Property Identif’er' = P2,‘ 'Property Identif’er' = P3,‘ 'Object Identif’er' = Object2,‘ 'Property

Identif’er' = P4,‘ 'Property Identif’er' = P5,‘ 'Property Identif’er' = P6

-- … (Two objects must be included but but more may be selected.)

2. RECEIVE ReadPropertyMultiple-ACK,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value for P1the value of P1 specified in the EPICS),‘ 'Property Identif’er' = P2,‘

 'Property Va’ue' = (any valid value for P2the value of P2 specified in the EPICS),‘ 'Property Identif’er' = P3,‘

 'Property Va’ue' = (any valid value for P3the value of P3 specified in the EPICS),‘ 'Object Identif’er' = Object2,‘

 'Property Identif’er' = P4,‘ 'Property Va’ue' = (any valid value for P4the value of P4 specified in the EPICS)‘

 'Property Identif’er' = P5,‘ 'Property Va’ue' = (any valid value for P5the value of P5 specified in the EPICS),‘

 'Property Identif’er' = P6‘ 'Property Va’ue' = (any valid value for P6the value of P6 specified in the EPICS)

-- … (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which t‘e 'List of Read

Access Specificati’ns' contains a specification for an unsupported property.

Test Steps1. TRANSMIT ReadPropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er'

= P1,‘ 'Property Identif’er' = P2,‘ 'Property Identif’er' = (any property, P3, not supported in this object),‘

 'Property Identif’er' = 2. RECEIVE ReadPropertyMultiple-ACK,‘ 'Object Identif’er' = Object1,‘

 'Property Identif’er' = P1,‘ 'Property Va’ue' = (any valid value for P1the value of P1 specified in the EPICS),‘

 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value for P2the value of P2 specified in the EPICS),‘

 'Property Identif’er' = P3,‘ 'Error Cl’ss' = PROPERTY,‘ 'Error C’de' = UNKNOWN_PROPERTY,‘

 'Property Identif’er' = P4,‘ 'Property Va’ue' = (any valid value for P4the value of P4 specified in the EPICS)

9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors

Reason For Change: Modified Test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which t‘e 'List of Read

Access Specificati’ns' contains specifications for multiple unsupported properties.

Test Step1. TRANSMIT ReadPropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property

Identif’er' = P1,‘ 'Property Identif’er' = P2,‘ 'Property Identif’er' = (any property, P3, not supported in this

object),‘ 'Property Identif’er' = (any property, P4, not supported in this object),‘ 'Object Identif’er' = (any non-

existent object, Object2, which is of a type supported by the IUT), ‘ 'Property Identif’er' = P5,‘ 'Property

Identif’er' = 2. RECEIVE ReadPropertyMultiple-ACK,‘ 'Object Identif’er' = Object1,‘ 'Property

Identif’er' = P1,‘ 'Property Va’ue' = (any valid value for P1the value of P1 specified in the EPICS),‘

 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value for P2the value of P2 specified in the EPICS),‘

BACnet Testing Laboratories - Specified Tests

 191

 'Property Identif’er' = P3,‘ 'Error Cl’ss' = PROPERTY,‘ 'Error C’de' =

 UNKNOWN_PROPERTY,‘ 'Property Identif’er' = P4,‘ 'Error Cl’ss' = PROPERTY,‘ 'Error

C’de' = UNKNOWN_PROPERTY,‘ 'Object Identif’er' = Object2,‘ 'Property Identif’er' = P5,‘

 'Error Cl’ss' = OBJECT,‘ 'Error C’de' = (UNKNOWN_OBJECT),‘ 'Property Identif’er' =

 P6,‘ 'Error Cl’ss' = OBJECT,‘ 'Error C’de' = (UNKNOWN_OBJECT)

9.20.1.7 Reading ALL Properties

Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x. Addendum 135-

2010ao-5.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property

identifier ALL. One instance of each object-type supported is tested.

108. Test Step1. REPEAT ObjectX = (one instance of each supported object type) DO {

 TRANSMIT ReadPropertyMultiple-Request,

‘ 'Object Identif’er' = ObjectX,

‘ 'Property Identif’er' = ALL

 RECEIVE ReadPropertyMultiple-ACK,

‘ 'Object Identif’er' = ObjectX,

 REPEAT P = (each property supported by Object1ObjectX) DO {

‘ 'Property Identif’er' = P,

‘ 'Property Va’ue' = (any valid value for Pthe value of P specified in the EPICS)

 }

 }

Notes to Tester: Any proprietary properties that are supported for the object-type shall also be returned (see BACnet

15.7.3.1.2). If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and

Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the

entry shall conta‘n 'Error Cl’ss': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.

Property_List(371) shall not appear in the List of Results.

9.20.1.8 Reading OPTIONAL Properties

Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property

identifier OPTIONAL. One instance of each object-type supported is tested. The property identifier OPTIONAL means that

only those standard properties present in the object that have a conformance co“e”"O" shall be returned.

109. Test Step1. REPEAT ObjectX = (one instance of each supported object type) DO {

 TRANSMIT ReadPropertyMultiple-Request,

‘ 'Object Identif’er' = Object1ObjectX,

‘ 'Property Identif’er' = OPTIONAL

 RECEIVE ReadPropertyMultiple-ACK,

‘ 'Object Identif’er' = Object1ObjectX,

 REPEAT P = (each optional property supported by Object1ObjectX) DO {

‘ 'Property Identif’er' = P,

‘ 'Property Va’ue' = (any valid value for Pthe value of P specified in the EPICS)

 }

 }

Notes to Tester: If no optional properties are supported then an emp‘y 'List of Resu’ts' shall be returned for the specified

property. If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and

Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the

entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.

BACnet Testing Laboratories - Specified Tests

 192

9.20.1.9 Reading REQUIRED Properties

Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x. Addendum 135-

2010ao-5

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property

identifier REQUIRED. One instance of each object-type supported is tested. The property identifier REQUIRED means

that only those standard properties having a conformance code “f”"R" “r”"W" shall be returned.

110. Test Steps1. REPEAT ObjectX = (one instance of each supported object type) DO {

 TRANSMIT ReadPropertyMultiple-Request,

‘ 'Object Identif’er' = ObjectX,

‘ 'Property Identif’er' = REQUIRED

 RECEIVE ReadPropertyMultiple-ACK,

‘ 'Object Identif’er' = ObjectX,

 REPEAT P = (each required property defined for Object1ObjectX) DO {

‘ 'Property Identif’er' = P,

‘ 'Property Va’ue' = (any valid value for Pthe value of P specified in the EPICS)

 }

 }

Notes to Tester: If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and

Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the

entry shall conta‘n 'Error Cl’ss': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.

Property_List (371) shall not appear in the List of Results.

9.20.1.X1 Reading Properties Based on Data Type

Reason For Change: A general ReadPropertyMultiple test is not supplied by 135.1 that can be used in a variety of

situations. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute ReadPropertyMultiple service requests for requested properties of

each of the supported base data types.

Test Concept: The test 9.18.1.X1 Reading Properties Based on Data Type is repeated using ReadPropertyMultiple instead

of ReadProperty.

9.21 ReadRange Service Execution Tests

9.21.1 Positive ReadRange Service Execution Tests

9.21.1.X1 ReadRange Support for All List Properties

Reason for change: Need a ReadRange test for non-Log_Buffer list properties.

Purpose: To verify that all list properties of all objects can be read using the 3 by position forms of the ReadRange service.

Configuration Requirements: The IUT must be configured with at least one non-empty list property.

111. Test Steps1. REPEAT X = (all objects in the ’UT's database) DO {

 REPEAT Y = (all list properties in object X) DO {

 TRANSMIT ReadRange-Request

 ‘ 'Object Identif’er' = X,

 ‘ 'Property Identif’er' = Y,

 RECEIVE (ReadRange-ACK

 ‘ 'Object Identif’er' = X,

BACnet Testing Laboratories - Specified Tests

 193

 ‘ 'Property Identif’er' = Y,

 ‘Result Flags’ = (?, ?, ?),

 ‘Item Count’ = (C: up to number of items in Y)

 ‘Item Data’ = (the first C elements of Y))|

 (ReadRange-ACK

 ‘ 'Object Identif’er' = X,

 ‘ 'Property Identif’er' = Y,

 (‘Result Flags’ = (FALSE, FALSE, FALSE),

 ‘Item Count’ = (C = 0)

 ‘Item Data’ = ())

 IF (C <> 0) THEN

 TRANSMIT ReadRange-Request

 ‘ 'Object Identif’er' = X,

 ‘ 'Property Identif’er' = Y,

 ‘Reference Index’ = 1,

 ‘Count’ = (C: any valid positive value)

 RECEIVE ReadRange-ACK

 ‘ 'Object Identif’er' = X,

 ‘ 'Property Identif’er' = Y,

 ‘Result Flags’ = (TRUE, ?, ?),

 ‘Item Count’ = (C2: up to C)

 ‘Item Data’ = (the first C2 elements of Y)

 TRANSMIT ReadRange-Request

 ‘ 'Object Identif’er' = X,

 ‘ 'Property Identif’er' = Y,

 ‘Reference Index’ = (the number of elements in Y),

 ‘Count’ = (C: any valid negative value)

 RECEIVE ReadRange-ACK

 ‘ 'Object Identif’er' = X,

 ‘ 'Property Identif’er' = Y,

 ‘Result Flags’ = (?, TRUE, ?),

 ‘Item Count’ = (C2: up to abs(C))

 ‘Item Data’ = (the last C2 elements of Y)

 }

 }

9.21.2 Negative ReadRange Service Execution Tests

9.21.2.1 Attempting to Read a Property That Does not Exist

Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property does not exist. This

test is only applied to devices with a Protocol_Revision of 10 or higher.

Configuration Requirements: If all the list properties applicable for the object under testing are supported, then this test

shall be skipped.

Test Steps1. TRANSMIT ReadRange-Request,‘ 'Object Identif’er' = (any object that exists in the IUT),‘

 'Property Identif’er' = (any list property applicable for that object but not supported by the IUT2. RECEIVE

BACnet-Error-PDU,‘ 'Error Cl’ss' = PROPERTY,‘ 'Error Code’ = UNKNOWN_PROPERTY

9.21.2.2 Attempting to Read a Property That is not a List

Reason For Change: 135-2008u-3. Corrected the error class returned from test

BACnet Testing Laboratories - Specified Tests

 194

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not a list. This

test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps1. TRANSMIT ReadRange-Request,‘ 'Object Identif’er' = (any object that exists in the IUT),‘

 'Property Identif’er' = (any non-list property supported by and present in the IUT2. RECEIVE BACnet-Error-

PDU,‘ 'Error Cl’ss' = PROPERTY, SERVICES,‘ 'Error Code’ = PROPERTY_IS_NOT_A_LIST

9.21.2.3 Attempting to Read a non-Array Property with an Array Index

Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not an array of

lists. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps1. TRANSMIT ReadRange-Request,‘ 'Object Identif’er' = (any object that exists in the IUT),‘

 'Property Identif’er' = (any non-array list property supported by and present in the IUT),

 ‘Array Index’ = (any valid valu2. RECEIVE BACnet-Error-PDU,‘ 'Error Cl’ss' = PROPERTY,‘

 'Error Code’ = PROPERTY_IS_NOT_AN_ARRAY

9.22 WriteProperty Service Execution Tests

9.22.1 Positive WriteProperty Service Execution Tests

9.22.1.1 Writing a Single Element of an Array

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is an array and a single array

element is written.

Test Concept: The TD shall select an object in the IUT that contains a writable array property. This property is designated

P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writing array values it shall be configured with at least one writable

property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = (any value N: 1 N the size of the array)

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Array In’ex' = N(any value N: 1 N the size of the array)‘ 'Property Va’ue' = (any valid value of the

correct datatype subject to the restrictions specified

 in the EPICS as defined in 4.4.2 for this array, except the value X read

 for this element in step 1)

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), P1 = (the value used in step 2), ARRAY INDEX = N

9.22.1.2 Writing a Commandable Property Without a Priority

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is commandable but a

priority is not specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is commandable and has no

internal algorithm writing to it at priority 16. If no suitable object can be found, then this test shall be omitted.

BACnet Testing Laboratories - Specified Tests

 195

Configuration Requirements: If the IUT supports commandable properties that have no internal algorithm writing at

priority 16, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), Priority_Array, ARRAY INDEX = 16

1. VERIFY (Object1), Priority_Array =(the value defined for this property in the EPICS), ARRAY INDEX = 16

2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = Present_Value,‘

 'Property Va’ue' = (any valid value of the correct datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X read in step 1)

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), Priority_Array = (the value used in step 2), ARRAY INDEX = 16

9.22.1.3 Writing a Non-Commandable Property with a Priority

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property is not commandable but a

priority is specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is not commandable and has

no internal algorithm writing to it. If no suitable property can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports non-commandable properties that have no internal algorithm writing to

them, it shall be configured with at least one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Prior’ty' = (any valid priority)‘ 'Property Va’ue' = (any valid value defined for this property subject to the

restrictions specified in the EPICS

 as defined in 4.4.2, except the value X read in step 1)

3. RECEIVE BACnet-BACnet-SimpleACK-PDU

4. VERIFY (Object1), P1 = (the value used in step 2)

9.22.1.X1 Writing an Array Size

Reason For Change: No test exists for this functionality. This test was covered by CN-039 but the SSPC rejected the test in

favour of the tests outlined in WS-030. The BTL-WG has chosen to keep this specific test in order to allow the tester to

test individual properties. Modified this test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute WriteProperty service requests to the array size of a writable, non-

fixed size array property.

Test Concept: The TD shall select an object in the IUT that contains a writable array property of a non-fixed size. This

property is designated P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writable non-fixed size array properties it shall be configured with at least

one writable non-fixed size array property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1 ARRAY INDEX = 0

1. VERIFY (Object1), P1[0] = (the array size defined for this array property in the EPICS)

2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,

 ‘Array Index’ = 0‘ 'Property Va’ue' = (any valid array size defined for this property subject to the

 restrictions specified in the EPICS as defined in 4.4.2,

 except the value verified in step 1)

BACnet Testing Laboratories - Specified Tests

 196

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), P1[0] = (the value used in step 2)

9.22.1.X2 Writing to Properties Based on Data Type

Reason for Change: A general WriteProperty test is not supplied by 135.1 that can be used in a variety of situations. The

BTL-WG has kept this test to ensure that all data types are tested.

Purpose: This test case verifies that the IUT can execute WriteProperty service requests to specific data types supported by

the IUT.

Test Concept: For the specified base data type, the TD shall select an object in the IUT that contains a writable property of

that data type. This property is designated P1.

Configuration Requirements: The IUT shall be configured with at least one writable property of the specified data type to

be used for this test.

Test Steps:

1. X = READ (Object1), P1

2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value defined for this property subject to the

 restrictions specified in the EPICS as defined in 4.4.2,

 except the value X determined in step 1)

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Object1), P1 = (the value used in step 2)

9.22.2 Negative WriteProperty Service Execution Tests

9.22.2.1 Writing Non-Array Properties with an Array Index

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property value is not an array but an

array index is included in the service request.

Test Concept: The TD shall select an object in the IUT that contains a writable scalar property designated P1. An attempt

will be made to write to this property using an array index. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least

one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the correct datatype for this property subject to the restrictions

112. specified in the EPICS as defined in 4.4.2, except the value X read in step 1),‘

 'Property Array In’ex' = (any positive intege3. IF (Protocol_Revision is present and Protocol_Revision >= 4)

THEN

 RECEIVE BACnet-Error PDU,

 Error Class = PROPERTY,

 Error Code = PROPERTY_IS_NOT_AN_ARRAY

 ELSE

 RECEIVE BACnet-Error PDU,

BACnet Testing Laboratories - Specified Tests

 197

 Error Class = SERVICES,

 Error Code = INCONSISTENT_PARAMETERS

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

9.22.2.2 Writing Array Properties with an Array Index that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values. Fixed array index descrption per BTL-CR-

0373.

Purpose: To verify that the IUT can execute WriteProperty service requests when the requested property value is an array

but the array index is out of range.

Test Concept: The TD shall select an object in the IUT that contains a writable array property designated P1. An attempt

will be made to write to this property using an array index that is out of range. If no suitable object can be found, then this

test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least

one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any value of the correct datatype for this property subject to the restrictions

113. specified in the EPICS as defined in 4.4.2, except the value X read in step 1),‘

 'Property Array In’ex' = (any value positive integer that is larger thanthat the currentsupported size ofif the arra3.

 RECEIVE BACnet-Error PDU,

 Error Class = PROPERTY,

 Error Code = INVALID_ARRAY_INDEX

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

9.22.2.3 Writing with a Property Value Having the Wrong Datatype

Reason for Change: Updated Test Concept and Added Configuration Requirements.

Purpose: To verify that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be

made to write to this property using a datatype that the IUT supports but which is invalid for the property which is not

compliant with the property definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property

definition. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

114. 2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any value with an invalid datatyp3. RECEIVE

 (BACnet-Error PDU,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_PARAMETER_DATATYPE) |

 (BACnet-Reject-PDU

 Reject Reason = INVALID_TAG)

4. VERIFY (Object1), P1 = V

BACnet Testing Laboratories - Specified Tests

 198

9.22.2.4 Writing with a Property Value that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when an attempt is made to write a value that is

outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range. If the IUT does

not contain any writable properties that have restricted ranges, then this test shall be skipped.

Test Steps:

1. READ X = (Object1), P1

 1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS),

115. 2. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = (Object1, any object with writable properties),‘

 'Property Identif’er' = (P1, any writable property with a restricted range of values),‘ 'Property Va’ue' =

 (any value, of the correct datatype, that is outside the supported rang3. IF (Protocol_Revision is present and

Protocol_Revision >= 4) THEN

 RECEIVE BACnet-Error PDU,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE

 ELSE

 RECEIVE (BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE) |

 (BACnet-Reject-PDU,

 Reject Reason = PARAMETER_OUT_OF_RANGE)

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

Notes to tester: The value used in step 2 shall be of the correct datatype. For bit string types, the bit count shall be correct,

for Date and Time values, the value shall be within the range defined by the standard for the datatype, for constructed

values, the constructed value shall match the structure defined by the ASN.1 and all field values shall be within the ranges

defined by the standard for those field values.

9.22.2.X1 Writing Non-Array Read-only Property with an Array Index

Reason for Change: Existing test 9.22.2.1 forbids the testing of a read-only property, to observe the response when an array

index is included in the service request.

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value when the property

value is not an array but an array index is included in the service request, and the property specified in the service request is

not writable.

Test Concept: Select an object, designated Object1, in the IUT that contains a non-writable scalar property designated P1.

An attempt will be made to write to this property with an array index included. If no object supports non-writable scalar

properties, then this test shall be omitted.

116. Test Steps1. TRANSMIT WriteProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' =

P1,‘ 'Property Va’ue' = (any value of the correct datatype for this property)‘ 'Property Array In’ex' = (any

positive intege2. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

 RECEIVE BACnet-Error PDU,

 Error Class = PROPERTY,

 Error Code = WRITE_ACCESS_DENIED | PROPERTY_IS_NOT_AN_ARRAY

 ELSE

 RECEIVE (BACnet-Error PDU,

 Error Class = SERVICES,

 Error Code = INCONSISTENT_PARAMETERS) |

 (BACnet-Error PDU,

BACnet Testing Laboratories - Specified Tests

 199

 Error Class = PROPERTY,
 Error Code = WRITE_ACCESS_DENIED | PROPERTY_IS_NOT_AN_ARRAY)

9.22.2.X2 Resizing a writable fixed size array property

Purpose: This test case verifies that the IUT correctly responds to an attempt to resize a writable fixed size array property

using WriteProperty service.

Test Concept: Select an object (O1) in the IUT that contains a writable array property of a fixed size. This property is

designated P1. If no suitable object can be found, then this test shall be omitted.

Test Steps:

1. READ X = (O1), P1 ARRAY INDEX = 0

2. WRITE P1= (Entire Array with any valid value greater than Array Size X)

3. RECEIVE BACnet-Error-PDU‚

'Error Cl‘ss' = PROPERTY‘

'Error C’de' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE

4. VERIFY (O1), P1= X, ARRAY INDEX = 0

5. WRITE P1= (Entire Array with any valid value less than Array Size X)

6. RECEIVE BACnet-Error PDU‚

'Error Cl‘ss' = PROPERTY‘

'Error C’de' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE

7. VERIFY (O1), P1= X, ARRAY INDEX = 0

8. WRITE P1 = (any valid value greater than Array Size X), ARRAY INDEX=0

9. RECEIVE BACnet-Error PDU‚

'Error Cl‘ss' = PROPERTY‘

'Error C’de' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE

10. VERIFY (O1), P1= X, ARRAY INDEX = 0,

11. WRITE P1 = (any valid value less than Array Size X), ARRAY INDEX=0

12. RECEIVE BACnet-Error PDU‚

'Error Cl‘ss' = PROPERTY‘

'Error C’de' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANGE

13. VERIFY (O1), P1= X, ARRAY INDEX = 0

9.23 WritePropertyMultiple Service Execution Tests

9.23.1 Positive WritePropertyMultiple Service Execution Tests

9.23.1.1 Writing a Single Property to a Single Object

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write a single property to a single object.

Test Concept: This test case attempts to write to a single scalar property, P1, that is not commandable. If no such writable

property exists the test can be modified to write to an array property or to a commandable property with a write priority

high enough to ensure that the commandable prope’ty's value will change.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be

configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array

or commandable property and the test steps modified to account for this variation.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

BACnet Testing Laboratories - Specified Tests

 200

2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1)

3. RECEIVE BACnet-Simple-ACK-PDU

4. VERIFY (Object1), P1 = (the value specified in step 2)

9.23.1.2 Writing Multiple properties to a Single Object

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write multiple properties to a single object.

Test Concept: This test case attempts to write to multiple scalar properties, P1 and P2, that are not commandable. If two

such writable properties ’on't exist the test can be modified to write to an array property or to a commandable property with

a write priority high enough to ensure that the commandable prope’ty's value will change.

Configuration Requirements: If the IUT supports any object that has two writable scalar properties that are not

commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be

configured, if possible, with writable array or commandable properties and the test steps modified to account for this

variation. If no object type is supported that has two or more writable properties this test may be omitted. The IUT must

support either the configuration required for this test or a configuration required for test 9.23.1.3

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)

3. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),‘

 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject

to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)

4. RECEIVE BACnet-Simple-ACK-PDU

5. VERIFY (Object1), P1 = (the value specified for P1 in step 23)

6. VERIFY (Object1), P2 = (the value specified for P2 in step 23)

9.23.1.3 Writing a Single Property to Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write a single property from multiple objects.

