BACnet® TESTING LABORATORIES

Revision 20.0.1 final
SPECIFIED TESTS

Revised June 13, 2022

BACnet is a registered trademark of ASHRAE. ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed products
to the requirements of ASHRAE Standard 135 is the responsibility of BACnet International. BTL is a registered trademark of BACnet International.

BACnet Testing Laboratories - Specified Tests

Table of Contents
L. PURPOSE .ottt ea ettt b e sh e bt ettt et bt bbbt eat et et nae 20
2. Interim Data LinK Layer TeSES.......ceecverierieieieiieieeieseesieesteeteetesteseesseesteenseensesnsesssesseesseeseensesnsesnsennns 21
2.2 MS/TP Data Link LaYer TESESeecueeieiieiieitieieeie et etcestee st ettt esteeseesseesteesseeseeeesneesneesneanseenseens 21
2.2.18 Verify Tno_token w/ Serial ANALYZErccoeiieiiiiiiiieiee ettt 21
2.2.X1 Data NOt FOT US TeSt.....cecuieiieiieiieiieeieeeitertt ettt ettt ettt ettt e eete et e bt este e teeeesneesneesneeseeneeens 21
2.3 ARCNET (twisted pair bus) Data Link Layer TestS........cccceereriirireriiieiieieieiee e 22
2.3.1 Verify the Failsafe Biasing with an OSCIlloSCOPE.........ceerieiieriiriiiiiieeeeee e 23
2.3.2 Verify the Basic Signal Duty Cycle with an OSCilloSCOPEcoueruiriririeieieeereeeeeee 23
3. DEFINITIONS ..ottt e e ettt h bt bt ea et e e b bt eb e e bt eb e et en b e b e et e e bt ebeeseeneensenee 25
3.x Common 1anguage USEA 1N TESTS.......uirierieriieiierieteeieseesteesteeteeaeseeesteesseesseesseessesssesseesseesseessesssenses 25
4. ELECTRONIC PICS FILE FORMAT ..ottt ettt ettt st 25
4.5 Sections 0f the EPICS File......ccoiiriiiiiiiiiieeeees ettt et 25
4.5.9 TIIMETS ..euveieiteitetete ettt eb et et ettt b e s h e bt e st ea s et et e bt s b e bt e bt e st et et e bt st e e bt sae e bt et enne e 25
5. EPICS CONSISTENCY TESTS ...ttt ettt ettt et et ssestesse st eseensensessasseeseeneeneensansenes 25
6. CONVENTIONS FOR SPECIFYING BACnet CONFORMANCE TESTS.....ccooiieieeeeeeeeeieee 27
O L O N 121 153 1 T4 LTSS 27
6.2.14 ASSINMENT STATEIMEIIEc..iiitiiiiiiiiiitietiete ettt ettt ce e ettt e et e sbeesbe e beebeenae e sae 27
6.3 TIME DEPENACIICIES.cviiviiiieiieiie ettt ettt et e et e steesteesteesbeesseeesesaeasseesseesseesseessesssessesssesseensesnsenses 27
6.3.2 Internal Processing Fail TIME.c.covieiieriiiiiiiiiieiee et 27
6.3.X1 Channel WTite Fail TIMecoeieririiieieieere ettt s 27
6.3.X2 Auto Negotiation Fail TIME........ccccverieriieriieiieieceestesie ettt esbe e seae e e saeesseessessneens 27
6.3.X3 Activate Changes Fail TIMEccevieriieriieiieieieeseese ettt be e ssae e e saeesseessessaeees 27
6.3.X Audit Notification Forwarder Fail TIme.........ccccocoviriiiiiiiniiniinininenenecceeee e 27
6.3.X4 Foreign Device Registration Fail Timecccoeoveviiiieiieiieiieseeescecee e 28
6.X6 Test EXecution CONSIAETAtIONS.c..eoverueruerieiiientintenie sttt st sttt eis et essestestesbesaeebeeneensensens 28
6.X6.1 ValUue COMPATISONSveevieneieieeeiieetiestieste et eeteeetesteestee st eeeeeesneesseesseanseenseenseeseesseesseenseesesneesnes 28
6.X6.2 Functional EXPECtatiONScecueeiiruiereieriieieeieette et stte st eteete st e s e see et e e eneeeseesseesseenseeeeeneeens 28
(O GR35 o) (o5 D E 1 721 o 1< PSRRI 28
7. OBJECT SUPPORT TESTS ...ttt sttt ettt ettt be et e it et et e sbeeteebeeaeeseeneeneenes 28
7.1 Read Support for Properties in the Test Database.........ccccvveviieciiiiiiieiieeeeeeeeeeee e 28
7.1.1 Read Support Test PrOCEAUIEcoieeuieiieiiciieiecesttee ettt ste e esae e ees 28
7.1.2 Non-documented Property TeST........ccerieriieriieiieieeieiiesie ettt sttt stee e aeesseessesnaeees 30
7.1.3 Verifying Property List against the EPICS............cccooieiiiiiiiiceeeee et 30
7.2 Write Support for Properties in Test Database........c.cccveveereerieriiiiieriesiee e 31
7.2.1 Functional Range Requirements for Property Valuesccoccvveierieriiniecieiececeeeeee e 31
7.2.1.3 Octetstrings and CharaCterStringscceecveevereeriereerieeieesieesteesseesseeseesesaesseesseesseessessnesses 31
7.2.2 Write Support Test ProOCEAUIEcooiriiiiieiieiiee ettt 31
7.2.3 Read-0nly Property TESt.......ccueecuieiirieeieie ettt ettt ettt et et e e ne e e 32
7.2.X1 Date Pattern Properties TeStovierierieieieeieeie ettt e 34
7.2.X2 Time Pattern Properti€s TESTcccueeiiierieeiiieeeie ettt eiteeiteeiteete et e eteeeteeetaesnseesnsaeenseesnsaeenseeas 34
7.2.X3 DateTime Pattern Properties TeST.......cccuiiriierieiiieeiieeiieeieeeiteesieeeieeeteeeeeesaeesraeenseesnsaeenseeas 35
7.2.X4 Date Non-Pattern Properties TeSt.......cccuieiiierieeiieeie et eiteeteeieeeseeeieeeteesaeesaaeenseessaeennee s 35
7.2.X5 Time Non-Pattern Properties TeSt.........ccvecieciirieriierieiieie ettt et eveereseeesrae e e saeesseesaeens 36
7.2.X6 DateTime Non-Pattern Properties TeSt........occuivviiiiiriierieriiiiecieceerieere e see e sre e eeis 36
7.2.X7 BACnetDateRange Non-Pattern Properties Test.........cccevirriiiiirienieniieiieieeeeeeeseesee e 37
7.2.X8 BACnetDateRange Open-Ended Pattern Properties Test.........ccoocvevieriieciieiienienieeeeee e 37
7.3 Object FUNCHIONAIELY TESESveeviiiiiieeiieriieit ettt ettt ettt et e esteesaesnsesseesseenseensesnnennes 38
73,1 PrOPEITY TSES ..eiitiiiiieiiieeite ettt ettt ettt ettt ettt ettt bt ettt e bt e st e s bt e e bt e s beeeabeesabaesabeesabaesnbeesabaesnseean 38
7.3.1.1 Out_Of Service, Status_Flags, and Reliability TestS..........cccoceerierieiieiinieniereeeee e 38
7.3.1.1.X1 Out_Of Service, Status_Flags, and Reliability Test.........ccceeoeerirrirriiieiienieieee 38
7.3.1.1.X2 Out_Of Service for Commandable Value Objects Test..........cecevererenerenirieienne 39
7.3.1.1.X3 Out_Of Service, Status_Flags, and Reliability Test for Objects without Present Value
.. 40
7.3.1.6 Minimum On/Off TimMe TeStScc.eeuerieieriiiiriiiieeteeeeeee ettt 41

© 2022 by BACnet International. All rights reserved. 1

BACnet Testing Laboratories - Specified Tests

7.3.1.6.1 Override of Minimum TIMecc.ccoceeiiniiniinininiiieteeene et 41
7.3.1.6.2 Minimum Off Time - Writing at priorities numerically greater than 6.......................... 41
7.3.1.6.3 Minimum On Time - Writing at priorities numerically greater than 6 42
7.3.1.6.4 Minimum Off Time - Writing at priorities numerically lesser than 6................c........... 44
7.3.1.6.5 Minimum On Time - Writing at priorities numerically lesser than 6c.ccccc..... 44
7.3.1.6.6 Minimum_Off Time - Clock is not affected by additional write operations................. 45
7.3.1.6.7 Minimum_On_Time - Clock is not affected by additional write operations.................. 46
7.3.1.6.8 Ensuring Minimum_Off Time starts at transition to INACTIVE.......c..ccceovvvvvevrennnnne. 47
7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE........c...ccccccevvvinveveennnne. 48
7.3.1.6.10 Ensuring Minimum Times Are Not Affected By Time Changes...........ccccccevvveveennenne. 49
7.3.1.6.11 Minimum_Off Time - Value Source Mechanism............ccceeveviieviercieniienienierenns 50
7.3.1.6.12 Minimum_On_Time - Value Source Mechanism............cccccueveerivenienieniiesienieneeienns 51
T3 1.7 COV TESES c.ueneiiiieeiieeieieiesteste ettt et e et et e tesbe st e et e eneessensasseseeseeseentessensanseseeseeseeseessensansenes 52
7.3.1.7.X1 COV_Resubscription_Interval Testcccceerieiieiieiiiiesieieee e 52
7.3.1.8 Change Of State TeST......cueeouerieriertieiieie ettt sttt ettt e et e e s e sbe e beeneeeeeemeeene 53
7.3.1.9 Elapsed Active Time TeSt......ccccuieriiieiiieiieecieeeie et eete et steeseteeseaeesabeesseeesseessneensseensneenes 55
7.3.1.10 Event ENable TeStScccueiiiiiiiieiie ettt sttt sttt e 58
7.3.1.10.1 Event Enable Test for TO_OFFNORMAL and TO_ NORMAL, and TO_FAULT.... 58
7.3.1.11 Acked TransSitions TESEScceerierrieriieciieieiiesierieesteereseee et esseeseesseesseesaesseesseesseensesssenens 60
7.3.1.11.1 Acked Transitions TESt..........cccoueeeeerieeeeeeesieeiiesieesseeseesesaesseesseeseesesssesseesseesseessenns 60
7.3.1.11.2 Acked_Transitions Test for Latching ODJectscccccvevvierieriieciieieeieeieseeie e 63
7.3.1.13 Limit_ ENabIE TESES....cccueeieruieriieeiieiieieete ettt eie et sttt eteesteenseenaessaesseesseeseensesnnesnes 65
7.3.1.13.1 Limit_Enable Test, LowLimitEnable............cccccveviriiiriiiiiinieiee e 65
7.3.1.13.2 Limit_Enable Test, HighLimitEnableccccoveiiniiiiiinieieeee e 66
7.3.1.17 Event_Message TeXtS TeStS.....cerierieieeieeiiesiienieeie e eteste ettt et ee e seee e e b eneeeee e ens 68
7.3.1.20 Event_Algorithm_Inhibit Ref TestS.......ccccceiiiiiiiiiiie e 69
7.3.1.20.1 Event_Algorithm_Inhibit Ref TeSt.......ccccoviiriiiiiieieeeeee e 69
7.3.1.20.2 Event Algorithm_Inhibit Writable Test.........ccccerieiiriiiiiiieeee e, 70
7.3.1.21 Reliability Evaluation Inhibit TeStSccceiiririiieieiereee e 70
7.3.1.21.1 Reliability Evaluation Inhibit TeSt..........ccccerieiriieiiieieseeee e 70
7.3.1.X16 Array Resizing Test using WritePropertyMultiple Servicecccvevveeveeriereeneenieennene 71
7.3.1.X18 Non-zero Writable State Count TeSt........ccooeriririeienierienereeereeeeee e 73
7.3.1.X19 Non-zero Writable Elapsed Active Time Test........cceecevcierienieriieieeieeieseeeee e 73
7.3.1.X20 Strike COUNt TESES.....ccveriiririirtiriieietenteterte sttt ettt sttt et b e sbe b et e e enne e 74
7.3.1.X20.1 Non-zero Writable Strike Count Testcccceceeierierenirinineeienieeneneseeeeeeeene 74
7.3.1.X20.2 Strike CouNt TESt......eeeeiieieitieitieie ettt ettt ettt ee e e enee e e ens 74
7.3.1.X41 BINK WAIT TESES ...eeeueeeiieieieeiiesitete ettt ettt et sttt ettt et eneesbe e b e seeneeeneeene 74
7.3.1.X41.Y1 Blink-Warn WARN Command TeSt.........ccceerieiieiiriinienienieee e 74
7.3.1.X41.Y2 Blink-Warn WARN_OFF Command Test..........ccccereririeieieieieseseeeececee e 75
7.3.1.X41.Y3 Blink-Warn WARN_ RELINQUISH Command Test.........ccccecuerienieneenernieneene. 76
7.3.1.X41.Y4 Blink-Warn STOP Command TeStcceeeeierieriniiieniieieeie e 76
7.3.1.X41.YS5 Blink-Warn WARN Command Failure Test........ccccocovveririniiienininenenccceene 77
7.3.1.X41.Y6 Blink-Warn WARN_ OFF Command Failure Testcccceevveeiircienienieieeieee, 78
7.3.1.X41.Y7 Blink-Warn WARN_ RELINQUISH Command Failure Test..........c.cccccovveurnnnne. 79
7.3.1.X41.Y8 Blink-Warn WARN_OFF Command Halted Test.........c.cccevveriirrerienienieieeinns 81
7.3.1.X41.Y9 Blink-Warn WARN RELINQUISH Command Halted Test............cccccervrrurennnnne 82
7.3.1.X42.Y1 Writing to the Value Source Property by a Device Other than the Device that
Commanded the ODBJECTeeouiiiiiiieieieee ettt ettt s saee s e e eeeens 83
7.3.1.X42.Y2 Non-commandable Value Source Property Test.........cccovoeerievienenienenienieeiens 83
7.3.1.X42.Y3 Value Source Property None Test.........ccecierieiieiieienieiieieeee e 84
7.3.1.X42.Y4 Commandable Value Source Test..........ceeirierierieniinieieiieiieee e 84
7.3.1.X42.Y5 Life Safety Value Source Property Test.........ccooeririririeieieeieseie e 85
7.3.1.X498 Audit Level Property TestSccivevieciieieiierieeieeie ettt sre e eveeve e sreesreesseensessne e 85
7.3.1.X498.1 Object Specific Configurable Audit Level NONE Test.......cccccevvverieneenieeieennnne. 85
7.3.1.X498.2 Audit Reporter Audit Level TStcccvivierieiiiiicieceeeeee et 86
7.3.1.X498.3 Audit_Level Change Notification TeSt...........cceevvreverieiierierieene e eeees 88

© 2022 by BACnet International. All rights reserved. 11

BACnet Testing Laboratories - Specified Tests

7.3.1.X499 Audit Notification Recipient Property TestS.......ccoevrvverierieriieiieieeiesieseesie e 89
7.3.1.X499.1 Audit_Notification Recipient Test..........ccoeierieiieiieieiierieieee e 89
7.3.1.X500.1 Audit_Priority_Filter Target Audit Reporting Testccccevveriereiierenieeene 91

7.3.1.X501 Auditable Operations Property TestScecvverierieieiienieriieie et 94
7.3.1.X501.1 Non-configurable Auditable Operations Property Testcccceverereninirieereennne 94
7.3.1.X501.2 Auditable Operations Target Audit Reporting Test.........cccceeveienirreneniniiieieene 95
7.3.1.X501.3 Auditable Operations Source Audit Reporting Testcceeeveriereneninieeeene 96

7.3.1.X503 Maximum_Send_Delay Property TEStScccevieviiivieiierieniieieeieeieeeese e e 98
7.3.1.X503.1 Maximum_Send Delay TeStc..cccevvierierieiieiicieceeseeie et e 98

7.3.1.X504 Monitored ODbjects Property TEStSc.cccvervveriiiriieriieieeeesiesteete e ereeee e e sreesreeaeesne e 99
7.3.1.X504.1 Monitored ODJECtS TESL......ccvieriieieeiieeierieitete ettt re e sae e sseeseeneeens 99

7.3.1.X505 Send NOW Property TESESccveeureiierieriieriierieetesrestestteeeeteseessaessaesseessesssesnesnnenes 100
7.3.1.X505.1 Send NOW TES......eeeuieriieitieieeie ettt ettt ettt see st e st esae e e eneeeneesneens 100

7.3.2 ObBJECt SPECIFIC T@SES ..o euvieueeeiieiiieetieteete ettt ettt ettt et sae ettt e e ese e e st e s be e beebeeneesneesneenseenes 100

7.3.2.4 Averaging ObJECt TESLSc.eeruieruieiieiieieetie sttt ettt ettt et ettt sb e aeeae e saeesaeeseeenes 100
7.3.2.4.1 Reinitializing the Samplescoooiiiiiiiiii e 100
7.3.2.4.2 Managing the Sample WINdOW........ccccooieiiiiiiiiiiiiieeeeeeeee e 102

7.3.2.8 Calendar TStcoue ittt ettt ettt et b et a et et et steebeeaeeneene 102
7.3.2.8.1 Single Date ROHOVET TESt.....ccvccuieciieiiiieiieriteie ettt eve st sreesreesseeaesseesneens 102
7.3.2.8.2 Date RANZE TEST....ccueieiieiiieiiie ittt sttt st e et e st essbeessbaesabeesbaeenbeesnbaesnseenns 103
7.3.2.8.3 WEEKINDAY TSt ...ecuviiviiieiiiieiieiieieeieetestte st eteeeaeseeeseeesteesseessesssesssessaessaesseessesssesseenns 104

7.3.2.9 Command ODJECt TESES.......ceruieruieiieieeieeieseeteesreeteseesteesteesseessessaessaesseesseesesnsesnnesseenseenes 105
7.3.2.9.3 EXternal WIIteS TStccveteriiriiririiniiieeteteterie sttt s 105
7.3.2.9.7 Write While In_Process iS TRUE TeSt.ccccveruiriiirienieiienieee e 106

7.3.2.10 DEVICE ODBJECT TSS...c.ueiruieuietieiieieete et te ettt ettt et e st et e et enteeseesseesseeseeseeneesneesaeeneeenes 107
7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test.........ccceeiirrirririenienieeeieeeeeeene 107
7.3.2.10.6 Successful Increment of the Database Revision Property after Changing the
Object_Identifier Property of an ObBJECtceeeieierieriie et 109
7.3.2.10.X2 Max_Segments Accepted at least the minimumccccoeoeieeieneieneneic e 109
7.3.2.10.X Ensure UTC_Offset is Configurable.........ccccevirviiiiiiiiniiiiiieieieeeeeee e 109
7.3.2.10.X3 Ensure Device Object Name is Configurableccccvevvveeiiecienienienieieeieeee e 110
7.3.2.10.X4 Ensure Device Object Identifier is Configurable...........ccecvvievienienieniiiieceeienn, 110

7.3.2.13 Global Group ODJECt TESEScueecviereeierieriieieeiteeteeeestesteeeeeteeae e sseesseesesnsesnnesseenseenes 110
7.3.2.13.X1 Global Group Present Value, Out_Of Service and Status_Flags Test................ 110
7.3.2.13.X2 Reliability MEMBER FAULT TEStccccotriririeiiieienienienieniceeeeeese e 111
7.3.2.13.X3 Reliability COMMUNICATION FAILURE TeSt.....ccccceoeirerieinieneirieieenienas 111
7.3.2.13.X4 Present_Value Tracking and Reliability Test..........cccereeririirienienieieieeieeene 112
7.3.2.13.X5 Present_Value Tracking Test........cccevieriieiieiieieeieiiee et 112
7.3.2.13.X6 COVU_Period and COVU_Recipients Zero Testcceeererereeienieieneneneeenns 113

7.3.2.15 Life Safety Point ObJEct TeSESeeuieuirieriieiieieeieete ettt s 114
7.3.2.15.X5 Writable Tracking ValUe..........ccocieoieiiiiiiiiieiieeieee e 114
7.3.2.15.X6 Supports Writable Mode Propertyccccceeeieeiiiiiiienieiieiceieeieseeseesie e 114
7.3.2.15.X7 Support Operation_Expected Propertyccccevveevieriieciieciicienieneee e 115
7.3.2.15.X8 Support Writable Member Of Propertycccoecvevierveniieiieieeiesieseesie e 115
7.3.2.15.X9 Silenced Property TEeSt.......ccueriereerierieeieriierieeieeieeteseeesee st eaeeeesnesseesseeseenseennens 116

7.3.2.22 Program ObJECt TESSccverieiieieeiesiesiierieerteeteetesete et et e e eetessaessaesseeseensesnnesnnenns 116
7.3.2.22.1 Program_Change Property teStceeeverierierieeriieieeiestestesseesseseeseesseesseesseesesnsens 117

7.3.2.23 Schedule ODBJECt TESES.......eeruiereieiieieeieet ettt ettt ettt ettt e esee s e b e eaeeseeneesneesaeeneeenes 117
7.3.2.23.6 Weekly Schedule Restoration Test.........ccceeruieiirierieiieiieie e 117
7.3.2.23.10 Schedule Object Protocol Revision 4 TestScccceeeeriereerieriienienienieeieeie e 118

7.3.2.24 LOZ ODJECE TOSES..uvitiiuieuieiieieieete ettt ettt ettt sttt et e et e et et e sbesaeebeeneene e e ensessesaeenene 122
7.3.2.24.3 StOP_ TIME TEST...ccueiiuiiiiieiieieee ettt ettt ettt b e b et e s eesaee e 122
7.3.2.24.4 LOg INtEIVAl TSt ...cviiiiiiieiieiieieeteettese et et steebe b e essestaesbaesbeesseesaesneesseeseenns 123
7.3.2.24.9 Total Record Count TeSt.......cceecuieiirieiieriieieeie et steesieereevesenesteesreesseesesseesseenns 124
7.3.2.24.13 LOG-SAtUS TOST...uveeetieiiieeiieeiie ettt eiteeiteetteeiteetteeieesbbeeaeeebaeebeesbaeenseeesseenseeens 125
7.3.2.24.14 TiMe_ CRANGE TESt.....ccveriieriieieeieeieeteseett et teetestae e et eeaesnaesaeesseesseenseensesssesnnens 126

© 2022 by BACnet International. All rights reserved. lll

BACnet Testing Laboratories - Specified Tests

7.3.2.24.15 COV-Sampling Verification TeSt..........cceerieriieiiirienieriieneeie e 127
7.3.2.24.19 Trigger VerifiCation TStcceeririirierieiieie ettt 128
9244142 7.3.2.24. X1 Status/Failure 10ZZINg........ccovevieiieiieiiee et 129
7.3.2.24.X8 Clock-Aligned LOGEINGccoeeiiiiiiieeiieieeie ettt ettt 130
7.3.2.24.X9 Logging Interval OffSet..........coouiiiiiiiiiiiiiiieceeteceeee e 130
7.3.2.24.X10 Buffer Size WITE TeSteeouiiiiiiiitieiieieete et 131
7.3.2.25 EVENE LOZ TOSES ..utiiuiiiiieiiieitiettete ettt sttt ettt s b e b e bt et e maesaeesaee e 132
7.3.2.25.1 Internal Logging of NOtifiCatioNnSccceerieriieciiiiiiierieieere et se e ae e 132
7.3.2.25.2 Remote Logging of NOtifiCatioNSccceereeriieriiiiiiiesiienieereeve et see e esie e sneseeenns 133
7.3.2.25.3 Internal Logging of ACK NOTIFICATIONScccevieriieiieieeiesierie e 134
7.3.2.25.4 Remote Logging of ACK_ NOTIFICATIONSccccvrierierieeiieeeseeseenieeie e eeeesenens 135
7.3.2.30 Notification Forwarder Object TESESc.eccverierieiieiiiiesieceie ettt 136
7.3.2.30.6 Out_Of Service Property TeSt........cocevieriieiieiieieeiecieee et 136
7.3.2.X37 Accumulator ObJECt TESESeecuieiieieriieriierieeee ettt s 137
7.3.2.X37.1 Present_Value Remains In-Range Test.........ccoccvrirriiiiiniieiiie e 137
7.3.2.X37.2 Prescale in Accumulator TESTceoueriiiiriiieieieeieee e 138
7.3.2.X37.3 Logging_Record in Accumulator TeSt.........cccceeeeiriieiiineneie e 138
7.3.2.X37.4 Logging_Record in Accumulator RECOVERED Test.......c.cccceeeeenieienenenenenenee. 139
7.3.2.X37.5 Logging_Record in Accumulator STARTING Test......cccoevvievierierienienieieeie e 139
7.3.2.X37.6 Out_Of Service Accumulator TeSt.........cccevvuiiciirieriieriieiieieeieseese e 140
7.3.2.X37.7 Value _Set WIItING TStc.eevvieciieiiiieiieriieie ettt ereevesae e e sraesseesesseessnens 141
7.3.2.X37.8 Value Before Change Writing Test.........cceecvieriieierierienieie e seesieeie e eve s 141
7.3.2.X38 Pulse Converter ObJect TESS......ccuevuirierieriieieeie ettt ettt enes 141
7.3.2.X38.1 Adjust_ Value WIite TStcceerueerieeiieieriieie ettt st 141
7.3.2.X38.2 Scale FactOr TeSt......cccueeieiuieiieieee ettt ettt 142
7.3.2.X38.3 Out_Of Service Pulse Converter TeSt..........cceeeuirierierieiieieeie e 142
7.3.2.X38.5 Update_Time Reflects Change to the Count and is Updated Atomically Test........ 143
7.3.2.X38.6 Adjust_Value Out-of-Range WriteProperty Test........cccecevierienieniineiiiiiereeene 143
7.3.2.X40 Channel ODJECt TESESc.eeuerierieitieiietieieitee ettt sttt et et et esee e e 143
7.3.2.X40.2 Last. Priority TeSTcccueriirieiieieeieetes ettt 143
7.3.2.X40.3 WriteGroup Service SuppOrt TeSt.......ccvverueeriiiiirieriieieerieee e seese e eaeseesreesaeenns 144
7.3.2.X40.4 Propagation ENtirety TEStccveiirieiieriieiieii e seesteesteereeveeteseeesreesseesessnesneens 144
7.3.2.X40.5 WIIte Statts TeSt....ueeieeeieeiieiiieieeieeteete st et et eteetesteestee st eseensesnaesseesseenseenseensens 145
7.3.2.X40.6 Allow_Group Delay Inhibit Testccevieriieriieiieiecierieetee e 146
7.3.2.X40.7 Numeric to BOOLEAN Coercion Rule Testcccevevienininenenienienenenenenene 147
7.3.2.X40.8 BOOLEAN to Numeric Coercion Rule Testccccerieiieiiriinienieieeeieeieene 147
7.3.2.X40.9 Unsigned/ INTEGER/REAL/Double to Numeric Coercion Rule Test..................... 148
7.3.2.X40.10 Invalid Datatype Coercion TeStccccerierieriieierieieereeie et eee e 148
7.3.2.X40.11 NO COCICION TEST...c..eeuieuiieiieiieitieitieteete ettt ettt st e e 148
7.3.2.X40.12 WIite Priority TeSTceruieiiiiieieeiieitieseee ettt 149
7.3.2.X40.13 Writing with @ NULL Value Testc.ccceiiiiiiiieieieee et 150
7.3.2.X45 Elevator Group ODJECt TESIS ...cviecvieierieriieitieiieie e steesteesteereereeraesseesseesseessessnessnens 151
7.3.2.X45.1 Machine Room_ID property references a Positive Integer Value Object........... 151
7.3.2.X45.2 Linking of Lift and Escalator Objects under Group Members property of the
Elevator GIOUP ODBJECL.......eiuieiieiieieeieciiesie ettt et et esteeteesaessae s st eseenseensessnesseenseenseensennsens 151
7.3.2.X45.3 Landing Call Control TeSt.......cceecverierierieiieieeiecie sttt 152
7.3.2. X460 Lift ODJECE TOSIS..ccuueiiereieiieiieieeeestestteste et e st et esteesteesseenseesaessaesseeseensesnsesnnesaeeseenes 152
7.3.2.X46.1 Array Size of the Lift Object Properties Based on Number of Car Doors............ 153
7.3.2.X46.2 Lift Properties Operational TStccecveiieiiirienieiiereeit e 153
7.3.2.X46.3 Out_Of Service, Status_Flags for Lift Objectccceceeriiiiriinerieeeeeieeee 154
7.3.2.X46.4 Energy Meter Ref Property Testscccceeririiiiiniinieieeieeieeieseeeee e 155
7.3.2.XA47 ESCalator ODJECt TESLS ...cuueruiriiitiieietieieiieieie ettt ettt ettt st ettt et et e teseesee e 155
7.3.2.X47.1 Out_Of Service, Status_Flags for Escalator Object.........cccoevverierieneeiiiieneenenn, 155
7.3.2.X53 Load Control ODJECt TESES......ccuieciirierieriieriiereeeeseesteesteeteereesessaesseesseeseessessnesseesseenns 155
7.3.2.X53.1 Requested _Shed Level property test with LEVEL choice.........ccccovevvveeiieienrennnne. 156
7.3.2.X53.2 Shed Levels ProPerty teSt......ccveruircverierieriieiieieeieeeesieesieeaeseeseeseesseeneeensessnennnens 157

© 2022 by BACnet International. All rights reserved. iV

BACnet Testing Laboratories - Specified Tests

7.3.2.X53.3 Load Control Status_Flags and Reliability Testccceevvevienievierierienieieeieeeens 157
7.3.2.X53.4 Requested_Shed_Level property test with PERCENT choice..........cccceeeeiveinnnen. 157
7.3.2.X53.5 Requested_Shed_Level property test with AMOUNT choice.........cceeverveereenncne 158
7.3.2.X54 Lighting Output ODJECt TeSES. .. .ecueeuiereieiiieriieie ettt 158
7.3.2.X54.21 Lighting Output Tracking TeStcceoeririreiieieeieeesese e 158
7.3.2.X54.22 Lighting Output Present Value between 0.0 and 1.0 Test.......ccceveeviivirincencnne 159
7.3.2.X54.31 Lighting Command Operation NONE Testccccevieriieiiniiinienieneenceieeeeneee 159
7.3.2.X54.32 Lighting Command Operation FADE TO TeSt........ccccovevviecierienienienieeie e 159
7.3.2.X54.33 Lighting Command Operation RAMP_TO Test.......ccccvrevirierienienieeieeieeeenieenn 160
7.3.2.X54.34 Lighting Command Operation STEP_UP Test........ccceevrciirierienieiecieeie e 162
7.3.2.X54.35 Lighting Command Operation STEP_ DOWN Test.......cccoccvevirrierierienieireieeenns 162
7.3.2.X54.36 Lighting Command Operation STEP_ON Testc.cccevvieriienieiierierierieieeeeeeenn 163
7.3.2.X54.37 Lighting Command Operation STEP_OFF Test........cccccceiiinienenienienieeeeeeee 164
7.3.2.X54.41 Transition NONE TStcecuieiiriiiiieieeieit ettt enee e 165
7.3.2.X54.42 TranSition TeSt.......ceuerieiieieeie ettt ettt ettt ettt et e st e st esteeaeeneeeneesneens 166
7.3.2.X54.51 Feedback Value Clamping TeSt........cceoiririiirieieieiesesie st 167
7.3.2.X54.61 Min_Actual Value and Max_Actual Value Test........cooceririnininiieneieneneieens 167
7.3.2.X54.62 Min_Actual Value and Max_Actual Value Scaling Test.........c.cceceereienenennnens 168
7.3.2.X55 Access D0Or OBJECt TESES....cuueruiiriieiieieiieiierieeieeteeeteeteesteesteebeesseesaessaesseeseessessnessnenns 168
7.3.2.X56 Access POINt ODJECt TESTS......eccuieiirieiieriieieeieeteeeesteesteereebeeeaestaesreesseeseesaesseesaeesseenns 175
7.3.2.X56.1 Authentication_Status and Access Event Test........ccooovevvieciiriieniienieneeiecieeeeeeenn 176
7.3.2.X56.2 AlIOWEd ACCESS TESEvemiiiiriiriiniiiiieiietetete sttt ettt sttt et s 177
7.3.2.X56.3 Denied ACCESS TEST.....ccueriiiiriiriirieriieiietetesteste ettt ettt bbbttt sae e 177
7.3.2.X56.4 Authorization Mode TeSt......cc.creririiiiniiniinierieeeecet ettt 178
7.3.2.X56.5 Access Rights EXemptions TeSt.........cceoceeriieiiieiiiiiiiieiiereee e 181
7.3.2.X56.6 Change Authentication POlICY TeSt.......ccoevuieiiieiieieiieiieeet e 181
7.3.2.X56.7 LOCKOUL State TStcc.eeiuieieieieeie ettt ettt et sttt eneeeneens 182
7.3.2.X56.8 Threat Level TeSt.....cuoiiieiieiiieieiieeete ettt sttt 183
7.3.2.X56.9 Denied Access Occupancy Upper Limit TeSt.......ccocverieriererireninieieieiesiesesieeae 184
7.3.2.X56.10 Denied Access Disabled Credential Testcccoeoieierienenerinieieieeese e 185
7.3.2.X57 Access Zone OBJECt TESES....c.ueruieriieiieieiiesiesieeieeteetestee st esteeseesseesaessaesseeseessessnessnenns 185
7.3.2.X57.1 OccupanCy State TeSt......cccuuirruieriiireriieeiieerieeriteeiteeieeeiteesieesbaeesteessbaeesseesnsaeenseeens 186
7.3.2.X57.2 Occupancy Counting TeSt........cccveveriierieriieiieieeieeeesieesie e seesee st aeeneesenesnnens 187
7.3.2.X57.3 Keeping Track of Credentials TeStccecveriieiiieienieiiereeie e 188
7.3.2.X57.4 Passback MoOde TESt........coueruiririririiieieierie sttt sttt 188
7.3.2.X59 Access Rights ODJECt TESES.....ccueeurrierieriieiieie ettt ettt sr e ae e seee e e 190
7.3.2.X59.1 ENADIE TESt ...eeueieiieiieiieeiiect ettt ettt ettt ettt et esaeeeae et e e eneeas 191
7.3.2.X59.2 Negative RUIES TStccieiieiieieeie ettt 192
7.3.2.X59.3 Positive Access RUIES TStccueeiirierieiiiiiiiciie et 192
7.3.2.X59.4 AccOMPANIMENT TESTueeriiiiiieriieiieeeiieeieeeieeeieeeteesbeeebeesseeeenbeessaeenseesnsaeenseenns 192
7.3.2.X60 Access Credential ObJect TESLSeeeeierieririeieeiieeieieieeete ettt see e eneene 193
7.3.2.X60.1 Credential Status, Credential Disable and Reason for Disable Testcc............ 194
7.3.2.X60.2 Activation Time and Expiration Time Testcccccvevieriieviiecieiienieneenie e 195
7.3.2.X60.3 Disabled Access Rights TeSt.......cccuevvierieriiiiiiiecieseeeete et 195
7.3.2.X60.4 Days Remaining and Uses Remaining Test..........ccecvrierierieneenienienieneeeeeeeennn 196
7.3.2.X60.5 Absentee LIMit TEST.......ccceruiriririririeieieenene ettt 197
7.3.2.X60.6 Last Access Point, Last Use Time and Last Access Event Test..........ccc.cccoeevveenne... 197
7.3.2.X60.7 Extended Time Enable Test..........cccoeiirieiieiieiieieeeeeee e 198
7.3.2.X61 Credential Data Input ODbjJect TeStS........ccieriiriirieiieriee ettt 198
7.3.2.X61.1 Return From Out Of Service Undefined Test........cccceeveeiieiiiiiiienieieeeeeeee 199
7.3.2.X61.2 Read Valid Authentication Factor Test........ccccovieirieieienieie e 199
7.3.2.X62 Network Port ObJect TeSS......ccueriirieriieitiiiieie ittt e s s 200
7.3.2.X62.1 Network Port Configuration TestScccvvervieriiiciiiieiieniieieeie e eeese e see s 200
7.3.2.X62.2 Network-Number-Is Updates Network Number Quality Test..........cccccvervrenneene. 202
7.3.2.X62.3 Network Port Command TeStSc.coeririreriiiiieieneneesieeiteeee e 203
7.3.2.X62.4 Hierarchical Network Port TeStSccccoererireriiiinieiineniencnceeeeeee e 212

© 2022 by BACnet International. All rights reserved. A%

BACnet Testing Laboratories - Specified Tests

7.3.2.X62.5 APDU Length TeSt.....cceririririiiieieieierie sttt 214
7.3.2.X62.6 RoUtING_TaABIE TSt ...ccueeiuieiieiieieeieeieett ettt sttt 215
7.3.2.X62.7 DHOECP TESES..c.ueieuiriiieiirieieierietet sttt sttt ettt sttt st eb st b b nee e saeseesesaeneas 216
7.3.2.X63 TIMET ODBJECE TOSTS. ... eeiuieruieiieiieieeieet ettt ettt ettt ettt e enee s s e b e e aeese e e eneesaeeneeenes 217
7.3.2.X64 Audit LOZ ODJECt TESS ...eoruiiiriieeietieiieiieieerte sttt ettt ettt sttt et e tesee e e 228
7.3.2.X64.1 One Audit Log Holds all of an Objects History Testcccceceeveerienerenesenenee. 228
7.3.2.X64.2 Audit Notification Basic Combining Testccccevueriireririririeieieesese e 228
7.3.2.X64.3 Audit Notification Combining Failure Test..........ccccverievrirciiriierienienieie e 230
7.3.2.X64.4 Audit Notification Non-combining Test...........cceevverrieviiecririerienieenieeee e seeeneeenns 230
7.3.2.X64.5 Audit Notification Combining Duplicate Test..........cccvevrievierierierienierieeieeeenne 231
7.3.2.X64.6 Audit Notification Combining Target Value Preference Test..........cccecvvreveernnnene 231
7.3.2.X64.7 Accepts Audit Notifications from an Audit Forwarder Testc..cccevveruveirnnene 232
7.3.2.X64.8 Hierarchical LOZZING TeSt......ceoouiriiriiiieiieieeiee et 232
7.3.2.X65 Audit Reporter ObJECt TESES ...c.eevreeierrieriieitieie ettt e e 233
7.3.2.X65.4 Target Audit Reporting - Basic Notification Test..........ccceeverierierienieneereieeeene 233
7.3.2.X65.5 Target Audit Reporting - Unconfirmed Service Operation Test..........cccccvceereennnne 235
7.3.2.X65.6 Target Audit Reporting - Confirmed Service Operation Audit Notification............ 236
7.3.2.X65.7 Target Audit Reporting - Operations with Priority Testccccevererinienenencnen. 237
7.3.2.X65.8 Target Audit Reporting - Target Value and Current Value Test..........cccccveruvennennn. 239
7.3.2.X65.9 Target Audit Reporting - Error Audit Notification Testccccevevvereeriirieneennnnnn, 240
7.3.2.X65.10 Target Audit Reporting - GENERAL Operation Testccecvevvvervenierieenennenns 242
7.3.2.X65.11 Source Audit Reporting - Basic Notification Testccccceeveeveercierieniereeieennens 243
7.3.2.X65.12 Source Audit Reporting - Same Device Notification Test.........cccocevevervenreirennnne 245
7.3.2.X65.13 Source Audit Reporting - Unconfirmed Service Operation Testccceevveneennee. 246
7.3.2.X65.14 Source Audit Reporting - Confirmed Service Operation Audit Notification......... 247
7.3.2.X65.15 Source Audit Reporting - Operations with Priority Test.........ccoccoveeevienieivennnnne 249
7.3.2.X65.16 Source Audit Reporting - Error Audit Notification Test.........cc.ccovveevienirirninnnnne 250
7.3.2.X65.17 Source Audit Reporting - Single Source Audit Reporter Object Test.................... 253
7.3.2.X65.18 Audit FOrwarding TeSt.........ceeieieieieiesieeieeieeieeeee ettt s 254
7.3.2.X66 Staging ODJECT TESLSeeieieiiitietietietieiee ettt ettt ettt ettt es e eesesbesteebeeaeenens 255
7.3.2.X66.1 Clamping Present Value to Max_Pres_Value or Min_Pres Value......................... 255
7.3.2.X66.2 Present Stage EvalUation..........cccccuevieiieiieniieiiiieccesteeie e eve st siee e esseeaessnesnnens 257
7.3.2.X66.3 Present_Stage Evaluates on Restartccocveiieiiieiiiieiiesieece e 258
7.3.2.X66.4 Default Present Value is Abided on Restart...........cccoevevierieniesienciecieeieeeeeeene 259
7.3.2.X66.5 Writing to Target References.........cccocvvierierieiiieieeieceseeee e 259
7.3.2.X66.6 Stage Value Bitstring is Same Length as Target References...........ccccoeevecveinnenne 260
7.3.2.X66.7 Max_Pres_Value Equals Last Stage Limitcccoeoeeiieiieiiiieiieiieeeeeieeeee 260
7.3.2.X66.8 CONFIGURATION_ERROR when Min_Pres_Value is too Large...........ccccoc...... 261
7.3.2.X66.9 COMMUNICATION_ FAILURE on Failed Write to External Target Reference...262
7.3.2.X66.10 Fault Indicated on Failed Write to Local Target Reference..........cccccceeevenennnnen. 263
7.3.2.X66.11 Out_Of Service, Status Flags, and Reliability for Staging Object....................... 263
7.3.2.X66.12 Stages Array SiZiNg TeSt.......cccevierierieriieieiieseeste ettt e see e sreeseesaesseesreesaeenns 264
7.3.2.X66.13 Present_Stage Evaluates on Change to Stages Propertycccceeveeveeeeeeiereennnnnn, 265
7.3.2.X66.14 CONFIGURATION_ ERROR when Limits are Out of Order..........ccccceevverveenennns 266
7.3.2.X66.15 CONFIGURATION ERROR when Deadband < 0........c.ccoceverinenceiencncnenenne. 266
7.3.2.X66.16 CONFIGURATION_ ERROR when Stages Size is less than Two...........cccceneen. 267
7.3.2.X66.17 Stage Names and Stages Size Equality Testcccoevvervierienierierierieneeeeeeeennn 267
7.3.2.X66.18 Stage Names Array SizZing TeSt.......ccccverieiieiiiieeiecieee e 268
7.3.2.X66.19 Target References Array Sizing TeSt.......cccveoiieierieiieiieie e 268
7.3.2.X66.20 Writing Target References with an Unsupported External Reference................... 269

8. APPLICATION SERVICE INITIATION TESTS ..ottt 270
8.1 AcknowledgeAlarm Service INTHAtion TESESeeieiieriirieriieiieii ettt 270
8.1.1 AcknowledgeAlarm Service Initiation Test........cvevverierienieriieii e 270
8.1.X2 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the 'Initiating
Device Identifier’ Parameter..........coeiiiiririiieieeese ettt ettt sttt sae e 270
8.2 ConfirmedCOVNotification Service Initiation TestS..........ccoererirereriirienieneneneneeeeceteeneese e 272

© 2022 by BACnet International. All rights reserved. Vi

BACnet Testing Laboratories - Specified Tests

8.2.1 Change of Value Notification for Changes to Present Value in Objects with a COV_Increment

272
8.2.2 Change of Value Notification for Changes to Status_Flags Propertycccccoooeevveiiriinenenne. 273
8.2.3 Change of Value Notification for Changes to Present_Value in Objects without a COV_Increment
275

8 2 X9 ConﬁrmedCOVNotlﬁcatlon Pulse Converter changlng Present Value 279
8.2.X10 ConfirmedCOVNotification Pulse Converter changing Status_Flags.........ccccocceveeveenene. 280
8.2.X11 Change of Value Notification from an Access Door object Present Value, Status Flags and
Do00r Alarm_ State PrOPEILYceoueeiieiertiertiettete ettt sttt et ettt et te st ee st e e bt et e satesaeesaee et enteenteseeenaeens 281
8.2.X12 Change of Value Notification from an Access Point 0bjectccevueveririninieiieneeceee 283
8.2.X13 Change of Value Notification from an Credential Data Input objectccccveevveeerrereennnne. 284
8.2.X17 Change of Value Notification of Staging Object Present_Value Property...........ccccvevuvennennn. 285
8.2.X18 Change of Value Notification of Staging Object Status_Flags Property.........c..ccceecvvrvenennne. 287
8.2.X19 Change of Value Notification of Staging Object Present_Stage Property..........cccceevvvvevreene 288
8.3 UnconfirmedCOV Notification Service Initiation Tests.......ccccoerirereriirienieneneneneeeecereeneenie e 289
8.3.1 Change of Value Notification for Changes to Present Value in Objects with a COV_Increment
289
8.3.2 Change of Value Notification for Changes to Status_Flags Propertyccccoooeevviiiiiinenenne 289
833 Change of Value Notification for Changes to Present Value in Objects without a
COV _INCTRIMEGIE ...ttt ettt ettt s e et e bt et ea e eb e e sb e e s b e e bt embesaeesaeesaeenbeeneeentesneenneens 289