Test Concept: This test case attempts to write to single scalar properties, P1 and P2, that reside in different objects but are

not commandable. If two such writable properties ’on't exist the test can be modified to write to an array property or to a

commandable property with a write priority high enough to ensure that the commandable prope’ty's value will change.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object2), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object2), P2 = (the value specified for this property in the EPICS)

3. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),‘

 'Object Identif’er' = Object2,‘ 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value of the

appropriate datatype for this property subject to the restrictions

BACnet Testing Laboratories - Specified Tests

 201

 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2)

4. RECEIVE BACnet-Simple-ACK-PDU

5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)

6. VERIFY (Object2), P2 = (the value specified for P2 in step 3)

9.23.1.4 Writing Multiple Properties to Multiple Objects

Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write multiple properties to multiple objects.

Test Concept: This test case attempts to write properties, P1 and P2, that reside in Object1, and properties P3 and P4 that

reside in Object2. P1, P2, P3 and P4 are not commandable properties. If four such writable properties do not exist the test

can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that

the commandable prope’ty's value will change.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

3. READ Z = (Object2), P3

4. READ A = (Object2), P4

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)

3. VERIFY (Object2), P3 = (the value specified for this property in the EPICS)

4. VERIFY (Object2), P4 = (the value specified for this property in the EPICS)

5. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),‘

 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject

to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 2),‘

 'Object Identif’er' = Object2,‘ 'Property Va’ue' = (any valid value of the appropriate datatype for this property

subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value Z except for the one read in step 3),‘

 'Object Identif’er' = Object2,‘ 'Property Identif’er' = P4,‘ 'Property Va’ue' = (any valid value of the

appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value A except for the one read in step 4)

6. RECEIVE BACnet-BACnet-SimpleACK-PDU

7. VERIFY (Object1), P1 = (the value specified for P1 in step 5)

8. VERIFY (Object1), P2 = (the value specified for P2 in step 5)

9. VERIFY (Object2), P3 = (the value specified for P3 in step 5)

10. VERIFY (Object2), P4 = (the value specified for P4 in step 5)

9.23.1.X4 Writing an Array Size

Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests to the array size of a

writable, non-fixed size array property.

Test Concept: Repeat test 9.22.1.X1 Writing an Array Size using WritePropertyMultiple instead of WriteProperty.

9.23.2 Negative WritePropertyMultiple Service Execution Tests

9.23.2.1 Writing Multiple Properties with a Property Access Error

Reason for Change: Modified test to remove dependency on EPICS values.

BACnet Testing Laboratories - Specified Tests

 202

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which t‘e 'List of Write

Access Specificati’ns' contains a specification for an unsupported property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable.

The second property is not supported for this object. The objective is to verify that an appropriate error response is returned

and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be

configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array

or commandable property and the test steps modified to account for this variation. In the test description Object1 will be

used to designate the object, P1 the writable property, and P2 the unsupported property used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),‘

 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject

to the restrictions

 specified in the EPICS as defined in 4.4.3. RECEIVE WritePropertyMultiple-Error,‘ 'Error

Cl’ss' = PROPERTY,‘ 'Error C’de' = UNKNOWN_PROPERTY,‘ 'Object Identif’er' = Object1,‘ 'Property

Identif’er' = P2

4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

9.23.2.2 Writing Multiple Properties with an Object Access Error

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which t‘e 'List of Write

Access Specificati’ns' contains a specification for an unsupported object.

Test Concept: An attempt is made to write to a single property in two different objects. The first object is supported and the

property is writable. The second object is not supported. The objective is to verify that an appropriate error response is

returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be

configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array

or commandable property and the test steps modified to account for this variation. In the test description Object1 and P1

will be used to designate the writable object and property used for this test. The designation BadObject will be used to

indicate an object that is not supported.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),‘

 'Object Identif’er' = BadObject,‘ 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value of the

appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.3. RECEIVE WritePropertyMultiple-Error,‘ 'Error

Cl’ss' = OBJECT,‘ 'Error C’de' = UNKNOWN_OBJECT,‘ 'Object Identif’er' = BadObject,‘ 'Property

Identif’er' = P2

4. VERIFY (Object1), P1 = (the value specified for P1 in step 2)

BACnet Testing Laboratories - Specified Tests

 203

9.23.2.3 Writing Multiple Properties with a Write Access Error

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which t‘e 'List of Write

Access Specificati’ns' contains a specification for a read only property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable.

The second property is supported but read only. The objective is to verify that an appropriate error response is returned and

that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be

configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array

or commandable property and the test steps modified to account for this variation. In the test description Object1 will be

used to designate the object, P1 the writable property, and P2 the read only property used for this test.

Test Steps:

1. READ X = (Object1), P1

2. READ Y = (Object1), P2

1. VERIFY (Object1), P1 = (the value specified for this property in the EPICS)

2. VERIFY (Object1), P2 = (the value specified for this property in the EPICS)

3. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X except for the one read in step 1),‘

 'Property Identif’er' = P2,‘ 'Property Va’ue' = (any valid value of the appropriate datatype for this property subject

to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value Y except for the one read in step 4.

 RECEIVE WritePropertyMultiple-Error,‘ 'Error Cl’ss' = PROPERTY,‘ 'Error C’de' =

WRITE_ACCESS_DENIED,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P2

5. VERIFY (Object1), P1 = (the value specified for P1 in step 3)

6. VERIFY (Object1), P2 = Y(the value specified for this property in the EPICS)

9.23.2.4 Writing Non-Array Properties with an Array Index

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the property value is

not an array but an array index is included in the service request. This test shall only be performed if Protocol_Revision is

present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable scalar property

designated P1. An attempt will be made to write to this property using an array index. If no suitable object can be found,

then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least

one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the correct datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X read in step 1),‘ 'Property Array

In’ex' = (any positive intege3. RECEIVE WritePropertyMultiple-Error,‘ 'Error Cl’ss' = PROPERTY,‘ 'Error

C’de' = PROPERTY_IS_NOT_AN_ARRAY,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

BACnet Testing Laboratories - Specified Tests

 204

9.23.2.5 Writing Array Properties with an Array Index that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values. Fixed array index descrption per BTL-CR-

0373.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the requested

property value is an array but the array index is out of range. This test shall only be performed if Protocol_Revision is

present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable array property

designated P1. An attempt will be made to write to this property using an array index that is out of range. If no suitable

object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least

one such property that can be used for this test.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any valid value of the correct datatype for this property subject to the restrictions

 specified in the EPICS as defined in 4.4.2, except the value X read in step 1),‘ 'Property Array

In’ex' = (any valuepositive integer that is larger thanthat the currentsupported size of the arra3. RECEIVE

WritePropertyMultiple-Error,‘ 'Error Cl’ss' = PROPERTY,‘ 'Error C’de' = INVALID_ARRAY_INDEX,‘

 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

9.23.2.6 Writing with a Property Value Having the Wrong Datatype

Reason for Change: Added configuration requirements to clarify usage.

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that has an invalid

datatype.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable property designated P1.

An attempt will be made to write to this property using a datatype that the IUT supports but which is invalid for the

property which is not compliant with the property definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property

definition. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (any value with an invalid datatyp3. RECEIVE WritePropertyMultiple-Error,‘ 'Error

Cl’ss' = PROPERTY,‘ 'Error C’de' = INVALID_DATATYPE,‘ 'Object Identif’er' = Object1,‘ 'Property

Identif’er' = P1

 | (BACnet-Reject-PDU‘ 'Reject Rea’on' = INVALID_PARAMETER_DATATYPE)

 | (BACnet-Reject-PDU ‘ 'Reject Rea’on' = INVALID_TAG)

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

9.23.2.7 Writing with a Property Value that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values. Modified to allow this test to be used on all

protocol revisions.

BACnet Testing Laboratories - Specified Tests

 205

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when an attempt is made

to write a value that is outside of the supported range. This test shall only be performed if Protocol_Revision is present and

has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable property designated P1.

The TD attempts to write to a property using a value that is outside of the supported range.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS),

117. 2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = (Object1, any object with writable

properties),‘ 'Property Identif’er' = (P1, any property with a restricted range of values),‘

 'Property Va’ue' = (any value that is outside the supported rang3. IF (Protocol_Revision < 4)

 RECEIVE

 (WritePropertyMultiple-Error,

 ‘ 'Error Cl’ss' = PROPERTY,

 ‘ 'Error C’de' = VALUE_OUT_OF_RANGE,

 ‘ 'Object Identif’er' = Object1,

 ‘ 'Property Identif’er' = P1) |

 (BACnet-Reject-PDU,

 ‘ 'Reject Rea’on' = PARAMETER_OUT_OF_RANGE)

 ELSE

 RECEIVE

 WritePropertyMultiple-Error,

 ‘ 'Error Cl’ss' = PROPERTY,

 ‘ 'Error C’de' = VALUE_OUT_OF_RANGE,

 ‘ 'Object Identif’er' = Object1,

118. ‘ 'Property Identif’er' = 4. VERIFY (OBJECT1), P1 = (the value defined for this property in the EPICS)

9.23.2.X1 WritePropertyMultiple Reject Test

Reason for Change: Addendum 135-2008u section 1.

Purpose: This test case verifies that the IUT does not send a Reject-PDU after applying part of a WritePropertyMultiple.

Test Concept: Two writable properties, P1 and P2 are written to the IUT but the portion of the WritePropertyMultiple

specifying P2 is made invalid by omitting the ‘Property Value’ parameter. If the IUT returns a Reject, then the value of the

first property is checked to ensure it has not changed.

Test Steps:

1. READ OldValue = O1, P1

2. TRANSMIT WritePropertyMultiple-Request,‘ 'Object Identif’er' = O1,‘ 'Property Identif’er' = P1,‘

 'Property Va’ue' = (NewValue: any value other than OldValue that would be accepted by

 the IUT for P1)‘ 'Object Identif’er' = O2,‘ 'Property Identif’er' = 3.

 RECEIVE WritePropertyMultiple-Error,‘ 'Error Cl’ss' = SERVICES,‘ 'Error C’de' =

 INVALID_TAG

‘ 'Object Identif’er' = O2

‘ 'Property Identif’er' = P2) |

 RECEIVE BACnet-Reject-PDU,‘ 'Reject Rea’on' = INVALID_TAG | MISSING_REQUIRED_PARAMETER |

 INCONSISTENT_PARAMETERS | INVALID_PARAMETER_DATA_TYPE |

119. TOO_MANY_ARGUMENT4. IF (a WritePropertyMultiple-Error was received in step 3)

THEN

 VERIFY (O1), P1 = NewValue

 ELSE -- a Reject-PDU was received

 VERIFY (O1), P1 = OldValue

BACnet Testing Laboratories - Specified Tests

 206

9.23.2.X2 Resizing a writable fixed size array property using WritePropertyMultiple service

Purpose: This test case verifies that the IUT correctly responds to an attempt to resize a writable fixed size array property

using WritePropertyMultiple service.

Test Concept: Select an object(O1) in the IUT that contains a writable array property of a fixed size. This property is

designated P1. If no suitable object can be found, then this test shall be omitted.

Test Steps:

1. READ X = (O1), P1, ARRAY INDEX = 0

2. TRANSMIT WritePropertyMultiple-Request‘

'Object Identif’er' = O1‘

'Property Identif’er' = P1‘

120. 'Property Va’ue' = (Entire Array with any valid value greater than Array Size 3. RECEIVE WritePropertyMultiple-

Error‘

 'Error Cl’ss' = PROPERT‘,

'Error C’de' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANG‘,

'ObjectIdentif’er' = O‘,

'PropertyIdentif’er' = P1

4. VERIFY (O1), P1= X, ARRAY INDEX = 0

5. TRANSMIT WritePropertyMultiple-Request‘

'Object Identif’er' = O1‘

'Property Identif’er' = P1‘

'Property Va’ue' = (Entire Array with any valid value less than Array Size X)

6. RECEIVE WritePropertyMultiple-Error‘

 'Error Class’ = PROPERT‘,

'Error Code’ = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANG‘,

'ObjectIdentif’er' = O‘,

'PropertyIdentif’er' = P1

7. VERIFY (O1), P1= X, ARRAY INDEX = 0

8. TRANSMIT WritePropertyMultiple-Request‚

'Object Identif‘er' = O1‚

'Property Identif‘er' = P1‚

'Property Va‘ue' = (any valid value greater than Array Size X)‚

'Property Array In‘ex' = 0

9. RECEIVE WritePropertyMultiple-Error‘

 'Error Cl’ss' = PROPERT‘,

'Error C’de' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANG‘,

'ObjectIdentif’er' = O‘,

'PropertyIdentif’er' = ‘1

'Property Array Index’=0

10. VERIFY (O1), P1= X, ARRAY INDEX = 0

11. TRANSMIT WritePropertyMultiple-Request‚

'Object Identif‘er' = O1‚

'Property Identif‘er' = P1‚

'Property Va‘ue' = (any valid value less than Array Size X)‚

'Property Array In‘ex' = 0

12. RECEIVE WritePropertyMultiple-Error‘

 'Error Cl’ss' = PROPERT‘,

'Error C’de' = INVALID_ARRAY_INDEX | VALUE_OUT_OF_RANG‘,

'ObjectIdentif’er' = O‘,

'PropertyIdentif’er' = P‘

'Property Array Index’= 0

13. VERIFY (O1), P1= X, ARRAY INDEX = 0

BACnet Testing Laboratories - Specified Tests

 207

9.24 DeviceCommunicationControl Service Execution Test

9.24.1 Positive DeviceCommunicationControl Service Execution Tests

9.24.1.5 Finite Time Duration Restored by ReinitializeDevice

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when a finite time

duration is specified and communication is restored using the ReinitializeDevice service.

Test Steps:

1. READ Y = (Device, X), Object_Name

2. TRANSMIT DeviceCommunicationControl-Request,‘ 'Time Durat’on' = (a value T > 1, in minutes, selected by

the tester)‘ 'Enable/Disa’le' = DISABLE,‘ 'Passw’rd' = (any appropriate password as described in the Test

Concept)

3. RECEIVE BACnet-SimpleACK-PDU

4. WAIT Internal Processing Fail Time

5. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (Device, X),‘ 'Property Identif’er' = (any

required non-array property of the Device object)

6. WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester, and < T as specified in the

 DeviceCommunicationControl-Request)

7. CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2.)

8. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialize State of Dev’ce' = WARMSTART,‘ 'Passw’rd' =

(any appropriate password as described in the Configuration Requirements)

9. RECEIVE BACnet-Simple-ACK-PDU

10. CHECK (Did the IUT perform a WARMSTART reboot?)

11. VERIFY (Device, X), Object_Name = Y(any required non-array property) = (the value for this property as described in

the EPICS)

9.24.2 Negative DeviceCommunicationControl Service Execution Tests

9.24.2.3 Restore by ReinitializeDevice with Inval‘d 'Reinitialized State of Dev’ce'

Reason for Change: Added support for additional error codes per Addendum 12.0c-7.

Purpose: To verify the communications are not restored when a ReinitializeDevice request is received that contains one of

the backup or restore related values for service paramet‘r 'Reinitialized State of Dev’ce'.

Test Concept: Disable the IUT’s communications for a period time, T, longer than it will take to complete the test. Verify

that, while communications are disabled, the IUT correctly responds with a Result(-) when it receives a ReinitializeDevice

request containing a backup or restore related values.

Test Steps1. TRANSMIT DeviceCommunicationControl-Request,‘ 'Enable/Disa’le' = DISABLE‘ 'Passw’rd'

 = (any appropriate password), ‘ 'Time Durat’on' = (a value T >= 1, in minutes) | (no value)

2. RECEIVE BACnet-Simple-ACK-PDU

3. WAIT Internal Processing Fail Time

4. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = STARTBACKUP | ENDBACKUP |

121. STARTRESTORE | ENDRESTORE | ABORTRESTORE,‘ 'Passw’rd' = (any

appropriate passwor5. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN

 IF (Device supports DM-BR-B) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = COMMUNICATION_DISABLED

 ELSE

 RECEIVE BACnet-Error-PDU,

BACnet Testing Laboratories - Specified Tests

 208

 Error Class = SERVICES,

 Error Code = COMMUNICATION_DISABLED |

 OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED

 ELSE

 CHECK(that the IUT responded with BACnet-Error-PDU with an Error Class of SERVICES and any appropriate

Error Code of COMMUNICATION_DISABLE, or that the IUT did not respond at all)

6. TRANSMIT DeviceCommunicationControl-Request,‘ 'Enable/Disa’le' = ENABLE‘ 'Passw’rd' = (any

appropriate password),

7. RECEIVE BACnet-Simple-ACK-PDU

9.27 ReinitializeDevice Service Execution Tests

9.27.2 Negative ReinitializeDevice Service Execution Tests

9.27.2.3 COLDSTART with Missing or Invalid Password

Reason for Change: Updated test to also test invalid password usage per Addendum 12.0g-5.

Purpose: To verify that the correct BACnet Error PDU is returned when a COLDSTART is attempted andthe password is

invalid or a password is required but no password is provided.

122. Test Steps1. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = COLDSTAR2. IF

(Protocol_Revision is present and Protocol_Revision >= 7) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 (RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE) |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED) |

 (BACnet-Error-PDU,

 Error Class = SERVIVCES,

 Error Code = MISSING_REQUIRED_PARAMETER)

3. CHECK (The IUT did NOT perform a COLDSTART reboot)

4. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = COLDSTART,

123. ‘Password’ = (any invalid passwor5. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 (RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE) |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED) |

 (BACnet-Error-PDU,

 Error Class = SERVIVCES,

 Error Code = MISSING_REQUIRED_PARAMETER)

6. CHECK (The IUT did NOT perform a COLDSTART reboot)

BACnet Testing Laboratories - Specified Tests

 209

9.27.2.4 WARMSTART with Missing or Invalid Password

Reason for Change: Updated test to also test invalid password usage per Addendum 12.0g-5.

Purpose: To verify that the correct BACnet Error PDU is returned when a WARMSTART is attempted and the password is

invalid or a password is required but no password is provided.

124. Test Steps1. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = WARMSTAR2. IF

(Protocol_Revision is present and Protocol_Revision >= 7) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED) |

 (BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = MISSING_REQUIRED_PARAMETER)

3. CHECK (The IUT did NOT perform a WARMSTART reboot)

4. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = WARMSTART,

125. ‘Password’ = (any invalid passwor5. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 (RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE) |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED) |

 (BACnet-Error-PDU,

 Error Class = SERVIVCES,

 Error Code = MISSING_REQUIRED_PARAMETER)

6. CHECK (The IUT did NOT perform a WARMSTART reboot)

Notes to Tester: External indications that the IUT has reinitialized, such as LEDs or startup message traffic, shall be used to

confirm reinitialization whenever possible.

9.29 UnconfirmedTextMessage Service Execution Tests

9.29.1 UnconfirmedTextMessage With No Message Class

Reason for Change: Add test support for the text message services.

Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when ‘o 'Message Cl’ss' is

provided.

126. Test Steps1. TRANSMIT UnconfirmedTextMessage-Request,‘ 'Text Message Source Dev’ce' = TD,‘

 'Message Prior’ty' = NORMAL,‘ 'Mess’ge' = (any CharacterStrin2. CHECK (Did any

vendor specified action for these circumstances occur?)

BACnet Testing Laboratories - Specified Tests

 210

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is

appropriate.

9.29.2 UnconfirmedTextMessage With an Unsigned Message Class

Reason for Change: Add test support for the text message services.

Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when the Unsigned form of t‘e

'Message Cl’ss' is used.

Configuration Requirements: The vendor shall provide a list of supported Unsigned message classes.

127. Test Steps1. TRANSMIT UnconfirmedTextMessage-Request,‘ 'Text Message Source Dev’ce' = TD,‘

 'Message Cl’ss' = (any Unsigned value from the list provided by the vendor),‘ 'Message Prior’ty' =

 NORMAL,‘ 'Mess’ge' = (any CharacterStrin2. CHECK (Did any vendor specified action for

these circumstances occur?)

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is

appropriate.

9.29.3 UnconfirmedTextMessage With a CharacterString Message Class

Reason for Change: Add test support for the text message services.

Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when the CharacterString form of

t‘e 'Message Cl’ss' is used.

Configuration Requirements: The vendor shall provide a list of supported CharacterString message classes.

128. Test Steps1. TRANSMIT UnconfirmedTextMessage-Request,‘ 'Text Message Source Dev’ce' = TD,‘

 'Message Cl’ss' = (any CharacterString value from the list provided by the vendor),‘ 'Message

Prior’ty' = NORMAL,‘ 'Mess’ge' = (any CharacterStrin2. CHECK(Did any vendor specified

action for these circumstances occur?)

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is

9.30 TimeSynchronization Service Execution Tests

Dependencies: ReadProperty Service Execution tests, 9.18.

BACnet Reference Clause: 16.7.

9.30.1 Positive TimeSynchronization Service Execution Tests

The purpose of this test group is to verify correct execution of TimeSynchronization service requests under circumstances

where the service is expected to be successfully completed.

9.30.1.1 TimeSynchronization Local Broadcast

Reason for change: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the

UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a local broadcast TimeSynchronization service

request.

Test Steps1. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property

Identif’er' = Local_Da2. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘

 'Property Identif’er' = Local_Date,‘ 'Property Va’ue' = (any valid date referred to “s "InitialD”te" belo3.

BACnet Testing Laboratories - Specified Tests

 211

 TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= Local_Ti4. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property

Identif’er' = Local_Time,‘ 'Property Va’ue' = (any valid time referred to “s "InitialT”me" belo5.

 TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= UTC_Offset

6. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er' =

 UTC_Offset,‘ 'Property Va’ue' = (any valid offset referred to “s "InitialUTC_Off”et" below)

7. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= Daylight_Savings_Status

129. 8. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= Daylight_Savings_Status,‘ 'Property Va’ue' = (any valid status referred to “s

"InitialDaylight_Savings_Sta”us" belo5. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 BACnet-Unconfirmed-Request-PDU,‘ 'Service Cho’ce' = TimeSynchronization-Request,

 date = (any date other than InitialDate),

 time = (any time that does not correspond to InitialTime)

6. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= Local_Date

7. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er' =

 Local_Date,‘ 'Property Va’ue' = (the date specified in step 5)

8. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= Local_Time

9. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er' =

 Local_Time,‘ 'Property Va’ue' = (the time specified in step 5)

10. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= Local_Date

11. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er' =

Local_Date,‘ 'Property Va’ue' = (the date specified in step 9)

12. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er'

= Local_Time

13. RECEIVE ReadProperty-ACK,‘ 'Object Identif’er' = (the ’UT's Device object),‘ 'Property Identif’er' =

Local_Time,‘ 'Property Va’ue' = (the time specified in step 9)

Notes to Tester: The time value returned by the IUT in step 9 shall agree with the time specified in step 5 within the

resolution for time specified in the EPICS. If the time returned by the IUT indicates that a small amount of time has passed

(< 1 second) since the TimeSynchronization request was received the result shall be considered to be a pass. If the time

indicates that the day of week is unspecified but all other fields are correct the result shall be considered to be a pass.

1. READ InitialDate = Local_Date

2. READ InitialTime = Local_Time

3. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 BACnet-Unconfirmed-Request-PDU,‘ 'Service Cho’ce' = TimeSynchronization-Request,

 date = NewDate: combined with NewTime is different than the InitialDate/InitialTime

 pair

 time = NewTime; combined with NewDate is different than the InitialDate/InitialTime

 pair

4. VERIFY Local_Date = NewDate

5. VERIFY Local_Time ~= NewTime

Notes to Tester: Select date and time such that either one or both of them is different from initial date and time.

BACnet Testing Laboratories - Specified Tests

 212

9.30.1.2 TimeSynchronization Directed to the IUT

Reason for change: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the

UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a TimeSynchronization service request directed

to the ’UT's MAC address.

Test Steps: This test is identical to 9.30.1.1 except that the TimeSynchronization-Request in step 95 shall be transmitted

using the ’UT's MAC address as the destination.

Notes to Tester: The passing results are identical to 9.30.1.1.

9.31 UTCTimeSynchronization Service Execution Tests

BACnet Reference Clause: 16.8.

9.31.1 Positive UTCTimeSynchronization Service Execution Tests

The purpose of this test group is to verify correct execution of UTCTimeSynchronization service request.

9.31.1.1 UTCTimeSynchronization Local Broadcast

Reason for change: UTC_Offset and Daylight_Savings_Status are needed here, as these optional properties are required for

the UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a local broadcast UTCTimeSynchronization

service request.

Test Steps:

Test Steps: The test steps are identical to the steps in 9.30.1.1 except that in step 9 the UTCTimeSynchronization request is

used and the date and time conveyed represent UTC.

Passing Results: The passing results are identical to 9.30.1.1 except that the date in step 9 shall be corrected for

InitialUTC_Offset, and the time in step 13 shall be corrected for both Initial_UTC_Offset and Daylight_Savings_Status (as

defined in BACnet 16.7.2).

130. READ InitialDate = Local_Date

131. READ InitialTime = Local_Time

132. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 BACnet-Unconfirmed-Request-PDU,

 ‘Service Choice’ = UTCTimeSynchronization-Request,

 date = NewUtcDate: combined with NewUtcTime and converted to local time is

 different than the InitialDate/InitialTime pair

 time = NewUtcTime: combined with NewUtcDate and converted to local time is

 different than the InitialDate/InitialTime pair

133. VERIFY Local_Date = (NewUtcDate converted to local date/time using UTC_Offset and

Daylight_Saving_Status)

134. VERIFY Local_Time ~= (NewUtcTime converted to local date/time using UTC_Offset and

Daylight_Saving_Status)

Notes to Tester: Select date and time such that either one or both of them is different from initial date and time. The IUT

may update the Daylight_Savings_Status during the execution of the UTCTimeSynchronization request.

BACnet Testing Laboratories - Specified Tests

 213

9.31.1.2 UTCTimeSynchronization Directed to the IUT

Reason for change: UTC_Offset and Daylight_Savings_Status are needed here, as these optional properties are required for

the UTCTimeSynchronization service.

Test Steps: This test is identical to 9.3031.1.1 except that in step 9 the UTCTimeSynchronization request is used and the

date and time conveyed represent UTC and the UTCTimeSynchronization-Request shall be transmitted using the ’UT's

MAC address as the destination.

Notes to Tester: The passing results are identical to 9.31.1.1.

9.32 Who-Has Service Execution Tests

The purpose of this test group is to verify the correct execution of the Who-Has service request.

Dependencies: None.

BACnet Reference Clause: 16.9.

9.32.1 Execution of Who-Has Service Requests Originating from the Local Network

The purpose of this test group is to verify the correct execution of the Who-Has request service procedure for messages

originating from the local network.

9.32.1.1 Object ID Version with No Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object

identifier form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 = (Object1), Object_Name

2. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Object Identif’er' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

 ‘Device Identifier’ = (the IUT’s Device object),

 ‘Object Identifier’ = Object1,

 ‘Object Name’ = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in step 1),

‘ 'Object N’me' = V1(the object name specified in the EPICS for this object)

9.32.1.2 Object Name Version with no Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

BACnet Testing Laboratories - Specified Tests

 214

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object

name form and does not restrict device ranges.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Object N’me' = V1(any object name specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1,

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in the EPICS for this object),

‘ 'Object N’me' = V1(the object name specified in step 1)

9.32.1.3 Object ID Version with IUT Inside of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object

identifier form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Device Instance Low Li’it' = (any value L: 0 L < the Device object instance number

of the IUT),‘ 'Device Instance High Li’it' = (any value H,: H > the Device object instance number of the IUT),‘

 'Object Identif’er' = Object1(any object identifier specified in the EPICS),

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,‘ 'Device Identif’er' = (the ’UT's Device object),‘ 'Object Identif’er' = Object1, ‘

 'Object N’me' = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in step 1),

BACnet Testing Laboratories - Specified Tests

 215

‘ 'Object N’me' = V1(the object name specified in the EPICS for this object)

9.32.1.4 Object ID Version with IUT Outside of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT ignores a local broadcast Who-Has service request that utilizes the object identifier form

and specifies a device range restriction that does not include the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

135. Test Step1. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Device Instance Low Li’it' = (any value > 0: the Device object instance number does

not fall

 in the range between Device Instance Low Limit and Device Instance

 High Limit),‘ 'Device Instance High Li’it' = (any value > Device Instance Low

Limit: the Device object

 instance number does not fall in the range between Device Instance Low

 Limit and Device Instance High Limit),‘ 'Object Identif’er' = Object1(any

object identifier specified in the EPICS)

2. WAIT Internal Processing Fail Time

3. CHECK (verify that the IUT does not respond)

9.32.1.5 Object Name Version with IUT Inside of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object

name form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Device Instance Low Li’it' = (any value L: 0 L < the Device object instance number

of the IUT),‘ 'Device Instance High Li’it' = (any value H: H > the Device object instance number of the IUT),‘

 'Object Name = V1(any object name specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1,

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in the EPICS for this object),

‘ 'Object N’me' = V1(the object name specified in step 1)

BACnet Testing Laboratories - Specified Tests

 216

9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service

requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Device Instance Low Li’it' = (any value L: 0 L < the Device object instance number

of the IUT),‘ 'Device Instance High Li’it' = (The Device object instance number of the IUT),‘ 'Object Identif’er' =

Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in step 1),

‘ 'Object N’me' = V1(the object name specified in the EPICS for this object)

9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service

requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Device Instance Low Li’it' = (The Device object instance number of the IUT),‘

 'Device Instance High Li’it' = (any value H: H > the Device object instance number of the IUT),‘ 'Object

Identif’er' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1

‘ 'Object N’me' = V1

BACnet Testing Laboratories - Specified Tests

 217

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in step 1),

‘ 'Object N’me' = V1(the object name specified in the EPICS for this object)

9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service

requests that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 Who-Has-Request,‘ 'Device Instance Low Li’it' = (any value L: 0 L < the Device object instance number

of the IUT),‘ 'Device Instance High Li’it' = (The Device object instance number of the IUT),‘ 'Object Name =

V1(any object name specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in the EPICS for this object),

‘ 'Object N’me' = V1(the object name specified in step 1)

9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service

requests that utilize the object name form.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DA = LOCAL BROADCAST,

 SA = TD,

 Who-Has-Request,‘ 'Device Instance Low Li’it' = (The Device object instance number of the IUT),‘

 'Device Instance High Li’it' = (any value H: H > the Device object instance number of the IUT),‘ 'Object Name =

V1(any object name specified in the EPICS)

BACnet Testing Laboratories - Specified Tests

 218

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in step 1),

9.32.1.11 Object Name Version, Directed to a Specific MAC Address

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT responds with a broadcast I-Have service request even if the Who-Has service requests was

not transmitted with a broadcast address.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT Who-Has-Request,‘ 'Object N’me' = V1(any object name specified in the EPICS),

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DA = LOCAL BROADCAST | GLOBAL BROADCAST,

 SA = IUT,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in the EPICS for this object),

‘ 'Object N’me' = V1(the object name specified in step 1)

9.32.1.12 Who-Has After Object_Name Changed

Reason for Change: The BACnet standard (per addendum 135-2012ar-5) now allows the IUT to send a unicast response for

IUT’s claiming Protocol Revision equal or greater than 15.

Dependencies: Who-Has Service Execution Tests, 9.32.1.2

BACnet Reference Clause: 16.9

Purpose: To verify that a device correctly responds to Who-Has service requests after the Object_Name property of an

object in the device is changed.

BACnet Testing Laboratories - Specified Tests

 219

Test Concept: The Object_Name property of the referenced object is read to determine its initial value. The Object_Name

property is then changed to a different value, V2, which is not already used by an object in the IUT. The test then verifies

correct responses to Who-Has requests that include an ‘Object Name’ parameter, using the values V1 and V2.

Configuration: An object, O1, exists within the IUT that has a modifiable Object_Name property and has the value V1. If

IUT does not support objects with modifiable Object_Name properties, then this test shall be skipped.

Test Steps:
1. READ V1 = O1, Object_Name

2. IF (Object_Name is writable) THEN

 WRITE O1, Object_Name = V2

 ELSE

136. MAKE (O1, Object_Name = V3. TRANSMIT

 DESTINATION = GLOBAL BROADCAST,

 Who-Has-Request,‘ 'Object N’me' = V1

4. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

5. CHECK (Verify that the IUT does not respond with an I-Have request)

6. TRANSMIT

 DESTINATION = GLOBAL BROADCAST,

137. Who-Has-Request,‘ 'Object N’me' = 7. IF (Protocol_Revision is present and Protocol_Revision >= 15)

THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = O1,

‘ 'Object N’me' = V2

 ELSE

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = O1,

‘ 'Object N’me' = V2

9.32.1.13 Who-Has After Object_Identifier Changed

Reason for Change: The BACnet standard (per addendum 135-2012ar-5) now allows the IUT to send a unicast response for

IUT’s claiming Protocol Revision equal or greater than 15.

Dependencies: Who-Has Service Execution Tests, 9.32.1.1

BACnet Reference Clause: 16.9

Purpose: To verify that a device correctly responds to Who-Has service requests after the Object_Identifier property of an

object in the device is changed.

Test Concept: The Object_ Identifier property of the referenced object, O1, is verified to contain the value O1. The

Object_Identifier property is then changed to a different value, O2, which is not already in use by a different object in the

IUT. The test then verifies correct responses to Who-Has requests that include an ‘Object Identif’er' parameter, using the

values O1 and O2.

Configuration: An object, O1, exists within the IUT that has a modifiable Object_ Identifier property. If the IUT does not

support objects with modifiable Object_Identifiers, then this test shall be skipped.

Test Steps:

BACnet Testing Laboratories - Specified Tests

 220

1. VERIFY O1, Object_Identifier = O1

2. IF (O1 is writable) THEN

 WRITE O1, Object_Identifier = O2

 ELSE

138. MAKE (O1, Object_Identifier = O3. TRANSMIT

 DESTINATION = GLOBAL BROADCAST,

 Who-Has-Request,‘ 'Object Identif’er' = O1

4. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

5. CHECK (Verify that the IUT does not respond with an I-Have request)

6. TRANSMIT

 DESTINATION = GLOBAL BROADCAST,

139. Who-Has-Request,‘ 'Object Identif’er' = 7. IF (Protocol_Revision is present and Protocol_Revision >= 15)

THEN

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST | TD,

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = O2

 ELSE

 RECEIVE DA = LOCAL BROADCAST | GLOBAL BROADCAST

 I-Have-Request,‘ 'Device Identif’er' = (the ’UT's Device object),‘ 'Object Identif’er' = O2‘ 'Object

N’me' = V1(the object name specified in the EPICS for this object)

9.32.2 Execution of Who-Has Service Requests Originating from a Remote Network

9.32.2.1 Object ID Version, Global Broadcast from a Remote Network

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability of the IUT to recognize the origin of a globally broadcast Who-Has service request and to

respond such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DESTINATION = LOCAL BROADCAST,

 SA = TD,

 DNET = GLOBAL BROADCAST,

 SNET = (X: any remote network number),

 SADR = (Y: any MAC address valid for the specified network),

 Who-Has-Request,‘ 'Object Identif’er' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE

 DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network X) | TD (DNET = X,

DADR = Y),

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1,

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network Xspecified in step 1),

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in step 1),

BACnet Testing Laboratories - Specified Tests

 221

‘ 'Object N’me' = V1(the object name specified in the EPICS for this object)

9.32.2.2 Object ID Version, Remote Broadcast

Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability of the IUT to recognize the origin of a remotely broadcast Who-Has service request and to

respond such that the device originating the request receives the response.

Configuration Requirements: Choose any object (Object1) that exists within the IUT.

Test Steps:

1. READ V1 =(Object1), Object_Name

2. TRANSMIT

 DESTINATION = LOCAL BROADCAST,

 SA = TD,

 SNET = (any remote network number),

 SADR = (any MAC address valid for the specified network),

 Who-Has-Request,‘ 'Object Identif’er' = Object1(any object identifier specified in the EPICS)

3. WAIT Internal Processing Fail Time Unconfirmed Response Fail Time

4. IF (Protocol_Revision is present and Protocol_Revision >= 15) THEN

 RECEIVE

 DA = GLOBAL BROADCAST | REMOTE BROADCAST (to the network X) | TD (DNET = X, DADR = Y),

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1,

‘ 'Object N’me' = V1

 ELSE

 RECEIVE

 DESTINATION = GLOBAL BROADCAST | REMOTE BROADCAST (to the network Xspecified in step 1),

 I-Have-Request,

‘ 'Device Identif’er' = (the ’UT's Device object),

‘ 'Object Identif’er' = Object1(the object identifier specified in step 1),

‘ 'Object N’me' = V1(the object name specified in the EPICS for this object)

9.32.2.–3 - Who-Has for Non-existent Object_Name

Reason for Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Verifies correct responses to Who-Has service requests ‘y 'Object N’me' when the object does not exist in the

IUT.

Test Concept: The test verifies the correct non-response to Who-Has service request wi‘h 'Object N’me' when that named

object does not exist in the IUT.

Configuration Requirements: Choose any character string value V1, which is not the Object_Name of any object in the

IUT. The IUT shall be placed in a state where it is not producing I-Have spontaneously.

Test Steps1. TRANSMIT Who-Has-Request,‘ 'Object N’me' = V1

2. WAIT Internal Processing Fail Time

3. CHECK (the IUT does not respond with an I-Have request wi‘h 'Object N’me' containing V1)

9.32.2.X5 Who-Has for Non-existent Object_Identifier

BACnet Testing Laboratories - Specified Tests

 222

Reason for Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: Verifies correct responses to Who-Has service requests when the object does not exist in the IUT.

Test Concept: The test verifies the correct non-response to Who-Has request with th‘t 'Object Identif’er' parameter for an

object which does not exist.

Configuration Requirements: Choose any standard object (Object1) that does not exist within the IUT, i.e. any unsupported

Object Type or any supported Object Type for which the instance does not exist. The IUT shall be placed in a state where it

is not producing I-Have spontaneously.

Test Steps1. TRANSMIT ReadProperty-Request,‘ 'Object Identif’er' = Object1,‘ 'Property Identif’er' =

Object_Identifi2. RECEIVE BACnet-Error-PDU,‘ 'Error Cl’ss' = OBJECT,‘ 'Error C’de' =

UNKNOWN_OBJE3. TRANSMIT Who-Has-Request,‘ 'Object Identif’er' = Object1

4. WAIT Internal Processing Fail Time

5. CHECK (the IUT does not respond with an I-Have request wi‘h 'Object Identif’er' containing Object1)

9.33 Who-Is Service Execution Tests

9.33.1 Execution of Who-Is Service Requests Originating from the Local Network

9.33.1.3 Local Broadcast, Specific Device Inquiry with IUT Outside of the Device Range

Reason For Change: The allowed device instance range is from–0 - 4194303 and is specified in section and 16.10.1.1.1.

The corresponding test incorrectly set the low limit greater than 0 when it should have been greater than or equal to.

Purpose: To verify that the IUT ignores Who-Is requests when it is excluded from the specified device range.

140. Test Step1. TRANSMIT

 DESTINATION = LOCAL BROADCAST,

 Who-Is-Request,‘ 'Device Instance Range Low Li’it' = (any value >= 0 such that the Device object instance

number does not fall in

 the range between Device Instance Low Limit and Device Instance High Limit),‘

 'Device Instance Range High Li’it' = (any value >= Device Instance Low Limit such that the Device object

 instance number does not fall in the range between Device Instance Low Limit

 and Device Instance High Limit)

2. WAIT Internal Processing Fail Time

3. CHECK (verify that the IUT does not respond)

9.33.2 Execution of Who-Is Service Requests Originating from a Remote Network

9.33.2.3 General Inquiry, Directed to a Remote Device

Purpose: To verify that the IUT responds with an I-Am service that is of the form global broadcast, remote broadcast or

unicast the ability of the IUT to recognize the origin of a Who-Is service request, directed to the IUT, and respond such that

the device originating the request receives the response.

141. Test Steps1. TRANSMIT

 DESTINATION = IUT,

 SNET = (any remote network number),

 SADR = (any MAC address valid for the specified network),

 Who-Is-Request

2. WAIT Internal Processing Unconfirmed Response Fail Time

3. RECEIVE

BACnet Testing Laboratories - Specified Tests

 223

 DESTINATION = GLOBAL BROADCAST | LOCAL BROADCAST REMOTE BROADCAST (to the

network specified by SNET in step 1) | TD

 I-Am-Request,‘ 'I Am Device Identif’er' = (the ’UT's Device object),‘ 'Max APDU Length

Accep’ed' = (the value specified in the EPICS),‘ 'Segmentation Suppor’ed' = (the value specified

in the EPICS),‘ 'Vendor Identif’er' = (the identifier registered for this vendor)

10. NETWORK LAYER PROTOCOL TESTS

10.1.1 Processing Application Layer Messages Originating from Remote Networks

Reason for Change: The test assumes that the IUT and the TD are located on the same network. For the IUT, the TD

appears to be the appropriate router to the network specified in step 1. There is no SSPC proposal for this change.

Modified test to remove dependency on EPICS values.

Dependencies: ReadProperty Service Execution Tests, 9.18.

BACnet Reference Clause: 6.5.4.

Purpose: To verify that the IUT can respond to requests that originate from a remote network.

Test Concept: The TD transmits a ReadProperty-Request message that contains network layer information indicating that it

originated from a remote network. The response from the IUT shall include correct DNET and DADR information so that

the message can reach the original requester. The MAC layer destination address in the response can be either a local

broadcast, indicating that the IUT does not know the address of the router, or the MAC address of the appropriate routerTD.

142. Test Steps:1. TRANSMIT

 DESTINATION = IUT,

 SOURCE = TD,

 SNET = (any network number that is not the local network),

 SADR = (any valid MAC address consistent with the source network),

143. ReadProperty-Request,‘ 'Object Identif’er' = (any supported object),‘ 'Property Identif’er' = (any

required property of the specified objec2. RECEIVE

 DESTINATION = LOCAL BROADCAST | (an appropriate router address)TD,

 SOURCE = IUT,

 DNET = (the SNET specified in step 1),

 DADR = (the SADR specified in step 1),

 Hop Count = 255,

 ReadProperty-ACK,‘ 'Object Identif’er' = (the object specified in step 1),‘ 'Property Identif’er' =

 (the property specified in step 1),‘ 'Property Va’ue' = (any valid value for this property)

10.2 Router Functionality Tests

10.2.2 Processing Network Layer Messages

10.2.2.7.2 Unknown Network Layer Message Type

Reason for Change: Changed ‘Reject Reason’ to ‘Rejection Reason’ to distinguish it from the Reject PDU. Corrected

DESTINATION and expected DNET in step 2.

Purpose: To verify that the IUT will reject a network layer message with an unknown message type in the range of message

types reserved for use by ASHRAE.

144. Test Steps1. TRANSMIT PORT A,

BACnet Testing Laboratories - Specified Tests

 224

 DESTINATION = IUT,

 SOURCE = D1A,

 Message Type = (any value in the range reserved for use by ASHRAE that is undefined in the protocol revision

145. claimed by the devic2. RECEIVE PORT A,

 DESTINATION = TDD1A,

 SOURCE = IUT,

 Reject-Message-To-Network,

 Rejection Reason = 3 (unknown network layer message type),

 DNET = (any value)1

10.2.X1 Initiates Network-Number-Is on Startup

Reason for Change: Test added per 135-2008g.

References: 6.4.19, 6.4.20

Purpose: To verify that a router initiates Network-Number-Is on startup for each port with a known network number.

Test Concept: The IUT is reset and the tester verifies that the IUT broadcasts a Network-Number-Is message out each port.

The vendor can specify a time, or physically observable event after reset, which marks the time at which IUT has

completed its startup sequence, including the sending of the Network-Number-Is messages.

Configuration Requirements: The IUT is configured with a network number for each of its enabled ports. If the IUT claims

a protocol revision of less than 11, this test shall be skipped.

Test Steps:

1. MAKE (the IUT reset)

2. BEFORE the IUT has completed its startup sequence

 REPEAT X = (for each enabled port) DO {

 RECEIVE PORT X,

 DESTINATION = LOCAL BROADCAST,

 Network-Number-Is,

 Network Number = (the configured Network Number for port X)

 }

10.2.X2 Routers Execute What-Is-Network-Number

Reason for Change: Test added per 135-2008g.

References: 6.4.19, 6.4.20

Purpose: To verify that a router responds to a What-Is-Network-Number request within 10 seconds.

Test Concept: A What-Is-Network-Number is broadcast on the local network and the tester verifies that the IUT responds

with a Network-Number-Is message within 10 seconds.

Configuration Requirements: The IUT knows its network number, N1. If the IUT claims a protocol revision of less than 11,

this test shall be skipped.

146. Test Steps1. TRANSMIT What-Is-Network-Number,

147. DESTINATION = LOCAL_BROADCA2. BEFORE 10s + Internal Processing Fail Time

 RECEIVE Network-Number-Is,

 Network Number = (the configured value),

 Configured = (any valid value)

BACnet Testing Laboratories - Specified Tests

 225

10.6 Non-Router Functionality Tests

10.6.3 Ignore Router Commands

Reason for Change: Changed test to support a Reject or a discard per Addendum 12.0d-4.

BACnet Reference Clause: 6.6, 6.6.3.8, 6.6.3.10, 6.6.3.11

Purpose: This test case verifies that the non-router IUT will either quietly accept and discard network layer

router services or respond with a Reject-Message-To-Network.