8 3. 9 Unsubscrlbed Change of Value Notlﬁcatlons ... 290
8.3.10 Device Restart NOtIfICAtIONS.cc.eeruieriieiieiieiiestie ettt s 291
8.3.X1 COVU_Recipients NOTICAtIONS ...cccuereiriieriieiieiieieeiiesiiesieeie ettt 292
8.3.X12 UnconfirmedCOVNotification Pulse Converter changing Present Value.............c.cccc....... 293
8.3.X13 UnconfirmedCOVNotification Pulse Converter changing Status Flags.............ccccoeennne. 293
8.3.X14 Change of Value Notification from an Access Door object Present Value, Status Flags and
D0Or Alarm_State PrOPEILYc.eevvierieieeieriesieerteeteetestesteesseeseesseessesseesseesseessesssesseesssesseessesssenssesseens 293
8.3.X15 Change of Value Notification from an Access Point 0bjectcccevvvevievierieciiicieiieseenen, 293
8.3.X16 Change of Value Notification from a Credential Data Input Objectcccccvevvereererciernene 294
8.3.X17 Change of Value Notification of Staging Object Present Value Property...........ccocevvennenne. 294
8.3.X18 Change of Value Notification of Staging Object Status Flags Property.........ccccoevvevvreeernnne 294
8.3.X19 Change of Value Notification of Staging Object Present_Stage Property...........ccccoceveennene. 294
8.4 ConfirmedEventNotification Service Initiation TeStScecoeerierieiiiiirieieeeeee e 295
8.4.4 COMMAND_FAILURE Tests (ConfirmedEventNotification)ccccceeveereeneenieeneenee. 295
8.4.8.7 Mode Transition Tests when Event State is Maintained...........cccccecerieneiniincinenencenene 296
8.4.9 EXTENDED Test (ConfirmedEventNotification)cccceevveeviieieeienieiieneeie e 298
8.4.17 CHANGE_OF RELIABILITY ConfirmedEventNotification Testsccccceevvreereevereenneenne. 300
8.4.17.1 CHANGE OF RELIABILITY with No Fault Algorithm (ConfirmedEventNotifications)
... 300

© 2022 by BACnet International. All rights reserved. Vll

BACnet Testing Laboratories - Specified Tests

8.4.17.X1 CHANGE OF RELIABILITY - FAULT LISTED Tests (ConfirmedEventNotification)

... 300
8.4.17.X1.1 NORMAL to FAULT Transition (ConfirmedEventNotification)................ccueeuven.. 300
8.4.17.X1.2 FAULT-to-FAULT transition (ConfirmedEventNotification)............ccccccveeevveenennns 300
8.4.17.X9.15 CHANGE_OF RELIABILITY with the FAULT OUT OF RANGE Algorithm
(ConfirmedEventNOGTICALION).......cueiieiiiiiieiicie ettt ettt te b eeeere e s e e sbeesveesbeesnessnens 301

8.4.X10 CHANGE OF DISCRETE VALUE Test (ConfirmedEventNotification)..........cc.cccocceuneene. 302
8.4.X11 ACCESS_EVENT Test (ConfirmedEventNotification).............ccoccuervvereerieenieeiesreseeenenns 303
8.4.X18 CHANGE OF TIMER ConfirmedNotification TeStSccceeevrrverieriereenieeieeeeereseeenneenns 304
8.4.X18.X1 CHANGE OF TIMER ConfirmedEventNotification Test...........cccccvevrrecrenverrernnenne. 304
8.4.X18.X2 CHANGE OF TIMER Offnormal-to-Offnormal ConfirmedEventNotification......... 306

8.5 UnconfirmedEventNotification Service Initiation TestS.........ccccevevereriinienienininenereeeereenese e 307
8.5.17 CHANGE_OF RELIABILITY TEStS ..cuvecteetietieiieieieieriesiesteeieseeeiteeeseessestesseeseessensessessessessees 307
8.5.17.1 CHANGE OF RELIABILITY with No Fault Algorithm (UnconfirmedEventNotifications)

... 307

8.5.17.2 CHANGE OF RELIABILITY with the FAULT CHARACTERSTRING Algorithm

(UnconfirmedEventNOtIfICATIONS)cveruieiieiieieitecieerte ettt et e sreesreebeereeesesteesaeesseesseesneennenns 309

8.5.17.3 CHANGE OF RELIABILITY with the FAULT EXTENDED Algorithm

(UnconfirmedEventNOtIfICAtIONS)ccvervieriieiieieiiesieesie et eteeite st esteesteeseeeseesaesseesseesseessessnessnenns 310

8.5.17.4 CHANGE OF RELIABILITY with the FAULT LIFE SAFETY Algorithm

(UnconfirmedEventNOtIfICAtIONS)ccverrieiieiieiesiesieesie e ete et stee e esteebeeeseesaesseesseesseessessnessnenns 311

8.5.17.5 CHANGE OF RELIABILITY with the FAULT _STATE Algorithm

(UnconfirmedEventNOtIfICAtIONS)ccuveriieiieieeieeiesieeie e eeesee st ettt ete e ssaessaesseeseensesnnesneenns 312

8.5.17.6 CHANGE OF RELIABILITY with the FAULT STATUS FLAGS Algorithm

(UnconfirmedEventNOt{ICAtIONS)ccvieiiiiriiieiiieciieeciteeriteeite et e eteeeste e et e etaeeseeesaeenseeessaeenseeens 314

8.5.17.7 Event Enrollment Fault Condition Precedence Tests.........cccoevuevienieiieienienieeceene 315
8.5.17.7.1 Internal Faults Take Precedence Over Monitored Object Faults..............ccceceeneee. 315
8.5.17.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms..............cc........ 315
8.5.17.7.3 Internal Faults Take Precedence Over Fault Algorithms...........ccoceevieiiiencnincnen. 316

8.5.17.8 CHANGE OF RELIABILITY of Event Enrollment Object, Monitored Object Fault

(UnconfirmedEventNOtIfICAtIONS)ccverrieiieiieiesiesieesie et ete et stee e esteeseesseesaessaesseesseessessnessnenns 316

8.5.17.9 CHANGE_OF RELIABILITY of Event Enrollment Object Fault

(UnconfirmedEventNOtIfICAtIONS)ccuveriieiieieeiesiesieeieeste et ste st e it et et tessaessaesseeseensesnnesnnenns 317

8.5.17.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL

(UnconfirmedEventNOtIfICAtIONS)ecvieiieiieieeieiieie ettt seeae e sneesneeseenes 319

8.5.17.X1 CHANGE_OF RELIABILITY - FAULT _LISTED Tests

(UnconfirmedEventNOtTICAtION)........cccuieiiiiiiiecie et et ette et etee et e et eeiae e s e eteeenseeessaeenseeens 320
8.5.17.X1.1 NORMAL to FAULT Transition (UnconfirmedEventNotification)........................ 321
8.5.17.X1.2 FAULT-to-FAULT transition (UnconfirmedEventNotification)...............ccccveeuneenne 322
8.5.17.X9.11 CHANGE OF RELIABILITY with First Stage Object Fault
(UnconfirmedEventNOtIICAtIONS)c.vierviierieeiiieeieecieesie et ere et saeesreesaeesebeesnaeessbeesnaaennnees 323
8.5.17.X9.15 CHANGE _OF RELIABILITY with the FAULT OUT OF RANGE
Algorithm (UnconfirmedEventNOtification)c..ccuerierierierieeii et 324

8.5.X10 CHANGE_ OF DISCRETE_VALUE Test (UnconfirmedEventNotification)....................... 324
8.5.X11 ACCESS_EVENT Test (UnconfirmedEventNotification).............ccoecervereeneesiesreseeennnn 325
8.5 X18 CHANGE OF TIMER TESIS.....cceeuteiiiiniiniinienieeiietentente sttt ettt st ee et et nae e v e 325

8.5.X18.X1 CHANGE OF_TIMER UnconfirmedEventNotification Test............cccccvererrurrcrernnnne 325

8.5.X18.X2 CHANGE OF TIMER Offnormal-to-Offnormal UnconfirmedEventNotification Test

... 326

8.11 SubscribeCOVProperty Service Initiation TeStS........cceeuirierierieieee et 326
8.11.1 Confirmed Notifications SUDSCIIPLION.........ccviiriiiiiiiicieee ettt v e 326
8.11.2 Unconfirmed Notifications SUDSCIIPLION.........eervieriierieeiiieeieerieesie et e sveesreesaeesereesveesenees 327
8.11.3 Canceling @ SUDSCIIPLIONccviecvirieeiieriereeteeteeteetestee st esbeebeesbeesaessaesseesseesseessesseesssesseenseenns 327
8.11.X1 Change of Value Notification TESSc.ccceerierieriieiieieeieseesie et eee e esreebeeseeseeesveeeas 327

8.11.X1.1 Change of Value NOtifiCationc.ccceerieriieiiieiieiesiesieeie et ssae e 328

8.11.X1.2 Change of Value Notifications with Invalid Process Identifier............cccccocevenencncne 328

© 2022 by BACnet International. All rights reserved. Vlll

BACnet Testing Laboratories - Specified Tests

8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired...........c.ccoeevenenne 329
8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier.................. 330
8.11.X1.5 Change of Value Notifications with Invalid Monitored property...........cccccocereennene. 331
8.11.X4 Requests 8 HOUL LIfEIMESoo.eeruieiieiieieeieectie ittt s 332
8.18 ReadProperty Service INItiation TeSEScocuerierieiieieeieiieieee et 332
8.18.X1 Reading and Presenting Large List Properties.ccooerirerieieiieienenese e 332
8.20 ReadPropertyMultiple Service Initiation TeSEScecveierierierieiieeeieiee et 334
8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails..................... 334
8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service........... 334
8.20.5.2 Fallback to ReadProperty on Reject - UNRECOGNIZED SERVICE Response............. 334

8.21 ReadRange Service INTtiation TEStScccvveeveriirieriieieeieete ettt ettt seeeteeeeenseenaesseesseennes 335
8.21.1 Reading Values with no Specified Rangeccoccvevieiiiiiiiciinieieeeeeee e 335
8.21.3 Reading a Range of Values by POSItioNcoceeiiiiiiiiiiiiiiieieeeeee e 335
8.21.9 Presents Log RECOTAS ...o.uiiiiiiiiiieiei ettt 336
8.22 WriteProperty Service INTtiation TeStS.........cerierieiieiieieeieeieree et 336
8.22.X1 Accepting Input and Modifying Large List Propertiescccceeeevereneneiinenieiesesese e 336
8.22.X4 Writing Array Properties as @ Whole ATTayccccoviriiiiiiieieeeee e 337
8.24 DeviceCommunicationControl Service Initiation TeStScceeeeerieierieieiereeeseeeeeee e 337
8.24.2 Indefinite Duration, Disable, PASSWOIdcccoiiiviiiiiiiieiiceeeeceeeee e 338
8.24.3 Time Duration, Disable, PASSWOTIAcccviiieiviiiiiiie e 338
8.24.4 ENable, PASSWOTU.......cooiiiiiiiiii e et eaa e e enae e e enaeeeen 338
8.24.5 Enable, NO PaSSWOIAcouviiieiiieeceeee et eeeneeeen 338
8.24.6 Time Duration, Disable, NO PasSWOTdcccviieoiuiiiiiiiiieeeeee e 339
8.27 ReinitializeDevice Service INitiation TeStS.......coeverieiiriirienininiericeteeereseee et 339
8.27.2 COLDSTART With @ PaSSWOId.......cc.eeoiiiiiiiiiitieieeie et 339
8274 WARMSTART with @ PassWord.........ccooiiiiiiiiiieceseeee e 340
8.32 Who-Has Service INitiation TeSTScceeouirierieriieiieieeie ettt st 340
8.32.1 Object Identifier Selection with no Device Instance Rangeccccooeveiiiiiinieieneneccee, 340
8.32.2 Object Name Selection with no Device Instance Rangeccccooeveiiiininieiieneienceeceee 340
8.32.3 Object Identifier Selection with a Device Instance Rangeccccoceveveiiiiiinieieneneeeee, 341
8.32.4 Object Name Selection with a Device Instance Range...........ccceeveeviviiiiinieniciieiecieeeeeene 341
8.34 Who-Is Service INitiation TeSES.......cccuirieriiririiiitieiieteeesee ettt 342
8.34.2 Who-Is Request with a Device Instance Range............cccoecvevienieniieciiecienieceeee e 342
8.X2 WriteGroup Service INitiation TeSTS........ceecierierieriieieeieeiesteeeie et et eeeeesaessaesseenseenseennes 342
8.X2.1 Broadcasting to a Group of Channel ODJECESccceeveieiiriierieiieieeie e 342
8.X12 SubscribeCOVPropertyMultiple Service Initiation TeStScecvereeroierierierieieieeee e 343
8.X12.1 Positive SubscribeCOVPropertyMultiple Service Initiation Tests.........cccoveveereereereerceneenne. 343
8.X12.1.1 Confirmed Notifications SUDSCIIPLIONcc.eeruiiiiiiiiieiiee e 343
8.X12.1.2 Unconfirmed Notifications SUDSCIIPLIONcceevrieirierierieieceeseeste e e 343
8.X12.1.3 Requests 8 HOUT LITELIMEScc.eeeeuiiiiieiiieciie ettt eiee et eeveesvee et esteeenveessaeenaeeens 343
8.X12.1.4 Subscribe to Timestamped NOtIfICAtIONSc.cceerrieerierieiieieceece e 344
8.X12.1.5 Subscribe to Two Properties in a Single ObJect.........cvecvievieierienieniieieeie e 344
8.X12.1.6 Subscribe to Properties in Multiple Objects Using a Single Requestccoecvevvennnee. 344
8.X12.1.7 Change of Value Multiple NOtifiCationccceevuerierienieriieie et 345
8.X12.1.8 Canceling a SUDSCIIPLIONeevuieiieieeieeiestieie et eteetestett et eteeeressaessaesseessesssesnesnnenns 345
8.X12.2 Negative SubscribeCOVPropertyMultiple Service Initiation Testsccceceeeverenenerenene 346
8.X12.2.1 Change of Value Multiple Notification Arrives After Subscription Has Expired 346
8.X12.2.2 UNKNOWN SUDSCIIPHION ..cuviiutieiieiiieiieetiesieesieeee et secestee sttt ente e ssee s eesseeaeeeesneesaeeneeenes 347
8.X33 AuditLogQuery INItiation TeSSccoeeouiriiiieiieiieieee ettt ettt e e e e 347
8.X33.1 Reading a Range of Items Using Any Valid QUerY........ccoocevieiieiiniienienieeee e 347
9. APPLICATION SERVICE EXECUTION TESTS ..ottt 348
9.1 AcknowledgeAlarm Service EXeCUtion TeSS.......cceruirieieiieriiriesie ettt 349
9.1.1 Positive AcknowledgeAlarm Service EXecution Testsccoccvevierieriieiiieciieiesieseenie e 349
9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time
Form of the 'Time of Acknowledgment' Parameter.............ccvevvveevieierienienieeie e 349

© 2022 by BACnet International. All rights reserved. iX

BACnet Testing Laboratories - Specified Tests

9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time

Form of the 'Time of Acknowledgment' Parameter..............ccoecueriiiieiieiieeeeeeeeece e 351
9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications................ 354
9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications............ 356
9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the
"Time Stamp' 1S TOO Oldc.ooueieiieieeee ettt ettt ettt see e 359
9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the
"Time Stamp' 1S TOO Old......iciiiiiiieiieieeie ettt eesae st e te e seesseesaesseesaeeseenns 361

9.2 ConfirmedCOVNotification Service EXecution TeStSccccoeririririinienienienienierceeeeee e 364
9.2.1 Positive ConfirmedCOVNotification Service Execution Tests.........cccevererenenenienienienenennenn 364
9.2.1.1 Change of Value NOtIfICAtIONSccueecuieierieriieiieie ettt et eteeeae e e e sseesesnesneenee 364
9.2.1.X4 Change of Value Notification from Proprietary Objectsccoevverierierienerrierienieeene 365
9.2.1.X5 ConfirmedCOVNotification from Access Door Object..........cccveuerieiieneenererie e 365
9.2.1.X6 ConfirmedCOVNotification from Access Point Object..........ccceevuerienierieniiiirerceeee 365
9.2.1.X7 ConfirmedCOVNotification from Credential Data Input Object..........cccceeveriireereenene. 366
9.2.2 Negative ConfirmedCOVNotification Service Execution Testscccccerereriririenieiierieneee 366
9.2.2.1 Change of Value Notification Arrives after Subscription has Expired.........c.cccccccceninennene. 366
9.2.2.2 Change of Value Notifications with Invalid Process Identifierc.ccoceveieiinencnicncnne 367
9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier.............cccccoceenne 368

9.3 UnconfirmedCOVNotification Service EXecution Testsccceeeveeierierienenineneeieieiesieneeeeeeenes 368
9.3.1.X6 UnconfirmedCOVNotification from Access Door Object.........cceeeveeierieneerieenieeieneenne 369
9.3.1.X7 UnconfirmedCOVNotification from Access Point Object..........ccvvvevieriienerrierierieeeene 369
9.3.1.X8 UnconfirmedCOVNotification from Credential Data Input Object...........ceevvrrvvrcrernnnne 369
9.3.2 Change of Value NOtIfICAtIONSccveriieriieiieieciesierie ettt eae e s sae e eseensesnnesneenns 370
9.3.X9 Change of Value Notification from Proprietary Objectsccevveriirierienieiieeee e 370
9.4 ConfirmedEventNotification Service EXecution Testsccccevvierierieiieiieieeieseeieeee e 370
9.4.X2 Decoding BACnetPropertyStates in 'Event Values'...........coocovieiiiiiniineeeee e 370
9.5 UnconfirmedEventNotification Service EXecution Testscccoeoeiiririeiienienieie e 372
9.5.X2 Decoding BACnetPropertyStates in 'Event Values'...........ccocooiiirieienenircseceeeee e 372
9.9 LifeSafetyOperation Service EXecution TeSt........ccceiieriiriiiiiiiiiiieieiceeeeste e 373
9.9.1 Positive LifeSafetyOperation EXECULION TeSLScc.ocvveeiecueeceesieseesieesseeiseseessesssesseessessesssens 373
9.9.1.1 Reset Single Object EXECULION TeStS......cccveiierieriieriieiiiiesiesteesieeveeveeeeesieesreesseesaesnesnnens 373
9.9.1.2 Reset Multiple Object EXECUtION TESESecuviriieriieiieieiieeieiieie ettt 374
9.9.1.3 Silencing/Unsilencing EXECution TeStSc.ccveriieriirriiiieiieniierieeie e ete e sieesre e enesneenee 375
9.9.2 Negative LifeSafetyOperation EXecUtion TesStScccccveriieriiriierieniierieeiieie e see e 377
9.9.2.1 LifeSafetyOperation for an Object Which Does Not EXist.........cccecuevieiieneeniiieieiceee 377
9.9.2.2 LifeSafetyOperation which is Invalid given the Object's Current Statecccoceeveennene. 377
9.9.2.3 LifeSafetyOperation On An Object Which Does Not Support Itcccooeeviriinienennenne 378

9.10 SubscribeCOV Service EXECUtion TeStS.......c.eiieiieriiriiiiiie et 378
9.10.1 Positive SubscribeCOV Service EXecution Tests........ccceroierienieniiiiiinienienieeeeeee e 378
9.10.1.7 Finite Lifetime SubSCIIPONS.ccvieieiiertieieete et eee ettt ere v et e eeeesreesteeseeneesnesreens 378
9.10.1.8 Updating EXiSting SUDSCIIPLIONSccveeverieriieriieiieieeieseiesseesieeseesseessessaesseesseesessesseenns 379
9.10.1.X1 Ensuring 5 Concurrent COV SUDSCIIDEIScocviriiiiiiieniieieeieeieeeeeeesieesre e seesenens 381
9.10.2 Negative SubscribeCOV Service EXecution TeStScvevuiriirierieniieiieieeieseeseesreeve e seeens 382
9.10.2.1 The Monitored Object Does Not Support COV Notificationccecceeveervrreercvereennenne 382
9.10.2.X1 The Monitored Object Does NOt EXiSt.......ccceeceriirieriieiieieeiecieseee e 382
9.10.2.X2 There Is No Space FOr A SubSCIIPLIONc.eeeverierieriieiieie ettt 383
9.10.2.X3 The Lifetime Parameter is Out of Range..........ccocovieiieiiiiiiiceeeee e 383
9.10.3 Positive Unsubscribed COVNotification EXecution Testscccveeuerierienienieneeie e 384
9.10.3.X1 Unsubscribed COVNotification Execution Test..........cccvevieiieienienieiieeee e 384

9.11 SubscribeCOVProperty Service EXecution Testscccceerueriiriirieniieiieieeiesiiesieeeeee e 385
9.11.1 Positive SubscribeCOVProperty Service Execution Tests.........cccveeuerierienieneencnieiienceniene 385
9.11.1.1 Confirmed COV NOtHICAIONSccveruieeieieieiereste ettt sttt 385
9.11.1.2 Unconfirmed COV NOHHICAONSc.eeuieieieiiniinieiieeiieteietee ettt et eieene 385
9.11.1.4 Canceling COV SUDSCIIPLIONSc..eeverrierieeriieieereeeesteesreesteeseereessessaesseesseessesssesseens 386
9.11.1.5 Canceling Expired or Non-Existing SubScriptionsc.cceccverererereeieneenenenenenn 386

© 2022 by BACnet International. All rights reserved. X

BACnet Testing Laboratories - Specified Tests

9.11.1.7 Finite Lifetime SUDSCIIPLIONSc.eecvieiirierieriieiieieeee et eetesit et eteeeeeeeaesseesseesessesnesneenes 387
9.11.1.8 Updating EXiSting SUDSCIIPLIONSccvertieiiieiiieieieieeiiesiieste et ete ettt see e seee e see e 388
9.11.1.9 Client-Supplied COV INCIEMENLcceeruieiiiiiiieiieie ettt 390
9.11.1.X10 Accepts SubscribeCOVProperty-Requests with 8 Hour Lifetimes...........c.cccocceveennenne. 391
9.11.1.X11 Confirmed Change of Value Notification from Property Value.........c.ccccceveienrnnnene. 391
9.11.1.X12 Unconfirmed Change of Value Notification from Property Valueccccccenruenene. 392
9.11.1.X21 Confirmed Change of Value Notification from Status Flags Propertyc.cccc...... 393
9.11.1.X22 Unconfirmed Change of Value Notification from Status_Flags Property 393
9.11.2 Negative SubscribeCOVProperty Service Execution Testscceevveviieciieienienienieeie e 394
9.11.2.1 The Monitored Object Does Not Support COV Notificationcccceeveerueerueeiennenne 394
9.11.2.2 The Monitored Property Does Not Support COV Notificationc.cccceverererennenne 394
9.11.2.X11 Monitored Object Does NOt EXISt......c.cccuerierieiiiieiierieiieie ettt 395
9.11.2.X12 Monitored Property Does NOt EXiSt........ccccveriiiiiiirieiieiieieeeeeseee e 395
9.11.2.X13 There Is No Space For SubSCIIPtIONcocueeiuiiiiiiiriieiceie e 395
9.11.2.X14 The Lifetime Parameter is Out of Rangeccccovieiieiiiiieiceeeee e 396

9.12 Atomic ReadFile Service EXeCUution TeStS......cccueiieiiiriiriiiiiiieriesieeieeie ettt 397
9.12.1 Positive AtomicReadFile Service EXecution TestScccceeieiriieierieniiesieieiee e 397
9.12.1.2.1 Reading an Entire Stream-Based File...........cccoiiiiiiiiiniiii e 397

9.13 AtomicWriteFile Service EXecution TeStS.......cceeeriiiirierierininieeieeiieeese st 397
9.13.1 Positive AtomicWriteFile Service EXxecution Tests..........ccceviieriiiinienienininineeeeieenee 397
9.13.1.2.1 Writing an Entire Stream-Based File.........ccccvoviieiiiiiiiiiiieeeic e 397
9.13.1.2.3 Appending Data to the End of @ Fileccccceeriieiieiieiiieeeeee e 399

9.14 AddListElement Service EXecution TeStS........ccceveririiieieniininienieeieeeetetetesie ettt 400
9.14.2 Negative AddListElement Service EXecution TeStS..........ccvveverierieriieiiieieeienieseesieeie e 400
9.14.2.2 Adding a List Element With an Invalid Datatype...........ccccoerieiiriinieiieneee e 400
9.14.2.3 An AddListElement Failure Part Way Through a Listcccccooeiniiiiiniiiicecee 400

9.15 RemoveListElement Service EXecution TeStScceerieriiiiiiierieieieeie e 401
9.15.2 Negative RemoveListElement Service EXecution Testsccceoerierireneiinieieieiesese e 401
9.15.2.2 A RemoveListElement Failure Part Way Through a List........ccccoooiiiiiiiiiniiiece 401

9.16 CreateObject Service EXECUtION TEStSccueiuiitirtiiiieieieiesie ettt eee 402
9.16.1 Positive CreateObject Service EXecution TestS........ccvevvircierierieniieiieieeieseesieesre e seeeseeeseeens 402
9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values.............. 402
9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values....402
9.16.2 Negative CreateObject Service EXecution TeStScceecvvrveerierieniieiieieeieseeseee et 402
9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial
B2 1 181U 402
9.16.2.5 Attempting to Create an Object with an Object Identifier and an Error in the Initial Values
... 404
9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type).....cccccerueruenee 405
9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier) 406

9.17 DeleteObject Service EXECUtION TESEScoueruiriiriieieiieieierieeie ettt ettt 406
9.17.2 Negative DeleteObject Service EXecution TeStSccvvvviiierierieniieiieieciesieesie e 406
9.17.2.1 Attempting to Delete an Object That is Not Deletablecccoccvevienieriiecieiienienn, 406

9.18 ReadProperty Service EXCCULION TESESc.iccvieierieiieriieiieie et eeesttesieete e veeeeesteesseesesssessnesseenns 407
9.18.1 Positive ReadProperty Service EXeCUtion TestS.......ccveruieriircierieniieiieieeieeie e 407
9.18.1.2 Reading a Single Element of an AITAYcccccevieriiriiiiienieieieeie et 407
9.18.1.X1 Reading Properties Based on Data TYPE.......cccvecverierieniieiieieeie et 407
9.18.1.X3 Respects max-segments-accepted bit pattern...........cooverieiierieienieseeee e 407
9.18.1.X4 Reading Array Properties at different Array Indexesccceccveverieiienieniiicieecee 408
9.18.1.X5 ReadProperty of the Network Port Object using the Unknown Instance........................ 408
9.18.1.X8 ReadProperty Service when Non-BACnet Device Offline.........cccccoceveiieieneiencneene 409
9.18.2 Negative ReadProperty Service EXecution TeStsccccereriririeieieiesiereee e 409
9.18.2.3 Reading an UnKnOWN ODJECT.........ccuieiirieiieriieriieiieeeeeeseesteesteeseevessaessaesseesseessessnessnenns 409

9.20 ReadPropertyMultiple Service EXeCUtion TEStScccvveruieriiiiiiieiierieieeie et esae e sne e 410
9.20.1 Positive ReadPropertyMultiple Service EXecution TestSccevveriieciiecierienieneenieeeesee s 410
9.20.1.1 Reading a Single Property from a Single ObJectccevveriierieiiieieeiecieseeeee e 410

© 2022 by BACnet International. All rights reserved. Xi

BACnet Testing Laboratories - Specified Tests

9.20.1.2 Reading Multiple properties from a Single Objectcccvevvrecireierienieieeee e 410
9.20.1.3 Reading a Single Property from Multiple Objects..........cccverieieeieiieiiereeeee e 410
9.20.1.4 Reading Multiple Properties from Multiple ObjJects.........ccoevurereeierienieiieeee e 411
9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error.........ccccoeeeviencennenne 412
9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errorscccccceveeennee. 412
9.20.1.7 Reading ALL PrOPEITIESc..ceruteiieiiriieitieitieieete sttt sttt s e e 413
9.20.1.8 Reading OPTIONAL Properti€sccueeuerierierriirieiienieenieeieeieeieesiee e s s 413
9.20.1.9 Reading REQUIRED Properti€s.........cccccuerierieeriiiieiieniiesieereereeeesseesseesseesesssessnesseesseenns 414
9.20.1.X1 Reading Properties Based on Data TYPe........ccceevviviiiiiiienieiieieeieeieceesie e 414
9.20.1.X2 ReadPropertyMultiple Array Propertiescceeiecuiieierieniieniieieeeeeiesiesieesreenesnesenens 415
9.20.1.X3 ReadPropertyMultiple of the Network Port Object using the Unknown Instance........... 415
9.20.1.X9 ReadPropertyMultiple Service when Non-BACnet Device Offlinec.ccoccoencrcnnenne 416
9.21 ReadRange Service EXeCUtion TeStS........ecuieiirierieiieieeie ettt s 416
9.21.1 Positive ReadRange Service EXecution TeStSceoeerierierienieiieieeieeeesiee e 417
9.21.1.1 Reading All Ttems in the LiSt......c.cccuieiirieiieiiee et 417
9.21.1.2 Reading Items by Position with Positive COuntcccevireniiininieieee e 418
9.21.1.3 Reading Items by Position with Negative Count............cccceoeierineneieniiieieeese e 419
9.21.1.5 ReadingHems-byTHMeRanEe. ... 421
9.21.1.6 Reading a Range of Items that do not EXist by POSItion...........cc.cceevveevieeeeneecreereseeneeenns 421
9.21.1.9 Reading Items by Sequence with Positive Countccoeevveevieieriienienienieeee e 422
9.21.1.10 Reading Items by Sequence with Negative CoUNt..........cceeveviieiieieeiesieneenieeie e 423
9.21.1.11 Data Type Verification Test This clause has been deleted.cocevveveriinicnincnennene 423
9.21.1.12 Status/Failure LOGEING.........ccveruieiieieeiieriieieeee et ete sttt eeteeae e ssaeseesesnaesneesaeenseenes 423
9.21.1.X1 ReadRange Support for All List PrOPertiesccceeververiiecireieniesieseesie e seeseeseeens 424
9.21.1.X10 ReadRange Service when Non-BACnet Device Offline..........ccoocevverienenienenceee 425
9.21.2 Negative ReadRange Service Execution TestSccocevierieniieiieieiienieeee e 425
9.21.2.1 Attempting to Read a Property That Does not EXist..........cccoeoevieniiininiiicieeee 425
9.21.2.2 Attempting to Read a Property That is not @ Listccceiierininiiiniiieieeeee 425
9.21.2.3 Attempting to Read a non-Array Property with an Array Index.........ccceceeverininnnene 426
9.21.2.X6 Reading a Range of Items that do not Exist (by PoSItion)cccceecereiieiienienieneneene 426
9.22 WriteProperty Service EXeCUtion TESESccuiicierieiieriieiieie ettt eae e sreesteesaessnesnnesene e 427
9.22.1 Positive WriteProperty Service EXecution TeStS........ceccvivveirierieniieiieieeiesieseere e eeee e 427
9.22.1.1 Writing a Single Element of an ATTayccceviiiiieeiiicieeieieieeie et 427
9.22.1.2 Writing a Commandable Property Without a Prioritycceecvevireeieeienieniereeeeie e 427
9.22.1.3 Writing a Non-Commandable Property with a Priorityccceevveeieeienienieneeeeie e 428
0.22.1. X1 WIItiNG AN ATTAY SIZEeeruieuieiieieeiieetiestteete ettt eeeestte st e et enteeseesseesseenseeseeneesneesaeenseenes 428
9.22.1.X2 Writing to Properties Based on Data TYPEccoovvriirierieiieieeeeeseee e 429
9.22.2 Negative WriteProperty Service Execution TeStscccocerierienieiieieeiereeeee e 429
9.22.2.1 Writing Non-Array Properties with an Array Indexc.ccooeeiiiiniininiiniicecee 429
9.22.2.2 Writing Array Properties with an Array Index that is Out of Rangec.cccceverinennene. 430
9.22.2.3 Writing with a Property Value Having the Wrong Datatype..........ccccoeoveiieniininncinencene 430
9.22.2.4 Writing with a Property Value that is Out of Range............cccoeeveierienienieice e, 431
9.22.2.X1 Writing Non-Array Read-only Property with an Array Indexcccoeeevivecieicreneenennn, 432
9.22.2.X2 Resizing a writable fixed SiZe array Property........cocceevvereerreecreeeerieeseeseenseeseesveseesseenns 432
9.22.2.X4 Writing a Property Value Related to Non-supported Optional Functionality 433
9.23 WritePropertyMultiple Service EXecution TestS........cevieruiriiirierieiieiieie ettt 433
9.23.1 Positive WritePropertyMultiple Service EXecution Testsceeveriieriieiienienienienieeie e 433
9.23.1.1 Writing a Single Property to a Single ODJect.........cccoovivieiieiieieieeeeeeee e 433
9.23.1.2 Writing Multiple properties to a Single ObjJect..........covierieiieiieieeieceeee e 434
9.23.1.3 Writing a Single Property to Multiple ODJECtScccvevierieiiieiieieeieseee e 434
9.23.1.4 Writing Multiple Properties to Multiple ODJECtScooeeierieiierineie e 435
9.23.1.7 Writing Maximum Multiple PrOPEItiesccoceririeirieieieiesie et 436
9.23.1.X4 WIItiNG AN ATTAY SI1Z@.....ceveruierrierieieeieeiesteesteessestesseesssesseesseeseessesssessaesseessesssesssesseenns 437
9.23.2 Negative WritePropertyMultiple Service EXecution TestsS........ccocvvevieviieciieienienienieeie e 437
9.23.2.1 Writing Multiple Properties with a Property Access Error.........ocvvvvevievieniiicieiieseenenn, 437
9.23.2.2 Writing Multiple Properties with an Object Access Error........cccocveveeienicncnincnicncneens 437

© 2022 by BACnet International. All rights reserved. Xll

BACnet Testing Laboratories - Specified Tests

9.23.2.3 Writing Multiple Properties with a Write Access Error.........ccccocovivireeienicicninencncnens 438
9.23.2.4 Writing Non-Array Properties with an Array IndeXccoecveiirieiiiiinieeee e 439
9.23.2.5 Writing Array Properties with an Array Index that is Out of Rangeccocceveerennne 439
9.23.2.6 Writing with a Property Value Having the Wrong Datatype...........cccoveiiiiviiiicenceee 440
9.23.2.7 Writing with a Property Value that is Out of Range...........cccooceiiinininiiniicecee 440
9.23.2.X1 WritePropertyMultiple ReJeCt TeSt........ccuerieriiiiriiiiiieiieeee et 441
9.23.2.X2 Resizing a writable fixed size array property using WritePropertyMultiple service442
9.23.2.X3 Writing first element of 'List of Write Access Specifications' with Object Access Error
... 443
9.23.2.X4 Writing First Element of 'List of Write Access Specifications' with a Write Access Error
... 444
9.23.2.X5 WritePropertyMultiple Reject Test for first element of 'List of Write Access Specifications'
... 444
9.23.2.X6 Writing first element of 'List of Write Access Specifications' with a Property Access Error
... 445
9.23.2.X7 Writing a Property Value Related to a Non-supported Optional Functionality 445
9.23.2.X9 Date Non-Pattern Properties Test using WritePropertyMultiple Service.............c.......... 446
9.23.2.X10 Time Non-Pattern Properties Test using WritePropertyMultiple Service..................... 447
9.23.2.X11 DateTime Non-Pattern Properties Test using WritePropertyMultiple Service.............. 447
9.23.2.X12 BACnetDateRange Non-Pattern Properties Test using WritePropertyMultiple Service
... 448

9.24 DeviceCommunicationControl Service EXecution Test.........ccccoceveririeienienineninenceieiceneeneee 449
9.24.1 Positive DeviceCommunicationControl Service Execution Tests..........cocevverereriieenienenennenn 449
9.24.1.5 Finite Time Duration Restored by ReinitializeDevice...........ccevvevreieeienienieiieeeie e 449
9.24.1.11 Ensure that DISABLE option is not supported by IUT claiming PR >=20................. 449
9.24.1.12 Disable of Service Initiation Restored by ReinitializeDevice..........cccoeevvervrrereniennenne 450
9.24.2 Negative DeviceCommunicationControl Service Execution Testscceevereereerierienceneenne 450
9.24.2.1 INVAlid PaSSWOI.eouiiiiiieieieeeete ettt s e ettt se et eesae e 450
9.24.2.2 MISSING PASSWOTIAeuiitieiiiieie ettt ettt ettt et eesae e 451
9.24.2.3 Restore by ReinitializeDevice with Invalid 'Reinitialized State of Device'...........ccccu... 451

9.25 ConfirmedPrivateTransfer Service EXecution TestScccooeviririeiinienienenenereeiieeeeie e 452
9.25.1 Positive ConfirmedPrivateTransfer Service Execute Testsccecvevievenininineninieienencen 452
9.25.1.1 Correctly Executes a Supported ConfirmedPrivateTransfer Service........c.ccoccvvenencrenens 452
9.25.2.1 Correctly Executes a Non-Supported ConfirmedPrivateTransfer Service...........ccccoueunee. 453

9.27 ReinitializeDevice Service EXecution TeStSccocerieiiiirinineniinieeeieietene et 453
9.27.2 Negative ReinitializeDevice Service Execution Tests.........ccccevierieririirnienieneee e 453
9.27.2.1 COLDSTART with an Invalid Passwordccccoeoiiriiniiiieieeceeeee e 453
9.27.2.2 WARMSTART with an Invalid Passwordcccocovieriiiiiiiieneeeee e 454
9.27.2.3 COLDSTART with Missing or Invalid Password.............cccccocemeriieieneneieseseeeeene 454
9.27.2.4 WARMSTART with Missing or Invalid Password............c.cccceiiiiniiieienesesesese e 455
9.27.2.X Rejects Unsupported Reinitialize TYPESccerererieirieieieiese st 456

9.29 UnconfirmedTextMessage Service EXecution TestS.......ccvcvviivierieriieniieiieieeiesieeie e 456
9.29.1 UnconfirmedTextMessage With No Message Classceccvevierieriieriiecieneeneeneenieevesee s 456
9.29.2 UnconfirmedTextMessage with an Unsigned Message Class.........ccoecvveeveeierieneeneenienieneenns 456
9.29.3 UnconfirmedTextMessage with a CharacterString Message Classccccevvereeneenienevennenns 457
9.30 TimeSynchronization Service EXecution TeStS.......cccuevieriieeierierieiieie et ens 457
9.30.1 Positive TimeSynchronization Service EXecution TestScccevveriierireiienienienieneeie e 457
9.30.1.1 TimeSynchronization Local BroadCastcccceeririiiiiiiienieseeeeeee e 457
9.30.1.2 TimeSynchronization Directed to the TUTcccoooiiiiiiiiiieieeee e 459

9.31 UTCTimeSynchronization Service EXecution TestS........cceecuerierierieiieieeieeierieee e 459
9.31.1 Positive UTCTimeSynchronization Service Execution Testsccccecueveerieneenenneniencenienn. 459
9.31.1.1 LOCAl BrOAACASEetieieiieieieie ettt st ebe ettt e et sbeebeeaeeneene 459

9.32 Who-Has Service EXeCULION TeSTScccuerieriiririiriiiiieiieieieste sttt 460
9.32.1 Execution of Who-Has Service Requests Originating from the Local Network 460
9.32.1.1 Object ID Version with No Device Rangecccvveviiiiiienieniieieeieciecieseee e 460
9.32.1.2 Object Name Version with no Device Range............ccoevevveiieciieinniecieeeeee e 461

© 2022 by BACnet International. All rights reserved. Xlll

BACnet Testing Laboratories - Specified Tests

9.32.1.3 Object ID Version with IUT Inside of the Device Range.........ccccceevevvenienieiencenienee, 461
9.32.1.4 Object ID Version with [UT Outside of the Device Rangeccccoeveevienveieienceee 462
9.32.1.5 Object Name Version with IUT Inside of the Device Range...........cccoooveviiniiiiiencencnne 462
9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range
... 462
9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range
... 463
9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range
... 463
9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device
RANEE ...ttt et st et e bt e st e bt e et e s b e e e abeesbeeeanees 464
9.32.1.11 Object Name Version, Directed to a Specific MAC Address.........cooecvevveneeneeneecieeeenne 464
9.32.1.12 Who-Has After Object Name Changedccccoviirierieiieieieeeeeee e 465
9.32.1.13 Who-Has After Object_Identifier Changed.............ccoooeerieiiieiiriinieeeee e 465
9.32.2 Execution of Who-Has Service Requests Originating from a Remote Network....................... 466
9.32.2.1 Object ID Version, Global Broadcast from a Remote Networkcccceceeeieiieiiennnenene. 466
9.32.2.2 Object ID Version, Remote Broadcast............ccoceriiieirieienieieie e 467
9.32.2.X3 Who-Has for Non-existent Object Name.........cccceeerieieiieiienieniesie e 467
9.32.2.X5 Who-Has for Non-existent Object Identifier............ccceeieviieciieieniienieneeeee e 468
9.33 Who-Is Service EXECULION TESSeeueeuieieiiriiriietiiiieiieteest ettt 468
9.33.1 Execution of Who-Is Service Requests Originating from the Local Network.............c............. 468
9.33.1.3 Local Broadcast, Specific Device Inquiry with [UT Outside of the Device Range........... 468
9.33.2 Execution of Who-Is Service Requests Originating from a Remote Networkc.coeuee. 469
9.33.2.3 General Inquiry, Directed to @ Remote DEVICE.........ccveviereieiieiieieeiecieieee e 469
9.X33 AuditLogQuery Service EXecution TeStS.........ccoueiirririiiie et 469
9.X33.1 AuditLogQuery Service Positive TESESceieeiiriiiiiiieeiiesieeieeie e 469
9.X33.1.1 AuditLogQuery By Target TeSt.........ccueiieiieiiiieeieeeeeet et 469
9.X33.1.2 AuditLogQuery By SOUICE TeStc..evuiirieriiiiiiiiiie sttt 470
9.X33.2 - AuditLogQuery Negative TeStS.......ceouiriiriiriieniieieeie ettt sttt st s 471
9.X33.2.1 Attempting to Query a Non-existent Audit Logccccovieviiiiiiinieniiicee e 471
9.X40 WITLEGTOUD TOSES .eevierieiieiiiieetestieste et et e etesteesteesteesseesbesseesseesseesseesseesseessesssasseesseessesssesssesseenns 471
9.X40.1.X1 Channel and Group NUMDBEr TeStccecvverriiriiiiiiieriieiieieeee e 471
9.X40.1.X2 Write Priority and Overriding Priority TeSt.........ccoccervierierieiiieieeiesieneee e 473
9.X40.1.X3 RelinquiSh COntrol TStccvecuieeieeieeieriieriiete et ete sttt eteeeeerae e sseesseesesnesneenns 473
9.X40.1.X4 Inhibit Delay Test With WITtEGIOUPcocvvevieierieeieiieii et 474
9.X41 SubscribeCOVPropertyMultiple Service EXecution TestsS.........coovereeiieienieniereeieee e 475
9.X41.1 Positive SubscribeCOVPropertyMultiple Service Execution Testsccccevveevvererenceneenne. 475
9.X41.1.1 Supports Non-Timestamped Notifications..........cccecveveeriieriierieeienieseereee e 475
9.X41.1.2 Supports Timestamped NOtfICAtIONS.........ccvevviieiiiiiieecre ettt 476
9.X41.1.3 Confirmed Change of Value Notification From Property Valueccccecereiennnnnene. 477
9.X41.1.4 Unconfirmed Change of Value Notification From Property Valuecccccccenrrnene. 478
9.X41.1.5 Supports Subscriptions to Multiple Properties Using Multiple Requestsc.c....... 478
9.X41.1.6 Ensuring 5 Concurrent COV-Multiple Contexts With 5 COV-References Per Context 480
9.X41.1.7 Supports Client-Supplied COV INCIEMENtccccvevierrieriieiieieeieseeie e seeenne 481
9.X41.1.8 Updating EXiSting SUDSCIIPLIONS.cccuerirriieriieieeieeiesiesetesieeie e esaessaesseesseeaesnesneenes 482
9.X41.1.9 Canceling Subsets of COVIM SUbSCIIPLIONSccveeveriereieniieriieieereeieseeseeesseessesneseenns 483
9.X41.1.10 Canceling Expired or Non-Existing SubSCIIPtionsc..ccccvererereeienienenenenenenens 484
9.X41.1.11 Subscription EXpiration TeSt.........cceeieriirieieiieiieeieseeie e 485
9.X41.2 Negative SubscribeCOVPropertyMutliple Service Execution Tests..........cccccveveereiencenenne. 486
9.X41.2.1 The Monitored Object Does Not Support COVM Notification...........ccccereeereereennnne. 486
9.X41.2.2 The Monitored Property Does Not Support COVM Notificationccceeereruennee. 487
9.X41.2.3 Monitored Object Does NOt EXISt......cccueruiriiiriiiiieiieieieseee e 487
9.X41.2.4 Monitored Property D0oes NOt EXISt.......ccceiieriiiiiiiiiiieniiesieeieeieeie e e esre e sne e 488
9.X41.2.5 Array Index Provided But Property is NOt an ATraycccecveeveevienieneenieenieeiesnenns 488
9.X41.2.6 Array Index Provided Is Out Of RANEccvevvieiiiiieieieieeieeecte et 489
9.X41.2.7 No Space to Add List EISMENL.........ccccceririiieiiiiiiiieeieeet et 490

© 2022 by BACnet International. All rights reserved. X1v

BACnet Testing Laboratories - Specified Tests

9.X41.2.8 The Lifetime Parameter is Out Of RaANGEc.ccceevieriieriieiieieeeeeeee e 490
9.X41.2.9 The Max Notification Delay Parameter is Out Of Range..........cccocoveveeiiiiiiienceene 491
9.X41.2.10 The Max Notification Delay is Greater Than the Lifetime...........ccccceveeririiiienennenne 491