Test Concept: The TD transmits the Initialize-Routing-Table, Establish-Connection-To-Network, and Disconnect-

Connection-To-Network services. The IUT is required to silently drop the requests because it is not a router.

148. Test Step1. TRANSMIT

 DA = IUT,

 SA = TD,

 Initialize-Routing-Table

 Number of Ports = 0

2. WAIT Internal Processing Fail Time

3. (CHECK (that the IUT did not send any packets in response to the Initialize-Routing-Table)) |

 (RECEIVE

 DESTINATION = TD,

 SOURCE = IUT,

 Reject-Message-To-Network

149. Rejection-Reason = 0 (other) | 3 (unknown)4. TRANSMIT

 DA = IUT,

 SA = TD,

 Establish-Connection-To-Network

 DNET = DNET3

 Termination Time Value = 0

5. WAIT Internal Processing Fail Time

6. (CHECK(that the IUT did not send any packets in response to the Establish-Connection-To-Network)) |

 (RECEIVE

 DESTINATION = TD,

 SOURCE = IUT,

 Reject-Message-To-Network

150. Rejection-Reason = 0 (other) | 3 (unknown)7. TRANSMIT

 DA = IUT,

 SA = TD,

 Disconnect-Connection-To-Network

 DNET = NET3

8. WAIT Internal Processing Fail Time

9. (CHECK(that the IUT did not send any packets in response to the Disconnect-Connection-To-Network)) |

 (RECEIVE

 DESTINATION = TD,

 SOURCE = IUT,

 Reject-Message-To-Network

 Rejection-Reason = 0 (other) | 3 (unknown))

10.7 Router Functionality

10.7.2 Router Binding via Application Layer Services

Reason for Change: BTL-CR-0149 modified test to allow for directed unicast who-is requests.

Dependencies: ReadProperty Service Initiation Tests, 8.18, ReadProperty Service Execution Tests, 9.18, Who-Is Service

Initiation Tests, 8.34

BACnet Testing Laboratories - Specified Tests

 226

BACnet Reference Clause: 6.5.3

Purpose: To verify that the IUT can initiate requests to a remote network and respond to requests from a remote network

after the IUT uses the Who-Is and I-Am Application Layer services to discover the MAC address of the router to that

remote network.

Test Concept: The IUT broadcasts a Who-Is request to discover device D2A and notes the MAC address of the intervening

router in the corresponding I-Am reply. The TD transmits a request to a device on the remote network and responds to a

request from the remote network without performing any further form of dynamic router binding. If the IUT does not

support application layer router binding, then this test shall be omitted. If the IUT cannot initiate a ReadProperty request,

then another confirmed service can be substituted. The IUT may use the deviceInstanceRange form of Who-Is.

Clause 6.5.3 specifically mentions router binding via Who-Is and does not mention router binding by initiating other

application layer services (such as Who-Has) or by lurking and noting the router MAC addresses for incoming application

layer requests. For this reason the test only allows for router binding via Who-Is.

Test Steps:

1. MAKE (IUT transmit Who-Is to discover the device on the remote network)

2. RECEIVE

 DA = BROADCAST,

 SA = IUT,

 DNET = GLOBAL BROADCAST,

 Hop Count = 255,

 BACnet-Unconfirmed-Request-PDU,‘ 'Service Cho’ce' = who-Is

 | (DA = BROADCAST,

 SA = IUT,

 DNET = DNET2,

 DADR= BROADCAST, or D2A

 Hop Count = 255,

151. BACnet-Unconfirmed-Request-PDU,‘ 'Service Cho’ce' = who-Is3. TRANSMIT

 DA = BROADCAST,

 SA = TD,

 SNET = DNET2,

 SADR = D2A,

 BACnet-Unconfirmed-Request-PDU,‘ 'Service Cho’ce' = I-Am,‘ 'I Am Device Identif’er' = (device

object, instance number of D2A),‘ 'Max APDU Length Accept‘d ' = (any valid value),‘ 'Segmentation

Suppor’ed' = (any valid value),‘ 'Vendor ‘D ' = (any valid value)

4. MAKE (IUT transmit a ReadProperty request to the D2A device on the remote network)

5. RECEIVE

 DA = TD,

 SA = IUT,

 DNET = DNET2,

 DADR= D2A,

 Hop Count = 255,

152. BACnet-Confirmed-Request-PDU,‘ 'Service Cho’ce' = ReadProperty-Request,‘ 'Object Identif’er' =

(O1, any BACnet standard object in D2A),‘ 'Property Identif’er' = (P1, any required property of the specified

objec6. TRANSMIT

 DA = IUT,

 SA = TD,

 SNET = DNET2,

 SADR = D2A,

 BACnet-ComplexACK-PDU,‘ 'Service ACK Cho’ce' = ReadProperty-ACK,‘ 'Object Identif’er' =

 O1,‘ 'Property Identif’er' = P1,‘ 'Property Va’ue' = (any valid value)

BACnet Testing Laboratories - Specified Tests

 227

10.8 Virtual Routing Functionality Tests

Some devices (typically gateways) can route BACnet packets between a physical BACnet LAN and one or more virtual

BACnet LANs that contain one or more virtual BACnet devices. See H.1 and H.2 in the BACnet standard for a descript ion

of virtual BACnet LANs and virtual BACnet devices.

This clause defines the tests necessary to demonstrate routing functionality to/from virtual BACnet LANs. The tests assume

that the routing device has two ports, one connected to a virtual BACnet LAN containing one or more virtual BACnet

devices, and one connected to a physical BACnet LAN. IUT Port 1 is directly connected to Network 1 (a virtual BACnet

LAN) and Port 2 is directly connected to Network 2 (a physical BACnet LAN). The logical configuration of the

internetwork used for these tests is shown in Figure 10.8.X1. The test descriptions in this clause assume that the TD can

physically connect to Network 2 and mimic all of the other devices. An acceptable alternative is to construct an

internetwork with real devices as indicated. Logical network 3 shall use a LAN technology that has MAC addresses that are

different in length from Network 2.

The logical devices included in the internetwork are:

IUT: implementation under test, a router between Networks 1 and 2

VD1A: virtual device on Network 1

VD1B: virtual device on Network 1

D2C: device on Network 2

D3D: device on Network 3

D4E: device on Network 4

R2-3: router between Network 2 and Network 3

General Configuration Requirements: The IUT shall be configured with routing tables indicating that Network 1 is directly

connected to Port 1 and that Network 2 is directly connected to Port 2 as shown in Figure 10.8.X1. The routing table shall

contain no other entries. The routing device shall be configured to have one or more virtual devices (VD1A, VD1B, etc.) on

Network 1. Although the network numbers 1-3 are used above and below, the tester may configure the network using any

legal network numbers and modify the tests accordingly. Furthermore, the tester shall appropriately modify the tests for

devices that route to multiple virtual networks simultaneously.

BACnet Testing Laboratories - Specified Tests

 228

Figure 10.8.X1. Logical internetwork configuration for virtual routing functionality tests

10.8.3 Routing of Unicast APDUs

10.8.3.1 Route Request Message from a Local Device to a Virtual Device and Route Response Message from the

Virtual Device to the Local Device

Reason for Change: Add‘d 'Note to Tes’er' that is missing from 135.1-2013.

Purpose: To verify that the IUT can route a unicast request message from a local device to a virtual device and route the

response from the virtual device to the local device.

Note to tester: The destination device (VD1A) can be any virtual device in the IUT.

IUT

(R1-2)

Virtual Network 1

R2-3

VD1BVD1AD2C

D3D

Network 2

TD
N

e
tw

o
rk

 3

BACnet Testing Laboratories - Specified Tests

 229

153. Test Steps1. TRANSMIT,

 DA = LOCAL BROADCAST,

 SA = TD,

 DNET = 1,

 DADR = VD1A,

 Hop Count = 255,

 ReadProperty-Request,‘ 'Object Identif’er' = (the object identifier of any object in the target device),‘

 'Property Identif’er' = (any property of the specified object containing a value small enough so that the

154. response will not need to be segmente2. RECEIVE,

 DA = TD,

 SA = IUT,

 SNET = 1,

 SADR = VD1A,

155. ReadProperty-ACK,‘ 'Object Identif’er' = (the object identifier used in step 1),‘ 'Property Identif’er'

= (the property identifier used in step 1),‘ 'Property Va’ue' = (the contents of the specified propert3.

 TRANSMIT,

 DA = IUT,

 SA = TD,

 DNET = 1,

 DADR = VD1A,

 Hop Count = 255,

 ReadProperty-Request,‘ 'Object Identif’er' = (the object identifier of any object in the target device),‘

 'Property Identif’er' = (any property of the specified object containing a value small enough so that the

156. response will not need to be segmented, but not the same property as in step 4. RECEIVE,

 DA = TD,

 SA = IUT,

 SNET = 1,

 SADR = VD1A,

 ReadProperty-ACK,‘ 'Object Identif’er' = (the object identifier used in step 3),‘ 'Property Identif’er'

= (the property identifier used in step 3),‘ 'Property Va’ue' = (the contents of the specified property)

10.8.3.2 Route Request Message from a Virtual Device to a Local Device

Reason for Change: Updated the notes to tester for clarification.

Purpose: To verify that the IUT can route a unicast request message from a virtual device to a local device.

Test Concept: Make one of the virtual devices generate a unicast request, and verify that the NPCI is correctly formed.

This test shall be skipped if none of the IUT’s virtual devices can issue a confirmed or unconfirmed request in a unicast

message.

Configuration Requirements: The IUT shall be configured or otherwise stimulated so that one of its virtual devices will

send a unicast message to a particular target device on Network 2.

Notes to Tester: During the test, the TD shall answer any requests that the IUT generates while attempting to locate the

route to the target device.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or

stimulated to send a unicast message to a device on a local network. Depending on the capabilities of the IUT this may

involve sending a message from the target device to the IUT (unicast or broadcast), writing the network address of the

target device to an object property in the IUT, writing the Device ID of the target device to an object property in the IUT,

writing the Device Name of the target device to an object property in the IUT, or configuring the IUT using a proprietary

method. The IUT may need to broadcast a Who-Is or Who-Has request in order to discover the network address of the

target device if the network address is unknown.

BACnet Testing Laboratories - Specified Tests

 230

157. Test Steps1. RECEIVE,

 DA = TD

 SA = IUT

 SNET = 1,

 SADR = (MAC address of any virtual device on Network 1),

 BACnet-Confirmed-Request-PDU or BACnet-Unconfirmed-Request-PDU

10.8.3.5 Unicast Messages That Should Not Be Routed

10.8.3.5.1 Unknown Network

Reason for Change: Added notes to tester for clarity.

Purpose: To verify that the IUT will not attempt to route a message directed to a device on an unknown network if the

message was transmitted using a local broadcast MAC address.

Test Concept: Direct at one of the virtual devices a ReadProperty request that is correct in all aspects, except for the

network number. Ensure that the virtual device does not reply. The request is sent as a local broadcast so that the IUT will

receive it and not attempt to re-route it via another router to the unknown network.

158. Notes to Tester: Choose a virtual device on Network 1 for this test1. TRANSMIT,

 DA = LOCAL BROADCAST,

 SA = TD,

 DNET = 59001,

 DADR = (the MAC address of the selected virtual device),

 Hop Count = 255,

 ReadProperty-Request,‘ 'Object Identif’er' = (any object identifier of an object in the virtual device),‘

 'Property Identif’er' = (any property of the specified object)

2. WAIT Internal Processing Fail Time

3. CHECK (verify that the IUT did not transmit I-Am-Router-To-Network (Network Numbers = 59001…)

 or Reject-Message-To-Network (Network Number = 59001)

 or any message in response to the Read Property request on Network 2)

10.8.4 Routing of Broadcast APDUs to Virtual Devices

10.8.4.7 Route Remote Broadcast Message from a Virtual Device to a Local Network

Reason for Change: Added Configuration Requirements and Notes to Tester for clarity.

Purpose: To verify that the IUT can route a remote broadcast message from a virtual device to a local physical network.

Test Concept: Make one of the virtual devices generate a remote broadcast directed to the non-virtual network that the IUT

is connected to, and verify that it is correctly formulated. This test shall be skipped if none of the IUT’s virtual devices can

issue a remote broadcast message.

Configuration Requirements: The IUT shall be configured or otherwise stimulated so that one of its virtual devices will

send a remote broadcast message to Network 2.

Notes to Tester: This test should be run repeatedly in order to exercise all ways that the IUT can be configured or

stimulated to send a broadcast message to a local (physical) network. Depending on the capabilities of the IUT this may

involve sending a message from a device on the target network to the IUT (unicast or broadcast), writing a broadcast

address to an object property in the IUT, or configuring the IUT using a proprietary method.

Test Steps:

1. MAKE (the virtual device generate a remote broadcast message to the local network of the IUT)

2. RECEIVE,

BACnet Testing Laboratories - Specified Tests

 231

 DA = LOCAL BROADCAST,

 SA = IUT,

 SNET = 1,

 SADR = (MAC address of a virtual device on Network 1),

 BACnet-Unconfirmed-Request-PDU

10.8.7 Multiple Devices on a Single Virtual Network

Note: If only one virtual device may be configured then VD1B may be any Device ID and MAC address not equal to those

of VD1A.

10.8.7.4 Who-Is Specifying Unknown Device Ids

Reason for Change: No test exists for this functionality.

Purpose: To verify that the IUT will not respond to discovery for devices that it does not contain.

Test Steps:

1. TRANSMIT,

 DA = IUT,

 SA = TD,

 DNET = 1,

 DLEN = 0,

 Hop Count = 255,

 BACnet-Unconfirmed-Request-PDU,

159. Who-Is-Request,‘ 'Device Instance Range Low Li’it' = (Low Limit of instance range excluding all virtual

devices)‘ 'Device Instance Range High Li’it' = (High Limit of instance range excluding all virtual device2.

 CHECK (verify that the IUT does not transmit an I-Am-Request-PDU)

10.8.7.5 Who-Has Specifying Unknown Device Ids

Reason for Change: No test exists for this functionality.

Purpose: To verify that the IUT will not respond to discovery for devices that it does not contain.

160. Test Steps1. TRANSMIT,

 DA = IUT,

 SA = TD,

 DNET = 1,

 DLEN = 0,

 Hop Count = 255,

 BACnet-Unconfirmed-Request-PDU,

161. Who-Has-Request,‘ 'Device Instance Range Low Li’it' = (Low Limit of instance range excluding all virtual

devices)‘ 'Device Instance Range High Li’it' = (High Limit of instance range excluding all virtual devices)‘

 'Object Identif’er' = (Device object identifier of VD12. CHECK (verify that the IUT does not transmit an I-

Have-Request-PDU)

BACnet Testing Laboratories - Specified Tests

 232

12. DATA LINK LAYER PROTOCOLS TESTS

12.1 MS/TP State Machine Tests

12.1.3 MS/TP Data Link Layer Tests (Alternate)

12.1.3.3 Verify Tframe_gap

Reason for Change: Add‘d 'Configruation Requireme’ts'.

Purpose: Verify that the maximum idle time between data octets when transmitting a frame is 20 bit times or less.

Configuration Requirements: Run the IUT and a Reference Master (or Router) on the same MS/TP network.

Test Steps:

1. Elicit the transmission of any frame from the IUT.

2. Measure the longest EIA-485 idle time that appears between octets within the data frame transmitted by the IUT. If

there is no idle time between octets, pass the IUT.

3. Fail the IUT if the time measured in step 2 is greater than the time intervals shown below for each baud rate.

 9600 baud: fail if interval is greater than 2,083 microseconds

 19200 baud: fail if interval is greater than 1,042 microseconds

 38400 baud: fail if interval is greater than 521 microseconds

 76800 baud: fail if interval is greater than 261 microseconds

 115200 baud: fail if interval is greater than 173 microseconds

 x baud: fail if interval is greater than (20/x) seconds

13. SPECIAL FUNCTIONALITY TESTS

13.1 Segmentation

13.1.12.1 IUT Does Not Support Segmented Response

Reason for change: Adding ‘Server’ flag, in consequence of BTL-CRR-0177_server_in_Abort-PDU.doc

Purpose: To verify that the IUT returns the correct abort message when it does not support segmented responses and a

response would be larger than 1 segment.

BACnet Reference Clause: 5.4.5.3.

Test Concept: The TD uses ReadPropertyMultiple to ask for more data than can fit in a single segment. The TD also

specifies that the smallest (50 octet) segment size be used for the response. The data that are requested is the

Object_Identifier property of the Device object of the IUT. The number of copies of the data that is requested is one more

than the maximum number which would fit in a 50-octet segment.

Configuration Requirements: The IUT supports execution of the ReadPropertyMultiple service, but does not support

transmission of segmented responses.

Test Steps1. TRANSMIT ReadPropertyMultiple-Request,‘ 'max-APDU-length-accep’ed' =’ B'0’00',‘

 'segmented-response-accep’ed' = TRUE, ‘ 'Object Identif’er' = (Device, X),‘ 'Property Identif’er' =

 Object_Identifier,‘ 'Property Identif’er' = Object_Identifier,‘ 'Property Identif’er' = Object_Identifier,‘

 'Property Identif’er' = Object_Identifier,‘ 'Property Identif’er' = Object_Identifi2. RECEIVE BACnet-

Abort-PDU,‘ 'Server’ = TRUE, ‘ 'Abort Rea’on' = SEGMENTATION_NOT_SUPPORTED

13.1.X3 Ignore Confirmed Broadcast Requests

Reason for Change: No existing test.

BACnet Testing Laboratories - Specified Tests

 233

Purpose: This test case verifies that the IUT will quietly discard any Confirmed-Request-PDU, whose destination address is

a multicast or broadcast address, received from the network layer.

Test Concept: The TD transmits the Confirmed-Request-PDU services whose destination address is a multicast or

broadcast address. The IUT is required to silently drop the requests because it should only respond to unicast confirmed

requests.

162. Test Steps1. TRANSMIT Any BACnet-Confirmed-Request-PDU,

163. DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,2. CHECK (that the IUT does not send

any packets in response to above Confirmed-Request-PDU)

13.8 Backup and Restore Procedure Tests

13.8.1 Backup and Restore Execution Tests

13.8.1.1 Execution of Full Backup and Restore Procedure

Reason For Change: Corrected the Backup_And_Restore_State in step 22.

Purpose: This test case verifies that the IUT can execute a full Backup and Restore procedure.

Test Concept: This test takes the IUT through a successful Backup and then a successful Restore procedure. The

Database_Revision and Last_Restore_Time properties are noted before the procedure begins for later comparison. The

IUT is then commanded to enter the Backup state; all the files are read, and the IUT is commanded to end the backup. If

the Database_Revision property can be changed by means other than the restore procedure, it is modified and checked to

ensure that it incremented correctly; then the IUT is commanded to enter the Restore state. If the file objects do not exist

on the IUT, the TD will create them in the IUT. The files are then truncated to size 0, the file contents are written to the

IUT, and the IUT is commanded to end the restore. The Database_Revision and Last_Restore_Time properties are checked

to ensure that they incremented or advanced correctly.

For IUTs that use Stream Access when performing the AtomicReadFile and AtomicWriteFile services, a Maximum

Requested Octet Count (MROC) and a Maximum Write Data Length (MWDL) shall be calculated before starting the test.

These values shall be used during the test. MROC shall be 16 less than the minimum of the TD’s

Max_APDU_Length_Accepted and the IUT’s maximum transmittable APDU length. MWDL shall be 21 less than the

minimum of the TD’s maximum transmittable APDU length and the IUT’s Max_APDU_Length_Accepted.