10. NETWORK LAYER PROTOCOL TESTS ...ttt ettt ettt seesae e ssesse e 492
10.1.1 Processing Application Layer Messages Originating from Remote Networkscc..c...... 492
10.2 Router FUNCIONAIItY TESTS ...c.veruiiieiiiieiieiieiieei ettt et sttt s s s 492
10.2.2 Processing Network Layer MESSAZEScc.eeueeieierierieiieeeieieeitetieiete ettt ee e nee e sae e e 492
10.2.2.7.2 Unknown Network Layer MeSsage TYPEcveeveervieierieiieniienieeieeie e seeesveesseeseeeneas 492
10.2.3.2 Route Message from a Local Device to @ Local DeVICE........cevverrierieeiiiieiieciieiieieeenn 493
10.2.3.6.1 Failed Attempt t0 Locate ROULETc.cccvevviiriieiieiieiecieeeeceee et 494
10.2.3.6.2 Successful Attempt to Locate ROULETcoovieriieiieiieiecieiecee e 495
10.2.X1 Initiates Network-Number-IS on Startupcccccvevieeiieienieniereeeee e 495
10.2.X2 Routers Execute What-Is-Network-NUMDETcccecieiiiiinieiieiee e 496
10.2.X3 Data Attributes FOrwarding TeStccceeriiiiiienieiieieeeee et 496
10.2.X4 Data Attributes Dropping TeSt......c.eeriereiiieieeieriee ettt sttt 497
10.2.X5 SecUIe Path TSt ...c..ceuiiiiiiieieeet ettt ettt st sb e b et 497
10.2.X6 INSECUIE PAth TESE.....euieieeieeieiieiete ettt ettt ettt ettt be et et eae e s e e e b e sbeseeene e 498
10.5 Initiating Network Layer MESSAZEScc.eeutriiriertientierieeie ettt stee ettt setesieesbeesbeetesaesaeesaee e 498
10.5.2 Managing ROULET TaADIESccveeiueiieiieieeiecie ettt ettt te e teesaeesaeesaesseessaesseesseenseesseas 498
10.5.2.X1 Query A Router's KNoOwn ROULES........cc.eoviiiiiiiiiiiniienieerieeceeeeseesee e 499

10.6 Non-Router FUNCtionality TeStS........ccuevieriieiiieiiiieriesieesie ettt esteeveesseeseessaesseesseesseessessnessnenns 499
10.6.3 Ignore Router COMMANGS.........c.eecueriieriierieeieeie e see ettt eaeetae e sse e seeseeeeeneesseesseenseenseenseas 499
10.7 RoUtEr FUNCHIONAIILYeovviiiiiiieciieiiee ettt ettt et e e et e st e e e seenaesnnesneesneenseenes 500
10.7.2 Router Binding via Application Layer SErVICES........cccuerieriieiieeienienieneeieeee e seeeseeeeeeeeennens 500
10.8 Virtual Routing FUnctionality TeSTScccueeueriiiieiieieee ettt 501
10.8.3 Routing of Unicast APDUScciiiiiiieieet ettt st eneen 501
10.8.3.1 Route Request Message from a Local Device to a Virtual Device and Route Response
Message from the Virtual Device to the Local DeviCe.........ccceeeeiiieienieieiesieeeeeeeeeeee e 501
10.8.3.2 Route Request Message from a Virtual Device to a Local Device.........cccccevuenienuenene 502
10.8.3.5 Unicast Messages That Should Not Be Routedccccoiiiiiininiiiiiieec e 503
10.8.3.5.1 UnNKNOWN NEIWOTK ..c..eouiiiiiiiiiiiitiriteieeeeese ettt s 503
10.8.3.6.X1 Silently Drop Messages to a Virtual Device that is Offline.............cccoceevvvevvenrennne 503

10.8.4 Routing of Broadcast APDUS to Virtual DeviCes.........ccoecverierierierieiierieseesieeie e 504
10.8.4.7 Route Remote Broadcast Message from a Virtual Device to a Local Network........... 504
10.8.7 Multiple Devices on a Single Virtual NetWorkcccoccveviieiiniinieiieiee e 504
10.8.7.4 Who-Is Specifying Unknown Device Idsccoeoiriiiiiiiiiiicieeeeeeeecee e 505
10.8.7.5 Who-Has Specifying Unknown Device Ids..........ccoooeeiiiiiiniiiiiieeeeeeeeeee 505

12. DATA LINK LAYER PROTOCOLS TESTS ..ottt ettt ene s 505
12.1 MS/TP State MaChine TeStS.......ccueeuieieeieieieeie ettt sttt ettt see ettt esee e e b e sbeseeeaeeseenes 505
12.1.3 MS/TP Data Link Layer Tests (AItEINate)cceeeruereriririeieieieriese et 505
12.1.3.3 VEIIfY Tirame gap «eveevereereerersereererertemertenteuenienteuestestesestestesesaestesestentesesaesessessesessessenesnessenessense 505
12.1.3.X1 Frame Type Based on Transmitted NPDU SiZec.ccccevvierienienieniieiecieeeeeeeie e 506
12.1.3.X2 Executing COBS Encoded FIramescccocvevieriieciieiiniesiescene et 506
12. X BACNEt/IPVO FUNCHONALIILY TESES....c.vieiieeiieiiesiieitieiieieeteeetestee st esseesseesveesaeseaesseesseesaessaessnesseenseenns 506
12 X1 CoMIMON TESS ...cuuiiuiiiiiieiiieitieiienie ettt sttt ettt ettt et b et eanesaeesaeesaeenneenneeanens 507
12.X.1.1 Execute Original-Unicast-NPDU............ccccveriiriiiriinieiieneeseee et 507
12.X.1.2 Execute Virtual-Address-ReSOIUtIONcc.ceveiiriinininenieieicieienene et 507
12.X.2 TPVO NOIMAal MOAE TESES.....eeiuieiieiieieeie ettt ettt sttt ettt ee et e st e et et e e eneeeneeeneens 508
12. X021 POSIEIVE TESES ..ueieuiieiietieitieitieie ettt ettt ettt eit et esbe e teetesseeeaeeseeenteenseeneeeneeeneens 508
12.X.2.1.1 Initiate Original-Broadcast-NPDUcccoeoimiiiiiiiiiee e 508
12.X.2.1.2 Execute Original-Broadcast-NPDU...........cccoociiiiiiiiiieiieee e 508
12.X.2.1.3 Execute Forwarded-NPDUccccoeiiiiiiiiiiieieeeee e 508
12.X.2.1.4 Execute Address-ResoIUtioN.c..ceieieieriiniiiiiiiieeee e 509
12.X.2.1.5 Execute Forwarded-Address-Resolutioncoceeeeeeienienenciincnceieeeneee 509
12.X.2.2 NEZAUVE TESES ..eevvieevieiieriieiiieitiesieeteetestesteesteeseessesssessaessaesseesseesseessesseesseesseesesssenssens 510
12.X.2.2.1 Reject Register-FOreign-DeViCeccecvveiuieiirienieniieniee et 510

© 2022 by BACnet International. All rights reserved. XV

BACnet Testing Laboratories - Specified Tests

12.X.2.2.2 Reject Delete-Foreign-Device-Table-Entry...........ccccoeceevieeiiiieicienieieieeie e 510
12.X.2.2.3 Reject Distribute-Broadcast-To-NetWork............ccccceereriirniiiiiienieneeeeieeeeeieens 510
12.X.3 Foreign DEviCe TESESeeueeuieieieiiieiieie ettt ettt ettt ettt et et e st e saeeste e e eneeeneeeneens 511
12. X301 POSIEIVE TESES ..ueieuiieiieeiieetieittete ettt ettt et et e bt e te e eeeeee st e seeeteenseeneeeneesneens 511
12.X.3.1.1 Initiate Distribute-Broadcast-To-Network-NPDUcccccoiiiiniiniieiiieeie e, 511
12.X.3.1.2 Execute Forwarded-NPDUccccoeiiiiiiiiiiiieeeee et 511
12.X.3.1.3 Execute Forwarded-Address-Resolutionc.cceoeeoieiinieneniiieceieeeee e 512
12.X.3.2 NEZAUVE TESES .ueeuvieeiieiieeiieiiieitiesieeteetestestee st eteesseessessaessaesseesseesseessesseesseesseensesssenssens 512
12.X.3.2.1 Ignores Original-Broadcast-NPDUccccccirviiriiriierienieeie et 512
12.X.3.2.2 Ignore Address-ReSOIULIONccuevieriieriieiieiieiie ettt sae b sveeeaeenaens 512
12.X.3.2.3 Reject Register-FOreign-DeViCeceeveiuieiirienienieieee et 513
12.X.3.2.4 Reject Delete-Foreign-Device-Table-Entry...........ccccooveevieeieiiieiienieieieeieeieeeenns 513
12.X.3.2.5 Reject Distribute-Broadcast-To-NetWork............ccccceererrirniiieiienienieseeieeeeeens 513
| S 1211 D I TSRS 514
12. X041 POSIEIVE TESES ..ueieuiieiieitieitieeteete ettt ettt ettt et st et e bt e ste e eesmeesaeeseeeteenseenseeneenneens 514
12.X.4.1.1 Original-Broadcast-NPDUc.ccoooiiriiiiiiiiiiiiereeecee et 514
12.X.4.1.2 Forwarded-INPDUccoooiiiiiiiiiiiieeeeeee ettt 515
12.X.4.1.3 Address-ReSOIUtIONc.coiuiiiiiiiiiieeieee e 515
12.X.4.1.4 Forwarded-Address-ReSOIUtION..........coveieriiriininiiiiceieeese e 516
12.X.4.1.5 Distribute-Broadcast-To-NetWOrk.........cccceoereririririieienienene e 517
12.X4.2 NEZAUVE TESES ..ieuvieeiieiieiieiiieriiesteeteetestestee st eteesseessessaessaessaesseesseessessaesseesseesessseessens 519
12.X.4.2.1 Ignore Forwarded-NPDU from non-Participating BBMDs............cccecvevvrrirenrannnne 519
12.X.4.2.2 Reject Address-ResOIUtionc.cccvevieriieiiieiiieiicieseeeeeee et 519
12.X.4.2.3 Reject Forwarded-Address-ReSOIUtion...........cceeverierirriiesieiie e 519
12.X.4.2.4 Reject Distribute-Broadcast-To-NetWork............ccceceerirrirniiieiienieeeeeieeeeens 520
12.X.4.3 Broadcast Distribution Table Operations.............ccceeeeerierieneeneeieeiesienie e 520
12.X.4.3.1 Verify writability of the BDTccccooiiiiiiiieieeeeeee e 520
12.X.5 Foreign Device Management TEeSEScocueriiriirieriieiieieeiiesieesiceieee et 521
12.X.5.1 Execute Register-FOreign-DeviCe...........ceoiiuiriiriinieiienieie et 521
12.X.5.2 Execute Delete-Foreign-Device-Table-Entryccocoeoieieiinininiiiieieeee e 521
12.X.5.3 Foreign Device Table Timer Operationscceecveeeereereeneenieesieseeseesseesseesseenens 522
12.X.5.3.1 Non-Zero-Duration Foreign Device Table Timer Operations..............ccceeeveeevennns 522
12.X.5.3.2 Zero-Duration Foreign Device Timer Operationsceccveveerueecvereereenieenneenens 523
12.X.5.4 Delete-Foreign-Device-Table-Entry For A Non-existent Entrycccccoeevveiveiennns 523
13. SPECIAL FUNCTIONALITY TESTS ...ttt sttt 524
B BT 1S3 012 1 (o) o USSR 524
13.1.12.1 IUT Does Not Support Segmented RESPONSE........c.cecveveeeriieririeiiieieeiesiceie e 524
13.1.12.X1 Reading with maximum-segments-accepted bit pattern B'000"ccccoevveirienneens 524
13.5 SIAVE PIOXY T@SES .. eueiuieuieieieite ettt ettt ettt sttt et e at e e e te st et e e st eae et et e sbeebeebeeseeneeneanseaseseeeneeneenes 525
13.5.3 PrOXY ToSta ittt ettt b ettt st st b ettt et eaaenaeen 525
13.8 Backup and Restore ProCedUIe TeSTS........ieriiiiiierieeiiieiieeeiieesteesieeeiee e eeeeeeveeaeeseaeeaeesnsneenneas 526
13.8.1 Backup and Restore EXeCUtION TEStSccueeeviiiiiiiiieiiieieeiieteeeese et esre e eee e saee e ebeenseesneas 526
13.8.1.1 Execution of Full Backup and Restore Procedureccevvevienieniieciiiieeieeeeieeieeene 526
13.8.1.2 Attempting a Backup Procedure While Already Performing a Backup Procedure......529
13.8.1.3 Attempting a Backup Procedure While Already Performing a Restore Procedure......530
13.8.1.4 Attempting a Restore Procedure While Already Performing a Backup Procedure......531
13.8.1.5 Attempting a Restore Procedure While Already Performing a Restore Procedure......532
13.8.1.6 Ending Backup and Restore Procedures via TIMEOUL..........cceererrrrrieriinieieeieeieeeeeeane 532
13.8.1.7 Ending Backup and Restore Procedures via ADOrt.........ccccevveviiiiiniiniinieieeiceieiene 534
13.8.1.8 Attempting a Backup Procedure with an Invalid Password..............cceceeviniiiiinnnnens 535
13.8.1.9 Attempting a Restore Procedure with an Invalid Password...........c.cccoceviniininnnnnn. 535
13.8.1.10 Starting and Ending a Backup Procedure when a Password is not Required................... 536
13.8.1.11 Starting and Ending a Restore Procedure when a Password is not Required.................. 536
13.8.1.12 System_Status during a Backup Procedurecccoevverienienienieie e 537
13.8.1.13 System_Status during a Restore Procedurecocceevverienienienieie e 538
13.8.2 Backup and Restore Initiation TeSS.......ccverieeiiriirierieiieie et 538

© 2022 by BACnet International. All rights reserved. Xvi

BACnet Testing Laboratories - Specified Tests

13.8.2.1 Initiate a Full Backup and REStOTe...........ceeiiriieriieiieiieieeiesieicee e 538

13.9 Application State MacChing TeSEScecueeiirierieiierieie ettt s snee e 540
13.9.X1 Ignore Confirmed Broadcast REqUESLScceeviiiiieiiiriiiieieseee e 540
13.10 Workstation SCheduling TeStScceeiiriiiieiee et 540
13.10.4 Modify and Exception Schedule...........ccoeoiiiiiiiiiiiiieieeeeee e 540
13.10.4.9 Modify an Exception_Schedule by Adding a BACnetSpecialEvent with Period of Choice
calendarEntry of Choice WEekINDAYccccoiiiiiiiiiiiiieieeeeeee et 540
13.10.5 Modify a Calendar ODJECTc.ccuerieriieriiiieciereesieerte ettt e e e eseeaeeseesreesseesseensenssens 541

13.10.5.4 Modify a Calendar by Adding a BACnetCalendarEntry of Choice WeekNDay to the
Date List 541

13.10.X8 Modify a Self-inconsistent Timer to be CONSiStentcceecvereereeneereerieeiesieseeeeeeeeeens 541
13.10.X9 Change the Datatype that a Timer Object References...........cocovevereveneeieniencnenencnenene 542
14. BACnet/IP FUNCTIONALITY TESTS. ...ttt ettt see s seessessessesse e 543
14.1 NON-BBMD B/IP DEVICE.....ccueeiuiitieiieieeiteiie ettt ettt ettt ettt s bt saeeaeenee e sneeneeenes 543
14.1.7 Forwarded-NPDU (One-hop DiStribution)...........ccceerieriieierienienieeieee et 543
14.1.8 Original-Broadcast-NPDUcooiiiiiiieieieieee ettt sttt 543
14.1.10 Forwarded-NPDU (Two-hop DiStribution)cccceeeevieiieieiienieeieeie e e ereesreeveeveeenesenens 544
14.1.X11 Processing Forwarded-NPDU request initiated from different port............ccooceeviecinennnen. 544
14.1.X12 Processing Forwarded-NPDU Request Initiated from a Different Port when Registered as a
FOT@IZN DIEVICE ...eouvieiiiiiiciie ettt ettt ettt et e et e et eeteeste e beesbeesbessbesssessaesseessesssesssessseseenseensenssens 544
14.2 BBMD B/IP Device with a Server AppliCationccvevvieviiierienieniieieeieeeeseeseesseesseenesnesenens 545
14.2.1 Execute Forwarded-NPDU..........ccccociiiiiiiiiiiiiiinene ettt 545
14.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)ccecveveeviercierienienieeieeieeienenens 545
14.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)...........c.eccveveerieeieriienieneeieeieeienenens 546
14.2.2 Execute Original-Broadcast-NPDUccccoooiiiiiiiiiieieeeeseseee ettt 547
14.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)cceeeeevieveenieecirniennnene 547
14.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)ccceceveerierirecirniennenns 547

14.3 Broadcast Distribution Table OPerations............cccueceerueerieeriieeeieeereesreesreereeseseesteesseesseesessessnens 548

14.3.3 Verity Broadcast Distribution Table Created from the Configuration Saved During the Previous
Session 548

14.3.X1 Write-BDT service is required to return Write-BDT-NAK.........cccccevieriiciiiiiniecieieeeeene 549
14.6 Foreign Device ManagemeNtccveeuveriieciieierierieesieesseeteseesseesseesseesesssesssesssessessseessesssessesseenns 550
14.6.3 Foreign Device Table Timer OPerationsc.ccvereerurerueereseesienseesseseeseeseesseesseensessens 550
14.6.3.1 Non-Zero-Duration Foreign Device Table Timer Operationscceeveevveveevennnnns 550
14.6.3.2 Zero-Duration Foreign Device Timer Operationsccecceevveeverveneenieeneeevesnenenens 551

14.7 Broadcast Management (BBMD, Foreign Devices, Local Application)..........ccccceveeveereerceneenennne 552
14.7.1 Broadcast Message from Directly Connected IP Subnet............ccooeeiiiiiiiiiiiiinieceeeeee 552
14.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution) 552
14.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)............. 553
14.7.2 Broadcast Message Forwarded by a Peer BBMDcccoooiiiiiiiiiiiiiiieeeeee e 554
14.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution)...........c..ccc....... 554
14.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution) 555
14.7.3 Broadcast Message from a FOreign DEevVICEccuevveriieriieriieiieieeieseesie ettt 556
14.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)............ccccvecvreevennnn. 556
14.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)...........ccecvecvrevennnn. 557

14.8 FOreign DEVICE TESEScoueeiiiiieiieeiieriieie et e etestte st e e e e testesstestee st enseenseessesseesseenseensesnnesnsesnnenns 558
14.8.1 Registering as @ FOreign DEVICE.........cvuieriiriieiierierieeie ettt ettt ensesnaesneens 558
14.8.X1 Register-Foreign-Device Enable and Disable Test.........cccoecuerieiienenieieiiereeeeceeeeeee 559
14.8.X2 Recurring Register-Foreign-Device TeSt........ccccveririirieiieiieiieieee e 559
14.8.X3 BBMD Address Configuration TeStccecuerierieriieiieieeiestiesie et 560
14.8.X4 Transmits a Broadcast at Startup preceded by Register-Foreign-Deviceccccoevereniennene. 560
14.8.X5 Time-to-Live Configuration TeStcceciiiiiiiriiiiiiieiesierieeeeee e 561
14.9.1 Distribute-Broadcast-TO-NetWorkcccceieriiriirininiiiiieeeeee e 561
14.X1 BBMD CoOnfiguration TESSccuevieriieiieiieieiiesieesieesieetestesteesseesseesseessesssesssessessseessesssesssessnenns 562
14.X1.1 Read-Broadcast-Distribution-Table Initiationcoceeereririeiieneneneneecrceeeee e 562
14.X1.2 Write-Broadcast-Distribution-Table INItiationc.ccecevererieiieneninienenenceeeeeneneesee 562

© 2022 by BACnet International. All rights reserved. Xvil

BACnet Testing Laboratories - Specified Tests

14.X1.3 Read-Foreign-Device-Table INitiation..........c.cccvevieriieciieiieniesiiesiesie e eee e senens 562
14.X1.4 Delete-Foreign-Device-Table-Entry Initiationccceceeienienieiieiiie e 562
14.X10.1 Broadcast-Distribution-Table Holds at Least 5 ENtriescccceeveeieeeiiienienieieeeeeeene 563
14.X10.2 Holds at Least 5 Foreign Device Registrations............ccceeeeriereeneeiesie e 563
14.X10.3 Negative Foreign Device Registration when BBMD_Accept FD Registrations is FALSE563
14.X10.4 Broadcast Distribution Table Configuration via Hostname Entriescccccccevevenencncnne 564
14. SECURE CONNECT TESTS ...ttt sttt ettt st ebe et et e naesbeeaeeneenean 565
14.YY Secure Connect FUnctionality TeSESc..ecvieiiiiierieriieieeie e eteeeteesie et e svesseesreesreeseesnesnnesenenns 565
T4.YY.1 Basic NOE TESES ...cueeuiruieuieieieitestieteei ettt sttt ettt st ebe st eit et et e e st b b ebene 565
14.YY.1.1 Basic NOde POSItIVE TESS.......cruiriririiriieiieiieieiesie sttt sttt 566
14.YY.1.1.1 Connect and Maintain Hub Connection Test..........ccceceevverierenirincnceienicnicnicniene 566
14.YY.1.1.2 Connect to Failover HUb Testccccuevirininininiiiiicieneneneeeteeeenee e 568
14.YY.1.1.3 Connect to Failover Hub on Startup Test.........cccccerieiiiiiiiiieeerceeeeeeeeee 569
14.YY.1.1.4 Reconnect to Primary Hub Testccceeiieiiieiiiieieieeee e 569
14.YY.1.1.5 Unicast Through HUb Test........cceeceriirieiieiieeeeseeseeie et 570
14.YY.1.1.6 Unicast t0 HUD TEStc.eiuiriiiiiieieiieieieee et 571
14.YY.1.1.7 Local Broadcast Initiation TeSt.........ccuerueririririeieieieiesie e 571
14.YY.1.1.8 Local Broadcast EXecution Test.........ccccuereririiiniiieieie e 572
14.YY.1.1.9 VMAC UNIQUENESS TStueevieiiiiiiieeiiesiiesiieieeteeereseesieesseesseeaessnesaeesseesseessesssens 572
14.YY.1.1.10 UUID PerSiStenCe TeSt.......ccueruirieriieiieieierienieniesieeteeeete ettt 574
14.YY.1.1.11 UUID Persistence When VMAC Changes Test.........ccccvevuirveieienienienieeveeienenns 575
14.YY.1.1.12 Unknown "Must Understand' is True Message Test........cccvevverveeriereenieecieniennnnns 576
14.YY.1.1.13 Unknown "Must Understand' is False Message Test........cccevvevereierienienieeieennnns 577
14.YY.1.1.14 Multiple Header Options TeSt.........ceecuerieriieriieieeieeiesiienieeee e seeseeeseeeee e ennens 578
14.YY.1.1.15 Advertisement-Solicitation Execution Testcccevveeiirriiieiiienienieseeieeieeiens 579
14.YY.1.1.16 Heartbeat-Request Initiation Testcccoeiieiirierieiieiiee e 580
14.YY.1.1.17 Configurable Reconnect Timeout Testccceeouerierieiieneeieeiereeeeieeie e 581
14.YY.1.1.18 Fixed Reconnect Timeout Testc.cceriririiieiiieee e 581
14.YY.1.2 Basic Node Negative TEeStSccceierieieieieieiesie sttt ettt eeeeee e sae e 582
14.YY.1.2.1 Direct Connect Not Supported - NAK Address Resolution Test..........ccccceveeerennenns 582
14.YY.1.2.2 Malformed BVLC TStccciiiiriiieiieieiesesieet et 583
14.YY.1.2.3 Discard BVLC with Wrong Address Test........ccoecuivvverierienienieeie e 585
14.YY.1.2.4 Hub Connector Ignores Malformed Hub URIS Testcceocvevivevierierienieireieeeene 585
14.YY.1.2.5 Connect-Request Response Wait Time Test........ccoeeverveerienieneenieeiesierieeeeieeeens 586
14.YY.1.2.6 HTTP 1.1 Fallback TeSt....c..coeruireririiieienienieniesieeieecctetetesie et s 586
14.YY.1.2.7 Rejection of Invalid Certificate Outgoing Connection Test..........ccccevveveveieeeeennnns 587
14.YY.1.2.8 No Additional Certificate Checks Performed Test On Outgoing Connections....... 587
14.YY.1.2.9 Invalid WebSocket Data TeStccveruieiieiiieiieiesiiesieeie e 588
14.YY.1.3 Basic Node Configuration TESESccceeeeieriireriiieieeieiieiee e 588
14.YY.1.3.1 Configuration Via PEM TStcccccoviiiiiiiiiiiiiiieeiesteiee e 588
14.YY.1.3.2 Configuration Tool Accepts Arbitrary Valid Certificate Parameters Test.............. 589
14.YY.1.3.3 Factory Defaults TeSt.......cccvevieriiiiieieriieiieieeteete st esie et eae et sreesseebe e esaesnnens 589

TAY Y. 2 HUD TS ..ttt ettt ettt b ettt et be bbbt eat et e e beste b e 589
14.YY.2.1 HUD POSIEIVE TESES ..c.veueiuieniiieiiitiiteeieeetetee sttt ettt sttt s 591
14.YY.2.1.1 Local Broadcast Initiation TeSt........ccceeruereririnirieiieiiienienienesceeee e 591
14.YY.2.1.2 Local Broadcast EXecution Test..........cccueoueririninineriiieienienesiesieeceteeeenie e 591
14.YY.2.1.3 Minimum NPDU Forwarding Size Testccecvrvverierienierieeie e 592
14.YY .2.1.4 Failover Hub Connects to Primary Hub Test..........cccoooeeiiiiiiiiiinieieeeeeeee 592
14.YY .2.1.5 Failover Hub's Local Node Connects to Failover Hub Test...........ccccceeviriininnnens 593
14.YY.2.1.6 Failover Hub Split HOTizon Test.........ccceeiieiieiieieiierieeeee e 594
14.YY.2.1.7 Hub Forwards Unicast BVLCS TeStcccceeiuiiiiiriiiiiiienieeecee e 597
14.YY.2.1.8 No Additional Certificate Checks Performed Test On Incoming Connections.......597
14.YY.2.1.9 Duplicate Connection TeSt........cceecverierrieriieiiieiieiesieseesieeaessaeseesseesseesseessesssesseens 598
14.YY .2.1.10 Heartbeat-Request EXecution Test........cccoecvieviriirienieniieie e eve e 600
T4.YY . 2.2 HUD NEGAtIVE TESS....eeiuiiitieriieiieiieie ettt et ere et et e steesaeessesaessaesaeessaeseesseensesssenseens 600
14.YY.2.2.1 Hub Discards BVLCs with Non-connected VMAC Test.......cccooevereereneenienennenne. 600

© 2022 by BACnet International. All rights reserved. XViil

BACnet Testing Laboratories - Specified Tests

14.YY.2.2.2 Connect-Request Wait Time TeSt........cceevieriieriieiienieniesiieeeie e 601
14.YY.2.2.3 VMAC Collision Detection Test.........ccceerieiuieiirierieniieieeie e siee et 601
14.YY .2.2.4 Rejection of Invalid Certificate Incoming Connection Test..........c.ccevvevvecerenennnns 603
14.YY .3 Dir€ct CONNECT TESS ...uvieuiieuieeiieitieitteie ettt etee st ettt st te st e bt e teeeeeseeeneesseesteeneeenseenneeneens 603
14.YY.3.1 Direction Connect Basic TeStS.......cooiruiriirierieiieieeieetieste et 603
14.YY.3.1.1 Direction Connect Basic Positive Testsccceruerieriiriiniiiieiiencenceiceieeeeeeene 603
14.YY.3.1.2 Direction Connect Basic Negative Tests........ccccevuerieriiniineiieiienieneeieeieeienieens 606
14.YY.3.2 Accepting Direct CONNECt TESLSccueevirierieriieiieiiereeiestesteesieesteeeeseeesseesseeseesseessens 607
14.YY.3.2.1 Accepting Direct Connect POSItive TeStS........ccevvveriereeriieriiiieeiesiesieereeveeeveeenens 607
14.YY.3.2.2 Accepting Direct Connect Negative TeStScceevvervierierieerieiieeiesiesieereeve e 608
14.YY.3.3 Initiating Direct Connect TESSccevieriereieriieiieieeieeteieesieesee et e eneeensesnaesenens 614
14.YY.3.3.1 Initiating Direct Connect Positive TEstsceceeveeierieneneninenieieeienesese e 614

14.YY.3.3.2 Initiating Direct Connect Negatives Tests

© 2022 by BACnet International. All rights reserved. XiX

BACnet Testing Laboratories - Specified Tests

1. PURPOSE

This document contains tests defined by the BTL that are not included in ANSI/ASHRAE Standard 135.1-2019 or are
modified versions of tests in 135.1. These tests are used by the BTL testing process and are referenced by the BTL Test Plan
document.

Most of the tests defined in this document will be submitted to SSPC 135. Those that are submitted will be removed from
future versions of this document as they are accepted/rejected by the SSPC 135 and 135.1 is updated.

Some of the tests are interim tests defined by the BTL because the test tools are not adequate for testing the particular
functionality. These tests will be removed once the tests in SSPC 135.1 can be implemented by the BTL. Examples of such
tests are the MS/TP tests.

For those tests that will be submitted to the SSPC 135, the test numbering is based on the numbers that the test would have if
they were included in 135.1.

© 2022 by BACnet International. All rights reserved. 20

BACnet Testing Laboratories - Specified Tests

2. Interim Data Link Layer Tests
2.2 MS/TP Data Link Layer Tests

2.2.18 Verify Tno_token w/ Serial Analyzer

Reason for Change: No test exists for this functionality.
Purpose: Verify that the IUT waits at least 500 before declaration of loss of token and start behaving as sole master

Test Concept: A network of two reference masters and IUT is constructed and all are turned on Once the network achieves
normal network operation, make one reference master (A) to send a Confirmed Request (Read Property or Read Property
Multiple) to the other reference master (B). B is powered off or removed from the network before sending the reply. The
network is monitored to verify that the IUT (C) does not take token in hand within 500 milliseconds.

Setup: The test starts with an MS/TP network comprised of two reference master devices and IUT that has achieved normal
network operation. Normal network operation should be verified using a serial analyzer. If the IUT does not autobaud,
then it shall be configured with the same baud rate of the operating network. The IUT shall be configured with a valid
MAC address (0-127) which is not in use by any of the other devices on the network and is less than the Max Master
value in use by the reference masters. The IUT shall be configured with the same Max_Master in use by the reference
masters.

Test Steps:

1. VERIFY two reference masters (A & B) and IUT (C)I achieved normal network operation
MAKE one reference master device (A) to send Confirmed request, either Read Property or Read Property Multiple to
other reference master device (B).

3. Power Off or remove the reference Master B from the network before sending the reply.

4. CHECK (verify with the serial analyzer that [UT does not take token in hand and start passing Poll For Master or pass
token within 500 millisecond)

5. Ifthe IUT does exhibit the behavior described in step4, fail the IUT.

2.2.X1 Data Not For Us Test
Reason for Change: Addendum 135-2008z.3 Modify MS/TP State Machine to Ignore Data Not For Us.

Purpose: Verify that the [UT properly skips the complete data portion of frames not intended for the IUT.

Test Concept: Send a BACnet Data Not Expecting Reply frame that contains the frame pre-amble octet sequence to an
address other that the IUT. Follow it immediately with a ReadProperty request for the IUT’s device object to ensure that the
IUT will correctly receive and process the ReadProperty request.

Test Steps:

1. TRANSMIT
Frame Type = BACnet Data Not Expecting Reply
Destination Address = (any Unicast address other than [UT),
Length =7,
Data = (55 FF 05 FF 00 01 F5)
2. TRANSMIT ReadProperty-Request
'Object Identifier' = (device, 4194303),
'Property Identifier' = Object Name
3. RECEIVE ReadProperty-Response
'Object Identifier' = (device, IUT),
'Property Identifier' = Object Name,

© 2022 by BACnet International. All rights reserved. 2 1

BACnet Testing Laboratories - Specified Tests

'Value' = (any valid value)

2.3 ARCNET (twisted pair bus) Data Link Layer Tests

The ARCNET twisted pair bus is an alternate configuration of the standard ARCNET coax, and therefore, requires a different
setup of electronics and chipset configuration. These tests verify that the setup and configuration has been followed in order
to provide interoperability.

Since the TD is installed on the non-ARCNET side of a reference router, these tests do not cover strict conformance to the
ARCNET data link layer. The methodology is to install the IUT on an ARCNET network containing reference devices that
are known to conform to BACnet clause 8 using the twisted pair bus option and verify that the TD can exchange data with
the IUT. An oscilloscope will also be employed on the ARCNET network to verify that the [UT meets the duty cycle and
biasing requirements of the alternate ARCNET data link layer, as these items are critical to interoperability of ARCNET
twisted pair bus. An ARCNET packet sniffer is useful, but not required.

These tests require the use of a reference ARCNET twisted pair bus router and a reference ARCNET twisted pair bus device.
These devices will be selected from a pool of qualified devices that are to be submitted by members of the BMA. The tester
is free to select any of the qualified references devices to use during the test, and the identity of the reference devices will not
be published. The criteria for qualifying the reference devices is virtually identical to the test plans referenced here, with the
addition of a few tests for proper formation of the NPCI by the reference router.

General Test Setup:

Install a reference ARCNET twisted pair bus router at ARCNET node address <A>.
Install a reference ARCNET twisted pair bus device at node address <C>.
Install the IUT at node address .

D

——

Reference I
Router

Node Address <A>

ARCNET twisted pair bus

uT Reference
Device
Node Address Node Address <C>

The ARCNET node addresses are not critical, but must be unique and not zero.

Recommended Test Tools:

ARCNET packet sniffer = Any ARCNET packet sniffer that meets the following requirements:

1. Each packet is time stamped with 1msec accuracy.

2. The packet sniffer can support the baud rates being tested.

3. Captured data can be saved and reloaded, including the time stamp information.

4. The packet sniffer is currently available for purchase.

Other desirable traits:

5. A BACnet aware packet sniffer to allow ARCNET packets to be decoded, either online or offline.

6. Export a captured session to a text file, including time stamp information. (This would provide the ability for advanced
analysis of the data, such as scanning the data for timing anomalies).

© 2022 by BACnet International. All rights reserved. 22

BACnet Testing Laboratories - Specified Tests

Oscilloscope = Agilent 54620 series or similar. This scope has a 2MB sample memory, which is useful for capturing data
for an extended time and then zooming in on the details after the capture is complete. It can also "layer" the samples using
32 levels of display intensity, which makes it easier to spot timing anomalies.

2.3.1 Verify the Failsafe Biasing with an Oscilloscope
Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: Verify that failsafe biasing (see ARCNET specification 11.4.2, Fail-safe Bias) is at least 200mV. A maximum
value is not specified, but the biasing should be such as to not excessively load the EIA-485 transceivers.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1. Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

Va-Vb / 0 Volts

Fail-Safe Bias
2. With an oscilloscope probe connected across the bus with the correct polarity, measure the Fail-Safe Bias.

3. Fail the IUT if the Fail-Safe Bias is not at least 200mV.

2.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope
Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: The ARCNET chipset has the option of supporting either coax (normal) or twisted pair (differential driver).
The differential driver mode utilizes a 50% duty cycle, while the normal method uses a 25% duty cycle for the bits on the
wire. Verify that the duty cycle is 50% for ARCNET twisted pair bus.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1. Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2. With an oscilloscope probe connected across the bus with the correct polarity, measure the bit signal duty cycle (pulse
width divided by the interpulse period).

—| Pulse Width |¢——

Va-Vb 0 Volts

<«—— Interpulse Period —p|

© 2022 by BACnet International. All rights reserved. 23

BACnet Testing Laboratories - Specified Tests

3. Fail the IUT if the duty cycle is not 50% (with allowance for acceptable jitter).

© 2022 by BACnet International. All rights reserved. 24

BACnet Testing Laboratories - Specified Tests

3. DEFINITIONS

3.x Common language used in tests
Reason for Change: New section introduced.

'any valid value' - Any valid value refers to any value of the correct data type and within the vendor’s range specified for
the property this is applied to.

'any appropriate password' - Any password that meets the Configuration Requirements specified in the test or test section.
Passwords when required by the vendor are required to be no more than 20 characters.

'reset’ - Some tests require to reset the IUT. Reset includes power cycle via switch, power cycle via loss of power and
reinitializeDevice WARMSTART. As defined by the BACnet standard, "WARMSTART shall mean to reboot the device and
start over, retaining all data and programs that would normally be retained during a brief power outage."

4. ELECTRONIC PICS FILE FORMAT
4.5 Sections of the EPICS File

4.5.9 Timers
Reason for Change: Added new fail timers: Channel Write, Auto Negotiation and Activate Changes.

This section defines timer values that are used to determine when a test has failed because an appropriate response has not
been observed by the TD. A Real value in seconds must be provided for each timer. See 6.3.

Fail Times: ./

{«

Notification Fail Time: Q.

Internal Processing Fail Time: Q.
Minimum ON/OFF Time: Q.

Schedule Evaluation Fail Time: Q.
External Command Fail Time: Q.

Program Object State Change Fail Time: Q.
Acknowledgement Fail Time: U

Slave Proxy Confirm Interval: Q.
Unconfirmed Response Fail Time: Q.
Channel Write Fail Time: ./

Auto Negotiation Fail Time: Lt

Activate Changes Fail Time: {1/

Foreign Device Registration Fail Time: {1/
j

5. EPICS CONSISTENCY TESTS
Reason for Change: Improved the language in this set of tests to clarify the exact requirement of the test.

These tests are static tests of the EPICS and do not involve interrogating the IUT. There are no Configuration Requirements
or Test Step sections with TCSL in these tests because the tests are static tests of the EPICS and not tests of the IUT itself.
Each implementation shall be tested to ensure consistency among interrelated data elements

These tests shall include:

© 2022 by BACnet International. All rights reserved. 25

BACnet Testing Laboratories - Specified Tests

(a) All object types required by the specified BIBBs shall be indicated as supported in the Standard Object Types Supported
section of the EPICS.

(b) A minimum of one instance of each object type required by the specified BIBBs shall be included in the test database.

(c) The Protocol Object Types Supported property of the Device object in the test database shall indicate support for each
object type required by the supported BIBBs.

(d) All application services required by the supported BIBBs shall be indicated as supported in the BACnet Standard
Application Services Supported section of the EPICS with Initiate and Execute indicated as required by the supported BIBBs.

(e) The Protocol Services_Supported property of the Device object in the test database shall indicate support for each
application service for which the supported BIBBs requires support for execution of the service.

(f) The object types listed in the Standard Object Types Supported section of the EPICS shall have a one-to-one
correspondence with object types listed in the Protocol Object Types Supported property of the Device object contained
in the test database.

(g) For each object type listed in the Standard Object Types Supported* section of the EPICS there shall be at least one
object of that type in the test database. It is permissible for there to be no instance of the File object type if File objects are
dynamically creatable and come into existence only temporarily during Backup and restore.

*4n object type is supported if it can be made to exist in the IUT’s database.

(h) There shall be a one-to-one correspondence between the objects listed in the Object List property of the Device object
and the objects included in the test database. The Object List property and the test database shall both include all proprietary
objects. Properties of proprietary objects that are not required by BACnet Clause 23.4.3 need not be included in the test
database.

(1) For each object included in the test database, all required properties for that object as defined in Clause 12 of BACnet
shall be present. Standard properties which are not defined for the implemented Protocol Revision shall not be present. In
addition, if any of the properties supported for an object require the conditional presence of other properties, their presence
shall be verified.

(j) For each property that is required to be writable, or conditionality writable, that property shall be marked as writable, or
conditionality writable, in the EPICS.

(k) The length of the Protocol Services Supported bitstring shall have the number of bits defined for
BAChnetProtocolServicesSupported for the IUT's declared protocol revision.

(I) The length of the Protocol Object Types Supported bitstring shall have the number of bits defined for
BACnetObjectTypesSupported for the IUT's declared protocol revision

(m) For each object included in the test database, any properties that are deprecated or removed shall not appear after the
Protocol Revision in which the property was deprecated or removed.

(n) If the Protocol Revision property is present in the Device object and its value is greater than or equal to 14, the
Property List property of each object included in the test database shall have one entry for each property present including
non-standard properties with the exception of Object Type, Object Identifier, Object Name and Property List

(o) If the Segmentation Supported property in the Device object is SEGMENTED BOTH or SEGMENTED RECEIVE,
then the value of the Max_Segments Accepted property of the Device object shall be greater than 1.

(p) For each property that is required to be read-only, that property shall not be marked as writable, or conditionality
writable, in the EPICS.

© 2022 by BACnet International. All rights reserved. 26

BACnet Testing Laboratories - Specified Tests

6. CONVENTIONS FOR SPECIFYING BACnet CONFORMANCE TESTS
6.2 TCSL Statements

6.2.14 Assignment Statement

The assignment statement is used to set the value of a TCSL variable
<assignment statement> ::= <variable> '="'(' <value description> ")’

The <value description> is a simple English phrase describing the content that is to be placed into the variable. It may
reference other variables already in use by the test. For example:

READ X =01, Present_Value
READ Y = 02, Present_Value
MAX = (the larger of X and Y)

6.3 Time Dependencies

6.3.2 Internal Processing Fail Time

The Internal Processing Fail Time is the elapsed time, in seconds, between the receipt of a write to a BACnet property or
some other event that changes the value of the property and when a test is considered to have failed because the property
value has not been updated.

The Internal Processing Fail Time contained in the EPICS is the maximum value for all situations. In order to reduce test
time, it is acceptable that a shorter Internal Processing Fail Time value be used on a per test basis where the shorter time
will not negatively impact the test result.

6.3.X1 Channel Write Fail Time

The Channel Write Fail Time is the elapsed time, in seconds, between a change to the Present Value of a Channel object and
when a test is considered to have failed because the first write operation associated with the newly written value state has not
been performed. If the Channel object has multiple target properties to write to, the time to write all of them would be less
than or equal to the number of target properties times this value.

6.3.X2 Auto Negotiation Fail Time

The Auto Negotiation Fail Time is the elapsed time, in seconds, between when auto negotiation is requested and when a
test is considered to have failed because the IUT has not completed auto negotiation of link speed.

6.3.X3 Activate Changes Fail Time

The Activate Changes Fail Time is the elapsed time, in seconds, that the IUT requires in order to complete activation of
changes in a Network Port object, including any required reset of the device and when a test is considered to have failed
because the IUT has not completed activation of the Network Port changes.

6.3.X Audit Notification Forwarder Fail Time

© 2022 by BACnet International. All rights reserved. 27

BACnet Testing Laboratories - Specified Tests

The Audit Notification Forwarder Fail Time is the elapsed time, in seconds, between when a forwarding audit log receives
an audit notification and when a test is considered to have failed because the expected audit notification message has not been
transmitted.

6.3.X4 Foreign Device Registration Fail Time

The Foreign Device Registration Fail Time is the elapsed time, in seconds, between when the device sends a Register-
Foreign-Device request and when the device considers the request to have failed due to having not received a BVLC-Result
for the registration request.

6.X6 Test Execution Considerations
There are some implicit test considerations which apply to all tests.

6.X6.1 Value Comparisons

Value comparisons, such as those in conditionals and statements (6.1.1 and 6.2) should always take into account the resolution
constraints of 4.4.2, such that if any value is written with a higher or finer granularity than the IUT supports, any and all
subsequent comparisons to that written value shall not result in the test step failing once the constraints have been applied to
the value from the testing device.

Any value from the IUT is compared to a value from the testing device, the comparison shall not fail as long as the values
are identical once the resolution constraints are applied to the external value. Devices may either truncate or round values
written/received at a finer resolution than they claim in 4.4.2. This should be consistent across all values of that datatype.

Floating point values may be stored in the IUT using a different precision than what the value is encoded with from the testing
device. Comparisons to these types of values should always consider that the IUT can round or truncate them, and that the
value may also lose precision when stored, although the IUT must always present the stored value using full precision on a
subsequent read.

Example: An IUT has a property with type REAL which has a resolution of 0.5. If a TD writes 0.75, it is acceptable for the
IUT to present, on a subsequent read, either 1.0 or 0.5 for the property value so long as it is consistent.

6.X6.2 Functional Expectations

Because devices may store information in truncated or rounded format due to internal limitations, they may not behave
exactly as all test cases prescribe. In these cases, it is acceptable for the IUT to present or act on information based on the
granularity supported by the IUT. For example, an IUT may be configured with a schedule which begins at 12:01:01, but
since the device only supports granularity of one minute, the scheduled behavior may begin at 12:01:00 or 12:02:00.

6.X6.3 Complex Datatypes

Since all complex datatypes can be broken down into one or more primitive datatypes, value comparisons and functional
expectations from the above sections shall apply to each of the components that comprise a complex datatype. When there
are relationships present within the fields of a complex datatype, the IUT shall continue to meet the functional expectations
between all fields of complex datatypes when applying any rounding or truncation.

7. OBJECT SUPPORT TESTS
7.1 Read Support for Properties in the Test Database

7.1.1 Read Support Test Procedure

Reason for Change: Updated the error codes allowed if prior to Protocol Revision 13. Added Explanatory Notes To Tester
for using with ReadPropertyMultiple. Moved line from Purpose to Test Concept. Added 'server' entry in Abort response.

© 2022 by BACnet International. All rights reserved. 28

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that all properties of all objects can be read using ReadProperty and ReadPropertyMultiple services.

Test Concept: The test is performed once using ReadProperty and once using ReadPropertyMultiple, if supported. When
verifying array properties, the whole array shall be read without using an ARRAY-INDEXarray index, where possible.