Test Steps:

1. READ DR1 = Database_Revision

2. READ LRT1 = Last_Restore_Time

3. READ OL1 = Object_List

4. REPEAT X = (1 through length of OL1) DO {

 READ NAMES[X] = (OL1[X]), Object_Name

 }

5 IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 READ BPT = Backup_Preparation_Time

 READ RPT = Restore_Preparation_Time

 READ RCT = Restore_Completion_Time

 VERIFY Backup_And_Restore_State = ID6. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialized

State of Dev’ce' = STARTBACKUP,‘ 'Passw’rd' = (any valid password)

7. RECEIVE BACnet-Simple-ACK-PDU

8. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

BACnet Testing Laboratories - Specified Tests

 234

 WAIT BPT

 READ BRSTATE = Backup_And_Restore_State

 READ CF = Configuration_Files

 WHILE (BRSTATE = PREPARING_FOR_BACKUP) DO {

 WAIT 1 second

 READ BRSTATE = Backup_And_Restore_State

 IF CF is an empty list THEN

 READ CF = Configuration_Files

 IF CF is a non-empty list THEN

 READ X = (the file referenced by Configuration_Files[1]).Name

 }

 CHECK (BRSTATE = PERFORMING_A_BACKUP)

9. READ CF = Configuration_Files

10. CHECK (CF is a non-empty array of BACnetObjectIdentifiers referring to File objects)

11. REPEAT X = (each entry in CF) DO {

 READ Y = X, File_Access_Method

 IF (Y = RECORD_ACCESS)

 WHILE (the last read resulted in an Ack wi‘h 'End Of F’le' == FALSE) DO {

 TRANSMIT AtomicReadFile-Request,

 ‘Object Identifier’ = X,

 ‘File Start Record’ = (the next unread record),

 ‘Requested Record Count’ = 1

 RECEIVE AtomicReadFile-ACK,

 ‘ 'End Of F’le' = TRUE | FALSE,

 ‘File Start Record’ = Z,

 ‘Requested Record Count’ = 1

 ‘Returned Data’ = (File contents)

 | Error-P– -- only acceptable for the first record and only when there are no records in the file

 ‘ 'Error Cl’ss' = SERVICES,

 ‘ 'Error C’de' = INVALID_FILE_START_POSITION

 }

 ELSE

 WHILE (the last read did not indica‘e 'End Of F’le') DO {

 TRANSMIT AtomicReadFile-Request,

 ‘Object Identifier’ = X,

 ‘File Start Position’ = (the next unread octet),

 ‘Requested Octet Count’ = MROC

 RECEIVE AtomicReadFile-ACK,

 ‘ 'End Of F’le' = TRUE | FALSE,

 ‘File Start Position’ = (the next unread octet)

 ‘File Data’ = (File contents of length MROC ‘f 'End Of F’le' is FALSE

 or of length MROC or less ‘f 'End Of F’le' is TRUE)

 | Error-P– -- only acceptable for the first record and only when there are no records in the file

 ‘ 'Error Cl’ss' = SERVICES,

 ‘ 'Error C’de' = INVALID_FILE_START_POSITION

 }

 }

12. TRANSMIT ReinitializeDevice-Request,

 ‘Reinitialize State Of Device’ = ENDBACKUP,

 ‘Password’ = (any valid password)

13. RECEIVE BACnet-Simple-ACK-PDU

14. VERIFY System_Status ! = BACKUP_IN_PROGRESS

15. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 VERIFY Backup_And_Restore_State = IDLE

16. IF (Database_Revision is changeable) THEN

 MAKE (the configuration in the IUT different, such that the Database_Revision property increments)

BACnet Testing Laboratories - Specified Tests

 235

 VERIFY Database_Revision <> DR1

 READ DR2 = Database_Revision

 CHECK (DR1 <> DR2)

17. TRANSMIT ReinitializeDevice-Request,

 ‘Reinitialize State Of Device’ = STARTRESTORE,

 ‘Password’ = (any valid password)

18. RECEIVE BACnet-Simple-ACK-PDU

19. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 WAIT RPT

 READ BRSTATE = Backup_And_Restore_State

 WHILE (BRSTATE = PREPARING_FOR_RESTORE) DO {

 WAIT 1 second

 READ BRSTATE = Backup_And_Restore_State

 }

 CHECK (BRSTATE = PERFORMING_A_RESTORE)

20. READ OL2 = Object_List

21. REPEAT X = (entry in CF) DO {

 IF (X is not in OL2)

 TRANSMIT CreateObject-Request

 ‘Object Identifier’ = X

 RECEIVE CreateObject-ACK

 ‘Object Identifier’ = X

 READ FS = X, File_Size

 IF (File_Size is not equal to the size of the backed up file)

 WRITE X, File_Size = 0

 IF (Y = RECORD_ACCESS)

 TRANSMIT AtomicWriteFile-Request

 ‘File Identifier’ = X

 ‘File Start Record’ = 0

 ‘Record Data’ = (file content for first record obtained in step 11)

 RECEIVE AtomicWriteFile-ACK

 ‘File Start Record’ = 0

 REPEAT REC = (each record in the backup of this file) {

 TRANSMIT AtomicWriteFile-Request

 ‘File Identifier’ = X

 ‘File Start Record’ = -1

 ‘Record Count’ = 1

 ‘Record Data’ = REC

 RECEIVE AtomicWriteFile-ACK

 ‘File Start Record’ = (the record number)

 }

 ELSE

 REPEAT Z = (0 through the file size, in increments of MWDL) DO {

 TRANSMIT AtomicWriteFile-Request

 ‘File Identifier’ = X

 ‘File Start Position’ = Z

 ‘Record Data’ = (file contents obtained from the backup, the number of octets

 being the lesser of (file si–e - Z) and MWDL)

 RECEIVE AtomicWriteFile-ACK

 ‘File Start Position’ = Z

 }

 }

22. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 VERIFY Backup_And_Restore_State = RESTORE_IN_PROGRESS PERFORMING_A_RESTORE

23. TRANSMIT ReinitializeDevice-Request,

 ‘Reinitialize State Of Device’ = ENDRESTORE,

BACnet Testing Laboratories - Specified Tests

 236

 ‘Password’ = (any valid password)

24. RECEIVE BACnet-Simple-ACK-PDU

25. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 WAIT RCT

 VERIFY Backup_And_Restore_State = IDLE

26. READ DR3 = Database_Revision

27. CHECK (DR3 <> DR1)

28. IF (Database_Revision was changed in step 16) THEN

 CHECK (DR3 <> DR2)

29. VERIFY Last_Restore_Time > LRT1

30. READ OL3 = Object_List

31. CHECK (that OL1 and OL3 contain the same set of objects)

32. REPEAT X = (1 through length of OL1) DO {

 VERIFY (OL1[X]), Object_Name = NAMES[X]

 }

13.8.1.6 Ending Backup and Restore Procedures via Timeout

Reason For Change: Modified how the test WAITs for Protocol_Revision < 10.

Purpose: This test case verifies that the IUT will end Backup and Restore procedures after not receiving any messages

related to the backup or restore for longer than Backup_Failure_Timeout and that the Backup_Failure_Timeout property is

writeable.

Test Steps:

1. WRITE Backup_Failure_Timeout = (A value T1 greater than Backup_Preparation_Timeout)

2. VERIFY Backup_Failure_Timeout = T1

3. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

164. READ BPT = Backup_Preparation_Ti4. TRANSMIT ReinitializeDevice-Request,

‘ 'Reinitialized State of Dev’ce' = STARTBACKUP,

‘ 'Property Identif’er' = (any valid password)

5. RECEIVE Simple-ACK-PDU

6. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 WAIT BPT

 READ BRSTATE = Backup_And_Restore_State

 WHILE (BRSTATE = PREPARING_FOR_BACKUP) DO {

 WAIT 1 second

 READ BRSTATE = Backup_And_Restore_State

 }

 CHECK (BRSTATE = PERFORMING_A_BACKUP)

7. WAIT (T1 + 10 seconds)

8. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 VERIFY Backup_And_Restore_State = IDLE

9. VERIFY System_Status ! = BACKUP_IN_PROGRESS

10. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 READ RPT = Restore_Preparation_Time

 READ RCT = Restore_Completion_Time

11. TRANSMIT ReinitializeDevice-Request,

 ‘Reinitialized State of Device’ = STARTRESTORE,

 ‘Password’ = (any valid password)

12. RECEIVE BACnet-Simple ACK-PDU

13. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 WAIT RPT

BACnet Testing Laboratories - Specified Tests

 237

 READ BRSTATE = Backup_And_Restore_State

 WHILE (BRSTATE = PREPARING_FOR_RESTORE) DO {

 WAIT 1 second

 READ BRSTATE = Backup_And_Restore_State

 }

 CHECK (BRSTATE = PERFORMING_A_RESTORE)

 ELSE

 WAIT (30 seconds)

14. WAIT (T1 + 10 40 seconds)

15. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 WAIT RCT

 VERIFY Backup_And_Restore_State = IDLE

16. VERIFY System_Status ! = DOWNLOAD_IN_PROGRESS

Notes to Tester: After an incomplete restore attempt, the IUT may revert to a default configuration or another state that is

different from the IUT state when this test was started.

13.8.1.8 Attempting a Backup Procedure with an Invalid Password

Reason for Change: Added error codes supported per Addendum 12.0g-5.

Purpose: To verify the correct execution of the Backup procedure when an invalid password is provided and when a

password is required but no password is provided. If the IUT cannot be made to deny a ReinitializeDevice

<STARTBACKUP> service request that does not contain a valid password, then this test shall be omitted.

165. Test Steps1. TRANSMIT ReinitializeDevice-Request,

‘ 'Reinitialized State of Dev’ce' = STARTBACKUP,

166. ‘ 'Passw’rd' = (any invalid passwor2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 (RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE) |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

167. Error Code = SERVICE_REQUEST_DENIED) 3. TRANSMIT ReinitializeDevice-Request,‘

 'Reinitialized State of Dev’ce' = STARTBACK4. IF (Protocol_Revision is present and Protocol_Revision >= 7)

THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 (RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE) |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED) |

13.8.1.9 Attempting a Restore Procedure with an Invalid Password

Reason for Change: Added error codes supported per Addendum 12.0g-5.

BACnet Testing Laboratories - Specified Tests

 238

Purpose: To verify the correct execution of the Restore procedure when an invalid password is provided and when a

password is required but no password is provided. If the IUT cannot be made to deny a ReinitializeDevice

<STARTRESTORE > service request that does not contain a valid password, then this test shall be omitted.

168. Test Steps1. TRANSMIT ReinitializeDevice-Request,‘ 'Reinitialized State of Dev’ce' = STARTRESTORE,‘

 'Passw’rd' = (any invalid passwor2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 (RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE) |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

169. Error Code = SERVICE_REQUEST_DENIED) 3. TRANSMIT ReinitializeDevice-Request,‘

 'Reinitialized State of Dev’ce' = STARTRESTO4. IF (Protocol_Revision is present and Protocol_Revision >= 7)

THEN

 RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE

 ELSE

 (RECEIVE BACnet-Error-PDU,

 Error Class = SECURITY,

 Error Code = PASSWORD_FAILURE) |

 (RECEIVE BACnet-Error-PDU,

 Error Class = SERVICES,

 Error Code = SERVICE_REQUEST_DENIED)

13.8.1.11 Starting and Ending a Restore Procedure when a Password is not Required

Reason For Change: Corrected t‘e 'Reinitialized State of Dev’ce' value in step 5.

Purpose: This test case verifies that the IUT ignores the password. If the IUT cannot be made to accept a

ReinitializeDevice service request that contains any or no password, then this test shall be omitted.

170. Test Steps1. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 READ RPT = Restore_Preparation_Time

171. READ RCT = Restore_Completion_Ti2. TRANSMIT ReinitializeDevice-Request,

 ‘Reinitialized State of Device’ = STARTRESTORE,

 ‘Password’ = (any non-zero length password)

3. RECEIVE BACnet-Simple ACK-PDU

4. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

172. WAIT R5. TRANSMIT ReinitializeDevice-Request,

 ‘Reinitialized State of Device’ = ENDABORTRESTORE,

 ‘Password’ = (any non-zero length password)

6. RECEIVE BACnet-Simple ACK-PDU

7. IF (Protocol_Revision is present and Protocol_Revision 10) THEN

 WAIT RCT

8. VERIFY System_Status ! = DOWNLOAD_IN_PROGRESS

BACnet Testing Laboratories - Specified Tests

 239

13.8.2 Backup and Restore Initiation Tests

13.8.2.1 Initiate a Full Backup and Restore

Reason For Change: Added note about preparation time properties. Clarified test characteristics for backup file names.

Purpose: To verify that the IUT can perform a Backup and Restore on a BACnet server device.

Test Concept: The IUT is first made to initiate a Backup and then a Restore of the TD device. This test verifies that the

IUT performs the Backup procedure correctly by comparing the resulting restored file with the original. The TD is made to

respond appropriately such that the Backup and Restore procedures are completed normally. The final check can be

accomplished using a file compare of the original files to the files restored or by comparing the network traffic during the

backup to the network traffic during the restore. The number of files, the order of the files, and the file content should be

the same. The test is to be executed multiple times with the TD configured with different sets of backup and restore

characteristics.

Configuration Requirements: The IUT is configured to already contain a device binding for the TD device. The TD is

configured with some of the following characteristics:

Backup Characteristics:

1. The TD is configured to contain an APDU size that is smaller than the APDU size of the IUT. If the TD and the IUT

support segmentation, the TD is configured to support a smaller window size than the IUT.

2. The TD is configured to contain a configuration file of size zero.

3. The TD is configured to contain some configuration files that are STREAM_ACCESS and some that are

RECORD_ACCESS.

4. The TD is configured to only allow access to File and Device objects during the Backup and Restore procedures. All

other attempts shall result in an error from the TD.

5. The TD is configured to require the same password for all of the reinitialize device requests.

6. The TD is configured to contain characters in the object name of some file name objects, such as“* " and \, that would

reveal weakness in the implementation process that assigns names to files where the backup is stored not be accepted

by the OS which the IUT is running on.

7. The TD is configured with a Protocol_Revision < 10.

8. The TD is configured with a Protocol_Revision ≥ 10. This is only used if the IUT claims Protocol_Revision ≥ 10.

Note that if IUT claims Protocol_Revision < 10, the presence of preparation time properties in a TD with

Protocol_Revision ≥ 10 may be ignored and cannot be relied upon.

Restore Characteristics:

1. The TD is configured to support CreateObject service, and some of the configuration files exist while others do not.

2. The TD is configured such that some of the configuration file File objects exist, but the file size is different from that

of the file to be restored.

3. The TD is configured to not support the CreateObject service.

4. The TD is configured to contain some configuration files that are STREAM_ACCESS and some that are

RECORD_ACCESS.

5. The TD is configured to only allow access to File and Device objects during the Backup and Restore procedures. All

other attempts shall result in an error from the TD.

6. The TD is configured to require the same password for all of the reinitialize device requests.

7. The TD is configured with a Protocol_Revision < 10.

8. The TD is configured with a Protocol_Revision ≥ 10. This is only used if the IUT claims Protocol_Revision ≥ 10.

Note that if IUT claims Protocol_Revision < 10, the presence of preparation time properties in a TD with

Protocol_Revision ≥ 10 may be ignored and cannot be relied upon.

Test Steps:

BACnet Testing Laboratories - Specified Tests

 240

1. MAKE (IUT initiate a backup on the TD device)

2. WAIT (for backup to complete)

3. MAKE (changes required in TD to meet restore characteristics for this test)

4. MAKE (IUT initiate a restore on the TD device)

5. WAIT (for restore to complete)

6. CHECK (that the file content restored is the same as the file content that was backed up)

Notes to Tester: Other items to ensure were correct during execution of the test:

1. Verify the order the IUT read the configuration files was the same as the order returned by the Configuration_Files

property.

2. Verify that any file with a File_Size of zero was restored.

3. Verify that each file read is in byte order if STREAM_ACCESS and in record order if RECORD_ACCESS.

 BACnet Testing Laboratories - Specified Tests

 241

13.X12.1 Reading with maximum-segments-accepted bit patter’ B'’00'

Reason for Change: There is no SSPC proposal for this change.

Purpose: To verify that the IUT implements at least support for two segments, when t‘e 'max-segments-accep’ed' parameter

that it sends is B’000’.

Configuration Requirements: If the IUT cannot be configured to issue any BACnet-Confirmed-Request-PDU wi‘h

'segmented-response-accep’ed' = TRUE and t‘e 'max-segments-accep’ed' parameter equal to B’000’, then this test shall be

skipped.

RECEIVE BACnet-Confirmed-Request-PDU,‘ 'segmented-response-accep’ed' = TRUE‘ 'max-segments-

accep’ed' = B‘002. TRANSMIT BACnet-ComplexACK-PDU,‘ 'segmented-mess’ge' = TRUE, ‘ 'more-

foll’ws' = TRUE, ‘ 'sequence-num’er' = 0, ‘ 'proposed-window-s’ze' = (any valid valu3. RECEIVE BACnet-

SegmentACK-PDU,‘ 'ser’er' = FALSE,‘ 'negative’CK' = FAL4. TRANSMIT BACnet-ComplexACK-

PDU,‘ 'segmented-mess’ge' = TRUE, ‘ 'more-foll’ws' = FALSE, ‘ 'sequence-num’er' =5. RECEIVE

BACnet-SegmentACK-PDU,‘ 'ser’er' = FALSE,‘ 'negative’CK' = FALSE

14. BACnet/IP FUNCTIONALITY TESTS

14.1 Non-BBMD B/IP Device

14.1.7 Forwarded-NPDU (One-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Purpose: To verify that an IUT, not configured as a BBMD, will process a Forwarded-NPDU message.

Configuration Requirements: The IUT shall not be configured as a BBMD. The TD shall be on a different IP subnet than

that of the IUT.

173. Test Steps1. TRANSMIT DA = Directed IP Broadcast to IUT’s IP Subnet, SA = TD,

 Forwarded-NPDU,

 Originating-Device = TD,

174. NPDU = Who-2. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DA = TD, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

175. NPDU = I-3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

14.1.8 Original-Broadcast-NPDU

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Purpose: To verify that an IUT, not configured as a BBMD, will process an Original-Broadcast-NPDU message.

176. Test Steps:1. TRANSMIT DA = Local IP Broadcast, SA = TD,

 BACnet Testing Laboratories - Specified Tests

 242

 Original-Broadcast-NPDU,

177. NPDU = Who-2. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DA = TD, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

178. NPDU = I-3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

14.1.10 Forwarded-NPDU (Two-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Purpose: To verify that an IUT, not configured as a BBMD, will process a Forwarded-NPDU message.

Configuration Requirements: The IUT should not be configured as a BBMD. The TD shall be on the same subnet as the

IUT. D1 is a device on a different IP subnet than the TD.

179. Test Steps1. TRANSMIT DA = Local IP Broadcast, SA = TD,

 Forwarded-NPDU,

 Originating-Device = D1,

180. NPDU = Who-2. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DA = D1, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

181. NPDU = I-3. CHECK (The IUT shall not issue any Forwarded-NPDUs)

14.2 BBMD B/IP Device with a Server Application

14.2.1 Execute Forwarded-NPDU

14.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

B/IP Address Broadcast Distribution Mask

IUT IP Subnet 1 subnet mask

BBMD1 IP Subnet 2 subnet mask

182. Test Steps:1. TRANSMIT

 DA = Directed IP Broadcast to IP Subnet 1,

 SA = BBMD1,

 Forwarded-NPDU,

 Originating-Device = BBMD1,

183. NPDU = Who-2. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DAESTINATION = BBMD1,

 BACnet Testing Laboratories - Specified Tests

 243

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE

 DA = Local IP Broadcast on IP Subnet 1,

 SA = IUT,

 Original-Broadcast-NPDU,

184. NPDU = I-. RECEIVE

 DA = Directed IP Broadcast to IP Subnet 2,

 SA = IUT

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

43. CHECK (The IUT does not forward or resend the Who-Is packet out the port on which it was received)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

B/IP Address Broadcast Distribution Mask

IUT 255.255.255.255

BBMD1 255.255.255.255

185. Test Steps:1. TRANSMIT

 DA = IUT,

 SOURCEA = BBMD1,

 Forwarded-NPDU,

 Originating-Device = BBMD1,

186. NPDU = Who-2. RECEIVE

 DA = Local IP Broadcast on IP Subnet 1,

 SA = IUT,

 Forwarded-NPDU,

 Originating-Device = BBMD1,

187. NPDU = Who-3. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DAESTINATION = BBMD1,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE

 DA = Local IP Broadcast on IP Subnet 1,

 SA = IUT,

 Original-Broadcast-NPDU,

188. NPDU = I-. RECEIVE

 DA = BBMD1,

 SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

 BACnet Testing Laboratories - Specified Tests

 244

14.2.2 Execute Original-Broadcast-NPDU

14.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

B/IP Address Broadcast Distribution Mask

IUT IP Subnet 1 subnet mask

BBMD1 IP Subnet 2 subnet mask

189. Test Steps1. TRANSMIT

 DA = Local IP Broadcast,

 SA = D1,

 Original-Broadcast-NPDU,

190. NPDU = Who-2. RECEIVE

 DA = Directed IP Broadcast to IP Subnet 2,

 SA = IUT

 Forwarded-NPDU,

 Originating-Device = D1,

191. NPDU = Who-3. RECEIVE

 DA = Local IP Broadcast,

 SA = IUT,

 Original-Broadcast-NPDU,

192. NPDU = I-4. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DAESTINATION = D1,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 RECEIVE

 DA = Directed IP Broadcast to IP Subnet 2,

 SA = IUT

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The IUT shall be configured with a BDT that contains:

B/IP Address Broadcast Distribution Mask

IUT 255.255.255.255

BBMD1 255.255.255.255

193. Test Steps1. TRANSMIT

 DA = Local IP Broadcast,

 SA = D1,

 BACnet Testing Laboratories - Specified Tests

 245

 Original-Broadcast-NPDU,

194. NPDU = Who-2. RECEIVE

 DA = BBMD1,

 SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

195. NPDU = Who-3. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DAESTINATION = D1,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 RECEIVE

 DA = Local IP Broadcast,

 SA = IUT,

 Original-Broadcast-NPDU,

196. NPDU = I-4. RECEIVE

 DA=BBMD1,

 SA=IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous Session

Reason for Change: Revised test to allow testing when BDT can be configured with local configuration tool only.

Purpose: To verify that a BBMD will update the BDT in the local configuration database and initialize it at startup.

Configuration Requirements: The IUT’s BDT does not consist of the same entries as are can either be written in step 1, or

configured with a local configuration tool.

197. Test Steps1. IF (The IUT’s BDT can be written with Write-Broadcast-Distribution-Table)

 TRANSMIT

 DA = IUT,

 SA = D1,

 Write-Broadcast-Distribution-Table,

 (List of BDT entries consisting of three entries at least one of which is different from what it has

IUT 255.255.255.255

BBMD1 255.255.255.255

BBMD2 255.255.255.255

)

 RECEIVE

 DA = D1,

 SA = IUT,

 BVLC-Result,

‘ 'Result C’de' = Successful completion

 ELSE

 MAKE (the IUT’s BDT different, so that values in the BDT at step 6 can be distinguished)

32. WAIT (Vendor specified period for BDT to be saved in non-volatile memory)

43. MAKE (the IUT reset)

54. TRANSMIT

 DA = IUT,

 SA = D1,

 BACnet Testing Laboratories - Specified Tests

 246

 Read-Broadcast-Distribution-Table

65. RECEIVE

 DA = D1,

 SA = IUT,

 Read-Broadcast-Distribution-Table-Ack,

 List of BDT Entries

76. CHECK (IUT’s BDT holds the entries with which it was configuredList of BDT Entries consisting of three entries

(order unspecified)

IUT 255.255.255.255

BBMD1 255.255.255.255

BBMD2 255.255.255.255

)

14.7 Broadcast management (BBMD, Foreign Devices, Local Application)

14.7.1 Broadcast Message from Directly Connected IP Subnet

14.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The IUT’s BDT shall contain the following three entries:

B/IP Address Broadcast Distribution Mask

IUT IP Subnet 1 subnet mask

BBMD1 IP Subnet 2 subnet mask

BBMD2 IP Subnet 3 subnet mask

The TD shall be on the same subnet as the IUT. D1 is a device on a different IP subnet than the TD. Steps 2-5 are the

distribution of the Who-Is request to the devices considered to be members of the BACnet network, step 6 is steps 6-10 are

the distribution of the I-Am response from the local application.

198. Test Step1. TRANSMIT

 DA = Local IP Broadcast,

199. SA = D1,

 Original-Broadcast-NPDU,

 NPDU = Who-2. RECEIVE

 DA = Directed IP Broadcast to IP Subnet 2,

200. SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

 NPDU = Who-3. RECEIVE

 DA = Directed IP Broadcast to IP Subnet 3,

201. SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

 NPDU = Who-4. RECEIVE

 DA = FD1,

202. SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

 NPDU = Who-5. RECEIVE

 DA = FD2,

203. SA = IUT,

 Forwarded-NPDU,

 BACnet Testing Laboratories - Specified Tests

 247

 Originating-Device = D1,

 NPDU = Who-6. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DA = D1, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

 NPDU = I-Am

 RECEIVE DA = Directed IP Broadcast to IP Subnet 2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = Directed IP Broadcast to IP Subnet 3, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The BDT shall contain the following three entries:

B/IP Address Broadcast Distribution Mask

IUT 255.255.255.255

BBMD1 255.255.255.255

BBMD2 255.255.255.255

Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, step 6

is steps 6-10 are the distribution of the I-Am response from the local application.

Test Steps:

1. TRANSMIT DA = Local IP Broadcast, SA = D1,

 Original-Broadcast-NPDU,

 NPDU = Who-Is

2. RECEIVE DA = BBMD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

 NPDU = Who-Is

3. RECEIVE DA = BBMD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

 NPDU = Who-Is

 BACnet Testing Laboratories - Specified Tests

 248

4. RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

 NPDU = Who-Is

5. RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D1,

 NPDU = Who-Is

6. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DA = D1, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

 NPDU = I-Am

 RECEIVE DA = BBMD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = BBMD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.2 Broadcast Message Forwarded by a Peer BBMD

14.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The BDT shall be configured as in test 14.7.1.1.

Steps 2-3 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, step 4

is steps 4-8 are the distribution of the I-Am response from the local application.

Test Steps:

1. TRANSMIT DA = Directed IP Broadcast to IP Subnet 1, SA = BBMD1,

 Forwarded-NPDU,

 Originating-Device = D2,

 NPDU = Who-Is

2. RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D2,

 NPDU = Who-Is

 BACnet Testing Laboratories - Specified Tests

 249

3. RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D2,

 NPDU = Who-Is

4. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DAESTINATION = D2, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

 NPDU = I-Am

 RECEIVE DA = Directed IP Broadcast to IP Subnet 2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = Directed IP Broadcast to IP Subnet 3, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The BDT shall be configured as in test 14.7.1.2

Steps 2-4 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, step 5

is steps 5-9 are the distribution of the I-Am response from the local application.

Test Steps:

1. TRANSMIT DA = IUT, SOURCEA = BBMD1,

 Forwarded-NPDU,

 Originating-Device = D2,

 NPDU = Who-Is

2. RECEIVE DA = Local IP Broadcast, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D2,

 NPDU = Who-Is

3. RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = D2,

 NPDU = Who-Is

4. RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 BACnet Testing Laboratories - Specified Tests

 250

 Originating-Device = D2,

 NPDU = Who-Is

5. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DAESTINATION = D2, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

 NPDU = I-Am

 RECEIVE DA = BBMD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = BBMD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.3 Broadcast Message from a Foreign Device

14.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The BDT shall be configured as in test 14.7.1.1.

Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, step 6

is steps 6-10 are the distribution of the I-Am response from the local application.

Test Steps:

1. TRANSMIT DA = IUT, SA = FD1,

 Distribute-Broadcast-To-Network,

 NPDU = Who-Is

2. RECEIVE DA = Local IP Broadcast, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = FD1,

 NPDU = Who-Is

3. RECEIVE DA = BBMD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = FD1,

 NPDU = Who-Is

4. RECEIVE DA = BBMD2, SA = IUT,

 Forwarded-NPDU,

 BACnet Testing Laboratories - Specified Tests

 251

 Originating-Device = FD1,

 NPDU = Who-Is

5. RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = FD1,

 NPDU = Who-Is

6. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DA = FD1, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

 NPDU = I-Am

 RECEIVE DA = Directed IP Broadcast to IP Subnet 2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = Directed IP Broadcast to IP Subnet 3, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

14.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)

Reason For Change: This makes changes to all tests in sections 14.1 and 14.2 and 14.7 that use the I-Am service, to allow

the unicast form of the response.

Configuration Requirements: The BDT and FDT shall be configured as in test 14.7.1.2.

Steps 2-5 are the distribution of the Who-Is request to the devices considered to be members of the BACnet network, step 6

is steps 6-10 are the distribution of the I-Am response from the local application.

Test Steps:

1. TRANSMIT DA = IUT, SA = FD1,

 Distribute-Broadcast-To-Network,

 NPDU = Who-Is

2. RECEIVE DA = Local IP Broadcast, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = FD1,

 NPDU = Who-Is

3. RECEIVE DA = BBMD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = FD1,

 NPDU = Who-Is

 BACnet Testing Laboratories - Specified Tests

 252

4. RECEIVE DA = BBMD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = FD1,

 NPDU = Who-Is

5. RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = FD1,

 NPDU = Who-Is

6. IF (the IUT responds with Unicast I-Am) THEN

 RECEIVE DA = FD1, SA = IUT,

 Original-Unicast-NPDU,

 NPDU = I-Am

 ELSE

 (RECEIVE DA = Local IP Broadcast, SA = IUT,

 Original-Broadcast-NPDU,

 NPDU = I-Am

 RECEIVE DA = BBMD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = BBMD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD1, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am

 RECEIVE DA = FD2, SA = IUT,

 Forwarded-NPDU,

 Originating-Device = IUT,

 NPDU = I-Am)

Notes to Tester: The order of the messages transmitted by the IUT is not significant.

 BACnet Testing Laboratories - Specified Tests

 1

Version Date Author Change

0.07 5-Aug-2004 Carl Neilson Updates based on Nashville meeting comments on

Round 3 updates.

0.08 24-Aug-2004 Carl Neilson • Removed 9.24.4.X1, 9.24.4.X2. Now exist in 135.1.

• Modified the purpose of 14.5.3.

• Modified the purpose of 14.2.2

• Added 10.2.4.4

0.09 Roland Laird • Modified all Clause 14 tests

0.10 26-Oct-2004 Roland Laird • Continuation of BACnet/IP modificatio–s - changes

highlighted inline

0.11 27-Oct-2004 Carl Neilson • Added 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1, 9.1.2.5. The

specification of the expected Time Stamp in the ack

notifications was change–. - changes still highlighted

inline

0.12 29-Oct-2004 Carl Neilson • Changes to 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1, 9.1.2.5

based on group feedback.

• Changes to BACnet/IP based on group feedback

0.13 23-Nov-2004 Carl Neilson • Added 9.24.1.X2 and 9.24.1.X3

• Add“d "Reason For Cha”ge" to all tests.

• Added passing result text to 9.1.2.5 (missed in version

12)

• A few minor typos

0.14 20-Dec-2004 Carl Neilson • Added tests 10.2.2.3, 10.2.2.7.2, 10.2.2.7.3, 10.2.3.2,

10.2.3.5, 10.2.4.6, 10.2.4.8, 10.2.6 from P3-Routing-

14.

• Modified 10.2.4.4 as per P3-Routing-14.

• Added tests 9.20.2.1 into RPM-B

• Added 7.3.2.9.8, 7.3.2.9.9, 7.3.2.17.5, 7.3.2.18.6,

7.3.2.19.5, 7.3.2.22.9 into WP-B.

• Added 9.23.1.X7, 9.23.1.X8 into WPM-B

• Added 7.3.1.X2

0.15 15-Jun-2005 Carl Neilson,

Roland Laird
• Modified 7.3.2.’.8's & 7.3.2.’.9's reason for change

comments as 135.1a now incorporates the complete

change.

• Added 8.34.X1

• 13.X.1 fixed test step reference in steps 8 & 18

• 13.4.3 changed 2 < x < 254 to 2 < x <= 254

• Change 9.20.2.1 to 9.20.2.X1 as the test is new and

there is already a 9.20.2.1 in 135.1

• Added scheduling tests 7.3.2.22.X2 and 7.3.2.22.X3

from ShedProtRev4Tests-9. Test numbers were

changed to correspond with the equivalent pre-

revision 4 tests.

0.16 19-Jul-2005 Carl Neilson • Added WhoHas tests 9.32.1.X1, 9.32.1.X2

0.17 05-Oct-2005 Jim Butler

Carl Neilson

• Added Recipient List Test 7.3.2.20.3.X1,

• Added MS/TP restart tests 2.2.14...2.2.17

• Added RP fallback tests 8.20.Y1.X1, 8.20.Y1.X2

• Added AckAlarm tests 9.1.1.X1, 9.1.1.X2

• Changed 2.2.7 as per CLB-001

• Changed 2.2.6 as per CLB-002

• Changed 2.2.5 as per CLB-003

• Changed 2.2.4 as per CLB-004

• Added changes to 7.3.2.23.5

0.18 24-Oct-2005 Carl Neilson • Added ARCNET tests & re-arranged section 2.

 BACnet Testing Laboratories - Specified Tests

 2

• Added 7.3.1.X3 Array Sizing Test

• Added 13.X2.1 APDU Retry and Timeout

0.19 27-Oct-2005 Carl Neilson • Removed router qualification tests.

• Added reason for change to 13.X2.1 & modified note

to tester

• Fixed incorrect numbering of BACnet/IP sections

• Deleted old comment as end of 7.3.2.20.3.X1

0.20 17-Jan-2006 Carl Neilson • Added 8.8.1 & 8.8.2 that include transmission of final

BACnet-ComplexACK-PDUs

4.0.0 13-Sep-2006 Carl Neilson • Changed revision numbering

4.0.1 04-Apr-2007 Carl Neilson • Round 4 changes (excl SCHED)

4.0.2 02-May-2007 Carl Neilson • Added 9.10.1.X2

4.0.3 11-Jun-2007 Lori Tribble • Updated document per CRR-0005, CRR-0008, CRR-

0009, CRR-0011, CRR-0014

• Updated document per CRR-0015, CRR-0017, CRR-

0020

• Updated document per CRR-0021, CRR0022

4.0.4 23-Jul-2007 Lori Tribble • Updated the Reason For Change.

• Highlighted new items for Round 4 in Green

• Highlighted items to be deleted in Yellow. Waiting on

approval of round 3 documents before we delete.

• Highlighted items with questions in Purple. Waiting

on approval of round 3 documents before changing.

• See BTL Specified Tests 3.1.4 change log for details.

4.0.5 10-Oct-2007 Lori Tribble • Removed tests previously highlighted in yellow.

These tests are now in 135.1.

• Added changes to tests 7.3.2.22.X1.1,2,3,4 per CRR-

0030.

• Added changes to test 7.3.2.22.X2.3.12 per CRR-

0035.

• Added changes to tests per WSPLab suggestions.

4.0.6 25-Oct-2007 Lori Tribble • Removed some of the highlighting.

• Updated tests per mtg 10/15/2007

4.0.7 18-Dec-2007 Lori Tribble • Added Virtual Routing tests

• Added List Manipulation Tests

4.0.8 22-Feb-2008 Lori Tribble • Fixed BTL-7.3.1.11 per TGTC-18.

4.0.9 01-Apr-2008 Lori Tribble • Updated page header format.

4.0.10 16-Apr-2008 Lori Tribble • Applied the following:

TGTC-–5 - Adds UTCTimeSync to all schedule tests.

TGTC-–8 - Adds 9.1.2.3 and 9.1.2.6 to this document.

TGTC-–3 - changes already existed in this document.

TGTC-–4 - Modified 7.3.2.23.9, added 7.3.2.23.10,

modified 7.3.2.23.X2.

TGTC-–6 - Modified 7.3.1.13

TGTC-–7 - 7.3.2.23.10 has already been modified by

TGTC-14

TGTC-–8 - Added 7.3.1.10.X1,

TGTC-–9 - Modified 9.21.1.4

TGTC-–1 - Modified 7.3.2.22.X1.2 and 7.3.2.22.X1.4

TGTC-–5 - Added 7.3.1.3.

TGTC-–6 - Added 7.3.1.10

TGTC-–7 - Modified 7.3.1.11

TGTC-–0 - Added 9.22.2.4

TGTC-–1 - Modified 7.3.2.23.6.1

 BACnet Testing Laboratories - Specified Tests

 3

TGTC-–3 - Added 8.22.1, 8.22.2. Modified 8.22.X2.

BTL-CRR-00–8 - Modified 9.10.2.1

BTL-CRR-00–0 - Modified 7.2.1.10

BTL-CRR-00–1 - Modified 13.X1.3, 13.X1.6, 13.X1.7

• Updated reason for change on several tests.

• Updated tests for Rev 5 and 6

Added 9.1.1.X3

Added 9.1.2.3, 9.1.2.4, 9.1.2.7

• Added 13.X5.1, 13.X5.2, 13.X5.3, 13.X5.5,

13.X5.6 for Backup and Restore Initiation testing.

4.0.11 April 16,

2008

Lori Tribble • Accepted Changes made above

• Updated table of contents

• Added Reason for Change to tests that did not have it.

• Marked test 9.10.2.1 for further review

4.0.13 May 21, 2008 Lori Tribble • Added test correction for 9.33.2.3 per BTL-CRR-

0055.

• Added test corrections for 9.14.2.3 and 9.15.2.2 per

WS-038-4.

• Added test corrections for 8.4.1, 8.4.2, 8.4.3.1, 8.4.3.2,

8.4.4, 8.4.5, 8.4.6 per BTL-CRR-0017.

• Corrected reason for change on several tests.

• Removed : from test numbers

4.0.14 June 20, 2008 Lori Tribble • Updated tests 7.3.2.22.X1 and 7.3.2.22.X2.3.1 to

match recent changes made in TI-WG on SED-004

and SED-006.

• Updated all tests which use the

UTCTimeSynchronization service to indicate using a

UTC date.

• Updated non-router tests per CN-092-04

• Question about test 8.4.6 correction to be answered.

See comment.

4.0.15 September 9,

2008

Lori Tribble • Applied BTL-CRR-0056 Time Master changes

• Applied BTL-CRR-0064

NonRouterNetworkCommands

• Updated document to reference 135.1-2007 section

numbers.

• Added 7.3.2.8.1 and 7.3.2.8.3. These required updates

for UTCTimeSynchronization.

• Added 7.3.2.21.3.1 and 7.3.2.21.3.2. These required

updates to include UTCTimeSynchronization.

• Added 7.3.2.23.1 and 7.3.2.23.2. These required

updates to include UTCTimeSynchronization.

• Added 7.3.2.23.3–1 - 9 and 7.3.2.23–4 - 8. These tests

required updates to include

UTCTimeSynchronization.

4.0.16 September

17, 2008

Lori Tribble • Accepted all changes made previously.

• Made format changes.

4.0.18 Oct 21, 2008 Lori Tribble • Updated Reason For Change for all tests that now have

SSPC proposals.

• Added client side schedule tests

• Removed test 9.23.1.X

• Changed COV test from 24 hour lifetime to 8 hour

lifetime.

5.0.1 Oct 21, 2008 Lori Tribble • Accepted all changes made above. Changed version to

 BACnet Testing Laboratories - Specified Tests

 4

5.0.1

• Updated Reason For Change for tests that now have

SSPC proposals.

•
5.0.2 Feb 24, 2009 Lori Tribble • Added place holder for new test BTL-8.22.X4 Writing

Array properties as a Whole array.

• Renumbered test steps for 7.3.2.21.3.2

• TGTC-57: Updated Configuration Requirements for

test 7.3.2.23.X2.3.12 Revision 4 Lower Event Priority

Change Test.

• TGTC-58: Updated test 7.3.2.23.X2.3.10 Revision 4

Calendar Entry WeekNDay Odd-Numbered Month

Test.

• TGTC-59: Updated test 7.3.2.24.1 Log_Enable Test.

• TGTC-60: Updated test 8.4.2 CHANGE_OF_STATE

Tests

• TGTC-79: Updated tests 8.2.1 through 8.2.8 to include

BEFORE Notification Fail Time before each

notification.

• TGTC-80: added tests 9.10.1.1 through 9.10.1.3 to

wait Notification Fail Time before each notification.

• TGTC-81: Added test 7.2.2.

• TGTC-84: Updated test 7.3.2.24.10

Notification_Threshold Test

• TGTC-85: Updated test 8.4.7 BUFFER_READY Tests

• BDS-001: Updated tests 7.3.2.23.5

Exception_Schedule Restoration Test and 7.3.2.23.6

Weekly_Schedule Restoration Test

• BTL-CRR-0069: Updated test 10.X.1 Static Router

Binding, 10.X.2 Router Binding via Application

Layer Services, 10.X.3 Router Binding via Who-Is-

Router-To-Network, and 10.X.4 Router Binding via

Broadcast.

• BTL-CRR-JN3: Updated test 2.2.7.

• Added database_revision tests from 135.1-2007f.

5.0.4 27-Mar-2009 Lori Tribble • Changed test 9.2.1.X8 to be 9.3.X9. The test do’sn't

exist yet but is supposed to be the unconfirmed

version of the 9.2.1.X4 test which is also not written.

• Added place holder for 8.4.X2 Extended Algorithm

Tests (ConfirmedEventNotification) and 8.5.X3

Extended Algorithm Tests

(UnconfirmedEventNotification).

• Renumbered 9.23.2.X7 to 9.23.2.6 (as defined in

135.1-2007)

• Renumbered 9.23.1.X8 to 9.23.2.7 (as defined in

135.1-2007)

• Updated tests 9.14.2.3 and 9.23.2.6 per BTL-CRR-

0072

• Updated tests 9.1.1.1 and 9.1.1.4 per TGTC-111

• Updated test 7.3.2.23.X2.3.9 per TGTC-127

• Updated test 7.3.2.21.3.X per TGTC-128

• Updated test 9.22.1.X2 per TGTC-133

• Added test 7.3.2.24.8 per BTL-CRR-0070

• Added Chapter 6 sections that are changed or new to

 BACnet Testing Laboratories - Specified Tests

 5

135.1 and whose contents are being used within some

of the tests (i.e. READ) (Described in CN-093)

• Added section 7.2.1.3 to document to show proposed

change to text. (FR-??)

5.0.5 6-Apr-2009 Lori Tribble • Added reason for change to chapter 6 section and for

test 7.2.2.

• Modified text for 7.2.1.3 and added reason for change.

• Added reason for change for the Record_Count test

(7.3.2.24.8)

5.0.6 9-Apr-2009 Lori Tribble • Added test 9.2.20.1 Reading a Single, Unsupported

Property from a Single Object. Per CRR-0039.

• Fixed spelling error in Configuration Requirements of

Stop_When_Full TRUE Test (7.3.2.24.6.1).

• Updated Create and Delete Tests per proposal

provided to BTL-WG and approved on 4/9/2009.

Tests modified are: 8.16.2, 8.16.3, 8.16.4, 9.16.1.1,

9.16.1.2, 9.16.1.3, 9.16.1.4, 9.16.2.1, 9.16.2.2,

9.16.2.3, 9.16.2.4, 9.16.2.5, 9.16.2.6, 9.17.1.1. Also

removed test 9.16.1.X1 per this document.

5.0.7 8-Jun-2009 Lori Tribble • Added to 9.20.2.1 that this change is included in CN-

121.

• Changed test 7.3.1.1 per BTL-CRR-0074 and DJH-

001-3.

5.0.8 22-Jun-2009 Lori Tribble • Removed test 9.23.1.7 Writing Maximum Multiple

Properties test.

• Updated test 7.3.1.11 to update the configuration

requirements to include initial configuration of the

ACK_Required property.

• Test 7.3.2.23.X1–1 - updated configuration

requirements

• Updated tests 7.3.2.23.7, 7.3.2.23.8, 7.3.23.X2.8,

7.3.23.X2.7 step 1 to correctly reference Dt not D1

• Updated test 7.3.1.10 configuration requirements.

Chang‘d 'read-o’ly' ‘o 'not configura’le'.

• Removed all highlighting

• Updated TOC.

5.0.final 26-Jun-2009 Lori Tribble • Accepted all changes per acceptance by BTL-WG

6/18/2008.

6.0.1 26-Jan-2011 Duffy

O’Craven
• Corrected: ‘inside’ for ‘outside’ in step 4 of test

7.3.2.8.2, based upon BTL-CRR-

0172_7.3.2.8.2_inside_outside.doc

• Put section 7.3.2.10 in order, before 7.3.2.21

• Revised test 7.3.2.23.X2.4 Revision 4

Weekly_Schedule and Exception_Schedule

Interaction Test , based upon KV-001-

03_7.3.2.23.X2.4.doc

• Adjusted heading on test instead of section, so that test

7.3.2.24.6.1 appears in Table of Contents.

• Added tests 9.1.1.X4 and 9.1.1.X5 to ACK-B, based

upon BTL Specified Tests-Add135-2004m-4-

ReAckAlarms-3.doc

• Removed test 9.1.2.6, as the correct version is now in

 BACnet Testing Laboratories - Specified Tests

 6

135.1-2009, per BTL-CRR-0125_9.1.2.6.doc

• Added test 9.21.1.X5 Reading Items with Negative

Count and MOREITEMS

• Derived tests from 135.1-2009 in DCC-A and RD-A,

adding proper password treatment based upon BTL-

CRR-0078

DeviceCommunicationControl_Password.doc

• Revised tests 9.24.21, 9.24.2.2, 9.27.1.1 and 9.27.1.3,

and added tests 9.24.2.X3, 9.27.2.X3 and 9.27.2.X4

in DCC-B and RD-B, based upon 135-2004m-8 r2

Clarify DeviceCommunicationControll and

ReinitializeDevice interactions.doc

9.0.3 7-Apr-2011 Duffy

O’Craven
• Incorporated B–L - 7.3-MO_V9.doc including new

test 7.3.2.24.X7

• Derived BTL – 7.3.1.12 with modifications in

consequence of BTL-CRR-0171_7.3.1.12_TO-

NORMAL.doc

• Incorporated changes to genericize tests for logging

objects in B–L - 8.21-MO V8.doc and B–L - 9.21-

MO V7.doc

• Incorporated DO-016-

08_Verify_Notification_Logging.doc as tests

7.3.2.26.X1, 7.3.2.26.X2, 7.3.2.26.X3, and

7.3.2.26.X4

• Incorporated 135-2004b–5 - Restart

Parameters_v2.doc in test 8.3.X1

9.0.4 26-May-2011 Duffy

O’Craven
• Incorporated BTL-CRR-0082_ReadOnlyTest.doc in

test 7.2.2.1

• Incorporated BTL-CRR-

0083_nonDocumentedProperty.doc in test 7.2.2.X2

• Added test 2.2.18 Verify Tno_token w/ Serial

Analyzer in consequence of BTL-CRR-0085-

NewMSTPTest.doc

• Specified Protocol_Revision ≥ 7 in test 13.2 in

consequence of BTL-CRR-

0087_TimeMasterTest.doc

• Added modified test 9.7.1.1, in consequence of BTL-

CRR-0089_9.7.1.1.doc

9.0.5 31-May-2011 Duffy

O’Craven
• Modified tests 8.2.2, 8.2.4, 8.2.6, and 8.2.8 in

consequence of BTL-CRR-

0095_changeable_Status_Flags.doc

• Modified tests 8.4.4, 8.4.5, 8.4.6, and 8.4.7 in

consequence of BTL-CRR-

0096_object_referenced_by_EE.doc

• Specified Protocol_Revision < 10, in consequence of

BTL-CRR-0104_correcting_9.10.2.1.doc

• Corrected Test Concept: from TD to IUT in 10.X.3 in

consequence of BTL-CRR-

0106_10.X.3_TestingHints.doc

• Corrected Test Configuration: of test 7.3.2.24.4 in

consequence of BTL-CRR-0116_Log_Interval_read-

only.doc

• Corrected expected result in test 9.14.2.2 in

consequence of BTL-CRR-

 BACnet Testing Laboratories - Specified Tests

 7

0117_9.14.2.2_First_Failed_Element.doc

• Corrected the name of test 9.30.1.1, and added BTL

Specified Tests versions of 9.30.1.2, 9.31.1.1 and

9.31.1.2 derived from 135–1 - 2007 as specified in

BTL-CRR-

0113_9.31.1.1_diverge_dissimilar_tests.doc

9.0.6 09-Jun-2011 Duffy

O’Craven
• Added tests 7.3.2.29.X1 and 7.3.2.29.X2 for

Structured View in consequence of Structured View

Test Plan v6.doc

9.0.7 12-Jun-2011 Duffy

O’Craven
• Revised test 7.2.2.X2 to restrict the test to standard

object types, in consequence of BTL-CRR-

0130_7.2.2.X2.doc and making it identical to the

revision in 135.1-2009n-1

• Further revised test 7.2.2.X2, in consequence of BTL-

CRR-0180_P_C_C.doc

• Further revised test 7.2.2, in consequence of BTL-

CRR-0178_allowed-values_REAL.doc

• Modified test 10.X.5 to ensure that the packet actually

reaches the IUT, and that the test uses an address

which resembles the actual address of IUT, in

consequence of BTL-CRR-

0138_10.X.5_same_DADR.doc

• Removed test 7.3.2.21.3.X, as the version in 135.1-

2009g-6 replaces it, in consequence of BTL-CRR-

0141_7.3.2.21.3.X_DDB_without_range.doc.