Test Steps:

1. REPEAT X = (all objects in the IUT's database) DO {
REPEAT Y = (all properties in object X) DO {
IF (Y = property indicated as not accessible via the ReadProperty Service) THEN
TRANSMIT ReadProperty-Request,
'Object Identifier' = X,
'"Property Identifier' =Y
IF (Protocol Revision >= /37) THEN
RECEIVE BACnet-Error PDU,
Error Class = PROPERTY,
Error Code = READ_ACCESS_DENIED
ELSE
RECEIVE BACnet-Error PDU,
Error Class = OBJECT | PROPERTY,
Error Code = (any of the error codes for an OBJECT or PROPERTY class)

| (BACnet-Error-PDILL
OYCHeETor 155
ErrorClace - OBIECT
oSS —9obitE o1
ErrorCode —=—0OTHER

e
P2 sav;anwavivi) ASE S = =2y I

| (BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = SERVICE_ REQUEST DENIED | OTHER)
ELSE IF (Y is an array and is too long to return given the IUT's
APDU and segmentation limitations) THEN
TRANSMIT ReadProperty-Request,
'Object Identifier' = X,
'"Property Identifier' =Y
RECEIVE BACnet-Abort-PDU,
'Server’ = TRUE,
'Abort Reason' = SEGMENTATION NOT SUPPORTED
| BUFFER_ OVERFLOW
TRANSMIT ReadProperty-Request,
'Object Identifier' = X,
'Property Identifier' =Y,
'Property Array Index' =0
RECEIVE ReadProperty-ACK,
'Object Identifier' = X,
'Propertyldentifier' = Y,
'Property Array Index' =0,
'"Property Value' = (N: the number of array elements in Y as indicated in the EPICS)
REPEAT Z =(1..N)) DO {
VERIFY (X), Y = (the value for element Z as indicated in the EPICS), ARRAY INDEX =Z
/
ELSE
VERIFY (X), Y = (the value for this property specified in the EPICS)

}

© 2022 by BACnet International. All rights reserved. 29

BACnet Testing Laboratories - Specified Tests

Notes to Tester: For cases where the EPICS indicates that the value of a property is unspecified using the "?" symbol, any
value that is of the correct datatype shall be considered to be a match. When using the ReadPropertyMultiple service, a
received ReadPropertyMultiple-ACK containing the specified Error Class and Error Code shall also be considered a Passing
result.

7.1.2 Non-documented Property Test

Reason for Change: Revised test to exclude special property identifiers. Add a test step to cover the range add from revision
20

Purpose: To verify that all properties contained in every object are documented in the EPICS.

Test Concept: For each object in the EPICS database, attempt to read each standard property that the EPICS does not
document as being part of the object.

Test Steps:

1. REPEAT X = (a tester selected set of objects) DO {
REPEAT Y = (0 through 511 except 8 (all), 80 (optional) and 105 (required)) DO {
IF (the property Y is not in the EPICS for object X) THEN

TRANSMIT ReadProperty-Request,
'Object Identifier' = X,
'Property Identifier' = Y

RECEIVE BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = UNKNOWN_PROPERTY

}

2. IF (Protocol Revision >= 20) THEN
REPEAT Y = (random selection of N property IDs between 4194304 and (2% - 1)) DO {
IF (the property Y is not in the EPICS for object X) THEN
TRANSMIT ReadProperty-Request,
Object Identifier' = X,
'"Property Identifier' = Y
RECEIVE BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = UNKNOWN _PROPERTY

Notes to Tester: The objects selected by the tester should include one instance of each supported object type. Where
some instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the
writability of a property, then one instance of each variant of that object type should be selected.

7.1.3 Verifying Property List against the EPICS

Reason for Change: Addendum 135-2010a0-5. Additionally, CR-0413 response directed to add a Note to Tester Mentioning
that element by element reading of the properties may be necessary.

Purpose: To verify the correct content of the Property List using the properties in each object as claimed in the EPICS.
Test Concept: Match the properties in each object as claimed in the EPICS, against the content of each object’s Property List.
Test Conditionality: If Protocol Revision is not present, or Protocol Revision < 14, then this test shall be skipped.

Test Steps:

© 2022 by BACnet International. All rights reserved. 30

BACnet Testing Laboratories - Specified Tests

1. READ OL = Object List
2. REPEAT O1 = (each object in the content of OL) DO {

READ PL =01, Property_List

CHECK (that the property identifiers in the EPICS for O1 and those in PL match, except as specified in Notes to
Tester)

H

Notes to Tester: Object Name (77), Object Type (79), Object _Identifier (75), and Property List (371) will appear in the
EPICS, but shall not appear in the Property List value. Any proprietary properties that are supported for the object-type shall
be in the Property List, but are not required to appear in the EPICS. The order in which property identifiers appear in the
EPICS, is not required to match the order that they appear in the Property List value. Ifthe whole BACnetARRAY cannot be
read because it exceeds the Maximum Transmissible APDU, then the tester shall read it element-by-element in order to obtain
the complete value.

7.2 Write Support for Properties in Test Database
7.2.1 Functional Range Requirements for Property Values

7.2.1.3 Octetstrings and Characterstrings
Reason for Change:. Addendum 135-2008k-1 Add Support for UTF-8.

Properties with an octetstring or characterstring datatype shall be tested with a string of the minimum supported length, a
string with the maximum supported length, and a string with some length between the two. The vendor shall provide the
values of the minimum and maximum string lengths in the EPICS. For string properties that do not have a fixed maximum
length, the vendor shall provide a maximum length that is acceptable under normal operating conditions for use in these
tests.

In such cases, no statement is made as to whether or not a longer string value would or would not be accepted by the
property.See Clause 4.4.2.

When testing character string properties in a device that supports UTF-8 (Protocol Revision >= 10), at least one of the data
values shall contain multi-byte characters.

7.2.2 Write Support Test Procedure

Reason for Change: 'Notes to Tester' is missing from the version in 135.1-2013. Added in special handling for properties in
the Network Port object. Moved content from the Purpose into Test Conpcet as appropriate.

Purpose: To verify that all writable propertles of all obJects can be written to usmg BACnet erteProperty and
Wr1tePropertyMuht1ple serv1ces he-te REC—HSHL 4 § 5 £ -

Test Concept: Each writable property property is written multiple times verifying the writable range. After each write, the
value is verified to have been updated in the property. The test is performed once using WriteProperty and once using
WritePropertyMultiple. When writing to array properties, the whole array shall be written without using an array index,
where possible.

Notes to Tester: An internal process may set the Present Value of some properties back to the default value after a successful
write, as in the case of a momentary pushbutton, or the Record Count property. For properties that exhibit this type of
behavior, skip the VERIFY step.

Notes to Tester: When a property is currently not writable, the IUT shall return an Error-PDU with 'Error Class' =
PROPERTY and 'Error Code' = WRITE _ACCESS DENIED.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

© 2022 by BACnet International. All rights reserved. 3 1

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. REPEAT X = (all objects in the IUT's database, except Network Port objects) DO {
REPEAT Y = (all writable properties in object X) DO {
REPEAT Z = (all values meeting the functional range requirements of 7.2.1, and any additional
restrictions placed on the allowable property values by the vendor) DO {
WRITE (X), Y =Z,
VERIFY (X),Y=2Z
H

7.2.3 Read-only Property Test

Reason for Change: This test is based on 135.1-2013 and corrects the use of the READ statement. Added 'Configuration
Requirements'.

Purpose: To verify that properties marked as read-only in the EPICS are in fact read-only.

Test Concept: To each read-only (not writable and not conditionally writable) property in the EPICS, write the value of the
property as read from the device and verify that an error is returned. Write another value that is within the acceptable range
for the datatype and verify that an error is returned. If the property is a list and the IUT supports AddListElement, attempt to
modify the property with AddListElement and verify that an error is returned. H-the FHF-deesnotsupport-the- WriteProperty
service-then-this-test shall-be-skipped-

B

Configuration Requirements. If the IUT does not support the WriteProperty service, then this test shall be skipped.

Notes to Tester: The objects selected by the tester should include one instance of each supported object type. Where some
instances of an object type differ in the set of supported properties, the allowable value ranges for a property, or the writability
of a property, then one instance of each variant of that object type should be selected.

Notes to Tester: When modifying a property, it is expected that an error class of PROPERTY with an error code of
WRITE ACCESS DENIED will be returned, but the IUT may instead return an error class of PROPERTY with an
error code of VALUE OUT OF RANGE, or an error class of RESOURCES with an error code of
NO_SPACE TO WRITE PROPERTY.

Test Steps:

1. REPEAT X = (a tester selected set of objects) DO {
REPEAT Y = (all read-only properties in object X) DO {
IF (the property is not an array) THEN

DDAn’7—\(

READ Z = (X), property Y
TRANSMIT WriteProperty-Request,
'Object Identifier' = X,
'Property Identifier' = Y,
'Property Value' = zZ
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE_ACCESS _DENIED

TRANSMIT WriteProperty-Request,

'Object Identifier' = X,
'Property Identifier' = Y,
'Property Value' = (any value meeting the range requirements of 7.2.1 except Z)

RECEIVE BAChnet-Error-PDU,

© 2022 by BACnet International. All rights reserved. 32

BACnet Testing Laboratories - Specified Tests

Error Class = PROPERTY,
Error Code = WRITE_ACCESS_DENIED

IF (the IUT supports AddListElement and the property is a list) THEN
TRANSMIT AddListElement-Request,
'Object Identifier' = X,
'Property Identifier' = Y,
'List of Elements' = (any elements value meeting the range requirements of 7.2.1 excluding
those in Z)
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE_ACCESS DENIED
ELSE
——— READEEN=X,AsrayIndex=0
READ LEN = (X), Y, ARRAY INDEX =0
IF (LEN > 0) THEN
——— READZ =X Array Ilndex—1
READ Z = (X), Y, ARRAY INDEX=1
TRANSMIT WriteProperty-Request,
'Object Identifier' =
'Property Identifier' =
'Property Value' =
'Property Array Index' =
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE ACCESS DENIED

=X

=N

TRANSMIT WriteProperty-Request,

'Object Identifier' = X,
'Property Identifier' = Y,
'Property Value' = (any value meeting the range requirements of 7.2.1 except Z)

'Property Array Index'= 1
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE _ACCESS DENIED

IF (the IUT supports AddListElement and the property is an array of lists) THEN
TRANSMIT AddListElement-Request,
'Object Identifier' = X,
'Property Identifier' = Y,
'"Property Array Index'= 1
'List of Elements' = (any elements value meeting the range requirements of 7.2.1 excluding
those in Z)
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE _ACCESS _DENIED
ELSE
TRANSMIT WriteProperty-Request,
'Object Identifier' = X,
'Property Identifier' = Y,
'"Property Value' = (any value meeting the range requirements of 7.2.1)
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE _ACCESS DENIED

© 2022 by BACnet International. All rights reserved. 33

BACnet Testing Laboratories - Specified Tests

7.2.X1 Date Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.
Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in
dates and times. Test does not exist in 135.1-2013. Allow for non-configurable Date List properties.

Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property
accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. The value,
written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a
complex datatype, the other fields in the value shall be set within the range accepted by the IUT. The list of Specials comes
from the Chapter 21 Application Types section on Date. The day-of-week field is redundant information and can be
regenerated from the other fields. In order to not fail devices which always ensure this field is consistent with the other fields
in the date value, the use of an unspecified day of week is always tested in conjunction with another pattern value.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date List with a single
BACnetCalendarEntry in the form of a Date. If Date List property cannot be configured with a BACnetCalendarEntry in the
form of a Date, then this test shall be skipped.

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.
Test Steps:

1. IF (Protocol Revision is not present or Protocol Revision <4) THEN
Specials = (year unspecified, month unspecified, day of month unspecified)
ELSE IF (Protocol Revision >= 4 and Protocol Revision < 10) THEN
Specials = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day
of month)
ELSE
Specials = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day
of month, even days, odd days)
2. REPEAT SV = (each value in Specials) DO {
IF (SV <> day of week unspecified) THEN
V1 =D1 updated with the value SV
ELSE
V1 = DI updated with the value SV and any other value from Specials
WRITE P1 = (V1)
VERIFY P1 = (V1)

7.2.X2 Time Pattern Properties Test

Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when
wildcards are allowed in dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special time field values.
Test Concept: The property being test, P1, is written with each of the special time field values to ensure that the property
accepts them. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value,

written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a
complex datatype the other fields in the value shall be set within the range accepted by the IUT.

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

© 2022 by BACnet International. All rights reserved. 34

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {
WRITE P1 = (T1 updated with the value SV)
VERIFY P1 = (T1 updated with the value SV)

7.2.X3 DateTime Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.
Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in
dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special date and time field values.

Test Concept: The property being tested, P1, is written with each of the special date and time field values to ensure that the
property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. A time,
T1, is selected which is within the time range that the [UT will accept for the property. The value, written to the property is
the date D1 and time T1 with one of its fields replaced with one of the date or time special values. If the property is a complex
datatype which contains the BACnetDateTime, the other fields in the value shall be set within the range accepted by the IUT.
The list of DateSpecials comes from the Chapter 21 Application Types section on Date and the list of TimeSpecials comes
from the Chapter 21 Application Types section on Time.

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

Test Steps:
1. IF (Protocol Revision is not present or Protocol Revision <4) THEN
DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified)
ELSE IF (Protocol Revision >= 4 and Protocol Revision < 10) THEN
DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified, odd
months, even months, last day of month)
ELSE
DateSpecials = (year unspecified, month unspecified, day of month unspecified, day of week unspecified, odd
months, even months, last day of month, even days, odd days)
2. TimeSpecials = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)
3. REPEAT SV = (each value in DateSpecials +TimeSpecials) DO {
WRITE P1 = (D1+T1 updated with the value SV)
VERIFY P1 = (D1+T1 updated with the value SV)

7.2.X4 Date Non-Pattern Properties Test
Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.

Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in
dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property
does not accept them. A date is selected which is within the date range that the IUT will accept for the property. The value,
V1, written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is
a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be
applied to devices claiming Protocol Revision 11 or higher.

© 2022 by BACnet International. All rights reserved. 35

BACnet Testing Laboratories - Specified Tests

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

Test Steps:
1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, day of week unspecified,
odd months, even months, last day of month, even days, odd days) DO {
TRANSMIT WriteProperty-Request
'Object Identifier' = Ol,
'Property Identifier' = P1,

'Property Value'= (V1 updated with the special value SV)
RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE

7.2.X5 Time Non-Pattern Properties Test

Reason for Change: Addendum 135-2008aeac-1 clarifies when wildcards are allowed in dates and times. Test does not exist
in 135.1-2013.

Purpose: To verify that the property being tested does not accept special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property
does not accept them. A time is selected which is within the time range that the IUT will accept for the property. The value,
V1, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is
a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be
applied to devices claiming Protocol Revision 11 or higher.

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

Test Steps:
1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)
TRANSMIT WriteProperty-Request
'Object Identifier' = Ol,
'"Property Identifier' = P1,

'"Property Value'= (V1 updated with the special value SV)
RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE

7.2.X6 DateTime Non-Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.
Addendum 135-20084-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in
dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, Py, is written with each of the special datetime field values to ensure that the property
does not accept them. A datetime DT; is selected which is within the range that the IUT will accept for the property. The
value, Vi, written to the property is the datetime DT, with one of its fields replaced with one of the date or time special values.

If the property is a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test
shall only be applied to devices claiming Protocol Revision 11 or higher.

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

Test Steps:

© 2022 by BACnet International. All rights reserved. 36

BACnet Testing Laboratories - Specified Tests

1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of
month, even days, odd days, hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {
TRANSMIT WriteProperty-Request
'Object Identifier' = Oy,
'Property Identifier' = P,

'"Property Value'= (DT, updated with the special value SV)
RECEIVE BAChnet-Error-PDU

'Error Class' = PROPERTY,

'Error Code' = VALUE OUT OF RANGE

7.2.X7 BACnetDateRange Non-Pattern Properties Test

Reason for Change: Addendum 135-2008ac-1 clarifies in the clause 12 preamble, when wildcards are allowed in
BAChnetDateRange. Allow for non-configurable Date List properties.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: A BACnetDateRange property, or property that is a complex datatype containing a BACnetDateRange, P, is
written with each of the special date field values to ensure that the property does not accept them. Each half of the dateRange
DR, is selected so it is within the range that the [UT will accept for the property. The value, Vi, written to the property is the
dateRange DR with one of its fields replaced with one of the date special values. If the property is a complex datatype such
as a BACnetCalenderEntry, the other fields in the value shall be set within the range accepted by the IUT.

Configuration Requirements: This test shall only be applied to devices claiming Protocol Revision 11 or higher. The IUT
shall be configured with a Calendar object that contains a Date List with a single BACnetCalendarEntry in the form of a
BACnetDateRange. If Date List property cannot be configured with a BACnetCalendarEntry in the form of a
BACnetDateRange, then this test shall be skipped.

Notes to Tester: if Py is an array, then an array index shall be provided in the TRANSMIT portion of step 1.
Test Steps:

1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified, odd months, even months, last day of
month, even days, odd days) DO {
TRANSMIT WriteProperty-Request
'Object Identifier' = Oy,
'Property Identifier' = Py,

'"Property Value'= (DR, with startDate updated with the special value SV)
RECEIVE BACnet-Error-PDU

'Error Class' = PROPERTY,

'Error Code' = VALUE OUT OF RANGE

TRANSMIT WriteProperty-Request
'Object Identifier' = Ol,
'Property Identifier' = P1,

'Property Value'= (DRI with endDate updated with the special value SV)
Receive BACnet-Error-PDU

'Error Class' = PROPERTY,

'Error Code' = VALUE OUT OF RANGE

7.2.X8 BACnetDateRange Open-Ended Pattern Properties Test

Reason for Change: Addendum 135-2008ac-1 clarifies in the clause 12 preamble, when wildcards are allowed in
BAChnetDateRange. Allow for non-configurable Date List properties.

© 2022 by BACnet International. All rights reserved. 37

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that the property being tested accepts a fully unspecified date in either or both halves of the value.

Test Concept: A BACnetDateRange property, or property that has a complex datatype containing a BACnetDateRange, P; is
written with a fully unspecified date in either or both halves to ensure that the property accepts them. DR; is selected which
is within the date range that the IUT will accept for the property. The value, written to the property is the dateRange DR,
replaced with a fully unspecified date in either or both startDate and endDate. If the property is a complex datatype the other
fields in the value shall be set within the range accepted by the IUT.

Configuration Requirements: This test shall only be applied to devices claiming Protocol Revision 11 or higher. The IUT
shall be configured with a Calendar object that contains a Date List with a single BACnetCalendarEntry in the form of a
BACnetDateRange.If Date List property cannot be configured with a BACnetCalendarEntry in the form of a
BACnetDateRange, then this test shall be skipped.

Notes to Tester: if P; is an array, then an array index shall be provided in the WRITEs and VERIFYs.

Test Steps:

1. WRITE P, = (DR, updated with a fully unspecified date in startDate)

2. VERIFY P, = (the value written)

3. WRITE P, = (DR, updated with a fully unspecified date in endDate)

4. VERIFY P, = (the value written)

5. WRITE P, = (DR, updated with a fully unspecified date in both startDate and endDate)
6. VERIFY P, = (the value written)

7.3 Object Functionality Tests

7.3.1 Property Tests

7.3.1.1 Out_Of_Service, Status_Flags, and Reliability Tests

[Make section 7.3.1.1 with name shown above. Then renumber test 7.3.1.1 to 7.3.1.1.X1 and rename to use singular Test vs
Tests]

7.3.1.1.X1 Out_Of_Service, Status_Flags, and Reliability Test

Purpose: Fhis-test-ease-verifies-that- To verify that Present Value is writable when Out_Of Service is TRUE and—Jt-alse that
the 1nterrelat10nsh1p between the Out Of Serv1ce Status Flags and Rehablhty propertles —H‘—th%H@S—de;eates—that—the

Test Concept:

preperty—isnot-supported-then—step4shall-be-emitted-Tlic vu lue of the Out Of Servzce property is set to TRUE and the

© 2022 by BACnet International. All rights reserved. 3 8

BACnet Testing Laboratories - Specified Tests

Present Value property is tested to be writable. The value of the Status_Flags property is validated and, if present, the value
of the Reliability property is also validated. The value of the Status Flags property, SF1, and, if present, the Reliability
property, R1, are checked to ensure they return to there initial values when the value of the Out_Of Service property is set
to FALSE.

Configuration Requirements: If the selected object is commandable, the values of the entries in the Priority_Array above the
selected priority, PTY1, shall be NULL.

Test Steps:

1. READ SF1 = Status_Flags

2. READ RI = Reliability

3+, IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = TRUE

ELSE

MAKE (Out_Of Service TRUE)

42. VERIFY Out Of Service = TRUE

53. VERIFY Status_Flags = (?, EAESE?, ?, TRUE)

64. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
WRITE Present Value, PTYI =X
VERIFY Present Value = X

75. IF (Reliability is present and writable) THEN
REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
NO FAULT DETECTED) DO {
WRITE Reliability = X
VERIFY Reliability = X
VERIFY Status Flags = (?, TRUE, ?, TRUE)
WRITE Reliability = NO_FAULT DETECTED
VERIFY Reliability =NO FAULT DETECTED
VERIFY Status_Flags = (?, FALSE, ?, TRUE)

}

86. IF (Out_Of Service is writable) THEN

WRITE Out_Of Service = FALSE

ELSE

MAKE (Out_Of Service FALSE)
97. VERIFY Out_Of Service = FALSE
108.VERIFY Status_Flags = (22 FALSE)SF]
11. VERIFY Reliability = R1

7.3.1.1.X2 Out_Of Service for Commandable Value Objects Test

Purpose: To verify that Present Value is no longer updated by software local to the IUT when Out_Of Service is TRUE.
Test Concept: Select an object who’s Present Value is being modified by software local to the IUT at Priority PTY1. The
value of the Out_Of Service property is set to TRUE, the Present Value property is written at PTY1 and the Present value

is checked to ensure the Present-Value is no longer being modified by software local to the IUT.

Configuration Requirements: The values of the entries in the Priority Array above PTY1 shall be NULL.

© 2022 by BACnet International. All rights reserved. 39

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. MAKE (Present Value = PV1, any valid value, using software local to the IUT)
2. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = TRUE
ELSE
MAKE (Out_Of Service TRUE)
VERIFY Present Value =PV1
WRITE Present Value, PTY1 =PV2, any valid value other than PV1
MAKE (Present Value = PV3, any valid value other than PV2, using software local to the IUT)
VERIFY Present Value =PV2

Sk w

7.3.1.1.X3 Out_Of _Service, Status_Flags, and Reliability Test for Objects without Present_Value

Reason for Change: There is no test for this functionality.

Purpose: This test verifies the interrelationship between the Out Of Service, Status Flags, and Reliability properties. If the
PICS indicates that the Out Of Service property of the object under test is not writable, and if the value of the property
cannot be changed by other means, then this test shall be omitted. This test applies to objects that do not contain
Present_Value.

Test Concept: Write to and verify the interrelationship between the Out_Of Service, Status_Flags, and Reliability properties
of an object which does not contain Present Value.

Configuration Requirements: The selected object is configured such that its Reliability is NO_FAULT DETECTED before
execution of this test.

Notes to Tester: When applying this test to a Network Port object in a non-routing device, once the Network Port object is
out of service, the only remaining part of the test that can be executed is the verification that no BACnet communications
occur through that network port. The rest of the test shall be skipped.

Test Steps:

1. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = TRUE
ELSE
MAKE (Out_Of Service = TRUE)
2. VERIFY Out_Of Service = TRUE
VERIFY Status_Flags = (?, FALSE, ?, TRUE)
4. IF (Reliability is present and writable) THEN
REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
NO FAULT DETECTED) DO {
WRITE Reliability = X
VERIFY Reliability = X
VERIFY Status_Flags =(?, TRUE, ?, TRUE)
WRITE Reliability = NO_FAULT DETECTED
VERIFY Reliability =NO FAULT DETECTED
VERIFY Status Flags = (?, FALSE, ?, TRUE)

W

}

5. CHECK (funtionality that should stop or be disabled is. For example, with a Network Port object, all communication
of the protocol modeled by the object, through that port is disabled)
6. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE
ELSE

© 2022 by BACnet International. All rights reserved. 40

BACnet Testing Laboratories - Specified Tests

MAKE (Out_Of Service = FALSE)
7. VERIFY Out_Of Service =FALSE
8. VERIFY Status Flags=(?, ?, ?, FALSE)

7.3.1.6 Minimum On/Off Time Tests
[Create section 7.3.1.6 and renumber test 7.3.1.6 to 7.3.1.6.1]

7.3.1.6.1 Override of Minimum Time

Reason for Change: The test was re-written to remove the dependence on the presence of the Minimum_Off Time property.
This test was renumbered from 7.3.1.6 to 7.3.1.6.1.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.19.
BAChnet Reference Clause: 19.

Purpose: To verify that higher priority commands override minimum on or off times. If neither minimum on time or minimum
off time is supported this test shall be omitted. This test applies to Binary Output and commandable Binary Value objects.

Test Concept: The initial Present Value of the object tested is set to INACTIVE and it is controlled at a priority numerically
greater (lower priority) than 6. The object has been in this state long enough for any minimum off and/or minimum on time
to have expired. The Present Value is written to with a value of ACTIVE at priority 7. The value of slot 6 of the
Priority Array is monitored to verify that it contains the value ACTIVE. Before the minimum on time expires the
Present Value is written to with a value of INACTIVE and a priority numerically lower (higher priority) than 6. This
overrides the minimum on time and immediately initiates the minimum off time algorithm.

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority Array numerically
less than 7 have a value of NULL and no internal algorithms are issuing commands to this object at a priority numerically
lesser (higher priority) than the priority that is currently controlling Present Value. Minimum_On_Time must be configured
with a large enough value to allow execution of all test steps before it expires.

Test Steps:

1. WRITE Present Value = ACTIVE, PRIORITY =7

2. VERIFY Present Value = ACTIVE

3. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6
4. BEFORE Minimum_On_Time

WRITE Present Value = INACTIVE, PRIORITY = (any value numerically lower than 6 (higher priority))
5. VERIFY Present Value = INACTIVE

6—VERIEY PriorityAsray —INACTIVE. PRIORITY =6
6. VERIFY Priority_Array <> ACTIVE, ARRAY INDEX = 6

Notes to Tester: If minimum on time is not supported but minimum off time is supported, this test should be conducted by
using INACTIVE in steps 1, 2, 3 and 6 threugh—3 and ACTIVE in steps 4 threugh—76 and 5, and by using the
Minimum_Off Time in Step 4.

7.3.1.6.2 Minimum Off Time - Writing at priorities numerically greater than 6
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that commands written at a lower priority than 6 will not affect Present Value while Minimum_Off Time
is in effect.

© 2022 by BACnet International. All rights reserved. 4 1

BACnet Testing Laboratories - Specified Tests

Test Concept: The initial Present Value of the object tested is set to ACTIVE and it is controlled by the Relinquish Default
value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this state long enough for
any minimum on time to have expired. The Present Value of the object is set to INACTIVE at a priority P9. Before
Minimum_Off Time expires, Present Value is written with values of ACTIVE and NULL at Priorities P9 and P7, where P7
is a priority between P9 and 6. The Priority Array is monitored to verify that it contains the appropriate values and
Present Value is monitored to verify that it does not change before Minimum_Off Time expires.

Test Step(s) > St;‘;tstof 13 4-6 7-10 11-15 16
Present Value Active Inactive Inactive Inactive Inactive Active
PA Index =6 Null Inactive Inactive Inactive Inactive <>Inactive
PA Index =P7 Null Null Null Active Active Active
PA Index =P9 Null Inactive Null Null Active Active
Relinquish Default | Active Active Active Active Active Active
Note: Bold font indicates the End of
change invoked by write operation Minimum_Off Time Test

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority Array from P9 and
higher (numerically lesser) have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_Off Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

1. WRITE Present Value = INACTIVE, PRIORITY = P9

2. VERIFY Present Value = INACTIVE

3. VERIFY Priority_Array = INACTIVE, ARRAY INDEX =6
4. WRITE Present Value = NULL, PRIORITY = P9

5. VERIFY Present Value = INACTIVE

6. VERIFY Priority Array = INACTIVE, ARRAY INDEX = 6

--...(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY INDEX = 6 or PV)

7. WRITE Present Value = ACTIVE, PRIORITY = P7 (6 <P7 <P9)

8. VERIFY Present Value = INACTIVE

9. VERIFY Priority Array = ACTIVE, ARRAY INDEX = P7

10. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6

--...(Steps 7-10:Check that an ACTIVE value at P7 does not affect ARRAY INDEX = 6 or PV)
11. WRITE Present Value = ACTIVE, PRIORITY = P9

12. VERIFY Present Value = INACTIVE

13. VERIFY Priority Array = ACTIVE, ARRAY INDEX = P9

14. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6

--...(Steps 11-14:Check that an ACTIVE value at P9 does not affect ARRAY INDEX = 6 or PV)
15. WAIT (Minimum_Off Time + Internal Processing Fail Time)

16. VERIFY Present Value = ACTIVE

7.3.1.6.3 Minimum On Time - Writing at priorities numerically greater than 6

Reason for Change: This test is not specified in any SSPC proposal.

© 2022 by BACnet International. All rights reserved. 42

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that commands written at a lower priority than 6 will not affect Present Value while Minimum_On_Time
is in effect.

Test Concept: The initial Present Value of the object tested is set to INACTIVE and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this state long enough for
any minimum off time to have expired. The Present Value of the object tested is set to ACTIVE at a priority P9. Before
Minimum_On_Time expires, Present Value is written with values of ACTIVE and NULL at Priorities P9 and P7, where P7
is a priority between P9 and 6. The Priority Array is monitored to verify that it contains the appropriate values and
Present_Value is monitored to verify that it does not change before Minimum_On_Time expires.

Test Step(s) > St;‘;tstof 13 4-6 7-10 11-15 16
Present Value Inactive Active Active Active Active Inactive
PA Index =6 Null Active Active Active Active <>Active
PA Index =P7 Null Null Null Inactive Inactive Inactive
PA Index =P9 Null Active Null Null Inactive Inactive
Relinquish_Default | Inactive Inactive Inactive Inactive Inactive Inactive
Note: Bold font indicates the Y End of

change invoked by write operation . . Test
Minimum_On_Time

Configuration Requirements: The object to be tested shall be configured such that all slots from P9 and higher (numerically
lesser) in the Priority Array have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_On_Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

WRITE Present Value = ACTIVE, PRIORITY = P9

VERIFY Present Value = ACTIVE

VERIFY Priority Array = ACTIVE, ARRAY INDEX =6

WRITE Present Value = NULL, PRIORITY = P9

VERIFY Present Value = ACTIVE

VERIFY Priority Array = ACTIVE, ARRAY INDEX = 6

--...(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY INDEX = 6 or PV)

QA=

7. WRITE Present Value = INACTIVE, PRIORITY =P7 (6 <P7 <P9)
8. VERIFY Present Value = ACTIVE
9. VERIFY Priority Array = INACTIVE, ARRAY INDEX = P7

10. VERIFY Priority Array = ACTIVE, ARRAY INDEX = 6

--...(Steps 7-10:Check that an INACTIVE value at P7 does not affect ARRAY INDEX = 6 or PV)
11. WRITE Present Value = INACTIVE, PRIORITY = P9

12. VERIFY Present Value = ACTIVE

13. VERIFY Priority Array = INACTIVE, ARRAY INDEX = P9

14. VERIFY Priority_ Array = ACTIVE, ARRAY INDEX = 6

--...(Steps 11-14:Check that an INACTIVE value at P9 does not affect ARRAY INDEX = 6 or PV)
15. WAIT (Minimum_On_Time + Internal Processing Fail Time)

16. VERIFY Present Value = INACTIVE

© 2022 by BACnet International. All rights reserved. 43

BACnet Testing Laboratories - Specified Tests

7.3.1.6.4 Minimum Off Time - Writing at priorities numerically lesser than 6
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority
and minimum off time is in effect.

Test Concept: The initial Present Value of the object tested is set to ACTIVE and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than 6. The object has been in this state long enough for any
minimum on time to have expired. The Present Value of the object tested is set to INACTIVE at a priority P5 (PS5 < 6).
Before Minimum_Off Time expires, Present Value is written with values of NULL and ACTIVE and the Present Value
and Priority Array properties are observed for correct behavior.

Test Steps > Start of Test 1-3 4-7 8-11
Present Value Active Inactive Inactive Active
PA Index =P5 Null Inactive Null Active
PA Index=6 Null Inactive Inactive <>Inactive
Relinquish Default | Active Active Active Active

%

Note: Bold font indicates the Y
change invoked by write operation Minimim Off Time

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority Array higher
(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_Off Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present Value = INACTIVE, PRIORITY = P5

2. VERIFY Present Value = INACTIVE

3. VERIFY Priority_Array = INACTIVE, ARRAY INDEX =6
4. WRITE Present Value = NULL, PRIORITY = P5

5. VERIFY Present Value = INACTIVE

6. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
7. VERIFY Priority Array = NULL, ARRAY INDEX = P5

--...(Steps 4-7:Check that a NULL value at PS5 will NOT change ARRAY INDEX = 6 or PV)
8. WRITE Present Value = ACTIVE, PRIORITY = P5

9. VERIFY Present Value = ACTIVE

10. VERIFY Priority Array = ACTIVE, ARRAY INDEX =P5

11. VERIFY Priority Array <> INACTIVE, ARRAY INDEX =6

--...(Steps 8-11:Check that an ACTIVE value at P5 will change ARRAY INDEX = 6 and PV)

7.3.1.6.5 Minimum On Time - Writing at priorities numerically lesser than 6
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority
and minimum on time is in effect.

© 2022 by BACnet International. All rights reserved. 44

BACnet Testing Laboratories - Specified Tests

Test Concept: The initial Present Value of the object tested is set to INACTIVE and it is controlled by the Relinquish Default
value or at a priority numerically greater (lower priority) than 6. The object has been in this state long enough for any
minimum off time to have expired. The Present Value of the object tested is set to ACTIVE at a priority P5 (P5 <6). Before
Minimum_On_Time expires, Present Value is written with values of NULL and INACTIVE and the Present Value and

Priority Array properties are observed for correct behavior.

Start of
Test Steps > Test 1-3 4-7 8-11
Present Value Inactive Active Active Inactive
PA Index =P5 Null Active Null Inactive
PA Index=6 Null Active Active <>Active
Relinquish Default | Inactive Inactive Inactive Inactive
Note: Bold font indicates the Y

change invoked by write operation Minimum On Time

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority Array higher
(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_On_Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present Value = ACTIVE, PRIORITY = P5

2. VERIFY Present Value = ACTIVE

3. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6
4. WRITE Present Value = NULL, PRIORITY = P5

5. VERIFY Present Value = ACTIVE

6. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6
7. VERIFY Priority Array = NULL, ARRAY INDEX = P5

--...(Steps 4-7:Check that a NULL value at P5 will NOT change ARRAY INDEX = 6 or PV)

8. WRITE Present_Value = INACTIVE, PRIORITY = P5

9. VERIFY Present Value = INACTIVE

10. VERIFY Priority Array = INACTIVE, ARRAY INDEX = P5

11. VERIFY Priority Array <> ACTIVE, ARRAY INDEX =6

--...(Steps 8-11:Check that an INACTIVE value at P5 will change ARRAY INDEX = 6 and PV)

7.3.1.6.6 Minimum_Off Time - Clock is not affected by additional write operations
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the Minimum_Off Time timer is not affected by subsequent write operations that do not cause
present-value to change.

Test Concept: The initial Present Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present Value of the object is written to INACTIVE at priority P8, such that present-value and
slot 6 in the priority-array change to INACTIVE. Attime T1, which occurs before minimum off time expires, another write
request, at priority P9, with a value of INACTIVE, is executed by the device. After minimum off time expires but before T1
+ Minimum_Off Time, slot 6 in the priority-array is checked to verify that it returned to NULL and was not affected by the
second request.

© 2022 by BACnet International. All rights reserved. 45

BACnet Testing Laboratories - Specified Tests

Test Step(s) 2> 1-2 3-4 5-8 9
Present Value Active Inactive Inactive Inactive
PA Index =P6 Null Inactive Inactive Null
PA Index = PX8 Null Inactive Inactive Inactive
PA Index = P¥9 Null Null Inactive Inactive
Note: Bold font indicates the \4
change invoked by write operation Minimum Off Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and
slot 6 in the Priority Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically) than
any other commanding priority.

Notes to Tester: P8 and P9 may assume any value in the Priority Array (except 6) and may be equal.
Test Steps:

1. VERIFY Present Value = ACTIVE

2. VERIFY Priority Array = NULL, ARRAY INDEX =6

3. WRITE Present Value = INACTIVE, PRIORITY = P8

4. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
--...(Execute step 5 at time T1)

5. WRITE Present Value = INACTIVE, PRIORITY = P¥9
--...(Execute steps 6 and 7 before Minimum_Off Time expires)
6. VERIFY Present Value = INACTIVE

7. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
8. WAIT for Minimum_Off Time to expire

--...(Execute step 9 before T1 + Minimum_Off Time)

9. VERIFY Priority Array = NULL, ARRAY INDEX =6

7.3.1.6.7 Minimum_On_Time - Clock is not affected by additional write operations
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the Minimum_On_Time timer is not affected by subsequent write operations that do not cause present-
value to change.

Test Concept: The initial Present Value of the object being tested is set to INACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present Value of the object is written to ACTIVE, at priority P8, such that present-value and
slot 6 in the priority-array change to ACTIVE. At time T1, which occurs before minimum on time expires, another write
request, at priority P9, with a value of ACTIVE, is executed by the device. After minimum on time expires but before T1 +
Minimum_On_Time, Sslot 6 in the priority-array is checked to verify that it returned to NULL and was not affected by the
second request.

© 2022 by BACnet International. All rights reserved. 46

BACnet Testing Laboratories - Specified Tests

Test Step(s) 2 1-2 3-4 5-8 9
Present Value Inactive Active Active Active
PA Index =P6 Null Active Active Null
PA Index =P8 Null Active Active Active
PA Index =P9 Null Null Active Active

Note: Bold font indicates the Y

change invoked by write operation Minimum On Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE and
slot 6 in the Priority Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically) than
any other commanding priority.

Notes to Tester: P8 and P9 may assume any value in the Priority Array (except 6) and may be equal.
Test Steps:

1. VERIFY Present Value = INACTIVE

2. VERIFY Priority Array = NULL, ARRAY INDEX =6
3. WRITE Present Value = ACTIVE, PRIORITY = P8

4. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6
--...(Execute step 5 at time T1)

5. WRITE Present Value = ACTIVE, PRIORITY = P9
--...(Execute steps 6 and 7 before Minimum_On_Time expires)
6. VERIFY Present Value = ACTIVE

7. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6
8. WAIT for Minimum_On_Time to expire

--...(Execute step 9 before T1 + Minimum_On_Time)

9. VERIFY Priority Array = NULL, ARRAY INDEX =6

7.3.1.6.8 Ensuring Minimum_Off Time starts at transition to INACTIVE
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that Minimum_Off Time does not start immediately after a write operation while Minimum_On_Time is
in effect and present-value is ACTIVE.

Test Concept: The initial Present Value of the object being tested is set to INACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present Value of the object is written to ACTIVE at P9, where P9 is a priority between 7 and
16, such that present-value and slot 6 in the priority-array change to ACTIVE. Before Minimum_ On_Time expires,
Present_Value is written to INACTIVE at P7, where P7 is a priority between 7 and P9, such that Present Value would change
if Minimum_On_Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals to ensure that it
contains the appropriate value. Time references T1 and T2 are defined for this test as follows:

T1 = the time when the INACTIVE request is executed by the device + Minimum_Off Time

T2 = the time when the ACTIVE request is executed by the device + Minimum_On_Time + Minimum_Off Time

© 2022 by BACnet International. All rights reserved. 47

BACnet Testing Laboratories - Specified Tests

Test Steps > 1-2 3-5 6-9 10-11 12-13 14-15
Present Value Inactive Active Active Inactive Inactive Inactive
PA Index =6 Null Active Active Inactive Inactive Null
PA Index =P7 Null Null Inactive Inactive Inactive Inactive
PA Index =P9 Active Active Active Active Active
Note: Bold font indicates the V T1 ™

change invoked by write operation .. .
g Y P Minimum_On_Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE and
slot 6 in the Priority Array has a value of NULL. The object being tested must also be configured with Minimum On_Time
and Minimum_Off Time values sufficiently large enough to allow execution of this test. If no object exists with both
Minimum_On_Time and Minimum_Off Time properties, this test shall be skipped.

Notes to Tester: P9 and P7 may be equal.

Test Steps:

1. VERIFY Present Value = INACTIVE

2. VERIFY Priority Array = NULL, ARRAY INDEX =6
3. WRITE Present Value = ACTIVE, PRIORITY =P9

4. VERIFY Present Value = ACTIVE

5. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6

--...(Execute steps 6 through 7 before Minimum_On_Time expires)

6. WRITE Present Value = INACTIVE, PRIORITY = P7

7. VERIFY Present Value = ACTIVE

8. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6

9. WAIT for Minimum_On_Time to expire

--...(Execute steps 10 and 11 before T1)

10. VERIFY Present Value = INACTIVE

11. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
-...(Execute step 12 between T1 and T2

12 VERIFY Present Value = INACTIVE

13. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6

--..(Execute step 14 and 15 after T2)

14. VERIFY Present Value = INACTIVE

15. VERIFY Priority Array = NULL, ARRAY INDEX =6

7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE
Reason for Change: This test is not specified in any SSPC proposal.
Purpose: To verify that Minimum_On_Time does not start immediately after a write operation while Minimum_Off Time is

in effect and present-value is INACTIVE.

Test Concept: The initial Present Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present Value of the object is written to INACTIVE at P9, where P9 is a priority between 7 and
16, such that present-value and slot 6 in the priority-array change to INACTIVE. Before Minimum_Off Time expires,
Present_Value is written to ACTIVE at P7, where P7 is a priority between 7 and P9, such that Present Value would change

© 2022 by BACnet International. All rights reserved. 48

if Minimum_Off Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals to ensure that it

BACnet Testing Laboratories - Specified Tests

contains the appropriate value. Time references T1 and T2 are defined for this test as follows:
T1 = the time when the ACTIVE request is executed by the device + Minimum_On_Time

T2 = the time when the INACTIVE request is executed by the device + Minimum_Off Time + Minimum_On_Time

Test Steps > 1-2 3-5 6-9 10-11 12-13 14-15
Present Value Active Inactive Inactive Active Active Active
PA Index =6 Null Inactive Inactive Active Active Null
PA Index =P7 Null Null Active Active Active Active
PA Index =P9 Inactive | Inactive Inactive Inactive Inactive
Note: Bold font indicates the V T1 T2

change invoked by write operation . .
g y P Minimum_On_Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and
slot 6 in the Priority Array has a value of NULL. The object being tested must also be configured with Minimum_On_Time
and Minimum_Off Time values sufficiently large enough to allow execution of this test. If no object exists with both
Minimum_On_Time and Minimum_Off Time properties, this test shall be skipped.

Notes to Tester: P9 and P7 may be equal.

Test Steps:

1. VERIFY Present Value = ACTIVE

2. VERIFY Priority Array = NULL, ARRAY INDEX =6

3. WRITE Present Value = INACTIVE, PRIORITY = P9

4. VERIFY Present Value = INACTIVE

5. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6

--...(Execute steps 6 through 7 before Minimum_Off Time expires)
WRITE Present Value = ACTIVE, PRIORITY = P7

7. VERIFY Present_Value = INACTIVE

8. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
9. WAIT for Minimum_Off Time to expire

--...(Execute steps 10 and 11 before T1)

10. VERIFY Present Value = ACTIVE

11. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6
--...(Execute step 12 between T1 and T2

12. VERIFY Present Value = ACTIVE

13. VERIFY Priority _ Array = ACTIVE, ARRAY INDEX =6
--..(Execute step 14 and 15 after T2)

14. VERIFY Present Value = ACTIVE

15. VERIFY Priority Array = NULL, ARRAY INDEX = 6

&

7.3.1.6.10 Ensuring Minimum Times Are Not Affected By Time Changes
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that minimum times are not affected by changing the time in a device via TimeSynchronization or
UTCTimeSynchronization requests.

© 2022 by BACnet International. All rights reserved. 49

BACnet Testing Laboratories - Specified Tests

Test Concept: The initial Present Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present Value of the object is written to INACTIVE such that present-value and slot 6 in the
priority-array change to INACTIVE. Before Minimum_Off Time expires, the time is changed to a value T1 which is more
than Minimum_Off Time in the future and Present Value and Slot 6 in the priority-array are read to verify that they were
not affected by the time change. After Minimum_Off Time expires, slot 6 in the priority-array is read again to verify that it
is no longer INACTIVE.

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and
slot 6 in the Priority Array has a value of NULL. If the IUT does not support TimeSynchronization or UTC-
TimeSynchronization, then this test shall be omitted.

Notes to Tester: The test above is written for Minimum_ Off Time. To execute this test for Minimum On_Time, use
INACTIVE where ACTIVE is specified, ACTIVE where INACTIVE is specified, and Minimum On Time where
Minimum_Off Time is specified.

Test Steps:
1. VERIFY Present Value = ACTIVE
2. VERIFY Priority Array = NULL, ARRAY INDEX =6
3. WRITE Present_Value = INACTIVE
4. VERIFY Present Value = INACTIVE
5. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
6. TRANSMIT
DA = GLOBAL BROADCAST,
SA=TD
BAChnet-Unconfirmed-Request-PDU,
‘Service Choice’ = TimeSynchronization-Request,
Date = T1,
Time = Tl

7. TRANSMIT
DA = GLOBAL BROADCAST,

SA=TD

BAChnet-Unconfirmed-Request-PDU,
‘Service Choice’ = UTC-TimeSynchronization-Request,
Date = TI,
Time = Tl

8. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
9. WAIT (the remainder of Minimum_Off Time)
10. VERIFY Priority Array <> INACTIVE, ARRAY INDEX =6

7.3.1.6.11 Minimum_Off Time - Value Source Mechanism
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value source used for priority 6 is the commanded object while Minimum_Off Time is in effect.

Test Concept: A commandable object which supports the value source mechanism is selected for the test. When
Minimum_Off Time takes effect, the Present Value is written. The Value Source and Value Source Array properties are
monitored to verify that the source for priority 6 is the commanded object.

Configuration Requirements: The object, O1, to be tested shall be configured such that slot 6 in the Priority Array and
Value Source Array has a value of NULL. The object being tested must also be configured with Minimum_Off Time values
sufficiently large enough to allow execution of this test. If no object exists with Minimum_Off Time property, this test shall
be skipped.

© 2022 by BACnet International. All rights reserved. 50

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. VERIFY Value Source = (any valid value)

2. VERIFY Priority Array = NULL, ARRAY INDEX = 6

3. VERIFY Value Source Array = NULL, ARRAY INDEX =6
4. WRITE Present Value = INACTIVE, PRIORITY > 6

5. VERIFY Present Value = INACTIVE

6. VERIFY Priority Array = INACTIVE, ARRAY INDEX =6
7. VERIFY Value Source =01

8. VERIFY Value Source Array =01, ARRAY INDEX =6

9. WAIT (Minimum ON/OFF Fail Time + Minimum_Off Time)
10. VERIFY Value Source = 'None'

7.3.1.6.12 Minimum_On_Time - Value Source Mechanism

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value source used for priority 6 is the commanded object while Minimum_On_Time is in effect.

Test Concept: A commandable object which supports the value source mechanism is selected for the test. When
Minimum_On_Time takes effect, the Present Value is written. The Value Source and Value Source Array properties are
monitored to verify that the source for priority 6 is the commanded object.

Configuration Requirements: The object, O1, to be tested shall be configured such that slot 6 in the Priority Array and
Value Source Array has a value of NULL. The object being tested must also be configured with Minimum_On_Time values
sufficiently large enough to allow execution of this test. If no object exists with Minimum_On_Time property, this test shall
be skipped.

Test Steps:

1. VERIFY Value Source = (any valid value)

2. VERIFY Priority Array = NULL, ARRAY INDEX =6

3. VERIFY Value Source Array = NULL, ARRAY INDEX =6
4. WRITE Present_Value = ACTIVE, PRIORITY > 6

5. VERIFY Present Value = ACTIVE

6. VERIFY Priority Array = ACTIVE, ARRAY INDEX =6

7. VERIFY Value Source =01

8. VERIFY Value Source Array = Ol, ARRAY INDEX =6

9. WAIT (Minimum ON/OFF Fail Time + Minimum_On_Time)
10. VERIFY Value Source = 'None'

© 2022 by BACnet International. All rights reserved. 5 1

BACnet Testing Laboratories - Specified Tests

7.3.1.7 COV Tests

7.3.1.7.X1 COV_Resubscription_Interval Test

Reason for Change: No existing test in the standard.
Dependencies: Confirmed Notifications Subscription, 8.10.1.
BACnet Reference Clause: 12.25.10 and 12.50.15.

Purpose: To verify that object Ol acquiring data via COV notification reissues its subscription at the interval set by
COV_Resubscription_Interval.

Test Concept: Ol is configured to acquire data from the TD by COV notification. The TD verifies the resubscription interval.

Configuration RequirementsO1 is configured to acquire data from TD by COV notification. Non-zero values shall be chosen
for COV_Resubscription_Interval in accordance with the range and resolution specified by the manufacturer for this property.

Test Steps:

1. IF (the IUT uses SubscribeCOV) THEN
RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' = (SPI1, any value),
'Monitored Object Identifier' = (MOI1, the object to be monitored),
'Issue Confirmed Notifications' = (ICN1 =TRUE | FALSE),
'Lifetime' = (L1, any value >= COV_Resubscription_Interval)
ELSE
RECEIVE SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (SPI1, any value),
'Monitored Object Identifier' = (MOI1, the object to be monitored),
'Issue Confirmed Notifications' = (ICN1 =TRUE | FALSE),
'Lifetime' = (L1, any value >= COV_Resubscription_Interval),
'Monitored Property Identifier' = (MPI1, the property to be monitored),
'COV Increment' = (CI1, Client COV _Increment -- optional)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = SPI1,

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = MOIl,

'Issue Confirmed Notifications' = ICN1,

'"Time Remaining' = (any value <=L1),

'List of Values' = (appropriate BACnetPropertyValue(s))

4. RECEIVE BACnet-SimpleACK-PDU
5. BEFORE (the lesser of COV_Resubscription_Interval + Re-subscription Interval Tolerance and L1)
IF (the IUT uses SubscribeCOV) THEN
RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' = SPII,

'Monitored Object Identifier' = MOIlI,

'Issue Confirmed Notifications' = ICNI,

'Lifetime' = (L2, any value >= COV_Resubscription_Interval)

ELSE
RECEIVE SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = SPI1,
'Monitored Object Identifier' = MOIlI,

'Issue Confirmed Notifications' = ICNI,

© 2022 by BACnet International. All rights reserved. 52

BACnet Testing Laboratories - Specified Tests

'Lifetime' = (L2, any value >= COV_Resubscription_Interval)
'Monitored Property Identifier' = MPII,
'COV Increment' = CIl

6. TRANSMIT BACnet-SimpleACK-PDU
7. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = SPI1,

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = MOIl,

'Issue Confirmed Notifications' = ICNI,

'"Time Remaining' = (any value <=L2),

'List of Values' = (appropriate BACnetProperty Value(s))

8. RECEIVE BACnet-SimpleACK-PDU
9. WAIT (COV_Resubscription_Interval - Re-subscription Interval Tolerance)
10. BEFORE (2 * Re-subscription Interval Tolerance)
IF (the IUT uses SubscribeCOV) THEN
RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' = SPI1,
'Monitored Object Identifier' = MOIl,
'Issue Confirmed Notifications' = ICNI,
'Lifetime' = L1

ELSE

RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier'= SPII,
'Monitored Object Identifier' = MOIlI,
'Issue Confirmed Notifications' = ICNI,
'Lifetime' = L1;
'Monitored Property Identifier' = MPII,
'COV Increment' = CIl

11. TRANSMIT BACnet-SimpleACK-PDU

Passing Result: Where the Lifetime parameter of a SubscribeCOV request is less than COV_Resubscription_Interval +
Re-subscription Interval Tolerance, the IUT shall send the subsequent SubscribeCOV request within Lifetime seconds even
though this is a smaller time window than defined by the test. If the IUT does not meet this stricter time window, then the
IUT shall fail the test.

7.3.1.8 Change of State Test

Reason for Change: Renamed test from the 135.1-2013 version and modified steps to express using READ, WRITE and
VERIFY commands.

> > B B B 5 > B

Purpose: To verify that the propertles of bmwobjects that collectlvely track state changes (changes in Present Value)
functlon as requlred h 3 3 g a a an M 3 unt—R

Test Concept: The Present_Value of the binary-object under test is changed. The Change Of State Count property is checked
to verify that it has been incremented and the Change Of State Time property is checked to verify that it has been updated.
The Change Of State Count is reset and Time Of State Count Reset is checked to verify that it has been updated
appropriately.

Configuration Requirements: The object being tested shall be configured such that the Present Value and
Change Of State Count properties are writable or another means of changing these properties shall be provided.

© 2022 by BACnet International. All rights reserved. 53

BACnet Testing Laboratories - Specified Tests

Test Steps:
1. READ PV = Present Value
2. READ N = Change_of State_Count
3. IF (PV =ACTIVE) THEN
IF (Present Value is writable) THEN
WRITE Present Value = INACTIVE
VERIFY Present Value = INACTIVE
ELSE
MAKE (Present_Value = INACTIVE)
ELSE
IF (Present Value is writable) THEN
WRITE Present Value = ACTIVE
VERIFY Present Value = ACTIVE
ELSE
MAKE (Present Value = ACTIVE)
4. VERIFY (Change_of State_Count = N+1)
5. VERIFY (Change Of State_Time ~= the current local date and time)

6. IF (Change_of State_Count is writable) THEN
WRITE Change_of State_Count = 0
ELSE
MAKE (Change_of State_Count = ()
7. VERIFY Time_Of State_Count Reset ~= (the current local date and time)
+—TFRANSMIT ReadProperty-Request;

>

© 2022 by BACnet International. All rights reserved. 54

BACnet Testing Laboratories - Specified Tests

7.3.1.9 Elapsed Active Time Test

73.1.9 Bi ObiectEl | Active TimeTE
Reason for Change: Errors were pointed out via BTL-CR-0253, and in order to express using READ, WRITE and VERIFY
commands.

Purpose To verlfy that the propertles of bm&r—y objects that collectlvely track active tlme functlon properly {-Pthe

Test Concept: The Present Value or Feedback Value of the binary object being tested is set to INACTIVE. The
Elapsed Active Time property is checked to verify that it does not accumulate time while the object is in an INACTIVE
state. The Present_Value or Feedback Value is then set to ACTIVE. The Elapsed Active Time property is checked to verify
that it is accumulating time while the object is in an ACTIVE state. The Present—Value-orFeedback—Falneisthensetto

© 2022 by BACnet International. All rights reserved. 55

BACnet Testing Laboratories - Specified Tests

INACTHVE-and-the Elapsed Active Time is reset. The Time Of Active Time Reset property is checked to verify that it
has been updated.

Configuration Requirements: The object being tested shall be configured such that the Present Value or Feedback Value if
that is used for the calculation, and Elapsed Active Time properties are writable or another means of changing these
properties shall be provided. Whether Present Value or Feedback Value is used as the indicator for the calculation of the
Elapsed Active_Time is a local matter.

Notes To Tester: It was intentional to specify that the alternative use of Feedback Value tracking specified in 135-2010ad-3
is allowed regardless of the Protocol Revision claimed by the implementation.

Test Steps:

1. IF (Present_ Value is writable) THEN
WRITE Present Value = INACTIVE
VERIFY Present Value = INACTIVE

ELSE

MAKE (Present_Value = INACTIVE)

2. [F (Feedback Value is used for Elapsed Active Time tracking) THEN
WAIT(long enough for Feedback Value to reflect the Present Value)
VERIFY Feedback Value = INACTIVE

>

>

P Value' — he ol | active time, T .]
3. READ Elapsed Active Time = initialElapsedTime

-- verify that Elapsed_Active_Time does not change when the object is INACTIVE
4. WAITF-O-minute) WAIT (more than Internal_Processing Fail Time + at least 1 second)
5. VERIFY Elapsed Active_Time = initialElapsedTime

-- verify that Elapsed _Active_Time correctly reflects the time the object is ACTIVES-FRANSMIT ReadPropertyRequest;
Obiect Identifior — (the obiect bei .

——Property Value' = (the same Ferapsep-as-step3)
6. IF (Present Value is writable) THEN
WRITE Present Value = ACTIVE
VERIFY Present Value = ACTIVE
ELSE
MAKE (Present Value = ACTIVE)

7. IF (Feedback Value is used for Elapsed Active_Time tracking) THEN
WAIT (long enough for Feedback Value to reflect the Present Value)
VERIFY Feedback Value = ACTIVE

READ initialTime = (the IUT’s Device object) Local Time

WAIT (more than Internal Processing Fail Time + 30 seconds)

10. IF (Present Value is writable) THEN

WRITE Present Value = INACTIVE

VERIFY Present Value = INACTIVE
ELSE

MAKE (Present Value = INACTIVE)

O

© 2022 by BACnet International. All rights reserved. 56

BACnet Testing Laboratories - Specified Tests

11. IF (Feedback Value is used for Elapsed Active Time tracking) THEN
WAIT (long enough for Feedback Value to reflect the Present Value)
VERIFY Feedback Value = INACTIVE

12. READ currentTime = (the IUT’s Device object) Local _Time

13. READ ftotalElapsedTime = Elapsed Active Time

14. CHECK (totalElapsedTime ~= (currentTime - initialTime) - initialElapsedTime)

-- verify ability to reset Elapsed_Active Time, if it is writable
15. IF (Elapsed Active Time is writable) THEN
WRITE Elapsed Active _Time = 0
READ currentDate = (the IUT’s Device object) Local Date
READ currentTime = (the IUT’s Device object) Local _Time
VERIFY Time Of Active Time Reset ~= { currentDate, currentTime }

© 2022 by BACnet International. All rights reserved. 57

BACnet Testing Laboratories - Specified Tests

7.3.1.10 Event_Enable Tests

7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMAL, and TO_FAULT

Reason for Change: This test was modified to add clarifying sentence to Purpose and changed step 11 to reference O1.

Purpose: To verify that notification messages are transmitted only if the bit in Event Enable corresponding to the event
transition has a value of TRUE. This test applies to Event Enrollment objects and objects that support intrinsic reporting.

Test Concept: The IUT is configured witn an event-generating object, O1, such that the Event Enable property is tested in
all supported states. Each event transition is triggered and the IUT is monitored to verify that notification messages are
transmitted only for those transitions for which the Event Enable property has a value of TRUE.

Configuration Requirements: If the Event Enable property is configurable, repeat the test with
Event Enable=(T,F,F),(F,T,F),(F,F,T). If the Event Enable property is not configurable, then follow the test steps as written
and verify correct behavior for the value of the Event Enable property. All other properties in O1, and any supporting objects,
shall be configured to allow these events to be generated. The event-generating object shall be in a NORMAL state at the
start of the test. D1 is either the pTimeDelay parameter or, in the case of the EXTENDED and proprictary algorithms, a
vendor specific delay (may be zero).

D2 is either the pTimeDelayNormal parameter or, in case of the EXTENDED and proprietary algorithms, a vendor specific
delay (may be zero).

1. VERIFY pCurrentState = NORMAL
. WAIT (pTimeDelay + Notification Fail Time)
3. IF (O1 contains pFeedbackValue) THEN
MAKE (pFeedbackValue differ from pMonitoredValue)
ELSE IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value that is OFFNORMAL)
ELSE
MAKE (pMonitoredValue have a value that is OFFNORMAL)
4. WAIT (D1)
5. BEFORE Notification Fail Time
IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN {
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'Time Stamp' = (any valid time stamp),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = OFFNORMAL,
'Event Values' = (values appropriate to the event type)
TRANSMIT BAChnet-SimpleACK-PDU
H
ELSE

CHECK (verify that the IUT did not transmit an event notification message)
6. VERIFY pCurrentState = OFFNORMAL
7. IF (O1 contains pFeedbackValue) THEN
MAKE (pFeedbackValue equal to pMonitoredValue)
ELSE IF (pMonitoredValue is writable) THEN

© 2022 by BACnet International. All rights reserved. 5 8

BACnet Testing Laboratories - Specified Tests

WRITE pMonitoredValue = (a value that is NORMAL)
ELSE
MAKE (pMonitoredValue have a value that is NORMAL)
8. WAIT (D2)
9. BEFORE Notification Fail Time
IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN {
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = oOl,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (the value configured to correspond to a TO-NORMAL transition),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = OFFNORMAL,
'To State' = NORMAL,
'Event Values' = (values appropriate to the event type)
TRANSIMIT BACnet-SimpleACK-PDU
}
ELSE

CHECK (verify that the IUT did not transmit an event notification message)
10. VERIFY pCurrentState = NORMAL
11. IF (O1 can be placed into a fault condition) THEN {
MAKE (a condition exist that will cause O1 to generated a TO-FAULT transition)
BEFORE Notification Fail Time
IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN {
RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,

'Event Object Identifier' = O ¢the-event-generating-objectconfiguredfor-this-test),

'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the class corresponding to the object being tested),
'Priority’' = (the value configured to correspond to a TO-FAULT transition),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = FAULT,
'Event Values' = (values appropriate to the event type)
TRANSMIST BACnet-SimpleACK-PDU
i
ELSE

CHECK (verify that the IUT did not transmit an event notification message)
VERIFY Event State = FAULT

}

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service.
in which case the TD shall skip all of the steps in which a BACnet-Simple ACK-PDU is sent.

© 2022 by BACnet International. All rights reserved. 59

BACnet Testing Laboratories - Specified Tests

[Create section called Acked Transitions Tests and then change existing test to new number and change its name]

7.3.1.11 Acked_Transitions Tests

7.3.1.11.1 Acked_Transitions Test

Reason for Change: Corrected errata issues that are in 135.1-2019. Improved the text for Notes To Tester.

Purpose: To verify that the Acked Transitions property tracks whether or not an acknowledgment has been received for a
previously issued event notification. It also verifies the interrelationship between Status Flags and Event_State.

Test Concept: The IUT is configured such that the Event Enable property indicates that all event transitions are to trigger an
event notification. The Acked Transitions property shall have the value (TRUE, TRUE, TRUE) indicating that all previous
transitions have been acknowledged. Each event transition is triggered and the Acked Transitions property is monitored to
verify that the appropriate bit is cleared when a notification message is transmitted and reset if an acknowledgment is received.

Configuration Requirements: The Event Enable and Acked Transitions properties shall be configured with a value of
(TRUE, TRUE, TRUE). For analog objects the Limit Enable property shall be configured with the value (TRUE, TRUE).
The referenced event-triggering property shall be set to a value that results in a NORMAL condition. The value of the
Transitions parameter for all recipients shall be (TRUE, TRUE, TRUE).

Test Steps:

1. VERIFY pCurrentState = NORMAL
. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)
3. IF (Protocol Revision is present AND Protocol Revision >= 13) THEN
VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
4. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value that is OFFNORMAL)
ELSE
MAKE (pMonitoredValue have a value that is OFFNORMAL)
WAIT (pTimeDelay)
6. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

e

"Process Identifier' = (PI1: any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-generating object configured for this test),
'Time Stamp' = (Toffnormal: any valid time stamp),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (Poffnormal: the value configured to correspond to a TO-OFFNORMAL
transition),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = NORMAL,
'"To State' = OFFNORMAL,
'Event Values' = (values appropriate to the event type)
7. TRANSMIT BACnet-SimpleACK-PDU
8. VERIFY pCurrentState = OFFNORMAL
9. VERIFY Acked Transitions = (FALSE, TRUE, TRUE)
10. IF (Protocol revision is present AND Protocol Revision >= 13 THEN

VERIFY pStatusFlags = (TRUE, FALSE, ?, ?)
11. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value that is NORMAL)

© 2022 by BACnet International. All rights reserved. 60

BACnet Testing Laboratories - Specified Tests

ELSE
MAKE (pMonitored Value have a value that is NORMAL)
12. WAIT (pTimeDelayNormal)
13. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (PI2: any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the event-generating object configured for this test),
'Time Stamp' = (Tnormal: any valid time stamp),

'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (Pnormal: the value configured to correspond to a TO-NORMAL transition),
'Event Type' = (any valid event type),

'Message Text' = (optional, any valid message text),

"Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,

'From State' = OFNORMAL,

'To State' = NORMAL,

'Event Values' = (values appropriate to the event type)

14. TRANSMIT BACnet-SimpleACK-PDU
15. VERIFY pCurrentState = NORMAL
16. VERIFY Acked Transitions = (FALSE, TRUE, FALSE)
17. IF (Protocol_Revision is present AND Protocol Revision >= 13) THEN
VERIFY pStatusFlags = (FALSE, FALSE, ?,?)
18. IF (the event-triggering object can be placed into a fault condition) THEN {
MAKE (a condition exist that will cause the object to generate a fault condition)
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'"Process Identifier' = (PI3: any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-generating object configured for this test),
'"Time Stamp' = (Tfault: any valid time stamp),
'Notification Class' = (the class corresponding to the object being tested),
'Priority’ = (Pfault: the value configured to correspond to a TO-FAULT transition),
'Event Type' = IF (Protocol Revision < 13) THEN

(any valid event type),

ELSE

CHANGE _OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = NORMAL,
'"To State' = FAULT,
'Event Values' = (values appropriate to the event type)

TRANSMIT BACnet-SimpleACK-PDU

VERIFY pCurrentState = FAULT

VERIFY Acked Transitions = (FALSE, FALSE, FALSE)

TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (PI3),

'Event Object Identifier' = (the event-generating object configured for this test),
'Event State Acknowledged' = FAULT,

'Acknowledgement Source' = (a character string),

'Time Stamp' = (Tfault),

'Time of Acknowledgment' = (the TD’s current time)

RECEIVE BACnet-Simple ACK-PDU
IF (Protocol Revision is present AND Protocol Revision > 1) THEN
BEFORE Notification Fail Time

© 2022 by BACnet International. All rights reserved. 6 1

BACnet Testing Laboratories - Specified Tests

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =

'Notification Class' =
'Priority’' =

'Event Type' =

'Message Text' =
'Notify Type' =
'"To State' =
ELSE
BEFORE Notification Fail Time

(P13),
IUT,
(the event-generating object configured for this test),
(FHaultthe IUT's current time or sequence number),
(the class corresponding to the object being tested),
(Pfault),
IF (Protocol Revision < 13)
(any valid event type),
ELSE
CHANGE OF RELIABILITY,
(optional, any valid message text),
ACK_ NOTIFICATION,
FAULT

RECEIVE ConfirmedEventNotification-Request,

'"Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =
'Notification Class' =
'Priority' =
'Event Type' =
'Notify Type' =

TRANSMIT BACnet-SimpleACK-PDU

(PI3),

IUT,

(the event-generating object configured for this test),
(Ffaudt-the IUT's current time or sequence number),
(the class corresponding to the object being tested),
(Pfault),

(any valid event type),

ACK NOTIFICATION

VERIFY Acked Transitions = (FALSE, TRUE, FALSE)

}

19. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' =
'Event Object Identifier' =
'Event State Acknowledged'
'"Time Stamp' =
'Acknowledgement Source' =
'"Time of Acknowledgment' =

20. RECEIVE BACnet-SimpleACK-PDU

(P12),

(the event-generating object configured for this test),
NORMAL,

(Tnormal),

(a character string),

(the TD’s current time)

21. IF (Protocol Revision is present and Protocol Revision > 1) THEN

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =
"Notification Class' =
'Priority' =
'Event Type' =
'Notify Type' =
'To State' =

ELSE

BEFORE Notification Fail Time

(P12),

IUT,

(the event-generating object configured for this test),
(Fnermalthe [UT's current time or sequence number),
(the class corresponding to the object being tested),
(Pnormal),

(any valid event type),

ACK_NOTIFICATION,

NORMAL

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(P12),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' =
'"Time Stamp' =
"Notification Class' =

© 2022 by BACnet International. All rights reserved.

(the event-generating object configured for this test),
(Freemalthe IUT's current time or sequence number),
(the class corresponding to the object bind tested),

62

BACnet Testing Laboratories - Specified Tests

"Priority' = (Pnormal),

'Event Type' = (any valid event type),

'Message Text' = (optional, any valid message text),
'Notify Type' = ACK NOTIFICATION

22. TRANSMIT BACnet-SimpleACK-PDU

23. VERIFY Acked Transitions = (FALSE, TRUE, TRUE)

24. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (PI1),

'Event Object Identifier' = (the event-generating object configured for this test),
'Event State Acknowledged' = OFFNORMAL,

'"Time Stamp' = (Toffnormal),

'Acknowledgement Source' = (a character string),

'Time of Acknowledgment' = (the TD’s current time)

25. RECEIVE BACnet-SimpleACK-PDU
26. IF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'"Process Identifier' = (PI1),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the event-generating object configured for this test),
'Time Stamp' = (Foftnormalthe IUT's current time or sequence number),
"Notification Class' = (the class corresponding to the object being tested),
'Priority' = (Poffnormal),

'Event Type' = (any valid event type),

'Message Text' = (optional, any valid message text),

'Notify Type' = ACK NOTIFICATION,

'To State' = OFFNORMAL

ELSE
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'"Process Identifier' = (P11),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the event-generating object configured for this test),
'Time Stamp' = (Foffnormal the IUTs current time or sequence number),
"Notification Class' = (the class corresponding to the object being tested),
'Priority’' = (Poffnormal),

'Event Type' = (any valid event type),

'Message Text' = (optional, any valid message text),

'Notify Type' = ACK NOTIFICATION

27. TRANSMIT BACnet-SimpleACK-PDU
28. VERIFY Acked Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service,

in which case the TD shall skip all-ofthesteps-in-which-a BACnet-SimpleACK-PDU-is-sent sending the BACnet-SimpleACK-

PDU messages after receiving the notifications.

7.3.1.11.2 Acked_Transitions Test for Latching Objects

Reason for Change: No test exists for this functionality.

Purpose: To verify that the Acked Transitions property tracks the acknowledgment state for a transition type.

Test Concept: This test is a single transition test for latching life safety objects which are not able to perform the regular
Acked Transitions test for all transitions. An object, Ol, in the IUT is made to generate a transition which requires an

acknowledgement. The Acked Transitions property is verified that the corresponding flag is cleared (set to FALSE). The
transition is acknowledged, and the flag is verified to have been set back to TRUE.

© 2022 by BACnet International. All rights reserved. 63

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: O1 is configured to generate events and to require acknowledgements for the transition being
tested. O1 should have no event transitions which have outstanding acknowledgements.

Test Steps:
1. VERIFY Acked Transitions = (TRUE, TRUE, TRUE)
2. MAKE (Ol transition)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (PI1: any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (T1: any valid time stamp),
'Notification Class' = (NCI1: the class corresponding to the object being tested),
'Priority’' = (PRIO1: the value configured to correspond to the transition type),
'Event Type' = (E1: any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = S1,
'To State' = S2,
'Event Values' = (values appropriate to the event type)
5. TRANSMIT BACnet-SimpleACK-PDU
6. VERIFY pCurrentState = S2

7. IF S2 is NORMAL THEN
VERIFY Acked Transitions = (TRUE, TRUE, FALSE)
VERIFY pStatusFlags = (FALSE, FALSE, ?, ?
ELSE IF S2 is FAULT THEN
VERIFY Acked Transitions = (TRUE, FALSE, TRUE)
VERIFY pStatusFlags = (TRUE, TRUE, ?, ?7)
ELSE
VERIFY Acked Transitions = (FALSE, TRUE, TRUE)
VERIFY pStatusFlags = (TRUE, FALSE, ?, ?7)
8. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = PII,

'Event Object Identifier' = oOl,

'Event State Acknowledged' = S2,

'"Time Stamp' = T1,
'Acknowledgement Source' = (a character string),
'Time of Acknowledgment' = (the TD’s current time)

9. RECEIVE BACnet-SimpleACK-PDU
10. IF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = PI1,

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = Ol,

'Time Stamp' = The IUT's current time or sequence number,
'Notification Class' = NCI1,

'Priority' = PRIOI,

'Event Type' = El,

'Message Text' = (optional, any valid message text),

'Notify Type' = ACK_NOTIFICATION,

'"To State' = S2

© 2022 by BACnet International. All rights reserved. 64

BACnet Testing Laboratories - Specified Tests

ELSE
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = PI1,

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = Ol,

'"Time Stamp' = The IUT's current time or sequence number,
'Notification Class' = NCl1,

'Priority' = PRIOI,

'Event Type' = El,

'Message Text' = (optional, any valid message text),

"Notify Type' = ACK_NOTIFICATION

11. TRANSMIT BACnet-SimpleACK-PDU
12. VERIFY Acked Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service,
in which case the TD shall skip sending the BACnet-Simple ACK-PDU messages after receiving the notifications.

7.3.1.13 Limit_Enable Tests

7.3.1.13.1 Limit_Enable Test, LowLimitEnable
Reason for Change: The 'Event Type' is checked to be an out-of-range algorithm appropriate to the object type. .

Purpose: To verify that the LowLimitEnable flag in the Limit Enable property correctly enables or disables reporting of out
of range events. This test applies to objects with a Limit_Enable property.

Test Concept: The LowLimitEnable flag is set to true in the Limit Enable property and the event-triggering property is
manipulated to cause the low limit to be exceeded. This should generate an event notification and make Event State =
Low_Limit. After the event-triggering property is returned to a normal value, the LowLimitEnable flag is the set to false and
the event-triggering property is again manipulated to exceed the low limit. No event notification should be observed and the
Event State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit and pDeadband values such that pLowLimit
+ pDeadband < pHighLimit and both the pLowLimit and pHighLimit values are within the valid range of values for the event-
triggering property. If the device cannot be configured with limit values that meet these conditions, then this test shall be
skipped. The Event Enable property shall be set to (TRUE, ?, TRUE) for this test. If the Event Enable property cannot be
configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are TRUE, this test shall be skipped.

Test Steps:
1. MAKE pLimitEnable = (TRUE, ?)
2. VERIFY pCurrentState = NORMAL
3. MAKE (pMonitoredValue a value less than pLowLimit)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
"Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object configured for this test),
'"Time Stamp' = (the current local time),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = (the algorithm appropriate to the object type i.e. OUT _OF RANGE,

SIGNED OUT OF RANGE, UNSIGNED OUT OF RANGE, or

© 2022 by BACnet International. All rights reserved. 65

BACnet Testing Laboratories - Specified Tests

DOUBLE_OUT_OF_RANGE),

'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = LOW_LIMIT,

'Event Values' = (values appropriate to the event type)

6. TRANSMIT BACnet-SimpleAck-PDU
7. VERIFY pCurrentState = LOW_LIMIT
8. MAKE (pMonitoredValue a value that is between pLowLimit + pDeadband and pHighLimit)
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
"Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object configured for this test),
'Time Stamp' = (the current local time),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (the value configured to correspond to a TO-NORMAL transition),
'Event Type' = (the algorithm appropriate to the object type i.e. OUT OF RANGE,

SIGNED_OUT _OF RANGE, UNSIGNED_OUT _OF RANGE, or
DOUBLE_OUT OF RANGE,

'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = LOW_LIMIT,

"To State' = NORMAL,

'Event Values' = (values appropriate to the event type)

11. TRANSMIT BACnet-SimpleAck-PDU

12. MAKE pLimitEnable = (FALSE, ?)

13. VERIFY pCurrentState = NORMAL

14. MAKE (pMonitoredValue a value less than pLowLimit)

15. WAIT (pTimeDelay + Notification Fail Time)

16. CHECK (verify that no notification message was transmitted)
17. VERIFY pCurrentState = NORMAL

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service
in which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent.

7.3.1.13.2 Limit_Enable Test, HighLimitEnable
Reason for Change: The 'Event Type' is checked to be an out-of-range algorithm appropriate to the object type.

Purpose: To verify that the HighLimitEnable flag in the Limit Enable property correctly enables or disables reporting of out
of range events. This test applies to objects with a Limit_Enable property.

Test Concept: The HighLimitEnable flag is set to true in the Limit Enable property and the event-triggering property is
manipulated to cause the high limit to be exceeded. This should generate an event notification and make Event State =
High Limit. After the event-triggering property is returned to a normal value, the HighLimitEnable flag is the set to false
and the event-triggering property is again manipulated to exceed the high limit. No event notification should be observed
and the Event State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit and pDeadband values such that pHighLimit

- pDeadband > pLowLimit and both the pLowLimit and pHighLimit values are within the valid range of values for the event
triggering property. If the device cannot be configured with limit values that meet these conditions, then this test shall be

© 2022 by BACnet International. All rights reserved. 66

BACnet Testing Laboratories - Specified Tests

skipped. The Event Enable property shall be set to (TRUE, ?, TRUE) for this test. If the Event Enable property cannot be
configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are TRUE, this test shall be skipped.

Test Steps:
1. MAKE pLimitEnable = (?, TRUE)
2. VERIFY pCurrentState = NORMAL
3. MAKE (pMonitoredValue a value that exceeds pHighLimit)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object configured for this test),
'"Time Stamp' = (the current local time),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = (the algorithm appropriate to the object type i.e. OUT _OF RANGE,

SIGNED_OUT_OF RANGE, UNSIGNED_OUT _OF RANGE, or
DOUBLE_OUT _OF RANGE,

'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = HIGH_LIMIT,

'Event Values' = (values appropriate to the event type)

6. TRANSMIT BACnet-SimpleAck-PDU
7. VERIFY pCurrentState = HIGH _LIMIT
8. MAKE (pMonitoredValue a value that is between pLowLimit and pHighLimit - pDeadband)
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object configured for this test),
'"Time Stamp' = (the current local time),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (the value configured to correspond to a TO-NORMAL transition),
'Event Type' = (the algorithm appropriate to the object type i.e. OUT _OF RANGE,

SIGNED_OUT_OF RANGE, UNSIGNED_OUT _OF RANGE, or
DOUBLE _OUT_OF RANGE,

'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = HIGH LIMIT,

"To State' = NORMAL,

'Event Values' = (values appropriate to the event type)

11. TRANSMIT BACnet-SimpleAck-PDU

12. MAKE pLimitEnable = (?, FALSE)

13. VERIFY pCurrentState = NORMAL

14. MAKE (pMonitoredValue a value that exceeds pHighLimit)
15. WAIT (pTimeDelay + Notification Fail Time)

16. CHECK (verify that no notification message was transmitted)
17. VERIFY pCurrentState = NORMAL

© 2022 by BACnet International. All rights reserved. 67

BACnet Testing Laboratories - Specified Tests

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service
in which case the TD shall skip all of the steps in which a BACnet-Simple ACK-PDU is sent.

7.3.1.17 Event_Message_Texts Tests
Reason For Change: Removed the allowance for the test to be skipped.

Purpose: To verify that the value of the Event Message Texts property is updated when an object generates an event
notification.

Test Concept: Read the Event Message Texts from the object. Transition the object through each event state which is enabled
in the object saving the Message Text parameter from the received notification. Verify that the Event Message Texts updates
with the Event Message Texts value received from the notification.

Configuration Requirements: The IUT shall be configured with an event-generation object, O1 which shall be ina NORMAL
Event_State at the beginning of the test and f Event Enable is conf gurable it shall have all bits set to TRUE for whzch the
ob]ect supports transttons : 0 O A

Test Steps:

1. READ EMT = Event Message Texts
IF (Event_Enable is (TRUE, ?, ?) and OI can generate TO_OFFNORMAL transitions) THEN {

3. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value that is offnormal)
ELSE
MAKE (pMonitoredValue a value that is offnormal)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'Time Stamp' = (any valid timestamp),
'Notification Class' = (the class corresponding to the object being tested),
'Priority' = (the configured TO_ OFFNORMAL priority),
'Event Type' = (any valid event type),
'Message Text' = (M: any valid value placed into EMT[1]),
"Notify Type' = Notify Type,
'AckRequired' = (the configured value for the TO_ OFFNORMAL transition),
'From State' = NORMAL,
'To State' = (any valid offnormal state),
'Event Values' = (values appropriate to the event type)
6. VERIFY Event Message Texts = EMT
}
7. IF (Event Enable is (?, ?, TRUE) and O1 can generate TO_NORMAL transitions) THEN {
8. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value that will result in a TO_ NORMAL transition)
ELSE

MAKE (pMonitoredValue a value that will result in a TO_NORMAL transition)
. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = IUT,

© 2022 by BACnet International. All rights reserved. 68

BACnet Testing Laboratories - Specified Tests

'Event Object Identifier' =
'Time Stamp' =
'Notification Class' =
'Priority' =
'Event Type' =
‘Message Text’ =
Notify Type' =
'AckRequired' =
'From State' =
'"To State' =
'Event Values' =

11. VERIFY Event Message Texts = EMT

}

0l,

(any valid time stamp),

(the class corresponding to the object being tested),
(the configured TO_NORMAL priority),

(any valid event type),

(M: any valid value placed into EMT([3]),

Notify Type,

(the configured value for the TO_ NORMAL transition),
(any valid value),

NORMAL,

(values appropriate to the event type)

12. IF (Event Enable is (?, TRUE, ?) and O1 can generate TO _FAULT transtions) THEN {
13. MAKE (a condition exist that will cause O1 to generate a TO_FAULT transition)

14. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =

'Notification Class' =
'Priority' =

'Event Type' =

‘Message Text’ =
"Notify Type' =
'AckRequired' =
'From State' =
'To State' =
'Event Values' =
15. VERIFY Event Message Texts = EMT

7.3.1.20 Event_Algorithm_Inhibit_Ref Tests

7.3.1.20.1 Event_Algorithm_Inhibit_Ref Test

Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that the object referenced by

(any valid process ID),
IUT,
01,
(any valid time stamp),
(the class corresponding to the object being tested),
(the configured TO_FAULT priority),
(IF (Protocol Revision < 13 THEN
(any valid event type),
ELSE
(CHANGE OF RELIABILITY,
(M: any valid value placed into EMTJ[2]),
Notify Type,
(the configured value for the TO FAULT transition),
(any valid value),
FAULT,
(values appropriate to the event type)

Event Algorithm Inhibit Ref controls Event Algorithm_ Inhibit and thus

whether or not the event state detection algorithm is executed.

Test Concept: Execute test 7.3.1.19.1 against
Event Algorithm Inhibit and instead of w
Event_Algorithm_Inhibit Ref to change the valu

Conﬁguratlon Requlrements If the IUT has no object whzch has an m—wh&eh—th%Event Algorlthm Inhibit Ref property is
g 3 : 3 : ade TRUE, this test shall be

sklpped

© 2022 by BACnet International. All rights reserved.

an object O2 which supports both Event Algorithm Inhibit Ref and
riting Event Algorithm_Inhibit, write the property referenced by

e in the Event Algorithm_Inhibit property.

69

BACnet Testing Laboratories - Specified Tests

7.3.1.20.2 Event_Algorithm_Inhibit Writable Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that whenever i#f-the Event Algorithm Inhibit Ref property is absent or is uninitialized then the
Event Algorithm_Inhibit property shall be writable.

Configuration Requirements: Select an event-initiating object, O1 which has an Event Algorithm_Inhibit property, but in
which Event Algorithm Inhibit Ref property is absent or is uninitialized. If the IUT has no such object, this test shall be
skipped.

Test Steps:
1. WRITE Event_Algorithm_Inhibit = TRUE
2. WRITE Event_Algorithm_Inhibit = FALSE

7.3.1.21 Reliability Evaluation_Inhibit Tests

7.3.1.21.1 Reliability_Evaluation_Inhibit Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Reliability Evaluation Inhibit controls whether or not fault conditions are detected.

Test Concept: Select an event generating object, O1, which supports the Reliability Evaluation Inhibit property. With
Reliability Evaluation Inhibit FALSE, make a fault condition exist. Verify that Reliability changes and, if event reporting is
supported, that a notification is generated. Set Reliability Evaluation Inhibit to TRUE. Verify that the Reliability changes
to NO_FAULT DETECTED and, if event reporting is supported, that a TO_NORMAL notification is generated. Remove
the fault condition and ensure that no notification is generated. Make a fault condition exist and verify that Reliability remains
NO FAULT DETECTED, and that no notification is generated.

Configuration Requirements: O1 is configured to detect and, if event reporting is supported, report unconfirmed events, is in
the NORMAL state, and Reliability Evaluation Inhibit equals FALSE, so that reliability evaluation for that object is
configured to detect fault conditions. If no object exists in the IUT for which fault conditions can be generated then this test
shall be skipped.

Test Steps:
1. VERIFY pCurrentState = NORMAL
2. VERIFY Reliability =NO _FAULT DETECTED
3. MAKE(a-<condition-existthat-would-eause-Ol-to-generate-a TOFEAUL T transitiona fault condition exist for O1)
4. IF the IUT supports event reporting THEN
BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'"Process Identifier' = (the value configured for the transition),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,

'Time Stamp' = (any valid timestamp),

'Priority' = (any valid priority),

'Event Type' = CHANGE OF RELIABILITY,

'Message Text' = (optional, any valid message text),

'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'"To State' = FAULT,

'Event Values' = (any values appropriate to CHANGE OF RELIABILITY)

5. VERIFY Reliability <> NO_FAULT DETECTED
6. IF Reliability Evaluation_Inhibit is writable THEN
WRITE Reliability Evaluation Inhibit = TRUE

© 2022 by BACnet International. All rights reserved. 70

BACnet Testing Laboratories - Specified Tests

ELSE
MAKE(Reliability Evaluation Inhibit TRUE)
7. IF the IUT supports event reporting THEN
BEFORE Internal Processing Fail Time + Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' = (the value configured for the transition),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,

'Time Stamp' = (any valid timestamp),

'Priority' = (any valid priority),

'Event Type' = CHANGE_OF RELIABILITY,

'Message Text' = (optional, any valid message text),

"Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = FAULT,

'To State' = NORMAL,

'Event Values' = (any values appropriate to CHANGE OF RELIABILITY)

8. VERIFY Reliability =NO_FAULT DETECTED

9. VERIFY pCurrentState = NORMAL

10. MAKE(remove the fault condition)

11. WAIT(pTimeDelayNormal)

12. WAIT Notification Fail Time

13. CHECK (that the IUT did not send any event notifications for O1)
14. VERIFY Reliability = NO_FAULT DETECTED

15. MAKE(a-condition-existthaty

16. WAIT Notification Fail Time
17. VERIFY Reliability =NO _FAULT DETECTED

18. VERIFY pCurrentState = NORMAL

19. CHECK (that the IUT did not send any event notifications for O1)

seneratea RN ansttiona fault condition exist for O1)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not necessary
to test both.

7.3.1.X16 Array Resizing Test using WritePropertyMultiple Service

Reason For Change: The existing test plan has a test case using WriteProperty service. We have added a new test case using
WritePropertyMultiple service.

Purpose: To verify that resizable arrays are resized in accordance with the rules added in Protocol Revision 4.

Test Concept: The resizable array property P1 of object O1 is written with WritePropertyMultiple as a whole to set it to a
non-zero size. It is then resized smaller and larger by writing the entire array. It is then resized smaller and larger by writing
to element number zero. An attempt is made to increase it with an invalid write. After each operation, the array size and array
contents are checked. Finally, if it can be resized to have zero elements, it is then written to size zero. If possible, all elements
in the arrays should be distinguishable from each other and across WritePropertyMultiple operations.

Test Steps:
1. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = O1,
'Property Identifier' = P1,
'Property Value' = (array Al of non-zero size N1)
2. RECEIVE BACnet-SimpleACK-PDU
3. VERIFY Pl= (array A1), ARRAY INDEX = 0, (array size i.e. N1)

--Resize the array to make it smaller in size

© 2022 by BACnet International. All rights reserved. 7 1

BACnet Testing Laboratories - Specified Tests

4. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = O1,

'"Property Identifier' = P1

'"Property Value' = (array A2 of non-zero size N2, where N2 <N1)
5. RECEIVE BAChnet-SimpleACK-PDU
6. VERIFY P1 = (array A2), ARRAY INDEX =0, (array size N2)

--Resize the array to make it larger in size

7. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = O1,

'Property Identifier' = P1

'"Property Value' = (array A3 of non-zero size N3, where N3 > N1),
8. RECEIVE BACnet-SimpleACK-PDU
9. VERIFY PI = (array A3), ARRAY INDEX = 0, (array size N3)

--Modify the existing content of element

10. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = O1,

'Property Identifier' = P1,

'"Property Value' = (array A4 of non-zero unsigned value N4, where N4 <N1),
11. RECEIVE BAChnet-SimpleACK-PDU
12. VERIFY P= (array A4), ARRAY INDEX = 0, (array size N4)

--Resize the array by writing the size of the array

13. TRANSMIT WritePropertyMultiple-Request
'Object Identifier' = O1,
"Property Identifier' = P1
'Property Value' = (N5, where N5 > N4),
'Property Array Index' =0,
14. RECEIVE BAChnet-SimpleACK-PDU
15. VERIFY (array contains unchanged first N4 elements of the array written in step 10, plus N5-N4 additional elements,
initialized to particular values for the array property being tested)
16. VERIFY P1, ARRAY INDEX = 0, (array size N5)

--Try to add the array element at Array Index which is greater than the size of the array

17. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = O1,
'"Property Identifier' = P1,
'Property Value' = (one array element),
'Property Array Index' = (N6, where N6 > N5),
18. RECEIVE WritePropertyMultiple-Error
'Error Class' = PROPERTY,
'Error Code' =INVALID ARRAY INDEX
'Object Identifier' = O1,
'Property Identifier' = P1,
'"Property Array Index' = N6
19. VERIFY (array is unchanged from step 15)

--Resize the array to size zero

20. IF (the array can be resized to have zero elements) THEN
TRANSMIT WritePropertyMultiple-Request,

© 2022 by BACnet International. All rights reserved. 72

BACnet Testing Laboratories - Specified Tests

'Object Identifier' = O1,
'"Property Identifier' = P1,
'"Property Value' = (empty array),
BAChnet-SimpleACK-PDU
21. VERIFY P1 = (array is empty), ARRAY INDEX = 0, (array size is zero)

7.3.1.X18 Non-zero Writable State Count Test

Reason for Change: Additional behavior was specified in 135-2012az-1 and 135-2012az-2 when the Change of State Count
property accepts writes of non-zero values.

Purpose: To verify that the properties of objects that count the number of transitions and the time when that number of the
transitions tracking started function properly.

Test Concept: The Change of State Count property is set with a non-zero value. The Time_Of State Count_Reset property
is checked to verify that it has not been updated. The Time Of State Count Reset property is then checked to be writable.

Configuration Requirements: The object being tested shall contain Change of State Count and
Time Of State Count Reset properties, and its Change of State Count property must accept writes of non-zero values.

Test Steps:

1. READ TSCR = Time Of State Count Reset

2. WRITE Change of State Count = (a value > 0)

3. VERIFY Time Of State Count Reset =TSCR

4. WRITE Time Of State Count Reset = (T1: any valid value)
5. VERIFY Time Of State Count Reset=T1

7.3.1.X19 Non-zero Writable Elapsed Active Time Test

Reason for Change: Additional behavior was specified in 135-2012az-1 and 135-2012az-2 when the Elapsed Active Time
property accepts writes of non-zero values.

Purpose: To verify that Time Of Active Time Reset is writable when Elapsed Active Time accepts writes of non-zero
values and does not automatically change when Elapsed Active Time is written to a non-zero value.

Test Concept: The Present Value or Feedback Value is made INACTIVE and the Elapsed Active Time is set with a non-
zero value. The Time Of Active Time Reset property is checked to verify that it has not been updated. The
Time Of Active_Time Reset property is then checked to be writable.

Configuration Requirements: The object being tested shall be chosen in which Elapsed Active Time and
Time Of Active Time Reset properties are present, and in which the Elapsed Active Time property accepts writes of non-
zero values.

Test Steps:

1. IF (Present_ Value is writable) THEN
WRITE Present Value = INACTIVE
VERIFY Present Value = INACTIVE
ELSE
MAKE (Present Value = INACTIVE)
READ TATR =Time Of Active Time Reset
WRITE Elapsed Active Time = a supported non-zero value
VERIFY Time Of Active Time Reset = TATR
WRITE Time_Of Active Time Reset = (T1: any valid value)
VERIFY Time Of Active Time Reset=TI1

Sk wn

© 2022 by BACnet International. All rights reserved. 73

BACnet Testing Laboratories - Specified Tests

7.3.1.X20 Strike Count Tests

7.3.1.X20.1 Non-zero Writable Strike Count Test

Reason for Change: Additional behavior was specified in 135-2012az-1 when the Strike_Count property accepts writes of
non-zero values.

Purpose: To verify that Time Of Count Reset is writable when Strike Count accepts writes of non-zero values and does not
automatically change when Strike Count is written to a non-zero value.

Test Concept: The Strike Count property is set with a non-zero value. The Time Of Strike Count Reset property is checked
to verify that it has not been updated. The Time Of Strike Count Reset property is then checked to be writable.

Configuration Requirements: The object being tested shall be chosen in which Strike Count and
Time Of Strike Count Reset properties are present, and in which the Strike Count property accepts writes of non-zero
values.

Test Steps:

1. READ TSCR = Time Of Strike Count Reset

2. WRITE Strike_Count = (a value > 0)

3. VERIFY Time Of Strike Count Reset = TSCR

4. WRITE Time Of Strike Count Reset = (T1: any valid value
5. VERIFY Time Of Strike Count Reset=T1

7.3.1.X20.2 Strike Count Test
Purpose: To verify that the properties of an object (O1) that tracks strike counts.

Test Concept: The Present Value or Feedback Value of O1 can be used as the source S1 to increment Strike Count. S1 is
transitioned from OFF to ON. The Strike Count property is checked to verify that it has been incremented. The Strike Count
is reset and Time Of Strike Count Reset is checked to verify that it has been updated appropriately. Strike Count is set to
a non-zero value and the Time Of Strike Count Reset is unchanged.

Configuration Requirements: O1 shall be configured such that the Present Value property is writable or another means of
changing these properties shall be provided.

Test Steps:
1. ClI = Strike Count
2. MAKE (S1 transition OFF to ON)
3. VERIFY (Strike Count=C1+1)
4. IF (Strike Count is writable) THEN
MAKE (Strike_Count = 0)
VERIFY (Time Of Strike Count Reset = current local time)
5. IF (Strike Count is writable to a non-zero value) THEN
MAKE (Strike Count > 0)
VERIFY (Time Of Strike Count Reset is unchanged)

7.3.1.X41 Blink Warn Tests

7.3.1.X41.Y1 Blink-Warn WARN Command Test

Reason for Change: No test for this functionality exists.
Purpose: To verify the correct operation of the blink-warn WARN command.

Test Concept: Select an object O1 that supports blink-warn WARN command. Ensure O1 is not in egress mode and the
specific properties have been configured to support blink-warn. Execute blink-warn WARN command by writing C1 to

© 2022 by BACnet International. All rights reserved. 74

BACnet Testing Laboratories - Specified Tests

PROP_REF at a priority PTY1 of Ol and validate the specified blink-warn command functions correctly. Validate the
Priority Array value at priority PTY 1 remains.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY'1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY 1.
The Priority_Array at PTY1 has a value V1, Blink Warn_Enable is TRUE, Egress_Active is FALSE.

Binary Lighting Output object | Lighting Output object
PROP REF | Present Value Present Value or Lighting Command
Cl WARN -1.0 if PROP REF = Present Value, otherwise WARN
Vi ON >1.0
Test Steps:
1. VERIFY Priority Array = V1, ARRAY INDEX =PTY1
2. VERIFY Blink Warn_Enable = TRUE
3. VERIFY Egress Active = FALSE
4. WRITE PROP_REF =C1, PRIORITY =PTY1
5. BEFORE Internal Processing Fail Time
CHECK (blink-warn occurred)
6. VERIFY Egress Active = FALSE
7. VERIFY Priority Array = V1, ARRAY INDEX =PTY1

7.3.1.X41.Y2 Blink-Warn WARN_OFF Command Test

Reason for Change: No test for this functionality exists.
Purpose: To verify the correct operation of the blink-warn WARN_OFF command.

Test Concept: Select an object O1 that supports blink-warn commands. Ensure O1 is not in egress mode and the specific
properties have been configured to support blink-warn. Execute blink-warn WARN_OFF command by writing C1 to
PROP_REF at a priority PTY1 of Ol and validate the specified blink-warn command functions correctly. Validate the
Priority Array value at priority PTY1 after Egress Time seconds has elapsed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
The Priority Array at PTY1 has a value V1, Blink Warn_Enable is TRUE, Egress Active is FALSE, and Egress Time is a
non-zero value.

Binary Lighting Qutput object | Lighting Output object
PROP REF | Present Value Present Value or Lighting Command
Cl WARN OFF -3.0 if PROP REF = Present Value, otherwise WARN OFF
Vi ON >1.0
V2 OFF 0.0
Test Steps:
1. VERIFY Priority_ Array = V1, ARRAY INDEX =PTY1
2. VERIFY Blink Warn Enable = TRUE
3. VERIFY Egress Time >0
4. VERIFY Egress Active = FALSE
5. WRITE PROP_REF = C1, PRIORITY =PTY1
6. TI1 = current local time
7. BEFORE Internal Processing Fail Time

CHECK (blink-warn occurred)

© 2022 by BACnet International. All rights reserved. 75

BACnet Testing Laboratories - Specified Tests

8. WHILE (Egress_Active = TRUE)
VERIFY Priority Array = V1, ARRAY INDEX =PTY1
9. T2 = current local time
10. VERIFY Egress Time ~= (T1 — T2) +/- Internal Processing Fail Time
11. VERIFY Priority Array = V2, ARRAY INDEX =PTY1

7.3.1.X41.Y3 Blink-Warn WARN_RELINQUISH Command Test

Reason for Change: No test for this functionality exists.
Purpose: To verify the correct operation of the blink-warn WARN_RELINQUISH commands.

Test Concept: Select an object O1 that supports blink-warn commands. Ensure O1 is not in egress mode and the specific
properties have been configured to support blink-warn. Execute blink-warn WARN RELINQUISH command by writing C1
to PROP_REF at a priority PTY1 of O1 and validate the specified blink-warn command functions correctly. Validate the
Priority Array value at priority PTY1 after Egress_Time seconds has elapsed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 shall
have a value of NULL, at least one slot numerically greater than PTY1 or Relinquish Default shall have a value of V2, and
all other slots numerically greater than PTY 1 shall have a value of V0. No internal algorithms are issuing commands to O1
at any priority. The Priority Array at PTY 1 has a value V1, Blink Warn_Enable is TRUE, Egress_Time is a non-zero value,
and Egress_Active is FALSE.

Binary Lighting Qutput object | Lighting Output object
PROP REF | Present Value Present Value or Lighting Command
Cl WARN RELINQUISH -2.0 if PROP_REF = Present Value, otherwise WARN OFF
VO NULL or OFF NULL or 0.0
Vi ON >1.0
V2 OFF 0.0
Test Steps:
1. VERIFY Priority _ Array = V1, ARRAY INDEX =PTY1
2. VERIFY Blink Warn Enable = TRUE
3. VERIFY Egress_Time >0
4. VERIFY Egress Active = FALSE
5. WRITE PROP_REF = CI, PRIORITY =PTY1
6. TI1 = current local time
7. BEFORE Internal Processing Fail Time

CHECK (blink-warn occurred)
8. WHILE (Egress_Active = TRUE)
VERIFY Priority Array = V1, ARRAY INDEX =PTY1
9. T2 = current local time
10. VERIFY Egress Time ~= (T1 — T2) +/- Internal Processing Fail Time
11. VERIFY Priority Array = NULL, ARRAY INDEX =PTY1

7.3.1.X41.Y4 Blink-Warn STOP Command Test

Reason for Change: No test for this functionality exists.

Purpose: To verify the correct operation of the blink-warn STOP command.

© 2022 by BACnet International. All rights reserved. 76

BACnet Testing Laboratories - Specified Tests

Test Concept: Select an object O1 that supports blink-warn commands. Ensure O1 is not in egress mode and the specific
properties have been configured to support blink-warn. Execute blink-warn command by writing C1 to PROP_REEF at a
priority PTY1 of O1 and validate that blink-warn occurs. Before the Egress Time times out, STOP the egress process and
validate the Priority Array value at PTY1 remains equal to V1 after Egress Time.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY 1 shall
have a value of NULL, at least one slot numerically greater than PTY1 or Relinquish Default shall have a value of V2, and
all other slots numerically greater than PTY 1 shall have a value of V0. No internal algorithms are issuing commands to O1
at a priority numerically less than or equal to PTY1. The Priority Array at PTY1 has a value V1, Blink Warn_Enable is
TRUE, Egress_Time is a non-zero value, and Egress_Active is FALSE.

Binary Lighting Output object | Lighting Output object
PROP REF | Present Value Lighting Command
Cl WARN_RELINQUISH or WARN RELINQUISH or WARN_OFF
WARN OFF
Vo0 NULL or OFF NULL or 0.0
Vi ON >1.0
V2 OFF 0.0
Test Steps:
1. VERIFY Priority Array = V1, ARRAY INDEX =PTY1
2. VERIFY Blink Warn_Enable = TRUE
3. VERIFY Egress Time >0
4. VERIFY Egress Active = FALSE
5. WRITE PROP_REF = CI, PRIORITY =PTY1
6. T1 = current local time
7. BEFORE Internal Processing Fail Time

CHECK (blink-warn occurred)
VERIFY Egress Active = TRUE
9. WAIT less than Egress Time

WRITE PROP_REF = STOP, PRIORITY =PTY1

10. T2 = current local time
11. WAIT Internal Processing Fail Time
12. VERIFY Egress_Active = FALSE
13. WAIT Egress_Time — (T2 — T1) + Internal Processing Fail Time
14. VERIFY Priority Array = V1, ARRAY INDEX =PTY1

*

7.3.1.X41.Y5 Blink-Warn WARN Command Failure Test

Reason for Change: No test for this functionality exists.

Purpose: To verify blink-warn WARN command does not occur when, the specified priority is not the highest active priority,
the value at the specified priority is off or Blink Warn_Enable is FALSE.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command would
generate a blink-warn except set the specified failure conditions. Verify blink-warn does not occur and the Priority Array is
not affected.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY'1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
Select a priority, PTY2, which is numerically less than PTY1 and not equal to 6. Blink Warn Enable is TRUE,
Egress Active is FALSE.

© 2022 by BACnet International. All rights reserved. 77

BACnet Testing Laboratories - Specified Tests

Binary Lighting Output object | Lighting Output object
PROP REF | Present Value Present Value or Lighting Command
Cl WARN -1.0 if PROP_REF = Present Value, otherwise WARN
V1,V2 ON >1.0
V3 OFF 0.0
Test Steps:

-- Test for the specified priority is not the highest active priority
VERIFY Blink Warn_Enable = TRUE
WRITE Present_Value = V1, PRIORITY =PTY1
VERIFY Egress Active = FALSE
WRITE Present_Value = V2, PRIORITY =PTY2
WRITE PROP_REF = C1, PRIORITY =PTY1
WAIT Internal Processing Fail Time

CHECK (blink-warn did not occur)
VERIFY Egress Active = FALSE
8. VERIFY Priority Array = V1, ARRAY INDEX =PTY1
9. WRITE Present_Value = NULL, PRIORITY =PTY2

Sk L=

=

-- Test for the value at the specified priority is either OFF or 0.0
10. WRITE Present Value = V3, PRIORITY =PTY1
11. WRITE PROP REF =C1, PRIORITY =PTY1
12. WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
13. VERIFY Egress Active = FALSE
14. VERIFY Priority Array = V3, ARRAY INDEX =PTY1
15. WRITE Present Value = V1, PRIORITY =PTY1

-- Test for Blink. Warn_Enable is FALSE
16. IF (Blink Warn_Enable is writable) THEN
WRITE Blink Warn_Enable = FALSE
WRITE PROP_REF =C1, PRIORITY =PTY1
WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
VERIFY Egress Active = FALSE
VERIFY Priority Array = V1, ARRAY INDEX =PTY1

7.3.1.X41.Y6 Blink-Warn WARN_OFF Command Failure Test

Reason for Change: No test for this functionality exists.

Purpose: To verify blink-warn WARN_OFF command does not occur when the specified priority is not the highest active
priority, the Present Value is either 0.0 or OFF, or Blink Warn_Enable is FALSE.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command would
generate a blink-warn except set the specified failure conditions. Verify blink-warn does not occur and the Priority Array is
correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
Blink Warn Enable is TRUE, Egress Time is a non-zero value and Egress Active is FALSE.

Binary Lighting Qutput object | Lighting Output object
PROP REF | Present Value Present Value or Lighting Command
Cl WARN OFF -3.0 if PROP REF = Present Value, otherwise WARN OFF

© 2022 by BACnet International. All rights reserved. 78

BACnet Testing Laboratories - Specified Tests

V1,V2 ON >1.0
V3 OFF 0.0
Test Steps:

-- Test for the specified priority is not the highest active priority
VERIFY Blink Warn_Enable = TRUE
VERIFY Egress Time > 0
WRITE Present Value = V1, PRIORITY =PTY1
VERIFY Egress Active = FALSE
WRITE Present Value = V2, PRIORITY = PTY2, a value not equal to 6 and less than PTY'1
WRITE PROP_REF = C1, PRIORITY =PTY1
WAIT Internal Processing Fail Time

CHECK (blink-warn did not occur)
VERIFY Egress Active = FALSE
9. VERIFY Priority Array = V3, ARRAY INDEX =PTY1
10. WRITE Present Value = V1, PRIORITY =PTY1

Nk L=

*

-- Test for the Present Value is OFF or 0.0
11. WRITE Present_Value = V3, PRIORITY = PTY?2, a value not equal to 6 and less than PTY1
12. WRITE PROP REF =C1, PRIORITY =PTY1
13. WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
14. VERIFY Egress Active = FALSE
15. VERIFY Priority Array = V3, ARRAY INDEX =PTY1
16. WRITE Present Value = NULL, PRIORITY =PTY2
17. WRITE Present Value = V1, PRIORITY =PTY1

-- Test for Blink Warn_Enable is FALSE
18. IF (Blink Warn_Enable is writable) THEN
WRITE Blink Warn Enable = FALSE
WRITE PROP_REF =C1, PRIORITY =PTY1
WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
VERIFY Egress Active = FALSE
VERIFY Priority Array = V3, ARRAY INDEX =PTY1

7.3.1.X41.Y7 Blink-Warn WARN_RELINQUISH Command Failure Test

Reason for Change: No test for this functionality exists.

Purpose: To verify blink-warn WARN RELINQUISH command does not occur when the specified priority is not the highest
active priority, the value at the specified priority is VO, the value of the next highest non-NULL priority, including
Relinquish_Default, is V1, or Blink Warn_Enable is FALSE.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command would
generate a blink-warn except set the specified failure conditions. Verify blink-warn does not occur and the Priority Array is
correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 shall
have a value of NULL, at least one slot numerically greater than PTY1 or Relinquish_Default shall have a value of V2, and
all other slots numerically greater than PTY1 shall have a value of V0. No internal algorithms are issuing commands to O1
at any priority. Blink Warn_ Enable is TRUE, Egress Time is a non-zero value, Egress Active is FALSE.

| | Binary Lighting Output object | Lighting Output object |

© 2022 by BACnet International. All rights reserved. 79

BACnet Testing Laboratories - Specified Tests

PROP REF | Present Value Present Value or Lighting Command
Cl1 WARN_RELINQUISH -2.0 if PROP REF = Present Value, otherwise
WARN RELINQUISH
Vo0 OFF or NULL 0.0 or NULL
Vi ON >1.0
V2 OFF 0.0
Test Steps:
-- Test for the specified priority is not the highest active priority
1. VERIFY Blink Warn_Enable = TRUE
2. VERIFY Egress Time >0
3. WRITE Present Value = V1, PRIORITY =PTY1
4. VERIFY Egress_Active = FALSE
5. WRITE Present_Value = V1, PRIORITY = PTY2, a value not equal to 6 and less than PTY1
6. WRITE PROP_REF =CI, PRIORITY =PTY1
7. WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
8. VERIFY Egress Active = FALSE
9. VERIFY Priority Array = NULL, ARRAY INDEX =PTY1
10. WRITE Present Value = NULL, PRIORITY =PTY2
-- Test for the value at the specified priority is OFF or 0.0
11. WRITE Present Value = V2 PRIORITY =PTY1
12. WRITE PROP REF =C1, PRIORITY =PTY1
13. WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
14. VERIFY Egress Active = FALSE
15. VERIFY Priority Array = NULL, ARRAY INDEX =PTY1
-- Test for the value at the specified priority is NULL
16. WRITE Present Value = NULL, PRIORITY =PTY1
17. WRITE PROP_REF = C1, PRIORITY =PTY1
18. WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
19. VERIFY Egress Active = FALSE
20. VERIFY Priority Array = NULL, ARRAY INDEX =PTY1
-- Test for the value of the next highest non-NULL priority is ON or > 1.0
21. WRITE Present Value =V1 PRIORITY =PTY1
22. WRITE Present Value = V1, PRIORITY =PTY3, a value numerically greater than PTY1
23. WRITE PROP_REF =CI1, PRIORITY =PTY
24. WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
25. VERIFY Egress Active = FALSE
26. VERIFY Priority Array = NULL, ARRAY INDEX =PTY1
27. WRITE Present Value = NULL, PRIORITY =PTY3
-- Test for the value of Relinquish_Default is ON or > 1.0
28. IF (Relinquish Default is writable) THEN

WRITE Present_Value = V1, PRIORITY =PTY1
WRITE Relinquish Default = V1
WRITE PROP_REF = C1, PRIORITY =PTY1
WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
VERIFY Egress Active = FALSE
VERIFY Priority Array = NULL, ARRAY INDEX =PTY1

© 2022 by BACnet International. All rights reserved. 80

BACnet Testing Laboratories - Specified Tests

WRITE Relinquish Default = V2

-- Test for Blink Warn_Enable is FALSE
29. IF (Blink_ Warn_Enable is writable) THEN
WRITE Present Value = V1, PRIORITY =PTY1
WRITE Blink Warn_Enable = FALSE
WRITE PROP_REF = C1, PRIORITY =PTY1
WAIT Internal Processing Fail Time
CHECK (blink-warn did not occur)
VERIFY Egress Active = FALSE
VERIFY Priority Array = NULL, ARRAY INDEX =PTY1

7.3.1.X41.Y8 Blink-Warn WARN_OFF Command Halted Test

Reason for Change: No test for this functionality exists.

Purpose: To verify blink-warn WARN_OFF execution is halted when a higher priority entry is written or the Present Value
at the specified priority is changed.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command will
generate a blink-warn. Before the Egress timer expires, verify the specified actions clear the blink-warn properties and the
Priority_Array is correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY 1.
Blink Warn_Enable is TRUE, Egress_Time is a non-zero value and Egress_Active is FALSE.

Binary Lighting Output object | Lighting Output object
PROP_REF | Present Value Present Value or Lighting Command
Cl WARN OFF -3.0 if PROP REF = Present Value, otherwise WARN OFF
V1to V3 ON >1.0
V4 OFF 0.0
Test Steps:

-- Test for a higher priority entry is written to a non NULL value
WRITE Present_Value = V1, PRIORITY =PTY1
VERIFY Blink Warn_Enable = TRUE
VERIFY Egress Time > 0
VERIFY Egress Active = FALSE
WRITE PROP_REF = C1, PRIORITY =PTY1
BEFORE Internal Processing Fail Time

CHECK (blink-warn occurred)
7. BEFORE Egress Active = FALSE

WRITE Present Value = V2, PRIORITY = PTY2, a value not equal to 6 and less than PTY1

8. VERIFY Egress Active = FALSE
9. VERIFY Priority Array = V4, ARRAY INDEX =PTY1
10. WRITE Present Value = NULL, PRIORITY =PTY2

SNk L=

-- Test for the Present Value at the specified property is changed
11. WRITE Present Value = V1, PRIORITY =PTY1

12. VERIFY Blink Warn_Enable = TRUE

13. VERIFY Egress Time >0

14. VERIFY Egress Active = FALSE

15. WRITE PROP_REF =CI1, PRIORITY =PTY1

© 2022 by BACnet International. All rights reserved. 8 1

BACnet Testing Laboratories - Specified Tests

16. BEFORE Internal Processing Fail Time
CHECK (blink-warn occurred)
17. BEFORE Egress Active = FALSE
WRITE Present_Value = V3, PRIORITY =PTY1
18. VERIFY Egress Active = FALSE
19. VERIFY Priority Array = V3, ARRAY INDEX =PTY1

7.3.1.X41.Y9 Blink-Warn WARN_RELINQUISH Command Halted Test

Reason for Change: No test for this functionality exists.

Purpose: To verify blink-warn WARN RELINQUISH execution is halted when a higher priority entry is written or the
Present_Value at the specified priority is changed.

Test Concept: Select an object O1 that supports blink-warn commands. Configure O1 such that a blink-warn command will
generate a blink-warn. Before the Egress timer expires, verify the specified actions clear the blink-warn properties and the
Priority Array is correctly changed.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY'1 have
a value of NULL and at least one slot numerically greater than PTY1 or Relinquish_Default shall have a value of V1 and all
other slots numerically greater than PTY 1 shall have a value of V0. No internal algorithms are issuing commands to O1 at
any priority. Blink Warn_Enable is TRUE, Egress_Time is a non-zero value, Egress Active is FALSE.

Binary Lighting Qutput object | Lighting Output object
PROP REF | Present Value Present Value or Lighting Command
C1 WARN_RELINQUISH -2.0 if PROP _REF = Present Value, otherwise
WARN RELINQUISH
Vo0 OFF or NULL 0.0 or NULL
Vi OFF 0.0
V2 ON >1.0
V3 OFF any value >1.0 and not equal to V2
Test Steps:

-- Test for a higher priority entry is written to a non NULL value
WRITE Present Value = V2, PRIORITY =PTY1
VERIFY Blink Warn_Enable = TRUE
VERIFY Egress Time >0
VERIFY Egress Active = FALSE
WRITE PROP_REF = C1, PRIORITY =PTY1
BEFORE Internal Processing Fail Time

CHECK (blink-warn occurred)
7. BEFORE Egress Active = FALSE

WRITE Present Value = V2, PRIORITY =PTY2, a value not equal to 6 and less than PTY1

8. VERIFY Egress Active = FALSE
9. VERIFY Priority Array = NULL, ARRAY INDEX =PTY1
10. WRITE Present Value = NULL, PRIORITY =PTY2

A

-- Test for the Present Value at the specified property is changed
11. WRITE Present Value = V2, PRIORITY =PTY1

12. VERIFY Blink Warn Enable = TRUE

13. VERIFY Egress Time > 0

14. VERIFY Egress_Active = FALSE

15. WRITE PROP_REF =C1, PRIORITY =PTY1

16. BEFORE Internal Processing Fail Time

© 2022 by BACnet International. All rights reserved. 82

BACnet Testing Laboratories - Specified Tests

CHECK (blink-warn occurred)
17. BEFORE Egress_Active = FALSE
WRITE Present Value = V3, PRIORITY =PTY1
18. VERIFY Egress Active = FALSE
19. VERIFY Priority Array = V3, ARRAY INDEX =PTY1

7.3.1.X42.Y1 Writing to the Value_Source Property by a Device Other than the Device that Commanded the Object

Reason for Change: No test for this functionality exists.

Purpose: To verify the IUT correctly refuses an attempt to write a Value _Source property by a device other than the device
that most recently commanded the object.

Test Concept: Command an object, O1, that supports the value source mechanism, from device D1, and verify the updated
Value Source. Attempt to write to the Value Source property from device D2. Verify that an error is returned and
Value Source does not change.

Test Steps:

1. TRANSMIT WriteProperty-Request,
SOURCE =Dl,
'Object Identifier' = O1,
'Property Identifier' = (P1: the property monitored by the Value Source mechanism for this object type),
'Priority' = (PRIO: absent or any value other than 6)
'"Property Value' = (X2: any valid value)
2. RECEIVE BACnet-Simple-ACK-PDU
3. IF (O1 is commandable) THEN
VERIFY Priority Array = X2, ARRAY INDEX = PRIO
ELSE
VERIFY (P1)=X2
4. VERIFY Value Source = (D1's device identifier or network address)
5. TRANSMIT WriteProperty-Request,
SOURCE = D2,
'Object Identifier' = O1,
'Property Identifier' = Value Source,
'Priority' = PRIO,
'Property Value' = (any valid value)
6. RECEIVE BACnet-Error PDU,
'Error Class' = PROPERTY,
'Error Code' = WRITE_ACCESS DENIED
7. VERIFY Value Source = (D1's device identifier or network address)

7.3.1.X42.Y2 Non-commandable Value_Source Property Test

Reason for Change: No test for this functionality exists.

Purpose: To verify that the Value Source property indicates the source of the current Present Value in a non-commandable
object.

Test Concept: Select a non-commandable object with a writable Present Value which supports the Value Source mechanism.
Present_Value is written, and it is verified that Value Source is updated appropriately. Value Source is then written to verify

that the last writer can update it.

Test Steps:

© 2022 by BACnet International. All rights reserved. 83

BACnet Testing Laboratories - Specified Tests

WRITE Present_Value = V1

VERIFY Present Value =V1

VERIFY Value_Source = (TD's device identifier or network address)
WRITE Value Source = (any valid value, V2)

VERIFY Value Source =V2

A e

7.3.1.X42.Y3 Value_Source Property None Test

Reason for Change: No test for this functionality exists.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
Purpose: To verify that the Value Source property shall have the value 'None' when there is no active value source.

Test Concept: If there is no active value source, i.e. the Present Value has taken on the value of Relinquish Default, then the
Value Source property shall have the value "None'.

Configuration Requirements: The object (O1) to be tested shall have 1 non-NULL entry in its Priority Array and the
Current Command_Priority has a value other than NULL or 6.

Test Steps:

1. READ PRIO = Current Command_Priority

2. CHECK(PRIO <> 6 and PRIO <> NULL)

3. VERIFY Value Source = (is not 'None')

4. WRITE Present Value = NULL, PRIORITY = PRIO

5. VERIFY Last Command Time ~= (the current local time)

6. IF (O1 has Minimum_On_Time or Minimum_Off Time properties) THEN

WAIT the larger of Minimum_Off Time and Minimum On_Time
VERIFY Current Command Priority = NULL
8. VERIFY Value Source = 'None' -- the value is the choice 'none’'

=

7.3.1.X42.Y4 Commandable Value Source Test

Reason for Change: There is no test for this functionality.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that the Value Source, Value Source Array, and Last Command Time update correctly when
Present_Value is written in a commandable object.

Test Concept: A commandable object which supports the value source mechanism is selected for the test. The Present Value
is written. Last Command Time, Value Source and Value Source Array properties are checked to verify that they have
been updated appropriately. Value Source is then written, and it is verified that Last Command Time property has not
changed.

Configuration Requirements: The object being tested shall be commandable and support the Value Source mechanism. No
other internal processes shall be controlling the object.

Test Steps:
-- Verify that the value source properties are updated when Present Value is commanded.
1. WRITE Present Value = (V1: any valid value), PRIORITY = (PRIO: any value other than 6)
2. VERIFY Value Source Array = (SRC1: TD's device identifier or network address),
ARRAY INDEX =PRIO
3. VERIFY Value Source = SRCI1

© 2022 by BACnet International. All rights reserved. 84

BACnet Testing Laboratories - Specified Tests

4. VERIFY Last Command Time ~= (the current local time)
-- Verify that Value Source can be written and that Last Command_Time does not update.

READ T1 = (01), Last Command_Time
WRITE Value Source = (SRC2: any valid value), PRIORITY = PRIO
VERIFY Value Source Array = SRC2, ARRAY INDEX =PRIO
IF (Current Command Priority == PRIO) THEN
VERIFY Value Source = SRC2
9. VERIFY Last Command Time = T1

PR

7.3.1.X42.Y5 Life Safety Value_Source Property Test

Reason for Change: There is no test for this functionality.
Purpose: To verify that the Value _Source property indicates the source of the current Mode property in a life safety object.

Test Concept: Select a life safety object which supports the Value Source mechanism. Mode is written, and it is verified that
Value Source is updated appropriately. Value Source is then written to verify that the last writer can update it.

Test Steps:

1. WRITE Mode = V1

2. VERIFY Mode = V1

3. VERIFY Value Source = (TD's device identifier or network address)
4. WRITE Value Source = (any valid value, V2)

5. VERIFY Value Source =V2

7.3.1.X498 Audit_Level Property Tests

7.3.1.X498.1 Object Specific Configurable Audit_Level NONE Test

Reason for Change: There is no test for this functionality.

Purpose: Verify that the Audit Level property, in an auditable object, controls the audit level for the object.

Test Concept: An object, O1, is selected which supports a configurable Audit Level property. With O1 configured to report
notifications, Audit_Level is changed to NONE. An auditable action is performed on O1 and it is verified that no notification
is generated.

Audit_Level is then changed to AUDIT CONFIG, and an auditable config action is performed on the object. It is verified
that a notification is sent. An auditable non-config action is performed on the object and it is verified that no notification is

sent.

Audit Level is then changed to AUDIT ALL and an auditable action is performed on the object. It is verified that a
notification is sent.

Configuration Requirements: The IUT is configured to generate audit notifications. The selected object, O1, shall have
auditable configuration operations that can be applied to it. AR is the Audit Reporter object configured to report for O1.

Test Steps:

1. WRITE O1, Audit Level = NONE

© 2022 by BACnet International. All rights reserved. 85

BACnet Testing Laboratories - Specified Tests

2. WRITE AR, Audit Level = (AUDIT CONFIG or AUDIT ALL)

3. MAKE(perform an operation on O1 that would be reported by the AR if Ol.Audit Level were AUDIT_ALL)
4. WAIT(AR Maximum_Send_Delay + Notification Fail Time)

5. CHECK(that the TUT did not report an audit notification for the operation)

6. IF (O1 has auditable configuration operations, such as writable configuration properties) THEN {
WRITE O1, Audit Level = AUDIT CONFIG
WRITE AR, Audit Level = NONE
MAKE(perform a config operation on O1)
IF the IUT is configured to generate unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)
} ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)
TRANSMIT BACnet-SimpleACK-PDU
}
MAKE(perform an auditable non-config operation on O1)
WAIT AR.Maximum_Send_Delay + Notification Fail Time
CHECK(that the IUT did not report an audit notification for the operation)

}

7. WRITE O1, Audit Level = AUDIT ALL
8. WRITE AR, Audit Level = NONE
9. MAKE(perform an auditable operation on O1)
10. IF the IUT is configured to generate unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
Notifications' = (a notification of the operation performed)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)
TRANSMIT BACnet-SimpleACK-PDU

}

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

7.3.1.X498.2 Audit Reporter Audit_Level Test

Reason for Change: There is no test for this functionality.

Purpose: Verify that the Audit Reporter's Audit_Level property is used in objects without an Audit_Level, or when an object's
Audit Level is DEFAULT.

Test Concept: An object, O1, is selected which supports a configurable Audit_Level property, or which does not have an
Audit Level property. The Audit Reporter for Ol is referred to as AR1. If Ol has an Audit Level property, it is set to
DEFAULT.

With O1 configured to report notifications, AR1's Audit Level is changed to NONE. An auditable action is performed on O1
and it is verified that no notification is generated.

© 2022 by BACnet International. All rights reserved. 86

BACnet Testing Laboratories - Specified Tests

ARI1's Audit Level is then changed to AUDIT CONFIG, and an auditable config action is performed on Ol. It is verified
that a notification is sent. An auditable non-config action is performed on O1 and it is verified that no notification is sent.

Audit_Level is then changed to AUDIT ALL and an auditable action is performed on O1. It is verified that a notification is
sent.

Configuration Requirements: The IUT is configured to generate audit notifications. The selected object, O1, should have
auditable configuration operations and auditable non-configuration operations that can be applied to it. AR is the Audit
Reporter object configured to report for O1.

Test Steps:

1. IF O1 contains an Audit Level property THEN
WRITE Ol, Audit Level = DEFAULT
. WRITE AR.Audit Level = NONE
. MAKE(perform an operation on O1 that would be reported by the AR if O1.Audit Level were AUDIT ALL)
. WAIT AR.Maximum_Send_Delay + Notification Fail Time
. CHECK(that the IUT did not report an audit notification for the operation)

wn AW

(o)}

. WRITE AR.Audit Level = AUDIT CONFIG
. IF O1 supports auditable config operations THEN {
MAKE(perform a config operation on O1)
IF the IUT is configured to generate unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)

=

+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)
TRANSMIT BACnet-SimpleACK-PDU

}

}

8. IF O1 supports auditable config operations THEN {
MAKE(perform a non-config operation on O1)
WAIT AR.Maximum_Send Delay + Notification Fail Time

CHECK(that the IUT did not report an audit notification for the operation)
}

9. WRITE AR.Audit Level = AUDIT ALL
10. IF O1 supports auditable config operations THEN {
MAKZE(perform a config operation on O1)
IF the IUT is configured to generate unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
"Notifications' = (a notification of the operation performed)
TRANSMIT BACnet-SimpleACK-PDU
b
H
11. IF O1 supports auditable config operations THEN {
MAKE(perform a non-config operation on O1)
IF the IUT is configured to generate unconfirmed audit notifications THEN {

© 2022 by BACnet International. All rights reserved. 87

BACnet Testing Laboratories - Specified Tests

BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)
} ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (a notification of the operation performed)
TRANSMIT BACnet-SimpleACK-PDU

}

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

7.3.1.X498.3 Audit_Level Change Notification Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that changes to Audit Level property results in audit notifications.

Test Concept: An object, Ol, is selected which supports a writable and/or configurable Audit Level property. The
Audit_Level property is written to each valid audit level and a notification of the change is checked for. The Audit Level
property is then configured (not via BACnet writes) to each valid audit level and a notification of the change is checked for.

Configuration Requirements: The IUT is configured to generate audit notifications and O1's Audit Level property is set to
NONE.

Test Steps:

1. IF Audit Level is writable THEN {
REPEAT AL = (AUDIT_CONFIG, AUDIT ALL, DEFAULT, NONE) DO {
IF Ol is an Audit Reporter and AL is DEFAULT THEN {
-- don't test DEFAULT on Audit Report object
+ ELSE {
WRITE O1, Audit = AL
IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
"Notifications' = (a notification indicating change of
Audit_Level)
} ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (a notification indicating change of
Audit_Level)
TRANSMIT BAChnet-SimpleACK-PDU

}

2. IF Audit Level is changeable without writing it via BACnet THEN {
REPEAT AL = (AUDIT_CONFIG, AUDIT_ALL, DEFAULT, NONE) DO {
IF Ol is an Audit Reporter and AL is DEFAULT THEN {
-- don't test DEFAULT on Audit Report object

© 2022 by BACnet International. All rights reserved. 88

BACnet Testing Laboratories - Specified Tests

+ ELSE {

MAKE(O1, Audit = AL without using BACnet services to write the property)
IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time

RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (a notification indicating change of
Audit Level)
} ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
"Notifications' = (a notification indicating change of
Audit Level)
TRANSMIT BACnet-SimpleACK-PDU

7.3.1.X499 Audit_Notification_Recipient Property Tests

7.3.1.X499.1 Audit_ Notification_Recipient Test

Reason for Change: There is no test for this functionality.

Purpose: Verify that an Audit Notification Recipient accepts and correctly uses all forms of recipient addresses.

Test Concept: With an object configured to report notifications, the Device object's Audit Notification Recipient property
is set to a local broadcast. An action is performed on the IUT which should result in an audit notification, and it is verified
that the notification is locally broadcast. This is repeated for global broadcasts, and unicast recipients. Only the unicast form

is tested for devices which do not generate UnconfirmedAuditNotifications.

Configuration Requirements: The IUT is configured to report audit notifications. If the IUT supports sending unconfirmed
audit notifications, it shall be configured to do so. Audit Notification Recipient is configured to be the TD, and audit

reporting is enabled in the [UT.
Test Steps:

-- Local Broadcast Recipient
1. IF the IUT supports sending unconfirmed audit notifications THEN {
WRITE Audit_Notification Recipient = (local broadcast recipient)
BEFORE Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,

'Notifications' = (a notification for the change to Audit Notification Recipient)

(UnconfirmedAuditNotification-Request
DESTINATION = GLOBAL BROADCAST,
"Notifications' = (a notification for the change to
Audit Notification Recipient)

IF the first notification was not globally broadcast) THEN {
RECEIVE UnconfirmedAuditNotification-Request,
DESTINATION = LOCAL BROADCAST,

'Notifications' = (a notification for the change to Audit Notification Recipient)

© 2022 by BACnet International. All rights reserved. 89

BACnet Testing Laboratories - Specified Tests

}

MAKE(perform an operation on the [UT which will result in an audit notification, other than changing the
Audit_Notification Recipient property)
BEFORE Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
DESTINATION = LOCAL BROADCAST,
'Notifications' = (a notification correctly indicating the operation performed)

H

-- Global Broadcast Recipient
2. IF the TUT supports sending unconfirmed audit notifications THEN {
WRITE Audit Notification Recipient = (global broadcast recipient)
BEFORE Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
DESTINATION = LOCAL BROADCAST,
'Notifications' = (a notification for the change to Audit Notification Recipient)
|
(UnconfirmedAuditNotification-Request
DESTINATION = GLOBAL BROADCAST,
'Notifications' = (a notification for the change to
Audit_Notification Recipient)
)
IF (the first notification was not globally broadcast) THEN {
RECEIVE UnconfirmedAuditNotification-Request,
DESTINATION = GLOBAL BROADCAST,
'Notifications' = (a notification for the change to Audit Notification Recipient)
}
MAKE(perform an operation on the IUT which will result in an audit notification, other than changing the
Audit_Notification Recipient property)
BEFORE Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
DESTINATION = GLOBAL BROADCAST,
'Notifications' = (a notification correctly indicating the operation performed)

}

-- Unicast Recipient
3. WRITE Audit_Notification Recipient = (D1: a device other than the TD)
4. IF the IUT is configured to send unconfirmed notifications THEN {
BEFORE (Maximum_Send Delay plus maximum time to resolve TD)
RECEIVE UnconfirmedAuditNotification-Request,
DESTINATION = TD,
'Notifications' = (a notification for the change to Audit Notification Recipient)
| (UnconfirmedAuditNotification-Request
DESTINATION = GLOBAL BROADCAST,
'Notifications' = (a notification for the change to Audit Notification Recipient)
)
+ ELSE {
BEFORE (Maximum_Send Delay plus maximum time to resolve TD)
RECEIVE ConfirmedAuditNotification-Request,
DESTINATION = DI,

'Notifications' = (a notification for the change to Audit Notification Recipient)
TRANSMIT BACnet-SimpleACK-PDU,
SOURCE = D1

H
5. IF (the first notification was not globally broadcast) THEN

RECEIVE UnconfirmedAuditNotification-Request,

© 2022 by BACnet International. All rights reserved. 90

BACnet Testing Laboratories - Specified Tests

DESTINATION = TD,
"Notifications' = (a notification for the change to Audit Notification Recipient)

6. MAKE(perform an operation on the IUT which will result in an audit notification, other than changing the
Audit Notification Recipient property)
7. BEFORE Maximum_Send Delay
RECEIVE UnconfirmedAuditNotification-Request,
DESTINATION = TD,
'Notifications' = (a notification correctly indicating the operation performed)

Notes to Tester: Where the IUT is expected to send multiple audit notifications for an operation, the notifications can be
generated in any order.

7.3.1.X500.1 Audit_Priority_Filter Target Audit Reporting Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that Audit Priority Filter correctly filters the generation of audit notifications based on priority.

Test Concept: An auditable commandable object for which Audit Priority Filter filtering can be applied is configured to
report all write operations. The Audit_Priority Filter is configured to restrict audit notifications to all but a single priority X.
The object is commanded at a priority other than X and it is verified that an audit notification is sent. The object is then
commanded at priority X and it is verified that no audit notification is sent.

Configuration Requirements: The IUT is configured to report audit notifications for writes on a commandable object, O1. If
the IUT does not support the Priority Array property in any object for which audit reporting can be configured, or if the IUT
does not support a configurable Audit Priority Filter property, this test shall be skipped. AR shall be the Audit Reporter
object for O1.

Test Steps:
-- Test the object’s Audit Priority Filter
1. IF O1 supports a configurable Audit Priority Filter property THEN {
WRITE O1, Audit Priority Filter = { all ones except priority X (bit X-1) }
TRANSMIT WriteProperty-Request,
'Invoke Id' = I,
'Object Identifier' = Ol,
'"Property Identifier' = Present Value,
'Property Value'= (V: any valid value),
'Priority' = (PRIO: any valid priority, but not X)
BEFORE Internal Processing Fail Time
RECEIVE BACnet-SimpleACK-PDU
\
(BACnet-Error-PDU,
'Error Type' = (E: any error)
)

IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({ -- there may be a second notification included for the write to
-- Audit Priority Filter. If there is, the order of the --
notifications in the list is not relevant
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent

© 2022 by BACnet International. All rights reserved. 9 1

BACnet Testing Laboratories - Specified Tests

operation = WRITE,

-- source-comment absent

target-comment = (any valid value, or absent),

invoke-id = (the invoke ID of the write to Present_Value),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = IUT,

target-object = O1,

target-property = Present_Value,

target-priority = PRIO,

target-value =V,

current-value = (the value before the write. may be absent if the value size is
larger than 32 encoded octets),

result = (E, if the op failed, otherwise absent)

1)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({ -- there may be a second notification included for the write to
-- Audit Priority_Filter. If there is, the order of the
notifications in the list is not relevant
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = WRITE,
-- source-comment absent
target-comment = (any valid value, or absent),
invoke-id = (the invoke ID of the write to Present Value),
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),
target-device = IUT,
target-object = O1,
target-property = Present_Value,
target-priority = PRIO,
target-value =V,
current-value = (the value before the write. may be absent if the value size is
larger than 32 encoded octets),
result = (E, if the op failed, otherwise absent)

5)
TRANSMIT BACnet-SimpleACK-PDU

}
TRANSMIT WriteProperty-Request,
'Invoke Id' = I,
'Object Identifier' = Ol,
'Property Identifier' = Present Value,
'Property Value' = (V: any valid value),
'Priority' = (PRIO: X)
BEFORE Internal Processing Fail Time
RECEIVE BACnet-SimpleACK-PDU
|
(BACnet-Error-PDU,
'Error Type' = (E: any error)
)
WAIT AR.Maximum_Send Delay + Notification Fail Time
CHECK(no audit notification sent)

© 2022 by BACnet International. All rights reserved. 92

BACnet Testing Laboratories - Specified Tests

}

-- Test the Audit Reporter object’s Audit Priority Filter
2. IF AR supports a configurable Audit Priority Filter property and O1 has no Audit Priority Filter or it can be configured
to None THEN {
IF O1 has an Audit_Priority Filter THEN
WRITE Ol, Audit_Priority Filter = NONE
WRITE AR, Audit_Priority Filter = { all ones except priority X (bit X-1) }
TRANSMIT WriteProperty-Request,
'Invoke Id' = I,
'Object Identifier' = Ol,
'Property Identifier' = Present Value,
'"Property Value'= (V: any valid value),
'Priority' = (PRIO: any valid priority, but not X)
BEFORE Internal Processing Fail Time
RECEIVE BACnet-SimpleACK-PDU
|
(BACnet-Error-PDU,
'Error Type' = (E: any error)
)
IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({ -- there may be a second notification included for the

-- write to Audit_Priority Filter. If there is, the order - of
the notifications in the list is not relevant

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = WRITE,

-- source-comment absent

target-comment = (any valid value, or absent),

invoke-id = (the invoke ID of the write to Present Value),

source-user-id = (the value from the operation if provided, otherwise

absent),
source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = [UT,

target-object = O,

target-property = Present_Value,

target-priority = PRIO,

target-value =V,

current-value = (the value before the write. may be absent if the value
size is larger than 32 encoded octets),

result = (E, if the op failed, otherwise absent)

1)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({ -- there may be a second notification included for the

-- write to Audit_Priority Filter. If there is, the order - of

the notifications in the list is not relevant
-- source-timestamp absent

© 2022 by BACnet International. All rights reserved. 93

BACnet Testing Laboratories - Specified Tests

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = WRITE,

-- source-comment absent

target-comment = (any valid value, or absent),

invoke-id = (the invoke ID of the write to Present Value),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = IUT,

target-object = O1,

target-property = Present_Value,

target-priority = PRIO,

target-value =V,

current-value = (the value before the write. may be absent if the value

size is larger than 32 encoded octets),
result = (E, if the op failed, otherwise absent)

i)
TRANSMIT BACnet-SimpleACK-PDU

}
TRANSMIT WriteProperty-Request,
'Invoke Id' = I,
'Object Identifier' = Ol,
'Property Identifier' = Present Value,
'Property Value'= (V: any valid value),
'Priority’' = (PRIO: X)
BEFORE Internal Processing Fail Time
RECEIVE BACnet-SimpleACK-PDU
|
(BACnet-Error-PDU,
'Error Type' = (E: any error)
)
WAIT AR.Maximum_Send Delay + Notification Fail Time
CHECK(no audit notification sent)

}

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

7.3.1.X501 Auditable_Operations Property Tests

7.3.1.X501.1 Non-configurable Auditable_Operations Property Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that non-configurable Auditable Operations properties are set to the required value.

Test Concept: Select an object, O1, which has a non-configurable Auditable Operations property. Verify that the property is
set to the required value.

Test Steps:

© 2022 by BACnet International. All rights reserved. 94

BACnet Testing Laboratories - Specified Tests

1. READ AO = Audit_Operations

2. CHECK(Audit Operations = (FALSE,TRUE,TRUE,TRUE,?,TRUE,?,2,2,2,?, FALSE,FALSE,?,2,2,...))
-- flags READ, NOTIFICATION and SUBSCRIPTION are FALSE,
-- flags WRITE, CREATE, DELETE, ACKNOWLEDGE-ALARM are TRUE, and
-- all other flags can be any value

7.3.1.X501.2 Auditable_Operations Target Audit Reporting Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that Auditable Operations controls which operations are auditable.

Test Concept: The IUT is configured to report some operations and not others through the Auditable Operations property.
Each of the standard auditable operations are performed against the IUT and the filtering provided by Auditable Operations
is verified to be correct.

Configuration Requirements: The IUT is configured to report all audit notifications with the exception that at least some
auditable operations are disabled via Auditable Operations.

Test Steps:

1. REPEAT OP = (each of the standard auditable operations for which the IUT is configured to report
except any operation which is unreasonably difficult to perform, such as
AUDIITING FAILURE) DO {

MAKE(perform OP on the IUT)
IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE (Audit Reporter for OP).Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = OP,
-- source-comment absent
target-comment = (any valid value, or absent unless OP is GENERAL),
invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),
source-user-id = (the value from the operation if provided, otherwise
absent),
source-user-role = (the value from the operation if provided, otherwise
absent),
target-device = [UT,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a
property),
target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),
target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),
current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

© 2022 by BACnet International. All rights reserved. 95

BACnet Testing Laboratories - Specified Tests

result = (the reason for failure if OP failed, otherwise absent)

i)
} ELSE {
BEFORE (Audit Reporter for OP).Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = OP,

-- source-comment absent

target-comment = (any valid value, or absent unless OP is GENERAL),

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = IUT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a
property),

target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),

target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),

current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

result = (the reason for failure if OP failed, otherwise absent)

i)
TRANSMIT BACnet-SimpleACK-PDU

¥

}

2. REPEAT OP = (each of the standard auditable operations for which the IUT is configured to NOT report
except any operation which is unreasonably difficult to perform, such as
AUDIITING_FAILURE) DO {

MAKE(perform OP on the the IUT)

WAIT (Audit Reporter for OP).Maximum_Send Delay + Notification Fail Time
CHECK(no audit notification was received)

7.3.1.X501.3 Auditable_Operations Source Audit Reporting Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that Auditable Operations controls which operations performed by the [UT are auditable.
Test Concept: The IUT is configured to report some source operations and not others through the Auditable Operations

property. Each of the standard auditable operations which the IUT can perform, are performed by the IUT and the filtering
provided by Auditable Operations is verified to be correct.

© 2022 by BACnet International. All rights reserved. 96

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT is configured to report all source audit notifications with the exception that at least
some auditable operations are disabled via Auditable Operations.

Test Steps:

1. REPEAT OP = (each of the standard auditable operations the IUT is able to perform on another device and is
configured to report except any operation which is unreasonably difficult to perform) DO {
MAKE(the IUT perform OP on the TD)
IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE (Audit Reporter for OP).Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,

} ELSE {

'Notifications' = ({

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not
initiated by an object),

operation = OP,

source-comment = (any valid value, or absent unless OP is
GENERAL),

-- target-comment absent

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a
property),

target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),

target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),

current-value = (the value before the op if the op targeted a property, or
absent. May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

i)

BEFORE (Audit Reporter for OP).Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,

'Notifications' = ({

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not
initiated by an object),

operation = OP,

source-comment = (any valid value, or absent unless OP is
GENERAL),

-- target-comment absent

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

© 2022 by BACnet International. All rights reserved. 97

BACnet Testing Laboratories - Specified Tests

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a
property),

target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),

target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),

current-value = (the value before the op if the op targeted a property, or
absent. May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

})
TRANSMIT BACnet-SimpleACK-PDU

H

2. REPEAT OP = (each of the standard auditable operations the IUT is able to perform on another device and is
configured to NOT report except any operation which is unreasonably difficult to perform) DO {
MAKE(the IUT perform OP on the TD)
WAIT AR.Maximum_Send Delay + Notification Fail Time
CHECK(no audit notifications were sent)

}

7.3.1.X503 Maximum_Send_Delay Property Tests

7.3.1.X503.1 Maximum_Send_Delay Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that Audit Reporter objects abide the Maximum_Send Delay value.

Test Concept: An Audit Reporter object is selected which contains a Maximum_Send Delay property. A sequence of N
auditable operations is performed on the IUT, and if the IUT is a client, the IUT is made to perform a sequence of M auditable
operations. The IUT is then monitored to ensure that the audit notifications are sent within the selected
Maximum_Send Delay.

N, the number of operations performed on the IUT shall be 2 or greater. M, the number of operations that the IUT will perform
shall be 0 if the [UT does not perform auditable operations, and 2 or greater otherwise.

The value that Maximum_Send Delay is configured for shall be large enough to allow for all of the operations to be
performed.

Test Steps:

1. WRITE ARI1, Maximum_Send Delay = (MSD: a value large enough to accomplish and report N+M auditable
operations)

2. WRITE AR2, Maximum_Send Delay = MSD

3. MAKE(perform N auditable operations on the IUT which would be reported through AR1)

4. MAKE(the IUT perform M auditable operations which would be reported through AR2)

5. WAIT Maximum_Send Delay + (Notification Fail Time * M+N)

© 2022 by BACnet International. All rights reserved. 98

BACnet Testing Laboratories - Specified Tests

6. CHECK(that all expected operations are reported)

7.3.1.X504 Monitored_Objects property Tests

7.3.1.X504.1 Monitored_Objects Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that the correct Audit Reporter is used for an auditable object.

Test Concept: Each Audit Reporter, which contains a Monitored Objects property, in the device is tested individually. The
selected Audit Reporter is enabled, and all others are disabled. An object that the enabled Audit Reporter reports for is
selected. An auditable operation is performed on the object and it is verified that an audit notification is generated. An object
that the enabled Audit Reporter does not report for is selected. An auditable operation is performed on the object and it is
verified that no audit notification is generated.

Configuration Requirements: The IUT is configured to send unconfirmed audit notifications. If the Monitored Objects
property is not supported by any Audit Reporter objects in the IUT, this test shall be skipped. If the IUT only supports a single
Audit Reporter object for target object reporting, and its Monitored Objects property is always set to all objects, this test
shall be skipped. Configure all Audit Reporters to report all operations and set Audit_Level to NONE for all Audit Reporter
objects.

Test Steps:

1. IF the Monitored Objects property is writable in one or more of the AR objects THEN
MAKE(reconfigure which AR is used by which objects)
2. REPEAT AR = (each Audit Reporter object) DO {
O1 = (an object O1 which reports thru AR as determined by Monitored Objects and AR precedence)
02 = (an object O2 which reports thru a different Audit Reporter, AR2, as determined by
Monitored Objects and AR precedence)
WRITE AR.Audit Level = AUDIT _ALL
MAKE(perform an auditable operation on O1)
IF the IUT is configured to send unconfirmed auto notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (a notification indicating the operation)
}+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (a notification indicating the operation)
TRANSMIT BACnet-SimpleACK-PDU
}
MAKE(perform an auditable operation on O2)
WAIT AR2.Maximum_Send Delay + Notification Fail Time
CHECK(that the IUT did not report an audit notification for the operation)
WRITE AR.Audit_Level = NONE

}

Notes to Tester: In this test, the audit reporting configuration properties are assumed to be writable. If one is only configurable,
then the WRITE operation should be replaced with MAKE.

© 2022 by BACnet International. All rights reserved. 99

BACnet Testing Laboratories - Specified Tests

7.3.1.X505 Send_Now Property Tests

7.3.1.X505.1 Send_Now Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that writing True to Send Now results in the sending of delayed audit notifications.

Test Concept: The IUT is configured to delay sending audit notifications. An Audit Reporter object, AR, is selected which
contains a Send Now property. An auditable operation is performed on the IUT. Send Now is then written and it is verified
that the audit notifications are sent.

Configuration Requirements: If the IUT cannot be made to delay sending notifications without heroic efforts, this test shall
be skipped.

Test Steps:

1. WRITE AR, Maximum_Send Delay = (a value large enough to accomplish the test)
2. MAKE(perform whatever actions are required to make the IUT delay sending notifications)
3. WRITE AR, Send Now = TRUE
4. IF the IUT is configured to send unconfirmed notifications THEN {
BEFORE Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
"Notifications' = (one or more notifications for operation applied to the IUT)
} ELSE {
BEFORE Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (one or more notifications for operation applied to the IUT)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2 Object Specific Tests

7.3.2.4 Averaging Object Tests

7.3.2.4.1 Reinitializing the Samples
Reason For Change: Per clarification BTL-CR-0309

Purpose: To verify that an Averaging object correctly resets the Attempted Samples, Valid Samples, Minimum_Value,
Average Value, and Maximum Value when Attempted Samples, Object Property Reference, Window Interval, or
Window_Samples are changed.

Test Concept: The IUT is configured with an Averaging object that is actively monitoring some property value. The sampling
is reinitialized by writing to the Attempted Samples, ObjeetPropertyReferenecer-Window Interval, Window Samples, and
Windew—SamplesObject Property Reference in turn. After each reinitialization,—the-—FD—pauses—and verifyies that new

sampling has begun.

Configuration Requirements: The IUT shall be configured with an Averaging object that is actively monitoring some property
value. The sampling interval shall be long enough to permit the TD to verify that the sample is properly reinitialized.

Test Steps:

[Renumber remaining steps to close the gaps for those which are now omitted.]

© 2022 by BACnet International. All rights reserved. 1 OO

BACnet Testing Laboratories - Specified Tests

H—VERIEY Valid-Samples=——6;
12. WAIT (at least two sample times),

13. VERIFY Minimum_Value =
14. VERIFY Average Value =

15. VERIFY Maximum_Value =
16. VERIFY Attempted Samples =
17. VERIFY Valid Samples =

18. WRITE Window _Interval =

(avalue x: -INF < x <INF),

(a value # NaN),

(a value x: Minimum_Value < x <INF),

(avalue x > 2),

(avalue x > 2),

(any new value that will result in an appropriate sample time),

24. WAIT (at least two sample times),

25. VERIFY Minimum_Value =
26. VERIFY Average Value =

27. VERIFY Maximum_Value =
28. VERIFY Attempted Samples =
29. VERIFY Valid_Samples =

30. WRITE Window_Samples =

36. IF (Obj ect_PrOI_)erty_Reference is

(a value x: -INF < x < INF),

(a value # NaN),

(a value x: Minimum_Value < x <INF),

(avalue x >2),

(a value x > 2),

(any new value that will result in an appropriate sample time),

writable) THEN {

WAIT (at least two sample times),

VERIFY Minimum_ Value =
VERIFY Average Value =
VERIFY Maximum_Value =

(a value x: -INF <x <INF),
(a value # NaN),
(a value x: Minimum_Value < x < INF),

VERIFY Attempted Samples = (a value x > 2),

VERIFY Valid Samples =

(avalue x > 2),

WRITE Object Property Reference = (any new value),
IF (Samples_are_taken immediately) THEN {
VERIFY Attempted Samples = 1,
VERIFY Minimum_Value = Average Value,,
VERIFY Maximum_Value = Average Value,

VERIFY Valid Samples
ELSE

=1

VERIFY Attempted Samples= 0,
VERIFY Minimum_Value = INF,

VERIFY Maximum_Val

ue = -INF,

VERIFY Average Value = NaN,

VERIFY Valid_Samples

© 2022 by BACnet International. All rights reserved.

= 0

101

BACnet Testing Laboratories - Specified Tests

7.3.2.4.2 Managing the Sample Window
Reason For Change: Per clarification BTL-CR-0309

Purpose: To verify that an Averaging object correctly tracks the average, minimum, and maximum values attained in a sample.
This includes monitoring before and after the sampling window is full.

Test Concept: An Averaging object is configured to monitor a property that can be controlled manually by the testing agent
or by the TD. The TD initializes the sample and then monitors the Minimum_Value, Average Value, Maximum_Value,
Attempted Samples, and Valid Samples properties after each sampling interval to verify that their values are properly
tracking the monitored value. This requires the ability to manipulate the values of the monitored property value and a slow
he analysis. This continues until after the sample window is full. H-the FdT -deesneot

Configuration Requirements: The IUT shall be configured with an Averaging object used to monitor a property that can be
controlled by the testing agent or by the TD. The sampling interval shall be configured to allow time to change the monitored
property value and to determine if each of the properties Minimum Value, Average Value, Maximum Value,
Attempted_Samples, and Valid_Samples correctly changes after each sample interval.

Test Steps:

1. WRITE Attempted Samples= 05

2. READ StartingSample = Valid_Samples +1
73. REPEAT X = (+StartingSample to Window_Samples + 5) DO {
WAIT (Window_Interval / Window_Samples)
IF (X < Window_Samples) THEN
VERIFY Attempted Samples = X
ELSE
VERIFY Attempted Samples = Window_Samples,
VERIFY Minimum_Value =(the minimum of the monitored values so far),
VERIFY Maximum_Value = (the maximum of the monitored values so far),
VERIFY Average Value = (the average of the monitored values so far),
IF (X < Window_Samples) THEN
VERIFY Valid Samples = X
ELSE
VERIFY Valid Samples = Window_Samples

7.3.2.8 Calendar Test

7.3.2.8.1 Single Date Rollover Test
Reason for Change: Allow for non-configurable Date List properties.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30;
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.9.

© 2022 by BACnet International. All rights reserved. 1 02

BACnet Testing Laboratories - Specified Tests

Purpose: To verify the ability to represent the Calendar status when the Date List is in the form of an individual date. Either
execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means must be
supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date List containing a single date. The IUT's clock is set to the date
that immediately precedes the one specified in Date List and a time near the end of the day. The test verifies that the
Present_Value of the Calendar object is initially FALSE and that as the time rolls over to the next day the Present Value
changes to TRUE.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date List with a single
BAChnetCalendarEntry in the form of a Date. If Date List property cannot be configured with a BACnetCalendarEntry in the
form of a Date, then this test shall be skipped.

Test Steps:
1. (TRANSMIT TimeSynchronization-Request,
'"Time' = (the day preceding the one specified in Date List,
24:00:00 — Schedule Evaluation Fail Time - 1 minute)) |
(TRANSMIT UTCTimeSynchronization-Request,
'Time' = (the day preceding the one specified in Date List,
24:00:00 - Schedule Evaluation Fail Time - 1 minute converted to UTC)) |
MAKE (the local time = 24:00:00 - Schedule Evaluation Fail Time - 1 minute)
2. WAIT Schedule Evaluation Fail Time
3. VERIFY Present Value = FALSE
4. WAIT (Schedule Evaluation Fail Time + 2 minutes)
5. VERIFY Present Value = TRUE

7.3.2.8.2 Date Range Test

Reason for Change: Allow for non-configurable Date List properties.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30;
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.9.

Purpose: To verify the ability to represent the Calendar status when the Date List is in the form of a BACnetDateRange.
Either execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means
must be supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date List containing a single BACnetDateRange. The IUT's clock
is set to a time and date that is outside of the date range. The Present Value is read and verified to be FALSE. The clock is
reset to a value within the date range and the Present Value is read again to verify that it has the value TRUE. If the IUT can
be configured with wildcard fields in the date range then it shall be tested with and without wildcards.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date List with a single
BAChnetCalendarEntry in the form of a BACnetDateRange.—If Date List property cannot be configured with a
BACnetCalendarEntry in the form of a BACnetDateRange, then this test shall be skipped.

Test Steps:
1. (TRANSMIT TimeSynchronization-Request,
'Time' = (any day and time outside of the specified date range selected by the tester)) |
(TRANSMIT UTCTimeSynchronization-Request,
'"Time' = (any day and time outside of the specified date range selected by the tester)) |

© 2022 by BACnet International. All rights reserved. 1 03

BACnet Testing Laboratories - Specified Tests

MAKE (the local time = any day and time outside of the specified date range selected by the tester)
2. WAIT Schedule Evaluation Fail Time
VERIFY Present Value = FALSE
4. (TRANSMIT TimeSynchronization-Request,
'Time' = (any day and time inside the specified date range selected by the tester)) |
(TRANSMIT UTCTimeSynchronization-Request,
'Time' = (any day and time inside the specified date range selected by the tester)) |
MAKE (the local time = any day and time inside the specified date range selected by the tester)
5. WAIT Schedule Evaluation Fail Time
6. VERIFY Present Value = TRUE

W

7.3.2.8.3 WeekNDay Test
Reason for Change: Allow for non-configurable Date List properties.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30;
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.9.

Purpose: To verify the ability to represent the Calendar status when the Date List is in the form of a BACnetWeekNDay.
Either execution of the TimeSynchronization or the UTCTimeSynchronization service must be supported or another means
must be supplied to reset the IUT's clock during the test.

Test Concept: The Calendar object is configured with a Date List containing a single BACnetWeekNDay. The IUT's clock
is set to a time and date, T1, that matches the BACnetWeekNDay mask. The Present Value is read and verified to be TRUE.
The clock is reset to a value, T2, that matches the BACnetWeekNDay mask except for the month. The Present Value is read
and verified to be FALSE. The clock is reset again to a value, T3, that matches the BACnetWeekNDay mask except for the
week of the month. The Present Value is read and verified to be FALSE. The clock is reset again to a value, T4, that matches
the BACnetWeekNDay mask except for the day of the week. The Present Value is read and verified to be FALSE. In between
each change, the clock is reset to T1 to force the Present Value back to TRUE.

Configuration Requirements: The IUT shall be configured with a Calendar object that contains a Date List with a single
BACnetCalendarEntry in the form of a BACnetWeekNDay. The BACnetWeekNDay shall be the !1th month, last seven days,
and Saturday. If Date_List property cannot be configured with a BACnetCalendarEntry in the form of a BACnetWeekNDay,
then this test shall be skipped.

Test Steps:
1. (TRANSMIT TimeSynchronization-Request,
'"Time' = (T1) |
(TRANSMIT UTCTimeSynchronization-Request,
'Time' = (T1)) |

MAKE (the local time = T1)
2. WAIT Schedule Evaluation Fail Time

3. VERIFY Present Value = TRUE
4. (TRANSMIT TimeSynchronization-Request,
'"Time' = (T2) |
(TRANSMIT UTCTimeSynchronization-Request,
'"Time' = (T2)) |

MAKE (the local time = T2)
5. WAIT Schedule Evaluation Fail Time
VERIFY Present Value = FALSE
7. (TRANSMIT TimeSynchronization-Request,

.0\

© 2022 by BACnet International. All rights reserved. 1 04

BACnet Testing Laboratories - Specified Tests

'"Time' = (T1)) |
(TRANSMIT UTCTimeSynchronization-Request,
'Time' = (T1)) |

MAKE (the local time = T1)
8. WAIT Schedule Evaluation Fail Time
9. VERIFY Present Value = TRUE
10. (TRANSMIT TimeSynchronization-Request,

'"Time' = (T3) |
(TRANSMIT UTCTimeSynchronization-Request,
'"Time' = (T3)) |

MAKE (the local time = T3)
11. WAIT Schedule Evaluation Fail Time
12. VERIFY Present Value = FALSE
13. (TRANSMIT TimeSynchronization-Request,

'"Time' = (T1)) |
(TRANSMIT UTCTimeSynchronization-Request,
"Time' = (T1)) |

MAKE (the local time = T1)
14. WAIT Schedule Evaluation Fail Time
15. VERIFY Present_Value = TRUE
16. (TRANSMIT TimeSynchronization-Request,

'"Time' = (T4) |
(TRANSMIT UTCTimeSynchronization-Request,
'"Time' = (T4)) |

MAKE (the local time = T4)
17. WAIT Schedule Evaluation Fail Time
18. VERIFY Present Value = FALSE

7.3.2.9 Command Object Tests

7.3.2.9.3 External Writes Test

Reason for Change: The purpose of the test is updated after removing the duplicate information. The Test Concept and
Configuration Requirements are updated with generic test parameters.

Purpose: To verify that a Command object can write to external objects. H-the T doesnotsupport-writingto-external- objeets
; s obicct thi halll ttod

Test Concept: The IUT is configured with a Command object having an action list X, that includes writing to an object O/ in
the TD. The TD invokes this action list by writing the appropriate value to the Command object. The TD verifies that the
IUT transmits the appropriate WriteProperty-Request.

Configuration Requirements: The IUT shall be configured with a Command object that has an Action property that contains
an action list, X, that includes a command to write to the Present—Value property Pl of (Analeg-Value0)-object O1 with
the value V1 in the TD.

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in the
range 1-16, excluding 6.

Test Steps:

© 2022 by BACnet International. All rights reserved. 1 05

BACnet Testing Laboratories - Specified Tests

1. WRITE Present Value =X
2. RECEIVE Simple-ACK-PDU
3. VERIFY In_Process = TRUE
43-BEFORE External Command Fail Time
RECEIVE WriteProperty-Request,
'Object Identifier' = (AnalegValue; 6) O1,
'Property Identifier' = Present—Value P/,
'"Property Value' = (anyrReal-value) V1
4. VERIEY-In—Proeess=TRUETRANSMIT BACnet-Simple ACK-PDU
5. IF (Post_Delay is present)
WAIT (Post_Delay)
6. VERIFY In Process = FALSE

7.3.2.9.7 Write While In_Process is TRUE Test.

Reason for Change: Changed step 2 to use WRITE. Fixed errata in step 3 to show correct comparison to Protocol Revision.

Purpose: To verify that an action list continues to completion if a second action list is commanded while In_Process is TRUE
and that the second action list is not executed.

Test Concept: The IUT is configured with two action lists that include a sequence of externally visible outputs with post
delays for each action. The TD triggers the first action list. The external outputs are observed in order to trigger the second
action list during the post delay of the first list. The TD triggers the second action list. The external outputs are observed to
verify that the second action list is not executed. If the IUT does not support Post Delay, then this test shall be omitted. If
the IUT does not support action list configuration, then this test shall be omitted.

Configuration Requirements: The IUT shall be configured with a Command object having two distinct action lists, X and Y,
that include writing to a sequence of externally visible outputs. There shall be a post delay between writes to the externally
visible outputs that is long enough for the tester to observe the delay (This ensures In_Process remains TRUE long enough
to command the second action list).

Test Steps:

1. WRITE Present Value =X

2—FRANSMIT WriteProperty-Request;
! 1 1 |
! 1 1 ’
'Deonartc Valua! — v
Property-Value Y

2. WRITE Present Value =Y
3. IF (Protocol Revision exists and Protocol Revision e>= 10) THEN
RECEIVE BACnet-Error-PDU

'Error Clas's = OBIJECT,
'Error Code' = BUSY
ELSE
(RECEIVE (BACnet-Error PDU

'Error Class' = OBJECT,

'Error Code' = BUSY)

|

(BACnet- Error-PDU
'Error Class' = SERVICES,
'Error Code' = SERVICE REQUEST DENIED | OTHER)

4. CHECK (that the externally visible actions of X take place)

© 2022 by BACnet International. All rights reserved. 1 06

BACnet Testing Laboratories - Specified Tests

5. CHECK (that the externally visible actions of Y did not take place)
6. VERIFY In_Process = FALSE,
7. VERIFY All_Writes_Successful = TRUE

7.3.2.10 Device Object Tests

These are the tests for the Device object. Other tests for functionality of the Device object are covered by tests for the
application service or special functionality to which they correspond.

7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test

Reason for Change: IC135-2012-18 ruled that the increment shall not be in the Active COV_Subscriptions property value if
the property is not numeric; present if a valid Increment was provided in the subscription; and optionally present otherwise

Purpose: This test case verifies that the IUT correctly updates the Active COV_Subscriptions property when COV
subscriptions are created, cancelled and timed-out using SubscribeCOV.

Test Concept: INC,, INC», and INC; are each not present if the property is not numeric; present if a valid Increment was
provided in the subscription, and optionally present otherwise.

Configuration Requirements: In this test, the tester shall choose three standard objects, O;, O,, and Os, for which the device
supports SubscribeCOV. Oy, O,, and O3 are not required to refer to different objects. The tester shall also choose three non-
zero unique process identifiers, Py, P>, and P3, and three non-zero lifetimes L, L, and L;. Lifetime L; shall be long enough
to allow the initial part of the test to run through to step 14. Lifetimes L, and L3 shall be long enough for the whole test to be
completed without expiring.

The IUT shall start the test with no entries in its Active_COV_Subscriptions property.
Test Steps:

1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = P,
'Monitored Object Identifier' = Oy,
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = L,
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = Py,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = Oy,
'Time Remaining' = (a value approximately equal to L),
'List of Values' = (values appropriate to the object type of the monitored object)
4. TRANSMIT BAChnet-SimpleACK-PDU
5. [IF Pl is numeric THEN
VERIFY Active COV_Subscriptions = {{ {TD, P}, {Oy, Present Value }, TRUE, (a value less than L),

(INC; : not present or a valid Increment if-the-propertyis REALE) } }

ELSE
VERIFY Active_COV _Subscriptions = {{ {ID, P;, { O,, Present_Value }, TRUE, (a value less than L), (INC;: not
present)}}
6. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = P,
'Monitored Object Identifier' = 0O,,
'Issue Confirmed Notifications' = FALSE,
'Lifetime' = L,

7. RECEIVE BACnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved. 1 07

BACnet Testing Laboratories - Specified Tests

8. BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = P,
'Initiating Device Identifier' = IUT,
'"Monitored Object Identifier' = (7%
'Time Remaining' = (a value approximately equal to L),
'List of Values' = (values appropriate to the object type of the monitored object)
9. VERIFY Active COV_Subscriptions = {{ {TD, Py}, {O,, Present_Value}, TRUE, (a value less than L)),

INC [(a—validInerementif the property-is REAL) },
{ {TD, P,}, {O,, Present_Value}, FALSE, (a value less than L,),

(INC;: not present if the property is not numeric; present
if'a valid Increment was provided in the subscription;

optionally present otherwiseif-the-propertyisREAL) }}
10. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = Ps,
'Monitored Object Identifier' = 03,

'Issue Confirmed Notifications' = FALSE,
'Lifetime' = L;

11. RECEIVE BAChnet-SimpleACK-PDU
12. BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = Ps,
'Initiating Device Identifier' = IUT,
'"Monitored Object Identifier' = O3,

'Time Remaining' = (a value approximately equal to L3),
'List of Values' = (values appropriate to the object type of the monitored object)
13. IF P; is numeric THEN
VERIFY Active COV_Subscriptions = {{{TD, P}, {O4, Present_Value}, TRUE, (a value less than L),

INC fa-validInerementif the property- is REAL)},

{{TD, P2}, {O,, Present_Value}, FALSE, (a value less than L,),
INCtavalid-nerement-if the property-is REALY .

{{TD, Ps}, {Os, Present_Value}, FALSE, (a value less than L3),

INC3. : not present or €a valid Increment-f-the-property-is REAL)} }

ELSE
VERIFY Active COV _Subscriptions = {{{TD, P}, {O,, Present Value}, TRUE, (a value less than
L), INC; },
{H{TD, P}, {O;, Present Value}, FALSE, (a value less than
L), INC; },

{TD, P3}, {Os, Present Value}, FALSE, (a value less Than
L3), (INC3: not present)}}

14. WAIT L, + the IUT's timer granularity
15. VERIFY Active_COV _Subscriptions = {{{TD, P2 }, {O 2, Present Value}, FALSE, (a value less than L 2),
INC; (a valid Increment if the property is REAL)},
{H{TD, P 3}, {O 3, Present Value}, FALSE, (a value less than L 3),
INCs(a valid Increment if the property is REAL)}}
16. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = Ps3,
'"Monitored Object Identifier' = O;
17. RECEIVE BACnet-SimpleACK-PDU
18. VERIFY Active_COV_Subscriptions = {{{TD, P2 }, {O 2, Present Value}, FALSE, (a value less than L 2),
INC:(a valid Increment if the property is REAL) }}
19. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = P,
'"Monitored Object Identifier' = O,
20. RECEIVE BACnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved. 1 08

BACnet Testing Laboratories - Specified Tests

21. VERIFY Active_COV _Subscriptions = { }

7.3.2.10.6 Successful Increment of the Database Revision Property after Changing the Object_Identifier Property
of an Object

Reason for change: To correct a cut&paste&forgot-to-revise typo in the Test Concept.

Purpose: To verify that the Database Revision property of the Device object increments after changing the Object Identifier
property of an object. If the Object Identifier property of an object cannot be changed, this test shall be omitted.

Test Concept: The Database Revision property of the Device object is read. An object's nameObject Identifier property is
changed. The Database Revision property of the Device object is read again to verify that it incremented.

Configuration Requirements: none.
Test Steps:

1. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the Device object),
'"Property Identifier' = Database Revision
2. RECEIVE ReadProperty-ACK,
'Object Identifier' = (the Device object),
'Property Identifier' = Database Revision,
'Property Value'= (any value = initial value)
3. MAKE (the Object Identifier property of an object change)
4. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the Device object),
'Property Identifier' = Database Revision
5. RECEIVE ReadProperty-ACK,
'Object Identifier' = (the Device object),
'Property Identifier' = Database Revision,
'Property Value'= (greater than initial value)

7.3.2.10.X2 Max_Segments_Accepted at least the minimum
Reason for Change: There is no SSPC proposal for this change.

Purpose: To verify that the IUT correctly implements the Max Segments Accepted property value when it does support
segmentation.

Configuration Requirements: If the IUT cannot be configured to support segmentation, then this test shall be skipped.
Test Steps:
1. IF Segmentation Supported == SEGMENTED TRANSMIT or Segmentation Supported == SEGMENTED NONE
THEN
VERIFY Max Segments Accepted = 1

ELSE
VERIFY (Max_Segments Accepted > 1)

7.3.2.10.X Ensure UTC_Offset is Configurable

Reason for Change: New test to standard.

© 2022 by BACnet International. All rights reserved. 109

BACnet Testing Laboratories - Specified Tests

Purpose: This test verifies UTC_Offset is configurable and accepts from -1440 to +1440.

Test Concept: For each value in a set of valid values across the acceptable range for UTC_Offset, verify that the UTC_Offset
can be configured with the value.

Configuration Requirements: If the Protocol Revision of the device is less than 18, this test shall be skipped.
Test Steps:
1. REPEAT UO = (-1440, -780, 0, +780, +1440, and 2 other values which are multiples of 15 minutes) DO {
IF (UTC_Offset is writable) THEN
WRITE UTC Offset =UO
ELSE

MAKE UTC_Offset =UO
VERIFY (Device Object) UTC_Offset = UO

7.3.2.10.X3 Ensure Device Object_Name is Configurable

Reason for Change: New test to standard.
Purpose: This test verifies Device Object Name value is configurable as per BACnet Clause 12.1.1.4.
Configuration Requirements: none.

Test Steps:

1. READ S = (Device, IUT), Object Name

2. MAKE (Configure the device Object Name to a value other than S)
3. VERIFY (Device, IUT), Object Name <> S

7.3.2.10.X4 Ensure Device Object_Identifier is Configurable

Reason for Change: New test to standard.
Purpose: This test verifies Device Object Identifier property value is configurable as per BACnet Clause 12.1.1.3.
Configuration Requirements: none.

Test Steps:

1. READ S = (Device, IUT), Object Identifier

2. MAKE (Configure the device Object Identifier to a value other than S)
3. VERIFY (Device, IUT), Object_Identifier <> S

7.3.2.13 Global Group Object Tests

7.3.2.13.X1 Global Group Present_Value, Out_Of Service and Status_Flags Test
Reason for Change: New Tests for Global Group object type.

© 2022 by BACnet International. All rights reserved. 1 10

BACnet Testing Laboratories - Specified Tests

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: This test verifies the interrelationship between the Present Value, Out_Of Service and Status_Flags properties of
a Global Group object.

Test Concept: Verify the Present_Value stops updating when Out_Of Service is TRUE.
Configuration Requirements: The IUT shall be configured with a Global Group object with the Group Members property

containing a member M1 at index N1 that has a value that can be changed. W1 is the maximum time it takes for the Global
Group to receive an update from M1.

Test Steps:

1. MAKE (Out Of Service = TRUE)

2. VERIFY Out_Of Service=TRUE

3. VERIFY Status Flags = {?, ?, FALSE, TRUE}

4. X1 =READ Present Value, ARRAY INDEX =NI1
5. MAKE (M1 value change)

6. WAIT (W1)

7. X2 =READ Present Value, ARRAY INDEX =NI1
8. VERIFY X1 =X2

7.3.2.13.X2 Reliability MEMBER_FAULT Test
Reason for Change: New Tests for Global Group object type.

Purpose: This test case verifies the FAULT flag of the Member Status Flags is TRUE and the Reliability property is equal
to MEMBER_FAULT when a member of the Group_Members property goes into FAULT.

Test Concept: Force a member of the Group Members property to enter a Fault condition and verify the
Member Status Flags FAULT flag equals TRUE and Reliability equals MEMBER FAULT.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group Members property
containing a member M1 at index N1 that has a value that can be made to indicate a fault condition (see Notes To Tester).
The Out_Of Service property of the Global Group object must remain FALSE throughout the test. W1 is the maximum time
it takes for the Global Group to receive an update from M1.

Notes to Tester: Member Status Flags FAULT flag will the TRUE and the Reliability property will change to
MEMBER_FAULT when a member of the Group_Members property goes into fault.

Test Steps:

1. MAKE (M1 Status_Flags = {?, TRUE, ?, ?})

2. WAIT (W1)

3. VERIFY Member_Status_Flags = {?, TRUE, ?, ?}
4. IF (Reliability is present) THEN

VERIFY Reliability = MEMBER FAULT

7.3.2.13.X3 Reliability COMMUNICATION_FAILURE Test
Reason for Change: New Tests for Global Group object type.

© 2022 by BACnet International. All rights reserved. 1 1 1

BACnet Testing Laboratories - Specified Tests

Purpose: This test case verifies that the Member Status Flags FAULT flag will remain FALSE while the Reliability property
is COMMUNICATION FAILURE.

Test Concept: Force a member of the GroupMembers property to stop communicating and verify the Reliability property
equals COMMUNICATION_FAILURE and the Member Status Flags FAULT flag remains FALSE.

Configuration Requirements: The IUT shall be configured with a Global Group object with the GroupMembers containing
a member M1 at index Nlthat can be made to discontinue communications and also respond with an error such as
OBJECT/UNKNOWN_OBIJECT. (See Notes To Tester). The Out_Of Service property of the Global Group object must
remain FALSE throughout the test. W1 is the maximum time it takes for the Global Group to receive an update from M1.

Notes to Tester: Reliability will change to COMMUNICATION FAILURE when a member is no longer able to communicate
its Status_Flags property. This can occur when the device goes offline or the object is deleted within the device.

Test Steps:

1. MAKE (M1 fail (communications or error))

2. WAIT (W1)

3. VERIFY Reliability = COMMUNICATION_FAILURE
4. IF (Reliability is present) THEN

VERIFY Reliability = COMMUNICATION_FAILURE
5. VERIFY Member_ Status_Flags = {?, FALSE, ?, ?}

7.3.2.13.X4 Present_Value Tracking and Reliability Test
Reason for Change: New Tests for Global Group object type.
Dependencies: ReadProperty Service Execution Tests, 9.18

Purpose: This test verifies that the Global Group object continues to update its Present Value independent of the state of the
Reliability property.

Test Concept: While the Reliability property is not NO_ FAULT DETECTED verify the Present Value continues to update.

Configuration Requirements: The IUT shall be configured with a Global Group object with its Reliability not equal to
NO_FAULT DETECTED and a Group_Members member M1 at index N1 that can be changed. W1 is the maximum time
it takes for the Global Group to receive an update from M1.

Notes to Tester: Reliability will change to COMMUNICATION FAILURE when a member is no longer able to communicate
its Status_Flags property. This can occur when the device goes offline or the object is deleted within the device. Also, the
Reliability property will change to MEMBER FAULT when a member of the Group_Members property goes into fault.

Test Steps:

1. VERIFY Reliability <> NO FAULT DETECTED
2. MAKE (M1 =X1)

3. WAIT (W1)

4. X2 =READ Present Value, ARRAY INDEX = N1
5. VERIFY X1 =X2

7.3.2.13.X5 Present_Value Tracking Test
Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18

© 2022 by BACnet International. All rights reserved. 1 12

BACnet Testing Laboratories - Specified Tests

Purpose: This test verifies that the Global Group object tracks the value of the monitored properties value and data type.

Test Concept: Make a member of the Group_Members property change value and verify the Present Value updates to match
that value.

Configuration Requirements: The IUT shall be configured with a Global Group object with the GroupMembers containing
a member M1 at index N1 of the specified data type that can be changed. W1 is the maximum time it takes for the Global
Group to receive an update from M1.

MAKE (M1 =X1)

WAIT (W1)

X2 =READ Present Value, ARRAY INDEX = N1
VERIFY X1 =X2

B =

7.3.2.13.X6 COVU_Period and COVU_Recipients Zero Test
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that object O1 does not initiate UnconfirmedCOVNotification service requests when COVU_Period is
zero or COVU_Recipient contains an empty list.

Test Concept: Configure O1 to produce unsubscribed UnconfirmedCOVNotifications, set COVU_Period to zero and attempt
to produce unsubscribed UnconfirmedCOVNotifications. Repeat with COVU_Recipients containing an empty list.

Configuration Requirements: At the start of the test, O1 shall be configured with a non-zero COVU_Preiod and a non-empty
COV_Recipient property.

Test Steps:
1. MAKE (Ol issue an unsubscribed UnconfirmedCOVNotification)
2. BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,
DESTINATION = (any valid address),
'Subscriber Process Identifier' = 0,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = O1,
'Time Remaining' = 0,
'List of Values' = (any valid set of values)
WRITE (COVU_Period = 0)
MAKE (O1 a condition that would normally cause the IUT to issue an unsubscribed UnconfirmedCOVNotification)
WAIT Notification Fail Time times 2
CHECK (that O1 has not transmitted an UnconfirmedCOVNotification-Request)
WRITE (COVU_Period <> 0)
MAKE (O1 issue an unsubscribed UnconfirmedCOVNotification)
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,
DESTINATION = (any valid address),
'Subscriber Process Identifier'= 0,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = O1,
'Time Remaining' = 0,
'List of Values' = (any valid set of values)
10. WRITE (COVU_Recipient an empty list)
11. MAKE (Ol a condition that would normally cause the IUT to issue an unsubscribed UnconfirmedCOVNotification)
12. WAIT Notification Fail Time times 2

ORI N AW

© 2022 by BACnet International. All rights reserved. 1 13

BACnet Testing Laboratories - Specified Tests

13. CHECK (that O1 has not transmitted an UnconfirmedCOVNotification-Request)

7.3.2.15 Life Safety Point Object Tests

7.3.2.15.X5 Writable Tracking_Value

Reason for Change: No test exists for this functionality.
BACnet Reference Clauses: 12.15.4, 12.15.5, 12.16.4 and 12.16.5

Purpose: This test case verifies that Tracking Value is writable when Out_Of Service is TRUE.

Test Concept: It verifies the interrelationship between the Tracking Value, Status Flags and Present_Value properties. If the
Out_Of Service property of the object under test is not writable, and the value of the property cannot be changed by other
means, then this test shall be omitted. This test applies to Life Safety Zone and Life Safety point object.

The TD will select one instance of each appropriate object type and test it as described.
Test Steps:

MAKE (Out_Of Service TRUE)

VERIFY Out Of Service =TRUE

VERIFY Status Flags = (?, FALSE, ?, TRUE)

MAKE (Event_State = Normal)

VERIFY Event_State = Normal

WRITE Tracking_Value = (X: any value that corresponds to an Event_State of NORMAL)
VERIFY Tracking Value = X

VERIFY Present Value =X

PHNAN R WD =

7.3.2.15.X6 Supports Writable Mode Property

Reason for Change: No test exists for this functionality.
BACnet Reference Clauses: 12.15.12, 12.15.13, 12.16.12 and 12.16.13
Purpose: To verify that the Mode property takes one of the values found in the Accepted Modes property.

Test Concept: It verifies the interrelationship between the Mode, and Accepted Modes properties. This test applies to Life
Safety Zone and Life Safety point object. The IUT will select one instance of each appropriate object type and test it as
described.

Test Steps:

1. READ AM = Accepted Modes
2. TRANSMIT WriteProperty-Request
'Object Identifier' = (the object being tested),
'Property Identifier' = Mode,
'"Property Value'= (X: Any valid value from list of AM)
RECEIVE BACnet-SimpleACK-PDU
VERIFY Mode = X
5. TRANSMIT WriteProperty-Request
'Object Identifier' = (the object being tested),
'Property Identifier'= Mode,

W

© 2022 by BACnet International. All rights reserved. 1 14

BACnet Testing Laboratories - Specified Tests

'"Property Value'= (X: Any invalid value, which is not present in AM)
6. RECEIVE BACnet-Error-PDU,

'Error Class'= PROPERTY,

'Error Code' = VALUE _OUT_OF RANGE

7.3.2.15.X7 Support Operation_Expected Property

Reason for Change: No test exists for this functionality.

BACnet Reference Clauses: 12.15.24, and 12.16.24
Purpose: To verify that the Operation Expected property takes on the value of ConfirmedEventNotification-Request.

Test Concept: It verifies the interrelationship between the Operation Expected property, and ConfirmedEventNotification-
Request. This test applies to Life Safety Zone and Life Safety point object. The IUT will select one instance of each
appropriate object type and test it as described.

Test Steps:

1. MAKE (the IUT send an ConfirmedEventNotification)
2. RECEIVE ConfirmedEventNotification-Request,

"Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (any Life-Safety object),

'"Time Stamp' = (the current local time),

'Notification Class' = (any valid notification class),

'Priority’' = (any valid priority),

'Event Type' = CHANGE-OF-LIFE-SAFETY,

'Message Text' = (any character string),

'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE |[FALSE,

'From State' = NORMAL,

'"To State' = (any non-normal state appropriate to the event type),
'Event Values' = (New State: (Any Valid State), New-Mode: (Any Valid Mode),

Status-Flag: (TRUE, FALSE, ?, ?),
Operation_Expected: (X: Any Valid operation))
3. VERIFY Operation_Expected = X (operation expected in the step 2)

7.3.2.15.X8 Support Writable Member_Of Property

Reason for Change: No test exists for this functionality.
BACnet Reference Clauses: 12.15.29, and 12.16.29
Purpose: To verify that the Member Of property takes only supported values of the life safety objects within the IUT.

Test Concept: If the property is writable and is restricted to referencing objects within the containing device, an attempt to
write a reference to an object outside the containing device into this property shall cause a Result (-), if the property is not
writable and if the value of the property cannot be changed by other means, then this test shall be omitted. The IUT will select
one instance of each appropriate object type, Ol and test it as described.

Test Steps:

1. TRANSMIT WriteProperty-Request,

© 2022 by BACnet International. All rights reserved. 1 1 5

BACnet Testing Laboratories - Specified Tests

'Object Identifier' = (O1),
'"Property Identifier' = Member_ Of
"Property Value'= (X: any valid life safety zone object reference)
2. RECEIVE Simple-ACK-PDU,
3. TRANSMIT ReadProperty-Request,
'Object Identifier' = (O1),
'"Property Identifier' = Member Of
4. RECEIVE ReadProperty-ACK,
'Object Identifier' = (the object being tested),
'Property Identifier' = Member Of
'Property Value'= X

7.3.2.15.X9 Silenced Property Test

Reason for Change: No test exists for this functionality.
Purpose: This test verifies the behavior of Silenced property.

Test Concept: Verify the interrelationship between the Silenced property and any audible or visual indication that has been
silenced by the receipt of a LifeSafetyOperation service request or a local process. If the Silenced property of the object under
test is unchanging by means of a LifeSafetyOperation service requests, because none of the silencing operations are supported,
then this test shall be omitted. This test applies to Life Safety Zone and Life Safety Point object.

Since the result of any specific LifeSafetyOperation is a local matter, the expected actions when an operation is applied to an
object is a local matter. In order to apply this test, the tester selects an initial Silenced state and a BACnetLifeSafetyOperation.
The tester then verifies that the expected Silienced state, as specified by the vendor, is the result of the life safety operation
on the object.

The tester will select one instance of each appropriate object type and test it as described.

Test Steps:
1. [InitialSilencedState = READ Silenced
2. Make(the object change its silenced state)
3. VERIFY Silenced = Other than InitialSilencedState
4. TRANSMIT LifeSafetyOperation-Request,
'Requesting Process Identifier' = (any valid identifier),
'Requesting Source' = (any valid character string),
'Request' = (any supported LifeSafetyOperation request transmitted to silence the sounder/strobe),
'Object Identifier' = (the selected object)
5. RECEIVE BACnet-SimpleACK-PDU
6. CHECK (Sounder/Strobe inactive)
7. ResultingSilencedState = READ Silenced
8. CHECK (the ResultingSilencedState is equal to the InitialSilencedState, modified by the LifeSafetyOperation request
transmitted)

7.3.2.22 Program Object Tests

R A

oftheprogram there-are-no-standard-tests-to-verify-this funetionality= The Program objec

its writable Program_Change property.

t utilizes parameter control through

© 2022 by BACnet International. All rights reserved. 1 16

BACnet Testing Laboratories - Specified Tests

7.3.2.22.1 Program_Change property test

Reason for Change: This test is not specified in any SSPC proposal.
Purpose: To verify writability of Program_Change property.

Test Concept: The Program_Change property is set to a value other than READY and then it and the Program_State property
are verified to update correctly.

Configuration Requirements: The Program Change property of the program object being tested shows a value of READY.

Notes to Tester: In step 2, depending on the current Program_State, and the implementation, certain requested values for
Program_Change may be invalid and would return a Result(-) if an attempt were made to write them.

Test Steps:

1. VERIFY Program_Change = READY

2. WRITE Program_Change = (a value other than READY)

3. WAIT (for the processing to consume that value written to Program Change)

4. VERIFY Program_Change = READY

5. VERIFY Program_State = the new state reflected, based upon value written to Program_Change in step 2.

7.3.2.23 Schedule Object Tests
This section was renumbered in 135.1-2007 to 7.3.2.23. The old reference was 7.3.2.22

7.3.2.23.6 Weekly_Schedule Restoration Test

Reason for Change: Corrected the Configuration Requirements to allow the test to be executed on devices greater than or
equal to Protocol Revision 4.

Dependencies: ReadProperty Service Execution Tests, 9.18; ReinitializeDevice Service Execution Tests, 9.27;
TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.4, 12.24.7, 12.24.9.
Purpose: To verify the restoration behavior in a Weekly Schedule.

Test Concept: The IUT is configured with a Schedule object containing a Weekly Schedule with a BACnetDailySchedule
that has multiple BACnetTimeValue entries that do not include the time 00:00. There shall be no Exception Schedule that
overrides this Weekly Schedule during the date and time used for this test. The local date and time are changed to a value
between 00:00 and the first entry in the BACnetDailySchedule. Present Value is read to verify that it contains the
Schedule Default value, or Vi for implementations with a Protocol Revision less than 4. The IUT is reset and the
Present_Value is checked again to verify that it contains the Schedule Default value, or Vi, for implementations with a
Protocol Revision less than 4.

Configuration Requirements: The IUT shall be configured with a Schedule object that contains a Weekly Schedule that has
more than one scheduled write operation for a particular day. None of the write operations shall be scheduled for time 00:00
and there shall be no higher priority coincident BACnetSpecialEvents. In the test description D, represents a time between
00:00 and the time of the first scheduled write operation in the BACnetDailySchedule. Vi represents the value that is

scheduled to be written 1n the last BACnetTlmeValue palr for the day $h+s—test—shaﬂ—net—b%pelpfefmed—rﬁme

Test Steps:

1. (TRANSMIT TimeSynchronization-Request, 'Time' = D)) |

© 2022 by BACnet International. All rights reserved. 1 17

BACnet Testing Laboratories - Specified Tests

(TRANSMIT UTCTimeSynchronization-Request 'Time' = D) |
MAKE (the local date and time = D)

2. WAIT Schedule Evaluation Fail Time

3. IF (Protocol Revision is present and Protocol Revision > 4) THEN
VERIFY Present Value = Schedule Default

ELSE

VERIFY Present Value = Vi

4. IF (ReinitializeDevice execution is supported) THEN
TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device' = WARMSTART,
'Password' = (any valid password)
RECEIVE BAChnet-Simple-ACK-PDU

ELSE
MAKE (the IUT reinitialize)
CHECK (Did the IUT perform a WARMSTART reboot?)
WAIT Schedule Evaluation Fail Time
7. IF (Protocol Revision is present and Protocol Revision > 4) THEN
VERIFY Present Value = Schedule Default
ELSE
VERIFY Present_Value = Viug

oW

7.3.2.23.10 Schedule Object Protocol_Revision 4 Tests

7.3.2.23.10.3 Revision 4 Exception_Schedule Property Tests
Reason for Change: No tests existed for revision 4 functionality. The change is in SED-006.
7.3.2.23.10.3.6 Revision 4 Calendar Entry WeekNDay Special Week Of Month Test

Reason for Changes: New functionality testing WeekNDay new WeekOfMonth entries added in 135-2012bg-4 for
Protocol Revision 18.

Purpose: To verify that a date matching a WeekNDay's WeekOfMonth field in an Exception_Schedule enables the referencing
Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table
7-16. The value of the Present Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object, S, with an Exception Schedule
containing a BACnetCalendarEntry with a WeekNDay entry specifying the one of the special week of month values, WM
[6,7,8,9Jast-weelofthe-month. The criteria for the dates used in the test are given in Table 7-16. The local date and time
shall be set such that the Present_Value property has a value other than V.

© 2022 by BACnet International. All rights reserved. 1 1 8

BACnet Testing Laboratories - Specified Tests

Table 7-16. Criteria for Calendar Entry WeekNDay LastSpecial Week Of Month Test Dates and Values

Date | Criteria Value

D, 1. Date occurs during Effective Period, A

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6 WM,

2D. Date is in the last-weekefthe-menthWeekOfMonth specified by 2C,

2E. WeekNDay:Month matches the specified month,

2F. WeekNDay:dayOfWeek matches the specified day of the week,

2G. Time is on or after the time of the entry with Vi, but before any other
entry in the Exception_Schedule, and

2H. BACnetSpecialEvent has a higher eventPriority than any coincident
BACnetSpecialEvent records.

D, 1. Date occurs during Effective Period, V. different from V,

2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,

2B. calendarEntry: WeekNDay specifies WeekOfMonth,

2C. calendarEntry: WeekNDay: WeekOfMonth has the value 6/WM, and

2D. Date is not in thelast-weekofthe-monththe WeekOfMonth specified by

2C.

Test Steps:
1. VERIFY (S), Present_Value = any value other than V;
2. (TRANSMIT TimeSynchronization-Request, "Time' = D) |
(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D) |
MAKE (the local date and time = D))
WAIT Schedule Evaluation Fail Time
VERIFY S, Present Value =V,
5. (TRANSMIT TimeSynchronization-Request, 'Time' = D) |
(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D) |
MAKE (the local date and time = D)

6. WAIT Schedule Evaluation Fail Time

7. VERIFY S, Present Value =V,

B

7.3.2.23.10.3.7 Revision 4 Calendar Entry WeekNDay Day Of Week Test
Reason for Change: Added clarifying text to table 7-16.1.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30,
UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a date matching a WeekNDay's DayOfWeek field in an Exception_Schedule enables the referencing
Schedule object.

Test Concept: The IUT's local date and time are changed to values that are selected by the TD based on the criteria in Table
7-10. The value of the Present Value property is monitored to verify that the scheduled write operations occur.

Configuration Requirements: The IUT shall be configured to contain a Schedule object with an Exception Schedule
containing a BACnetCalendarEntry with a WeekNDay entry specifying the day of the week. The criteria for the dates used
in the test are given in Table 7-10. The local date and time shall be set such that the Present Value property has a value other
than V.

Table 7-16.1. Criteria for Calendar Entry WeekNDay Day of Week Test Dates and Values

© 2022 by BACnet International. All rights reserved. 1 19

BACnet Testing Laboratories - Specified Tests

Date | Criteria Value
D, 1. Date occurs during Effective Period, Vi
2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay,
2B. calendarEntry: WeekNDay specifies only DayOfWeek,
2C. Date falls on the specified day of the week, and
2D. Higher eventPriority than any coincident BACnetSpecialEvents.
D, 1. Date occurs during Effective Period, V2
2A. BACnetSpecialEvent incorporates calendarEntry: WeekNDay, (a value different from the
2B. calendarEntry: WeekNDay specifies only DayOfWeek, and Present Value expected at D)
2C. Date does not fall on the specified day of the week.
Test Steps:
1. VERIFY Present Value = (any value other than V)
2. (TRANSMIT TimeSynchronization-Request, 'Time' = D)) |
(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D) |
MAKE (the local date and time = D)
3. WAIT Schedule Evaluation Fail Time
4. VERIFY Present Value =V,
5. (TRANSMIT TimeSynchronization-Request, "Time' = D,) |
(TRANSMIT UTCTimeSynchronization-Request, "Time' = D) |
MAKE (the local date and time = Dy)
6. WAIT Schedule Evaluation Fail Time
7. VERIFY Present_Value = (any value other than V5)

7.3.2.23.10.3.8 Revision 4 Event Priority Test

Reason for Change: Added 'Notes to Tester' for clarity.

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority when both are
active at the same time, and that it relinquishes to the lower priority.

Configuration Requirements: The IUT shall be configured with a Schedule object containing two or more
BACnetSpecialEvents, all active on the same date, with different eventPriority values (if possible, all 16 priority levels should
be represented), and with overlapping BACnetTimeValue entries distributed thus: the entry with the lowest priority shall
have the earliest time-value pair (D) with a non-NULL value, and the last time-value pair (Dx) with a NULL value; the next
higher priority shall have a time-value pair D> occurring after D with a different non-NULL value, and a time-value pair
Dn.1 with a NULL value and occurring before Dy; and so on. The result is that the time-value pairs shall be ordered
chronologically thus: Dy, D», D3, ..., Dx.i, Dn. An example of such a configuration testing five priority levels is shown in
Table 7-11.

Table 7-11. Example of event and value prioritization
Event Time:
PI‘iOI‘ityZ Dy D, Ds Da Ds D¢ Dy Dg Do

1 - - - - Vs NULL - - -

2 - - - Vi - - NULL - -

3 - - V3 - - - - NULL -

4 - V) - - - - - - NULL

5 \2 - - - - - - - -
Present Value: \ V) V; V4 Vs V4 Vs V, \

© 2022 by BACnet International. All rights reserved. 1 20

BACnet Testing Laboratories - Specified Tests

Note: Each event priority in the table above represents 1 BACnetSpecialEvent. The BACnetSpecialEvent should contain the
time value pairs listed in the table (Dx, Vx). There should be only 1 BACnetSpecialEvent per priority for this test.

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in
the range 1-16, excluding 6. The Priority parameter for WriteProperty-Request may be left out if the target property is a
standard property of a standard object for which commandability is not an option.

Test Steps:
1. REPEAT D = (the times in the configured time-value pairs with non-NULL values) DO {
(TRANSMIT TimeSynchronization-Request, "Time' = D) |
(TRANSMIT UTCTimeSynchronization-Request, "Time' = D converted to UTC) |
MAKE (the local date and time = D)
WAIT Schedule Evaluation Fail Time
VERIFY Present Value = (the value corresponding to the time D)
}
2. REPEAT D = (the times in the configured time-value pairs with NULL values,
except the final DN) DO {
(TRANSMIT TimeSynchronization-Request, 'Time' = D) |
(TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC) |
MAKE (the local date and time = D)
WAIT Schedule Evaluation Fail Time
VERIFY Present Value = (the non-NULL value corresponding to the priority lower than that
associated with D)

7.3.2.23.11.1 Internally Written Datatypes Test, non-NULL values

Reason for Change: To ensure that datatype-specific testing is conducted even when there is no Schedule that can be made
to reference another property. The effect should be observed in the Present Value property of the Schedule Object instead.

BACnet Reference Clauses: 12.24, 12.24.10

Purpose: This test verifies that the Schedule object within the IUT writes to properties in the same device for the non-NULL
datatype being tested.

Test Concept: Two Date/Time, values, D1 and D2, are chosen by the TD based on the criteria in Table 7-17 such that D1 is
sufficiently different from, and later than, the current time to cause a Schedule evaluation when the time is changed to D1,
and such that setting the time to D2 (later than D1) from D1 will cause a Schedule evaluation that will cause it to write value
V2. These values may be chosen based on the Schedule object’s existing configuration, or the Schedule object, S, may be
configured with such values.

Configuration Requirements: The IUT shall be configured with a Schedule object, S, such that the time periods defined in
Table 7-17 can be configured with uniquely scheduled values. The Schedule object shall be configured with a
List Of Object Property References, including at least one reference to a writable property within the device, if possible.
Step 4 and step 8 would REPEAT zero tlmes zf the referenced property is empty or not present.H-the TdT-eannet-be

her-pProperties in the Schedule object shall be consistent
in both datatypes and values in a manner perrnlttlng this test to be executed.

Table 7-17. Criteria for Test Date and Times
Date and Time: \Value:

D, Vi

D, 'V, different from V.

Test Steps:

© 2022 by BACnet International. All rights reserved. 1 2 1

BACnet Testing Laboratories - Specified Tests

1. (TRANSMIT TimeSynchronization-Request,' Time' = D)
| (TRANSMIT UTCTimeSynchronization-Request, 'Time'=D,)

| MAKE (the local date and time = D1)
2. WAIT (Schedule Evaluation Fail Time)
VERIFY S, Present_Value =V,

REPEAT P = (writable property in List Of Property References)
VERIFY P =V,

5. (TRANSMIT TimeSynchronization-Request, "Time' = D,)
| (TRANSMIT UTCTimeSynchronization-Request, "Time'=D,,)
| MAKE (the local date and time = D,)
6. WAIT(Schedule Evaluation Fail Time)
. VERIFY S, Present_Value =V,
8. REPEAT P = (writable property in List Of Property References)
VERIFY P=V,

& oW

Notes to Tester: In the context of this test definition, writable means that the Schedule object is capable of modifying the
property. It does not necessarily indicate that the property is modifiable via BACnet services.

7.3.2.24 Log Object Tests
This section was renumbered in 135.1-2007 to 7.3.2.24. The old section number was 7.3.2.23.

7.3.2.24.3 Stop_Time Test

Reason For Change: Errata change to correct the Test Concept to reference correct property.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
BAChnet Reference Clause: 12.25.7.

Purpose: To verify that logging is disabled at the time specified by Stop_Time.

Test Concept: The logging object is configured to acquire data by each means available to the implementation. The test is
begun at some time prior to the time specified in Stop TimeStart—Fime and collection of records is confirmed. Non-collection
of records after the time specified by Stop Time is then confirmed.

Configuration Requirements: Stop Time shall be configured with a date and time such that steps 1 through 9 will be
concluded before that time. Start Time, if present shall be configured with date and time preceding the initiation of the test.
Stop_When_Full, if configurable, shall be set to FALSE.

Test Steps:

WRITE Enable = FALSE

WAIT Internal Processing Fail Time

WRITE Record Count =0

WRITE Enable = TRUE

READ X = Total Record Count

WAIT Internal Processing Fail Time

MAKE (IUT collect another record)

WAIT (Notification Fail Time + Internal Processing Fail Time)

NN B WD =

© 2022 by BACnet International. All rights reserved. 122

BACnet Testing Laboratories - Specified Tests

9. VERIFY Total Record Count>X

10. WHILE (IUT clock is earlier than Stop Time) DO {}

11. WAIT (Notification Fail Time + Internal Processing Fail Time)
12. READ X = Total Record Count

13. MAKE (IUT collect another record)

14. WAIT (Notification Fail Time + Internal Processing Fail Time)
15. VERIFY Total Record Count=X

Notes to Tester: For each MAKE (IUT collect another record), perform the following actions:

IF (Event Log Object) THEN
MAKE (Event Log Object collect another record)
ELSE
IF (COV subscription in use) THEN
MAKE (monitored value change sufficient to generate another record)
ELSE IF (interval or period logging is in use) THEN
WAIT (Log_Interval)
ELSE
MAKE (Trend Log or Trend Log Multiple Object collect another record)

7.3.2.24.4 Log_Interval Test
Reason for Change: The Configuration Requirements are enhanced, and a Notes to Tester is added.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
Purpose: To verify that the logging period is controlled by Log_Interval.

Test Concept: The logging object is configured to acquire data by polling. Polling is done at two different intervals, defined
by Log_Interval, with about 10 records acquired at each rate. The timestamps of the records are inspected to verify the polling
rate.

Configuration Requirements: Start Time, if present, shall be configured with a date and time preceding the beginning of the
test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the
test. Stop_ When_Full, if configurable, shall be set to FALSE. Enable shall be set to TRUE. Logging Type is not equal to
TRIGGERED. Non-zero values shall be chosen for Log_Interval in accordance with the range and resolution specified by the
manufacturer for this property.

Notes to Tester: The step 1 write of Logging Interval to a non-zero value will make a change in Logging Type from COV to
POLLED, if Logging Type was initially COV.

Test Steps:

WRITE Log_Interval = (some non-zero value)

WRITE Record Count =0

WAIT (Internal Processing Fail Time + 10* Log Interval hundredths-seconds)
VERIFY (Log Buffer record timestamp intervals, on average, are as written in step 1)
WRITE Log_Interval = (a non-zero value different from the one written in step 1)
WRITE Record Count =0

WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)
VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 5)

NNk =

7.3.2.24.6.1 Stop_When_Full TRUE Test

Reason For Change: This test was revised for negative response.

© 2022 by BACnet International. All rights reserved. 1 23

BACnet Testing Laboratories - Specified Tests

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that Stop When_Full set to TRUE properly indicates that the logging object ceases collecting data when
its Log_Buffer acquires Buffer Size data items.

Test Concept: The logging object is configured to acquire data by whatever means. Data is collected until more than
Buffer Size records have been collected and Enable is verified to be FALSE. Attempt to write TRUE to Enable and verify
that the IUT does not accept it due to Log_Buffer being full.

Configuration Requirements: The IUT shall be configured with Object] where Start_Time, if present, shall be configured
with a date and time preceding the beginning of the test. Stop Time, if present shall be configured with the latest possible
date and time, in order that it occur after the end of the test. Stop When Full, if configurable, shall be set to TRUE. Enable
shall be set to FALSE.

Test Steps:
1. WRITE Record Count=0
2. WRITE Enable = TRUE
3. WHILE (Record Count < Buffer_Size) DO {}
4. WAIT Internal Processing Fail Time
5. VERIFY Enable = FALSE
6. TRANSMIT WriteProperty-Request,
'Object Identifier' = Objectl,
'"Property Identifier' = Enable,
'"Property Value' = TRUE
7. RECEIVE BACnet-Error-PDU,
'Error Class' = OBJECT,
'Error Code' = LOG_BUFFER FULL.
8. VERIFY Enable = FALSE

7.3.2.24.9 Total Record_Count Test

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
BAChnet Reference Clause: 12.25.16.

Purpose: To verify that the Total Record Count property increments for each record added to the Log_Buffer, even after
Buffer Size records have been added. (Note: it is not reasonable to test for the requirement of BACnet Clause 12.25.16 that
the value wrap from 2°2-1 to one; even if a record was collected every 100" of a second it could take more than 497 days to
complete the test.)

Test Concept: The logging object is configured to acquire data by whatever means. Total Record Count is read to determine
an initial value. Record Count is set to zero and Total Record Count is read. It is verified that Total Record Count is
incremented and not reset to 0 when Record Count is written to 0. Collection of data proceeds until Record_Count changes,
collection is halted and Total Record Count is checked that it has incremented by Record Count. If, for whatever reason,
the IUT cannot be configured such that the TD is able to halt collection before Buffer Size records are collected this test shall
not be performed.

Configuration Requirements: Start Time, if present, shall be configured with a date and time preceding the beginning of the
test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end of the
test. Enable shall be set to FALSE.

Test Steps:

1. READ TRCI = Total Record Count

© 2022 by BACnet International. All rights reserved. 1 24

BACnet Testing Laboratories - Specified Tests

2.+ WRITE Record_Count =0

3.2- WAIT Internal Processing Fail Time

4. VERIFY Total Record Count = TRCI + 1

5.3- READ X = Total Record Count

6.4- READ Y = Record_Count

7.5 WRITE Enable = TRUE

8.6- WHILE (Record Count=Y +1)DO {}

9.7 WRITE Enable = FALSE

10.8- WAIT Internal Processing Fail Time

11.9-TF (Total Record Count - X !=Record Count - Y) THEN
ERROR “Total Record Count has incorrect value.”

7.3.2.24.13 Log-Status Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive
approach.

Dependencies: ReadRange Service Execution Tests, 9.21; WriteProperty Service Execution Tests, 9.18.
BACnet Reference Clause: 12.25.14, 12.27.13, 12.30.19
Purpose: To verify proper logging of log-disabled and buffer-purged events.

Test Concept: The buffer is cleared. Then the Enable property is changed and it is verified that the Record Count property
is changed and it is verified that the status entry is made correctly in the Log_Buffer. The Record Count is also set to zero
while the Enable property is FALSE and it is verified that the buffer-purged event is recorded into the Log_Buffer.

TFest-Configuration: Configuration Requirements: The logging object is configured to acquire data by whatever means
available. Configure the logging such that the entire test may be run without the trend buffer overflowing.

Test Steps:

© 2022 by BACnet International. All rights reserved. 1 25

BACnet Testing Laboratories - Specified Tests

3 >

10. TRANSMIT ReadRange

‘Obiectltdentifier>— Ol

HOTTOOHTTICE

3 : 5
3 : S

‘Count’—=
COHt

ey

1. WRITE Enable = FALSE

2. WRITE Record Count =0

3. VERIFY (Log Buffer contains 1 entries, and it is the buffer-purged event)

4. WRITE Enable = TRUE

5. WRITE Enable = FALSE

6. VERIFY (Record Count => 3 and the first entry is the buffer-purged event, the second entry is
the log-enable TRUE event and the last entry is the log-enable FALSE event)

Notes to Tester: When the IUT's Protocol Revision < 7, the length of BACnetLogStatus shall be 2; otherwise, it shall be 3.

7.3.2.24.14 Time_Change Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive
approach. Addendum 135-2008x-2 Clarify Trend Log Time Stamp.

Purpose: To verify proper logging of time-change events in the log buffer

Test Concept: Change the clock in the device and verify that a record is logged indicating the number of seconds that the
clock changed by-er-indicatingzere-funknewsn. This test shall be skipped if the device does not support the Local Time
property in the device object or there is no way to change the time in the device.

Configuration Requirements: The log object is configured to acquire data by whatever means available. The FogBuffer
sheuld-be-eleared-such-that the Reeord—Ceunt-is0-—Configure the logging such that the entire test may be run without the
trend buffer overflowing.

Test Steps:

© 2022 by BACnet International. All rights reserved. 1 26

BACnet Testing Laboratories - Specified Tests

1. WRITE Enable = FALSE
2. WRITE Record Count =0
3. VERIFY (Log Buffer contains 1 entry, and it is the buffer-purged event)
4. TRANSMIT ReadProperty-Request,
‘Object Identifier’ = (device that contains log object)
‘Property Identifier’ = Local Time
5. RECEIVE ReadProperty-Ack,
‘Object Identifier’ = (device that contains log object)
‘Property Identifier’ = Local Time
‘Property Value’ = (currentTime)
6. WRITE Enable = TRUE
7. MAKE (the time change on the device by a reasonable amount (deltaTime),; change by one hour or
more)
8. WRITE Enable = FALSE
9. VERIFY Record Count =>4
10. CHECK (Log_Buffer contains a log-status entry of time-change)
11. VERIFY (time-change value ~= deltaTime)
12. VERIFY TimeStamp on the time-change entry ~= (currentTime + deltaTime)

7.3.2.24.15 COV-Sampling Verification Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive
approach. The Test Concept is simplified. The Configuration Requirements are enhanced.

Purpose: To verify logged samples are based on COV rather than by interval.

Test Concept: The trend log is configured to log based on COV increment. Logging is enabled. After a period of time the
buffer is checked to verify the data in the buffer is based on the COV values and not on the set interval.

© 2022 by BACnet International. All rights reserved. 1 27

BACnet Testing Laboratories - Specified Tests

I
=

Ttem - Count’—
HeH-couht

—

Configuration Requirements: The IUT shall be configured such that the monitored object has COV configured or the
Client COV _Increment shall be configured or it is not monitoring a REAL property. The Logging Type shall not have a
value of TRIGGERED.

Test Steps:

WRITE Enable = FALSE

WRITE Record Count = 0

WRITE Log Interval = 0

WRITE Enable = TRUE

MAKE (monitored property change its value)
WAIT (60 seconds)

MAKE (monitored property change its value)
WAIT (90 seconds)

MAKE (monitored property change its value)
]0 WAIT (40 seconds)

11. CHECK (Log_Buffer contains 3 or 4 data entries, and time between each sample is not equal)

O %N AL R W~

7.3.2.24.19 Trigger Verification Test

Reason for Change: Modified test to check Log Interval shall be zero when Logging Type property has either of the values
COV or TRIGGERED. Updated Configuration Requirements.

Purpose: To verify logged samples are based on the triggered Logging Type.

Test Concept: The log, O; is configured to log based on TRIGGERED. Logging is enabled. After a period of time the buffer
is checked to verify the data in the buffer is based on triggered values.

Configuration Requirements: Fhe 0 i i
TRIGGERED-The object being tested shall be conf gured wzth Loggzng Type set to T RIGGERED

Test Steps:

1. VERIFY Logging Type = TRIGGERED
2. VERIFY Log Interval = 0
3+. WRITE Enable = FALSE

42. WRITE Record_Count = 0————~results-in-a-buffer purged reecord

© 2022 by BACnet International. All rights reserved. 1 28

BACnet Testing Laboratories - Specified Tests

53. WRITE Enable = TRUE———~esults-iraloggingenable record
64. WAIT (10 seconds)

75. WRITE Trigger = TRUE

86. WAIT (20 seconds)

97. WRITE Trigger = TRUE

108.WAIT (40 seconds)

119.WRITE Trigger = TRUE

12408, WAIT (30 seconds)

13H. WRITE Enable = FALSE————~esults-inalogging disabled record

F2VERIEY RecordCount==6

14. READ N = Record_Count

1533. REPEAT X = (1 through 34)
TRANSMIT ReadRange-Request

‘Object Identifier’ = Oy,
‘Property Identifier’ = Log_Buffer,
‘Reference Index’ = N-4+X,
‘Count’ = 1
RECEIVE ReadRangeAekReadRange-ACK
‘Object Identifier’ = Oy,
‘Property Identifier’ = Log_ Buffer,
‘Result Flags’ = (2False, 2False, False),
‘Item Count’ = 1,
‘Item Data’ = (one data record storing the timestamp in TS[X])>
16. TRANSMIT ReadRange-Request
‘Object Identifier’ = ()3
‘Property Identifier’ = Log Buffer,
‘Reference Index’ = N,
‘Count’ = 1
RECEIVE ReadRange-ACKek
‘Object Identifier’ = 0Ol,
‘Property Identifier’ = Log Buffer,
‘Result Flags™ = (False, True, False),
‘Item Count’ = 1,
‘Item Data’ = (one data record storing the timestamp in TS[4])
H-CHECKFSPB—FS2 =1 0-seconds
15 CHECK(TS[41—TFSf3}~=20-seconds)
16 CHECK(TS[5—TFSf4}~=40-seconds)
- CHECK(TSI61—TFSf5}~=30-seconds)

17. CHECK(TS[2] - TS[1] ~= 20 seconds)
18. CHECK(TS[3] - TS[2] ~= 40 seconds)
19. CHECK(TS[4] - TS[3] ~= 30 seconds)

921112 7.3.2.24. X1 Status/Failure legging-Logging

Purpose: To Verlfy that a fallure is logged when an error is encountered in an attempt to read a data value from the monltored
object. H+h vey , A i h ; A-th

Test Concept: Make-th H bie i i ing-the Configure Log_DeviceObjectProperty
of the logging object wzth an unknown object such that collectzon of records falls to-an invalid-deviee-or object. Wait until
the IUT attempts to read a sample for the Log Buffer. Then check the Log Buffer to verify that there is a failure entry that
consists of the ErrorClass and ErrorCode of the error. Repeat with Log DeviceObjectProperty referencing an object in a
device that does not exist.

© 2022 by BACnet International. All rights reserved. 1 29

BACnet Testing Laboratories - Specified Tests
Configuration Requirements: Configure the logging object so that collection of records will fail (such as by referencing a
non-existent object).

Test Steps:

1. MAKE (Log DeviceObjectProperty reference a non-existent object in the local device or in an existing remote device)
2. WAIT (until IUT attempts to read a sample for the Log_Buftfer)
3. VERIEY¥Y CHECK(Log Buffer contains a failure entry ef with an error class/error code of
OBJECT/UNKNOWN _OBJECTunknewn-ebjeet)
4. IF the IUT supports logging remote values THEN {

MAKE (Log_DeviceObjectProperty reference an object in a non-existing device)

WAIT (until IUT attempts to read a sample for the Log_Buffer)

CHECK (Log_Buffer contains a failure entry with an error class/code

COMMUNICATION/UNKNOWN DEVICE)

7.3.2.24.X8 Clock-Aligned Logging
Reason for Change: No test available for this functionality.

Purpose: To verify that logged trend records have timestamps aligned to that interval, when Align_Intervals is TRUE and
Log_Interval is a factor of (divides without remainder) a day.

Test Concept: For this test, select two evenly divisible factors. Write each to Log Interval in the test. Trend records are
logged, and checked that those are aligned to the Log_Interval. This is done twice to ensure that different interval frequency
behavior is verified. This test does not employ Log_Interval values which are not one of the evenly divisible factors.

Configuration Requirements: Start Time, if present, shall be configured with a date and time preceding the beginning of the
test. Stop_Time, if present shall be configured in order that it occurs after the end of the test. Stop When_Full, if configurable,
shall be set to FALSE. Enable is initially FALSE. Interval Offset is set to zero. Align Intervals is set to TRUE. Triggering
of non periodic log records should not occur during this test. Logging Mode is POLLED. X1 and X2 are each a value which
the IUT supports for which the standard mandates the alignment behavior.

Notes to Tester: The values for Log_Interval which require alignment are those for which the standard mandates the alignment
behavior, where 8,640,000 modulo Log_Interval is zero.

Test Steps:

CHECK (Log_Buffer contains 1 entry, and it is the buffer-purged event)

WRITE Log_Interval = X1

WRITE Enable = TRUE

MAKE (logging object collect at least 2 records)

WRITE Enable = FALSE

CHECK (Log_Buffer contains at least 5 entries, and at least two data records)

CHECK (that the timestamp of each data record, since the Log_Interval was written, is a multiple of X1)
WRITE Log Interval = (X2, any value which requires alignment behavior, that was not already chosen)
9. WRITE Enable = TRUE

10. MAKE (logging object collect at least 2 more records)

11. WRITE Enable = FALSE

12. CHECK (Log_Buffer has collected two or more additional data records and two or more log-status records)
13. CHECK (that the timestamp are multiples of X2 for all data records collected, since the write with X2)

e A A o e

7.3.2.24.X9 Logging Interval_Offset

Reason for Change: No test for this functionality.

© 2022 by BACnet International. All rights reserved. 1 30

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that timestamps abide by the Interval Offset.

Test Concept: Log_Interval is set to a value which the IUT supports which is a factor of (divides without remainder) a day
and which is greater than 3 seconds.

Interval Offset is first set to a non-zero value less than Log Interval. After logging some records, their timestamps are
checked. The logging is stopped. Interval Offset is set to a value which the IUT supports greater than Log_Interval, logging
is re-enabled, and the timestamps again are checked.

Configuration Requirements: Align_Intervals is set to TRUE. The Log_DeviceObjectProperty property in a Trend Log or in
a Trend Log Multiple, is configured to the property or properties monitored. Start Time, if present, shall be configured with
a date and time preceding the beginning of the test. Stop Time, if present shall be configured in order that it occur after the
end of the test. Stop When_Full, if configurable, shall be set to FALSE. Enable is initially FALSE. Align Intervals is set to
TRUE. Triggering of non periodic log records should not occur during this test. If the Interval Offset cannot be set to a value
which the IUT supports greater than Log_Interval, then steps 11 through the end of this test are skipped. Logging Mode is
POLLED. An evenly divisible value is a value for which the standard mandates the alignment behavior.

Notes to tester: Interval Offset in logging objects, and Log_Interval are each an Unsigned number of hundredths of seconds.
Excellent choices are 400, 500, 600, 1000, or 1200. When Interval Offset is larger than Log_Interval, then Interval Offset
modulo Log_Interval, is smaller than Log_Interval.

Test Steps:

WRITE Record Count =0

CHECK (Log_Bufter contains 1 entry, and it is the buffer-purged event)

WRITE Log Interval = (any evenly divisible value greater than 3 seconds)

WRITE Interval Offset = (any value, between 2 seconds and Log_Interval - 1 seconds)

WRITE Enable = TRUE

MAKE (logging object collect at least 2 records)

WRITE Enable = FALSE

CHECK (Log_Buffer contains two or more data records and at least three log-status)

CHECK (the timestamp for the data records have a fixed offset, determined by Log_Interval and Interval Offset)
10 WRITE Interval Offset = (any value greater than Log_Interval)

11. WRITE Enable = TRUE

12. MAKE (logging object collect at least 2 records)

13. WRITE Enable = FALSE

14. CHECK (Log_Buffer has collected two or more additional data records and two or more log-status entries)

15. CHECK (the timestamp for data records collected since the Interval Offset was last written, have Log_Interval between
records, at a fixed offset of Interval Offset modulo Log_Interval)

Lo nbh W=

7.3.2.24.X10 Buffer_Size Write Test

Purpose: To verify the content of the log buffer after a write to the Buffer Size property.

Test Concept: The logging object, O1, is configured to acquire data by whatever means. Logging is disabled and Buffer Size
set to a different valid value, V1. The content of the Log_Buffer is read to confirm a single entry that is a buffer purged event.

Configuration Requirements: The logging object, O1, is configured to acquire data by whatever means. If a write to the
Buffer Size does not delete all records in the log, this test shall be skipped.

Test Steps:

1. WRITE Enable = FALSE
2. WRITE Buffer Size=V1I

© 2022 by BACnet International. All rights reserved. 13 1

BACnet Testing Laboratories - Specified Tests

3. WAIT Internal Processing Fail Time
4. CHECK (Log_Buffer contains one entry, and it is a buffer-purged event)

7.3.2.25 Event Log Tests
The tests in this section verify that Event Log objects correctly record event notifications.

Some of the general logging object tests in Clause 7.3.2.24 are also applicable to the Event Log object type.

7.3.2.25.1 Internal Logging of Notifications
Reason for Change: Fixed the Result Flags value in step 10.

Purpose: To verify the IUT correctly collects and represents the Notifications which it initiates.

Test Concept: Make the IUT generate two event notification messages which the IUT logs. Use ReadRange to retrieve them
from an Event Log and compare the two representations.

Configuration Requirements: The tester shall choose two events which are configured to be sent to the TD and to be placed
into one of the IUT's Event Logs, LO1.

Test Steps:
1. WRITE Enable = TRUE
2. MAKE (a condition exist that will cause the device to generate an event transition)
3. WAIT DI
4. RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (any valid object),
'"Time Stamp' = (T1, any valid timestamp),
'Notification Class' = (any valid notification class),
'Priority’' = (any valid priority),
'Event Type' = (any standard event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = (state S1, any valid state for this event type),
'"To State' = (state S2, any valid state for this event type that can follow S1),
'Event Values' = (any values appropriate to the event type)
5. TRANSMIT BACnet-SimpleACK-PDU
6. MAKE (IUT generate an EventNotification)
7. WAIT D2
8. RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' (any valid object),
'"Time Stamp' = (T2, any valid timestamp),
'Notification Class' = (any valid notification class),
'Priority’ = (any valid priority),
'Event Type' = (any standard event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = (state S3, any valid state for this event type),
'To State' = (state S4, any valid state for this event type that can follow S3),

© 2022 by BACnet International. All rights reserved. 1 32

BACnet Testing Laboratories - Specified Tests

'Event Values' = (any values appropriate to the event type)
9. TRANSMIT BACnet-SimpleACK-PDU
10. READ RC =LO1, Record Count
11. TRANSMIT ReadRange-Request,

'Object Identifier' = LOl,
'Property Identifier' = Log_Buffer,
'Reference Index'= RC,
'Count' = -2
10. RECEIVE ReadRange-ACK,
'Object Identifier' = LOl,
'Property Identifier' = Log Buffer,
'Result Flags' = {EALSE?, 7, FALSEFRUE},
'Ttem Count' = 2,
'Ttem Data' = (logged data that matches the information received in steps 3 and 6,

except that Process_Identifier may be any value and is not required to match)
11. CHECK (T2 > T1, and that the notifications were logged in order)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the TD shall skip the steps in which a B4ACnet-SimpleACK-PDU is sent.

7.3.2.25.2 Remote Logging of Notifications
Reason for Change: Fixed Result Flags in step 8. Add delay after Step 1.

Purpose: To verify that the IUT correctly collects and represents the Notifications which it receives.

Test Concept: Make TD send multiple event notification messages. Use ReadRange to retrieve the events from an Event Log
or perhaps from multiple Event Logs in the IUT, and compare the two representations.

Configuration Requirements: LO1 is an Event Log object in IUT which logs the event types which are sent. Stop. When_Full
in LO1 shall be FALSE or absent.

Test Steps:

1. WRITE Enable = TRUE
2. WAIT Internal Processing Fail Time
32. TRANSMIT ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = TD,
'Event Object Identifier' = (any valid object identifier),
'"Time Stamp' = (T1, any valid timestamp),
"Notification Class' = (any valid notification class),
'Priority' = (any valid priority),
'Event Type' = (any standard event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = (state S1, any valid state for this event type),
'"To State' = (state S2, any valid state for this event type that can follow S1),
'Event Values' = (any values appropriate to the event type)
43. RECEIVE BACnet-SimpleACK-PDU
54. TRANSMIT ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (any valid object identifier),

© 2022 by BACnet International. All rights reserved. 1 33

BACnet Testing Laboratories - Specified Tests

'Time Stamp' = (T2, any valid timestamp),
"Notification Class' = (any valid notification class),
"Priority' = (any valid priority),
'Event Type' = (any standard event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = (state S3, any valid state for this event type),
'To State' = (state S4, any valid state for this event type that can follow S3),
'Event Values' = (any values appropriate to the event type)
65. RECEIVE BACnet-SimpleACK-PDU
76. READ RC =LO1, Record Count
87. TRANSMIT ReadRange-Request,
'Object Identifier' = LOI,
'"Property Identifier' = Log_Buffer,
'Reference Index'= RC,
'‘Count' = -2
98. RECEIVE ReadRange-ACK,
'Object Identifier' = LOI,
'Property Identifier' = Log_Buffer,
'Result Flags'= {EALSE?, ?, FALSEFRUE},
'Ttem Count' = 2,
'Ttem Data' = (logged data that matches the information received in steps 2 and 4,
except that Process_Identifier can be any value and is not required to
match)
109. CHECK (that the events were logged in the order in which they were received)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the test shall skip the steps in which a BACnet-Simple ACK-PDU is expected.

7.3.2.25.3 Internal Logging of ACK_NOTIFICATIONSs
Reason for Change: Removed unused step #2 and fixed the Result Flags in step 11.

Purpose: To verify the IUT correctly collects and represents an ACK_NOTIFICATION which it initiates.

Test Concept: Make the IUT generate an ACK_NOTIFICATION message. Use ReadRange to retrieve that same event from
an Event Log and compare the two representations. If the IUT does not support logging of the ACK_ NOTIFICATIONs which
it initiates, this test shall be skipped.

Configuration Requirements: Ol is an event initiating object in the IUT, which is configured to send event notifications to
TD. LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONS.

Test Steps:

1. WRITE Enable = TRUE
2—READRE=1EO0+Record—Count
23. MAKE (the IUT generate a notification)
34. RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (PI1, any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,
'Time Stamp' = (T1, any valid timestamp),
'Notification Class' = (N1, any valid notification class),
'Priority' = (P1, any valid priority),

© 2022 by BACnet International. All rights reserved. 1 34

BACnet Testing Laboratories - Specified Tests

'Event Type' = (ET]I, any standard event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = (S1, any valid state for this event type),
'To State' = (S2, any valid state for this event type),
'Event Values' = (any values appropriate to the event type)
45. TRANSMIT BACnet-SimpleACK-PDU
56. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (any valid value),
'Event Object Identifier' = O1,
'Event State Acknowledged' = S2,
'Time Stamp' =TI,
'Time of Acknowledgment' = (the current time)
6%. RECEIVE BAChnet-SimpleACK-PDU
78. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = PI1,
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,
'Time Stamp' = (T2, any valid timestamp > T1),
'Notification Class' = N1,
'Priority' = P1,
'‘Event Type'= ET1,
'Message Text' = (optional, any valid message text),
'Notify Type'= ACK NOTIFICATION,
'From State'= S1
89. TRANSMIT BACnet-SimpleACK-PDU
9. READ RC = LOI, Record Count
10. TRANSMIT ReadRange-Request,
'Object Identifier' = LOI,
'Property Identifier' = Log Buffer,
'Reference Index'= RC,
'Count'= -1
11. RECEIVE ReadRange-ACK,
'Object Identifier' = LOI,
'Property Identifier' = Log_Buffer,
'Result Flags'= {EALSE?, ?, FALSEFRUE},
Ttem Count'= 1,
'Item Data' = (logged data that matches the information received in step 74,
except that Process_Identifier can be any value and is not
required to match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,
the TD shall skip the steps in which BACnet-Simple ACK-PDUs are sent in response to ConfirmedEventNotifications.

7.3.2.25.4 Remote Logging of ACK_NOTIFICATIONs
Reason for Change: Fixed Result Flags in step 6. Add delay after Step 1.

Purpose: To verify that the IUT correctly collects and represents ACK_ NOTIFICATIONs which it receives.

Test Concept: Send an ACK_NOTIFICATION to the IUT. Use ReadRange to retrieve that same event from an Event Log,
and compare the two representations.

© 2022 by BACnet International. All rights reserved. 1 3 5

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: LO1 is an Event Log object in IUT which logs ACK_NOTIFICATIONS. Stop When Full in
LOL1 shall be FALSE or absent.

Test Steps:

1. WRITE Enable = TRUE
2. WAIT Internal Processing Fail Time
32. TRANSMIT ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = FFFTD,
'Event Object Identifier' = (any valid object identifier),
'Time Stamp' = (T1, any valid timestamp),
"Notification Class' = (any valid notification class),
'Priority' = (any valid priority),
'Event Type' = (any standard event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ACK NOTIFICATION,
'From State' = (state S1, any valid state for this event type)
43. RECEIVE BAChnet-SimpleACK-PDU
54. READ RC=L0O1, Record Count
65. TRANSMIT ReadRange-Request,
'Object Identifier' = LOI,
'"Property Identifier' = Log Buffer,
'Reference Index'= RC,
'Count' = -1
76. RECEIVE ReadRange-ACK,
'Object Identifier' = LOI,
'Property Identifier' = Log_Buffer,
'Result Flags'= {EALSE?, ?, FALSEFTRUE},
Ttem Count'= 1,
'Ttem Data' = (logged data that matches the information received in step 2,
except that Process_Identifier can be any value and is not required to match)

Notes to Tester: When the UnconfirmedEventNotification service is used instead of the ConfirmedEventNotification service,

the test shall skip the step in which a BACnet-Simple ACK-PDU is expected.

7.3.2.30 Notification Forwarder Object Tests

7.3.2.30.6 Out_Of Service Property Test

Reason for Change: Fixed Status Flags expected values.

BAChnet Reference Clauses: 12.51.7

Purpose: This test case verifies that event forwarding is not done while Out_Of Service is TRUE.

Test Concept: Set up both Recipient List and Subscribed Recipient recipient entries with no filters specified and then send
event notifications to the Notification Forwarder while the value of the Out Of Service property is TRUE.
Subscribed Recipients are configured as part of base setup 2 for Notification Forwarder object tests. Verify that forwarding

of the event notifications is not performed.

If the Out_Of Service property of the object under test is not writable, and if the value of the property cannot be changed by
other means, then this test shall be omitted.

Configuration Requirements: Base setup 2 for Notification Forwarder object tests with TR lifetime sufficient for this test.

© 2022 by BACnet International. All rights reserved. 1 36

BACnet Testing Laboratories - Specified Tests

Test Steps:
1. MAKE (Recipient List= { (all), --Valid Days
(all), --From Time, To Time
DEST OBIJ ID2, --Recipient D2
DEST PROCESS ID, --Process Identifier
FALSE, --Issue Confirmed Notifications
{T, T, T} --Transitions
H --One list element
2. MAKE (Out Of Service = TRUE)
3. VERIFY Out Of Service = TRUE
4. VERIFY Status Flags = (2FALSE, FALSE, 2FALSE, TRUE)
5. TRANSMIT SOURCE = DS, UnconfirmedEventNotification-Request,
'"Process Identifier' = SRC_PROCESS ID,
'Initiating Device Identifier' =SRC NOTIF_DEV,
'Event Object Identifier' = SRC NOTIF _OBJ,
'"Time Stamp' = (any valid time stamp),
"Notification Class' =SRC NOTIF_CLS,
'Priority’ = (any valid priority),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' =SRC _NOTIF_TYP,
'AckRequired' = (any valid value), -- absent if 'Notify Type' is ACK NOTIFICATION
'From State' = (any valid From_State), -- absent if 'Notify Type' is ACK_NOTIFICATION
'"To State' = (any valid To_State),
'Event Values' = (any valid event values) -- absent if 'Notify Type' is ACK NOTIFICATION
6. WAIT Notification Fail Time
7. CHECK (the IUT did not transmit an event notification)
8. MAKE (Out_Of Service =FALSE)
9. VERIFY Out_Of Service = FALSE
10. VERIFY Status Flags = (2FALSE, ?, 2FALSE, FALSE)
11. TRANSMIT SOURCE = DS, UnconfirmedEventNotification-Request,
'Process Identifier’ = SRC PROCESS ID,
'Initiating Device Identifier' = SRC NOTIF _DEV,
'Event Object Identifier' = SRC_NOTIF_OBJ,
'"Time Stamp' = (any valid time stamp),
"Notification Class' = SRC _NOTIF_CLS,
'Priority’ = (any valid priority),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' =SRC NOTIF TYP,
'AckRequired' = (any valid value), -- absent if 'Notify Type' is ACK NOTIFICATION
'From State' = (any valid From_State), -- absent if 'Notify Type'is ACK_NOTIFICATION
'To State' = (any valid To_State),
'Event Values' = (any valid event values) -- absent if 'Notify Type' is ACK_NOTIFICATION
12. BEFORE Notification Fail Time --The following can be in any order

RECEIVE DESTINATION = D1, UnconfirmedEventNotification-Request
RECEIVE DESTINATION = D2, UnconfirmedEventNotification-Request

7.3.2.X37 Accumulator Object Tests

7.3.2.X37.1 Present_Value Remains In-Range Test

Reason for Change: New test for Accumulator object.

© 2022 by BACnet International. All rights reserved. 1 37

BACnet Testing Laboratories - Specified Tests

Purpose: To verify the correct wrapping operation of the Accumulator Present Value.

Test Concept: The IUT shall be configured with a Max_Pres_Value which is attainable, within reasonable testing time, after
Present_Value is preset to a value slightly less than that, then incremented. The Present Value shall remain in range from
one to Max_Pres_Value, by wrapping back to 1 when it would exceed Max_Pres Value.

Test Steps:

1. IF (Value Set is writable) THEN
WRITE Value Set = (a value slightly less than Max_Pres_Value)
ELSE
MAKE (Present_Value equal a value slightly less than Max_Pres_Value)
2. MAKE (the Accumulator increase its Present Value until it rolls over Max Pres Value)
3. CHECK (Present Value < Max_Pres_Value)

7.3.2.X37.2 Prescale in Accumulator Test

Reason for Change: New test for Accumulator object.
Purpose: To verify the correct effect of Prescale on the increment of the Present Value in Accumulator.

Test Concept: The IUT shall be configured with a Prescale whose effect when incrementing Present Value is testable. Three
readings of the