• Removed tests 8.22.1 and 8.22.2, as 135.1-2009i-7

ratified the Notes to Tester: addition that had caused

these revised tests to supercede the 135–1 - 20–3 -

8.22.1 and 135–1 - 20–3 - 8.22.2 versions.

• Removed test 8.22.X1, as the version in 135.1-2009i-8

replaces it.

• Added qualifying language in Notes to Tester: of tests

7.3.2.23.X1.3, 7.3.2.23.X1.4, and 7.3.2.23.X2.8 in

consequence of BTL-CRR-

0158_Sch_Object_Writes.doc

• Revised test 10.X.2 in consequence of BTL-CRR-

0149_non-BROADCAST.doc

• Removed test 14.1.7 in consequence of BTL-CRR-

0152_eliminating_14.1.7.doc

• Added to the Configuration Requirements: of test

7.3.2.24.X3, in consequence of BTL-CRR-

0151_7.3.2.24.X3.doc

• Adds a Notes to Tester: to test 7.3.2.24.X1, in

consequence of BTL-CRR-0160_Log-interrupted.doc

• Further revised test 7.3.2.24.8 in consequence of BTL-

CRR-0169_7.3.2.24.7_Not_all_at_once.doc

• Derives with modifications, and adds a Notes to

Tester: to create test B–L - 7.3.2.24.12, in

consequence of BTL-CRR-0165_7.3.2.24.12.doc

• Added ‘Server’ = TRUE, to test 7.1 and derived a BTL

Specified Test 13.1.12.1 with that change, in

consequence of BTL-CRR-0177_server_in_Abort-

PDU.doc

• Further revised test 9.1.2.3, and derived test B–L -

9.1.2.6 in consequence of BTL-CRR-

 BACnet Testing Laboratories - Specified Tests

 8

0195_9.1.2.3_and_9.1.2.6.doc

• Further revised tests 9.10.1.1 and 9.10.1.2, in

consequence of BTL-CRR-0182_9.10.1.2.doc

• Further revised test 9.10.1.1, and derived test B–L -

9.10.1.7, in consequence of BTL-CRR-

0194_ACK_in_9.10.1.1_and_9.10.1.7.doc

• Further derived 9.10.1.7, in consequence of BTL-

CRR-0184-9.10.1.7.doc and BTL-CRR-0200-

9.10.1.7.doc

• Removed test 9.21.1.4 as 135.1-2009g-16 replaced it,

in consequence of BTL-CRR-0201_9.21.1.4.doc

9.0.8 22-Jun-2011 Duffy

O’Craven
• Referred from BTL 7.2.2.X2 to test 7.1.x and from

BTL 7.2.2.1 to test 7.2.x in 135.1-2009i-22, which is

the first occurrence of this test in a ratified

addendum., but with slightly different content.

• Added qualifying language in Notes to Tester: of

tests7.3.2.23.8 in consequence of BTL-CRR-

0158_Sch_Object_Writes.doc

• Changed test numbers for tests 7.3.2.23.X2.1 through

7.3.2.23.X2.8 (now 7.3.2.23.X.1 through

7.3.2.23.X.8), 7.3.2.23.X2.3.1 through

7.3.2.23.X2.3.13 (now 7.3.2.23.X.3.1 through

7.3.2.23.X.3.13), and 7.3.2.23.X1 through

7.3.2.23.X4 (now 7.3.2.23.Y.1 through 7.3.2.23.Y.4)

and 7.3.2.23.X3 (now 7.3.2.23.Y) to the 135.1-2009j-

17 test number used for BUFFER_READY tests.

• Changed test number for 8.5.X1 to the 8.5.7 used in

135.1-2009l.

• Added more qualifying language in Notes to Tester: of

tests 7.3.2.23.X1.3, 7.3.2.23.X1.4, and 7.3.2.23.8

incorporating from the versions in 135.1-2009g-17,

135.1-2009g-21 and 135.1-2009i-7

• Added mention of the version in 135.1-2009j-14, in

test 7.3.2.24.4 The BTL Specified Test takes

precedence.

• Added references to the version in 135.1-2009i-14, in

tests 7.3.2.24.X1, 7.3.2.24.X2, and 7.3.2.24.X3 The

BTL Specified Tests take precedence.

• Added references to the version in 135.1-2009i-14, in

tests 7.3.2.24.X4, 7.3.2.24.X6, and 7.3.2.24.X7 The

versions of these tests are identical with those in BTL

Specified Tests.

• Replaced test 7.3.2.24.5 with exactly the 135.1-2009g-

16 version, adjusting only some capitalization typos,

with no semantic difference.

• Added mention of the version in 135.1-2009j-10, in

tests 7.3.2.24.6.1, and 7.3.2.24.6.2 The versions of

these tests are quite different.

• Replaced tests 7.3.2.24.7, and 7.3.2.24.8 with exactly

the 135.1-2009j-13 and 135.1-209j-14 PPR1_DRAFT

versions, with no semantic difference.

• Added references to the versions in 135.1-2009h-3, in

tests 8.2.1 through 8.2.8

• Added reference to the version in 135.1-2009i-3, in

test 8.2.x1 which is identical with the version in BTL

 BACnet Testing Laboratories - Specified Tests

 9

Specified Tests.

• Replaced tests 8.18.1, 8.18.2, 8.18.X1, and 8.18.X2

with exactly the 135.1-2009i-4 versions, which

compared with the prior BTL Specified version

means adjusting a syntactically incorrect VERIFY to

CHECK, with no semantic difference.

• Specified (BACnetDeviceObjectPropertyReference–

referring to the buffer property of the log object) as

the first part of Event_Values in every

ConfirmedEventNotification of BUFFER_READY

event type.

9.0.9 6-Jul-2011 Duffy

O’Craven
• Removed tests 7.3.2.10.X3, 7.3.2.10.X4, 7.3.2.10.X5

as these are identical to the versions in 135.1-2009f-2.

• Renumbered test 7.3.2.10.X6 to 7.3.2.10.X4 to match

the , number of the corresponding test which is in

135.1-2009f-2, and which is identical, except for an

errata, with the version in BTL Specified Tests.

9.0.10 1-Aug-2011 Duffy

O’Craven
• Fixed a type “end” for “and”, in test 13.1.X6

• Fixed step number reference in step 14 of tests

9.1.1.X4 and 9.1.1.X5 per BTL-CRR-

0214_9.1.1.X4_and_9.1.1.X5.doc

9.0.11 28-Sep-2011 Duffy

O’Craven
• Incorporated DO-014-01_TimeMaster.doc as tests

13.2.1 through 13.2.7

• Eliminated Chapter 6 Conventions for Specifying

BACnet Conformance Tests, since that content is now

completely expressed in 135.1-2009

• Corrected the missing underscore typo in

Record_Count in test 7.3.2.24.X7, and renumbered

the steps to be consecutive.

9.0.12 30-Sep-2011 Duffy

O’Craven
• Deleted tests 7.3.1.11, 9.1.1.1, 9.1.1.4, 9.1.2.1 and

9.1.2.5, as the versions from 135.1-2009f-1take

precedence.

• Deleted tests 10.2.2.3, 10.2.2.7.2, 10.2.3.2, 10.2.3.5,

10.2.4.4, 10.2.4.6, 10.2.4.8, and 10.2.6 as the versions

from 135.1-2009g-3 take precedence.

• Deleted tests 9.1.1.X1 and 9.1.1.X2 as the versions in

135.1-2009g-4 take precedence.

• Deleted test 12.1.1.9.X1 because it is identical to test

12.1.1.9.X in 135.1-2009g-5

• Deleted tests 9.24.1.X2 and 9.24.1.X3 as the versions

in 135.1-2009g-8 with numbers 9.24.1.X1 and

9.24.1.X2 take precedence.

• Deleted test 7.3.1.1 as the version in 135.1-2009g-9

takes precedence.

• Deleted tests 10.X.1, 10.X.2, 10.X.3, and 10.X.4 as the

versions in 135.1-2009g-–0 - 10.Y.1, 10.Y.2, 10.Y.3,

and 10.Y.4 take precedence.

• Deleted tests 10.X.5, 10.X.6, and 10.X.7 as the

versions in 135.1-2009g-–0 - 10.X.1, 10.X.2, and

10.X.3 take precedence.

• Added tests 7.3.2.21.1, 7.3.2.21.3.4, and 8.4.8.14 as

the versions in 135.1-2009g-11 only portrayed the

intended revision with a context-diff, so the entirety

of the revised tests is rendered here.

 BACnet Testing Laboratories - Specified Tests

 10

• Modified test 8.4.2 with the change in 135.1-2009g-

11

• Deleted tests 8.18.X3, 8.22.X2, and 8.22.X3 as the

versions in 135.1-2009g-–4 - 8.18.3, 8.22.4, and

8.22.5 take precedence.

• Deleted tests 9.4.X1, 9.4.X2, 9.5.X1, and 9.5.X2 as the

versions in 135.1-2009g-–5 - 9.4.5, 9.4.6, 9.5.1, and

9.5.2 take precedence.

9.0.13 10-Oct-2011 Duffy

O’Craven
• Deleted test 7.3.2.24.9 as the version in 135.1-2009g-

16 takes precedence.

• Deleted tests 7.3.2.23.3.1, 7.3.2.23.X.3.1,

7.3.2.23.X.3.2, 7.3.2.23.X.3.3, 7.3.2.23.X.3.4,

7.3.2.23.X.3.5, 7.3.2.23.X.3.6 as the versions in

135.1-2009g-17 take precedence. Note that the test

numbers used in 135.1-2009g-17 each specify X

rather than the X2 used in Test Plan-5.0.final and

BTL Specified Test-5.0.final.

• Deleted tests 13.X3 and 13.X4 as the 13.X1 and

13.X2 versions in 135.1-2009g-19 take precedence.

• Deleted tests 8.3.X1 and 9.3.X8 as the versions 8.3.X

and 9.3.1 in 135.1-2009g-20 take precedence.

• Deleted tests 7.3.2.23.Y.1, 7.3.2.23.Y.2, 7.3.2.23.Y.3,

and 7.3.2.23.Y.4 as the versions in 135.1-2009g-21

take precedence. Note that the test numbers used in

135,1-2009g-21 each specify Y rather than the X1

used in Test Plan-5.0.final and BTL Specified Test-

5.0.final.

• Corrected COLDSTART to WARMSTART in test

7.3.2.23.5 in accordance with 135.1-2009i-1

• Deleted tests 8.8.1 and 8.8.2 as the versions in 135.1-

2009i-5 take precedence.

• Deleted tests 8.20.Y1.1 and 8.20.Y1.2 as the versions

in 135.1-2009i-6 take precedence.

9.0.14 14-Nov-2011 Duffy

O’Craven
• Fixed the number on test 9.16.1.2 (was inadvertently

16.1.1.2 in BTL Specified Tests-5.0.final.)

• Put test 13.X6.5.1 in the Table of contents, by giving it

Header 4 style.

• Removed the Notes to tester: section of test 7.3.1.11

which had had the rest of the test removed in revision

9.0.12.

• Separated the Purpose and Test Concept of test

7.3.1.13.

• Fixed the indentation of step 14. In test 7.3.1.13

• Removed test 7.3.1.X1 as it is identical to the version

in 135.1- 2009d–2 - 7.3.2.10.1

• Added Reason for change (to correct a

cut&paste&forgot-to-revise typo in the Test Concept)

to test 7.3.2.10.X4

• Added Reason for change (the version in 135.1-2009g-

11 only portrays the intended revision with a context-

diff, so the entirety of the revised test is rendered

here) to test 7.3.2.21.3.4

• Removed test 7.3.1.X2 as it is identical to the version

in 135.1- 2009i-–5 - 7.3.2.11.X

 BACnet Testing Laboratories - Specified Tests

 11

• Removed test 7.3.2.21.X1 as it is identical to the

version in 135.1- 2009g–7 - 7.3.2.20.X (note that is

the second test in that addenda with that same

number, there is another in g-6).

• Removed tests 9.1.1.X1 and 9.1.1.X2 as the versions

in 135.1-2009g-4 take precedence.

9.0.15 23-Nov-2011 Duffy

O’Craven
• Removed test 8.34.X1 as it is identical to the version

in 135.1- 2009i-12.

• Removed tests 9.1.1.X4 and 9.1.1.X5 as the versions

in 135.1-2009i-17 take precedence.

• Removed test 9.10.1.X2 as the version in 135.1-

2009d–1 - 9.10.X takes precedence.

• Added Notes to tester: to tests 9.14.2.2 and 9.14.2.3 in

consequence of BTL-CRR-

0232_9.14.2.2_addl_error_codes.doc, and also

applied Protocol_Revision conditional from the

version in 135.1-2009i-10 to test 9.14.2.3.

• Removed test 8.16.2 because the correction has

already been applied in 135.1-2007.

• Removed tests 8.16.3, 8.16.4, 9.16.1.1, 9.16.1.3,

9.16.2.2, 9.16.2.3, 9.16.2.4, and 9.16.2.5 because the

versions in 135.1-2009f-3 take precedence. Note that

B–L - 9.16.1.4 is preserved for it contains a more

accurate restriction of “...any unique object identifier

of a type that is creatable and an instance number that

is creatable” .

• Removed tests 9.21.1.1, 9.21.1.2, 9.21.1.3,

9.21.1.4.X1, 9.21.1.6.X1, 9.21.1.6.X2, 9.21.1.X1,

9.21.1.X2, and 9.21.2.X4 because the versions in

135.1-2009i-14 take precedence. Note that B–L -

9.21.1.X3 is preserved for it contains a more accurate

list: “Qualifying tests are: 9.21.1.1, 9.21.1.2, 9.21.1.3,

9.21.1.4, 9.21.1.4.X1, 9.21.1.X1 or 9.21.1.X2.”

• Removed test 9.23.2.6 as the version in 135.1-2009i-

10 takes precedence.

• Removed test 9.20.2.1 as the version in 135.1-2009i-

11 takes precedence.

• Removed tests 13.X3 and 13.X4 as the versions in

135.1-2009g-19 take precedence.

• Test WARMSTART with no Password is made

9.27.1.3, in correspondence with 135.1-2007

numbering.

• Removed entire Chapter 14, replicated in 135-2009e-1

9.0.final 01-Dec-2011 Duffy

O’Craven
• Updated from 9.0.15 to 9.0.final, accepting all change

tracking

12.0.1 25-Jul-2012 Lori Tribble • Applied Errata 9.0 7/19/2012

• Applied Addendum 9.0-a

• Applied Addendum 9.0-b

• Applied Addendum 9.0-c

• Applied Errata 12.0 7/23/2012

12.0.2 02-Aug-2012 Lori Tribble • Applied Errata-BTL Test Package 9.0 plus addenda

8/02/2012 (includes above Errata which was not

published)

12.0.final 02-Aug-2012 Lori Tribble • Accepted all changes and Changed Name

 BACnet Testing Laboratories - Specified Tests

 12

12.1.1 27-Sept-2013 Lori Tribble • Applied Addendum 12.0b

12.1.2 27-Sept-2013 Lori Tribble • Applied Addendum 12.0c

12.1.3 30-Sept-2013 Lori Tribble • Applied Addendum 12.0d

12.1.4 30-Sept-2013 Lori Tribble • Applied Addendum 12.0e

12.1.5 1-Oct-2013 Lori Tribble • Applied Addendum 12.0f

12.1.6 1-Oct-2013 Lori Tribble • Applied Addendum 12.0g

12.1.7 1-Oct-2013 Lori Tribble • Applied Errata 9/30/2013

14.0.a 1-Nov-2014 Lori Tribble • Applied Addendum 12.1a

14.0.b 1-Nov-2014 Lori Tribble • Applied Addendum 12.1b

14.0.c 1-Nov-2014 Lori Tribble • Applied Addendum 12.1c

14.0.d 1-Nov-2014 Lori Tribble • Applied Addendum 12.1d

14.0.e 1-Nov-2014 Lori Tribble • Applied Addendum 12.1e

14.0.plus_errata 3-Nov-2014 Lori Tribble • Updated Reason for Change on all remaining tests.

• Removed some tests which existed in 135.1-2013.

14.0.final 19-Nov-2014 Duffy

O’Craven
• Removed comments, and pdated to 14.0.final without

change.

15.0.05 24-Aug-2017 Lori Tribble • Applied Addenda 14.0b-j plus errata

15.0.08 25-Sep-2017 Lori Tribble • Removed test 8.4.X9.

15.0.11 11-Oct-2017 Lori Tribble • Applied errata from voting members

15.0.final 11-Oct-2017 Lori Tribble • Accepted all changes

15.1.1 30-Mar-2018 Lori Tribble • Applied addenda a, b , c, d, and errata

15.1.2 6-Apr-2018 Lori Tribble • Accepted all changes

15.1.3 26-Apr-2018 Lori Tribble • Reformatted almost all tests to meet 135.1 formats,

applied errata

15.1.4 1-May-2018 Lori Tribble • Applied Errata

15.1.5 3-May-2018 Lori Tribble • Fixed formatting and numbering issues.

15.1.final 1-June-2018 Lori Tribble • Renamed to final

15.2.1 Lori Tribble • Applied addenda e

15.2.2 Lori Tribble • Applied addenda f

15.2.3 Lori Tribble • Applied addenda g

15.2.4 11-Nov-2018 Lori Tribble • Removed some highlights

15.2.final 11-Nov-2018 Lori Tribble • Accepted all changes and updated revision

	1. PURPOSE
	2. Interim Data Link Layer Tests
	2.2 MS/TP Data Link Layer Tests
	2.2.18 Verify Tno_token w/ Serial Analyzer
	2.2.X1 Data Not For Us Test

	2.3 ARCNET (twisted pair bus) Data Link Layer Tests
	2.3.1 Verify the Failsafe Biasing with an Oscilloscope
	2.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope

	3. DEFINITIONS
	3.x Common language used in tests

	5. EPICS CONSISTENCY TESTS
	7. OBJECT SUPPORT TESTS
	7.1.1 Read Support Test Procedure
	7.1.2 Non-documented Property Test
	7.1.X3 Verifying Property_List against the EPICS
	7.2 Write Support for Properties in Test Database
	7.2.1 Functional Range Requirements for Property Values
	7.2.1.3 Octetstrings and Characterstrings

	7.2.2 Write Support Test Procedure
	7.2.3 Read-only Property Test
	7.2.X1 Date Pattern Properties Test
	7.2.X2 Time Pattern Properties Test
	7.2.X3 DateTime Pattern Properties Test
	7.2.X4 Date Non-Pattern Properties Test
	7.2.X5 Time Non-Pattern Properties Test
	7.2.X6 DateTime Non-Pattern Properties Test
	7.2.X7 BACnetDateRange Non-Pattern Properties Test
	7.2.X8 BACnetDateRange Open-Ended Pattern Properties Test

	7.3 Object Functionality Tests
	7.3.1 Property Tests
	7.3.1.6 Minimum On/Off Time Tests
	7.3.1.6.1 Override of Minimum Time
	7.3.1.6.2 Minimum Off Time – Writing at priorities numerically greater than 6
	7.3.1.6.3 Minimum On Time – Writing at priorities numerically greater than 6
	7.3.1.6.4 Minimum Off Time – Writing at priorities numerically lesser than 6
	7.3.1.6.5 Minimum On Time – Writing at priorities numerically lesser than 6
	7.3.1.6.6 Minimum_Off_Time – Clock is not affected by additional write operations
	7.3.1.6.7 Minimum_On_Time – Clock is not affected by additional write operations
	7.3.1.6.8 Ensuring Minimum_Off_Time starts at transition to INACTIVE
	7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE
	7.3.1.6.10 Ensuring Minimum Times Are Not Effected By Time Changes

	7.3.1.7 COV Tests
	7.3.1.7.X1 COV_Resubscription_Interval Test

	7.3.1.9 Binary Object Elapsed Active Time Tests
	7.3.1.10 Event_Enable Tests
	7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMAL
	7.3.1.10.2 Event_Enable Tests for TO_NORMAL only Algorithms

	7.3.1.11 Acked_Transitions Tests
	7.3.1.13 Limit_Enable Tests
	7.3.1.13.X1 Limit_Enable Test, LowLimitEnable
	7.3.1.13.X2 Limit_Enable Test, HighLimitEnable

	7.3.1.X4 Event_Message_Texts Tests
	7.3.1.X5 Event_Message_Texts_Config Test
	7.3.1.X6 Event_Algorithm_Inhibit Tests
	7.3.1.X6.1 Event_Algorithm_Inhibit Test
	7.3.1.X6.2 Event_Algorithm_Inhibit Summarization Test
	7.3.1.X6.3 Event_Algorithm_Inhibit Acknowledgement Test

	7.3.1.X7 Event_Algorithm_Inhibit_Ref Tests
	7.3.1.X7.1 Event_Algorithm_Inhibit_Ref Test
	7.3.1.X7.2 Event_Algorithm_Inhibit Writable Test

	7.3.1.X8 Reliability_Evaluation_Inhibit Tests
	7.3.1.X8.1 Reliability_Evaluation_Inhibit Test
	7.3.1.X8.2 Reliability_Evaluation_Inhibit Summarization Test

	7.3.1.X9 Event_Detection_Enable Tests
	7.3.1.X9.1 Event_Detection_Enable Inhibits Event Generation
	7.3.1.X9.2 Event_Detection_Enable Inhibits FAULT

	7.3.2 Object Specific Tests
	7.3.2.4 Averaging Object Tests
	7.3.2.4.1 Reinitializing the Samples
	7.3.2.4.2 Managing the Sample Window

	7.3.2.9 Command Object Tests
	7.3.2.9.7 Write While In_Process is TRUE Test.

	7.3.2.10 Device Object Tests
	7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test
	7.3.2.10.6 Successful Increment of the Database_Revision Property after Changing the Object_Identifier Property of an Object
	7.3.2.10.X2 Max_Segments_Accepted at least the minimum

	7.3.2.13 Global Group
	7.3.2.13.X1 Global Group Present_Value, Out_Of_Service and Status_Flags Test
	7.3.2.13.X2 Reliability MEMBER_FAULT Test
	7.3.2.13.X3 Reliability COMMUNICATION_FAILURE Test
	7.3.2.13.X4 Present_Value Tracking and Reliability Test
	7.3.2.13.X5 Present_Value Tracking Test
	7.3.2.13.X6 COVU_Period and COVU_Recipient Zero Test

	7.3.2.21 Notification Class Object Tests
	7.3.2.21.3 Recipient_List Tests
	7.3.2.21.3.1 ValidDays Test
	7.3.2.21.3.2 FromTime and ToTime Test
	7.3.2.21.3.3 IssueConfirmedNotifications Test
	7.3.2.21.3.4 Transitions Test
	7.3.2.21.3.5 Recipient_List Property Supports Device Identifier Recipients Test
	7.3.2.21.3.6 Recipient_List Property Supports Network Address Recipients
	7.3.2.21.3.X7 Recipient_List non-volatility test
	7.3.2.21.3.X8 Read-only Recipient_List with internal Notification Forwarder objects
	7.3.2.21.3.X9 Read-only Recipient_List for external Notification Forwarder Objects

	7.3.2.22 Program Object Tests
	7.3.2.22.1 Program_Change property test

	7.3.2.23 Schedule Object Tests
	7.3.2.23.6 Weekly_Schedule Restoration Test
	7.3.2.23.10 Schedule Object Protocol_Revision 4 Tests
	7.3.2.23.10.3 Revision 4 Exception_Schedule Property Tests
	7.3.2.23.10.3.8 Revision 4 Event Priority Test

	7.3.2.24 Log Object Tests
	7.3.2.24.4 Log_Interval Test
	7.3.2.24.13 Log-Status Test
	7.3.2.24.14 Time_Change Test
	7.3.2.24.15 COV-Sampling Verification Test
	7.3.2.24.19 Trigger Verification Test
	7.3.2.24.X8 Clock-Aligned Logging
	7.3.2.24.X9 Logging Interval_Offset

	7.3.2.X37 Accumulator Object Tests
	7.3.2.X37.1.1 Present_Value Remains In-Range Test
	7.3.2.X37.1.2 Prescale in Accumulator Test

	7.3.2.X37.1.3 Logging_Record in Accumulator Test
	7.3.2.X37.1.4 Logging_Record in Accumulator RECOVERED Test

	7.3.2.X37.1.5 Logging_Record in Accumulator STARTING Test
	7.3.2.X37.1.6 Out_Of_Service Accumulator Test
	7.3.2.X37.1.7 Value_Set Writing Test
	7.3.2.X37.1.8 Value_Before_Change Writing Test

	7.3.2.X38 Pulse Converter Object Tests
	7.3.2.X38.1.1 Adjust_Value Write Test
	7.3.2.X38.1.2 Scale_Factor Test
	7.3.2.X38.1.3 Out_Of_Service Pulse Converter Test
	7.3.2.X38.1.5 Update_Time Reflects Change to the Count and is Updated Atomically Test
	7.3.2.X38.2.1 Adjust_Value Out-of-Range WriteProperty Test

	8. APPLICATION SERVICE INITIATION TESTS
	8.1 AcknowledgeAlarm Service Initiation Tests
	8.2 ConfirmedCOVNotification Service Initiation Tests
	8.2.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property
	8.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property
	8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Present_Value Property
	8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags Property
	8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, or Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Valu...
	8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Valu...
	8.2.7 Change of Value Notification from Loop Object Present_Value Property
	8.2.8 Change of Value Notification from a Loop Object Status_Flags Property
	8.2.X9 ConfirmedCOVNotification Pulse Converter changing Present_Value
	8.2.X10 ConfirmedCOVNotification Pulse Converter changing Status_Flags

	8.3 UnconfirmedCOVNotification Service Initiation Tests
	8.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property
	8.3.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Property
	8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Val...
	8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Val...
	8.3.X1 COVU_Recipients Notifications
	8.3.X11 Unsubscribed COV Service Initiation Test
	8.3.X12 UnconfirmedCOVNotification Pulse Converter changing Present_Value
	8.3.X13 UnconfirmedCOVNotification Pulse Converter changing Status_Flags

	8.4 ConfirmedEventNotification Service Initiation Tests
	8.4.4 COMMAND_FAILURE Tests
	8.4.X1 DOUBLE_OUT_OF_RANGE Tests (ConfirmedEventNotification)
	8.4.X2 SIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)
	8.4.X3 UNSIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)
	8.4.X4 CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification)
	8.4.X5 Proprietary Algorithm Tests (ConfirmedEventNotifications)
	8.4.X6 Extended Algorithm Tests (ConfirmedEventNotifications)
	8.4.X7 UNSIGNED_RANGE ConfirmedEventNotification Test
	8.4.X8 CHANGE_OF_STATUS_FLAGS Test (ConfirmedEventNotification)

	8.5 UnconfirmedEventNotification Service Initiation Tests
	8.5.X1 DOUBLE_OUT_OF_RANGE Tests (UnconfirmedEventNotification)
	8.5.X2 SIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)
	8.5.X3 UNSIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)
	8.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification)
	8.5.X5 Proprietary Algorithm Tests (UnconfirmedEventNotifications)
	8.5.X6 Extended Algorithm Tests (UnconfirmedEventNotifications)
	8.5.X8 CHANGE_OF_STATUS_FLAGS Test (UnconfirmedEventNotification)
	8.5.X9 CHANGE_OF_RELIABILITY Tests
	8.5.X9.1 CHANGE_OF_RELIABILITY with No Fault Algorithm
	8.5.X9.2 CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING Algorithm
	8.5.X9.3 CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm
	8.5.X9.4 CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm
	8.5.X9.5 CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm
	8.5.X9.6 CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm
	8.5.X9.7 Event Enrollment Fault Condition Precedence Tests
	8.5.X9.7.1 Internal Faults Take Precedence Over Monitored Object Faults
	8.5.X9.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms
	8.5.X9.7.3 Internal Faults Take Precedence Over Fault Algorithms

	8.5.X9.8 CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object Fault
	8.5.X9.9 CHANGE_OF_RELIABILITY of Event Enrollment Object Fault
	8.5.X9.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL
	8.5.X9.11 CHANGE_OF_RELIABILITY with First Stage Object Fault

	8.11 SubscribeCOVProperty Service Initiation Tests
	8.11.1 Confirmed Notifications Subscription
	8.11.2 Unconfirmed Notifications Subscription
	8.11.3 Canceling a Subscription
	8.11.X1 Change of Value Notification Tests
	8.11.X1.1 Change of Value Notification
	8.11.X1.2 Change of Value Notifications with Invalid Process Identifier
	8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired
	8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier
	8.11.X1.5 Change of Value Notifications with Invalid Monitored property

	8.11.X4 Requests 8 Hour Lifetimes

	8.20 ReadPropertyMultiple Service Initiation Tests
	8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails
	8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service

	8.21 ReadRange Service Initiation Tests
	8.21.1 Reading Values with no Specified Range
	8.21.3 Reading a Range of Values by Position
	8.21.9 Presents Log Records Containing a Specific Datatype

	8.22 WriteProperty Service Initiation Tests
	8.22.X4 Writing Array Properties as a Whole Array

	8.24 DeviceCommunicationControl Service Initiation Tests
	8.24.1 Indefinite Duration, Disable, No Password
	8.24.2 Indefinite Duration, Disable, Password
	8.24.3 Time Duration, Disable, Password
	8.24.4 Enable, Password
	8.24.5 Enable, No Password
	8.24.6 Time Duration, Disable, No Password
	8.24.7 Time Duration, Disable-Initiation, Password

	8.27 ReinitializeDevice Service Initiation Tests
	8.27.2 COLDSTART with a Password
	8.27.4 WARMSTART with a Password

	8.32 Who-Has Service Initiation Tests
	8.32.1 Object Identifier Selection with no Device Instance Range
	8.32.2 Object Name Selection with no Device Instance Range
	8.32.3 Object Identifier Selection with a Device Instance Range
	8.32.4 Object Name Selection with a Device Instance Range

	8.34 Who-Is Service Initiation Tests
	8.34.2 Who-Is Request with a Device Instance Range

	9. APPLICATION SERVICE EXECUTION TESTS
	9.1 AcknowledgeAlarm Service Execution Tests
	9.1.1 Positive AcknowledgeAlarm Service Execution Tests
	9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of t‘e 'Time of Acknowledgm’nt' Parameter
	9.1.1.2 Successful Alarm Acknowledgment of Confirmed Event Notifications using the Sequence Number Form of t‘e 'Time of Acknowledgm’nt' Parameter
	9.1.1.3 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Date Time Form of t‘e 'Time of Acknowledgm’nt' Parameter
	9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of t‘e 'Time of Acknowledgm’nt' Parameter
	9.1.1.5 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Sequence Number Form of t‘e 'Time of Acknowledgm’nt' Parameter
	9.1.1.6 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Date Time Form of t‘e 'Time of Acknowledgm’nt' Parameter
	9.1.1.8 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unkno‘n 'Acknowledging Process Identif’er' Parameter
	9.1.1.9 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an Unkno‘n 'Acknowledging Process Identif’er' Parameter
	9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications
	9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications
	9.1.1.X3 Successful Alarm Acknowledgment of Confirmed Event Notifications wh‘n 'To St’te' is either High-Limit or Low-Limit

	9.1.2 Negative AcknowledgeAlarm Service Execution Tests
	9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because t‘e 'Time St’mp' is Too Old
	9.1.2.3 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because t‘e 'Event Object Identif’er' is Invalid
	9.1.2.4 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because t‘e 'Event State Acknowled’ed' is Invalid
	9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because t‘e 'Time St’mp' is Too Old
	9.1.2.6 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the Referenced Object Does Not Exist
	9.1.2.7 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because t‘e 'Event State Acknowled’ed' is Invalid

	9.1.X1 Unsupported Message Text Character Set AcknowledgeAlarm Test

	9.2 ConfirmedCOVNotification Service Execution Tests
	9.2.1 Positive ConfirmedCOVNotification Service Execution Tests
	9.2.1.X4 Change of Value Notification from Proprietary Objects

	9.2.2 Negative ConfirmedCOVNotification Service Execution Tests
	9.2.2.1 Change of Value Notification Arrives after Subscription has Expired
	9.2.2.2 Change of Value Notifications with Invalid Process Identifier
	9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier

	9.3 UnconfirmedCOVNotification Service Execution Tests
	9.3.X9 Change of Value Notification from Proprietary Objects

	9.4 ConfirmedEventNotification Service Execution Tests
	9.4.5 ConfirmedEventNotification Simple Presentation
	9.4.6 ConfirmedEventNotification Full Presentation
	9.4.X1 Unsupported Message Text Character Set ConfirmedEventNotificationTest

	9.5 UnconfirmedEventNotification Service Execution Tests
	9.5.X1 Unsupported Message Text Character Set UnconfirmedEventNotificationTest

	9.7 GetEnrollmentSummary Service Execution Tests
	9.7.1 Required GetEnrollmentSummary Filters
	9.7.1.1 Enrollment Summary with Zero Summaries

	9.7.2 User Selectable GetEnrollmentSummary Filters
	9.7.2.3 Event Type Filter

	9.8 GetEventInformation Service Execution Tests
	9.8.6 Chaining Test

	9.10 SubscribeCOV Service Execution Tests
	9.10.1 Positive SubscribeCOV Service Execution Tests
	9.10.1.7 Finite Lifetime Subscriptions
	9.10.1.X1 Ensuring 5 Concurrent COV Subscribers

	9.10.2 Negative SubscribeCOV Service Execution Tests
	9.10.2.1 The Monitored Object Does Not Support COV Notification
	Reason For Change: Added configuration requirements.
	9.10.2.X1 The Monitored Object Does Not Exist
	9.10.2.X2 There Is No Space For A Subscription
	9.10.2.X3 The Lifetime Parameter is Out of Range

	9.10.3 Positive Unsubscribed COVNotification Execution Tests
	9.10.3.X1 Unsubscribed COVNotification Execution Test

	9.14 AddListElement Service Execution Tests
	9.14.2 Negative AddListElement Service Execution Tests
	9.14.2.2 Adding a List Element With an Invalid Datatype
	9.14.2.3 An AddListElement Failure Part Way Through a List

	9.15 RemoveListElement Service Execution Tests
	9.15.2 Negative RemoveListElement Service Execution Tests
	9.15.2.2 A RemoveListElement Failure Part Way Through a List

	9.16 CreateObject Service Execution Tests
	9.16.1 Positive CreateObject Service Execution Tests
	9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values
	9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values

	9.16.2 Negative CreateObject Service Execution Tests
	9.16.2.1 Attempting to Create an Object That Does Not Have a Unique Object Identifier
	9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values
	9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial Values
	9.16.2.6 Attempting to Create an Object with an instance of 4194303
	9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type)
	9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier)

	9.17 DeleteObject Service Execution Tests
	9.17.2 Negative DeleteObject Service Execution Tests
	9.17.2.1 Attempting to Delete an Object That is Not Deletable

	9.18 ReadProperty Service Execution Tests
	9.18.1 Positive ReadProperty Service Execution Tests
	9.18.1.2 Reading a Single Element of an Array
	9.18.1.X1 Reading Properties Based on Data Type
	9.18.1.X3 Respects max-segments-accepted bit pattern

	9.20 ReadPropertyMultiple Service Execution Tests
	9.20.1 Positive ReadPropertyMultiple Service Execution Tests
	9.20.1.1 Reading a Single Property from a Single Object
	9.20.1.2 Reading Multiple properties from a Single Object
	9.20.1.3 Reading a Single Property from Multiple Objects
	9.20.1.4 Reading Multiple Properties from Multiple Objects
	9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error
	9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors
	9.20.1.7 Reading ALL Properties
	9.20.1.8 Reading OPTIONAL Properties
	9.20.1.9 Reading REQUIRED Properties
	9.20.1.X1 Reading Properties Based on Data Type

	9.21 ReadRange Service Execution Tests
	9.21.1 Positive ReadRange Service Execution Tests
	9.21.1.X1 ReadRange Support for All List Properties

	9.21.2 Negative ReadRange Service Execution Tests
	9.21.2.1 Attempting to Read a Property That Does not Exist
	9.21.2.2 Attempting to Read a Property That is not a List
	9.21.2.3 Attempting to Read a non-Array Property with an Array Index

	9.22 WriteProperty Service Execution Tests
	9.22.1 Positive WriteProperty Service Execution Tests
	9.22.1.1 Writing a Single Element of an Array
	9.22.1.2 Writing a Commandable Property Without a Priority
	9.22.1.3 Writing a Non-Commandable Property with a Priority
	9.22.1.X1 Writing an Array Size
	9.22.1.X2 Writing to Properties Based on Data Type

	9.22.2 Negative WriteProperty Service Execution Tests
	9.22.2.1 Writing Non-Array Properties with an Array Index
	9.22.2.2 Writing Array Properties with an Array Index that is Out of Range
	9.22.2.3 Writing with a Property Value Having the Wrong Datatype
	9.22.2.4 Writing with a Property Value that is Out of Range
	9.22.2.X1 Writing Non-Array Read-only Property with an Array Index
	9.22.2.X2 Resizing a writable fixed size array property

	9.23 WritePropertyMultiple Service Execution Tests
	9.23.1 Positive WritePropertyMultiple Service Execution Tests
	9.23.1.1 Writing a Single Property to a Single Object
	9.23.1.2 Writing Multiple properties to a Single Object
	9.23.1.3 Writing a Single Property to Multiple Objects
	9.23.1.4 Writing Multiple Properties to Multiple Objects
	9.23.1.X4 Writing an Array Size

	9.23.2 Negative WritePropertyMultiple Service Execution Tests
	9.23.2.1 Writing Multiple Properties with a Property Access Error
	9.23.2.2 Writing Multiple Properties with an Object Access Error
	9.23.2.3 Writing Multiple Properties with a Write Access Error
	9.23.2.4 Writing Non-Array Properties with an Array Index
	9.23.2.5 Writing Array Properties with an Array Index that is Out of Range
	9.23.2.6 Writing with a Property Value Having the Wrong Datatype
	9.23.2.7 Writing with a Property Value that is Out of Range
	9.23.2.X1 WritePropertyMultiple Reject Test
	9.23.2.X2 Resizing a writable fixed size array property using WritePropertyMultiple service

	9.24 DeviceCommunicationControl Service Execution Test
	9.24.1 Positive DeviceCommunicationControl Service Execution Tests
	9.24.1.5 Finite Time Duration Restored by ReinitializeDevice

	9.24.2 Negative DeviceCommunicationControl Service Execution Tests
	9.24.2.3 Restore by ReinitializeDevice with Inval‘d 'Reinitialized State of Dev’ce'

	9.27 ReinitializeDevice Service Execution Tests
	9.27.2 Negative ReinitializeDevice Service Execution Tests
	9.27.2.3 COLDSTART with Missing or Invalid Password
	9.27.2.4 WARMSTART with Missing or Invalid Password

	9.29 UnconfirmedTextMessage Service Execution Tests
	9.29.1 UnconfirmedTextMessage With No Message Class
	9.29.2 UnconfirmedTextMessage With an Unsigned Message Class
	9.29.3 UnconfirmedTextMessage With a CharacterString Message Class

	9.30 TimeSynchronization Service Execution Tests
	9.30.1 Positive TimeSynchronization Service Execution Tests
	9.30.1.1 TimeSynchronization Local Broadcast
	9.30.1.2 TimeSynchronization Directed to the IUT

	9.31 UTCTimeSynchronization Service Execution Tests
	9.31.1 Positive UTCTimeSynchronization Service Execution Tests
	9.31.1.1 UTCTimeSynchronization Local Broadcast
	9.31.1.2 UTCTimeSynchronization Directed to the IUT

	9.32 Who-Has Service Execution Tests
	9.32.1 Execution of Who-Has Service Requests Originating from the Local Network
	9.32.1.1 Object ID Version with No Device Range
	9.32.1.2 Object Name Version with no Device Range
	9.32.1.3 Object ID Version with IUT Inside of the Device Range
	9.32.1.4 Object ID Version with IUT Outside of the Device Range
	9.32.1.5 Object Name Version with IUT Inside of the Device Range
	9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range
	9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range
	9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range
	9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range
	9.32.1.11 Object Name Version, Directed to a Specific MAC Address
	9.32.1.12 Who-Has After Object_Name Changed
	9.32.1.13 Who-Has After Object_Identifier Changed

	9.32.2 Execution of Who-Has Service Requests Originating from a Remote Network
	9.32.2.1 Object ID Version, Global Broadcast from a Remote Network
	9.32.2.2 Object ID Version, Remote Broadcast
	9.32.2.–3 - Who-Has for Non-existent Object_Name
	9.32.2.X5 Who-Has for Non-existent Object_Identifier

	9.33 Who-Is Service Execution Tests
	9.33.1 Execution of Who-Is Service Requests Originating from the Local Network
	9.33.1.3 Local Broadcast, Specific Device Inquiry with IUT Outside of the Device Range

	9.33.2 Execution of Who-Is Service Requests Originating from a Remote Network
	9.33.2.3 General Inquiry, Directed to a Remote Device

	10. NETWORK LAYER PROTOCOL TESTS
	10.1.1 Processing Application Layer Messages Originating from Remote Networks
	10.2 Router Functionality Tests
	10.2.2 Processing Network Layer Messages
	10.2.2.7.2 Unknown Network Layer Message Type

	10.2.X1 Initiates Network-Number-Is on Startup
	10.2.X2 Routers Execute What-Is-Network-Number

	10.6 Non-Router Functionality Tests
	10.6.3 Ignore Router Commands

	10.7 Router Functionality
	10.7.2 Router Binding via Application Layer Services

	10.8 Virtual Routing Functionality Tests
	10.8.3 Routing of Unicast APDUs
	10.8.3.1 Route Request Message from a Local Device to a Virtual Device and Route Response Message from the Virtual Device to the Local Device
	10.8.3.2 Route Request Message from a Virtual Device to a Local Device
	10.8.3.5 Unicast Messages That Should Not Be Routed
	10.8.3.5.1 Unknown Network

	10.8.4 Routing of Broadcast APDUs to Virtual Devices
	10.8.4.7 Route Remote Broadcast Message from a Virtual Device to a Local Network

	10.8.7 Multiple Devices on a Single Virtual Network
	10.8.7.4 Who-Is Specifying Unknown Device Ids
	10.8.7.5 Who-Has Specifying Unknown Device Ids

	12. DATA LINK LAYER PROTOCOLS TESTS
	12.1 MS/TP State Machine Tests
	12.1.3 MS/TP Data Link Layer Tests (Alternate)
	12.1.3.3 Verify Tframe_gap

	13. SPECIAL FUNCTIONALITY TESTS
	13.1 Segmentation
	13.1.12.1 IUT Does Not Support Segmented Response
	13.1.X3 Ignore Confirmed Broadcast Requests

	13.8 Backup and Restore Procedure Tests
	13.8.1 Backup and Restore Execution Tests
	13.8.1.1 Execution of Full Backup and Restore Procedure
	13.8.1.6 Ending Backup and Restore Procedures via Timeout
	13.8.1.8 Attempting a Backup Procedure with an Invalid Password
	13.8.1.9 Attempting a Restore Procedure with an Invalid Password
	13.8.1.11 Starting and Ending a Restore Procedure when a Password is not Required

	13.8.2 Backup and Restore Initiation Tests
	13.8.2.1 Initiate a Full Backup and Restore

	13.X12.1 Reading with maximum-segments-accepted bit patter’ B'’00'

	14. BACnet/IP FUNCTIONALITY TESTS
	14.1 Non-BBMD B/IP Device
	14.1.7 Forwarded-NPDU (One-hop Distribution)
	14.1.8 Original-Broadcast-NPDU
	14.1.10 Forwarded-NPDU (Two-hop Distribution)

	14.2 BBMD B/IP Device with a Server Application
	14.2.1 Execute Forwarded-NPDU
	14.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)
	14.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)

	14.2.2 Execute Original-Broadcast-NPDU
	14.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)
	14.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)

	14.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous Session

	14.7 Broadcast management (BBMD, Foreign Devices, Local Application)
	14.7.1 Broadcast Message from Directly Connected IP Subnet
	14.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution)
	14.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)

	14.7.2 Broadcast Message Forwarded by a Peer BBMD
	14.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution)
	14.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution)

	14.7.3 Broadcast Message from a Foreign Device
	14.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)
	14.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)

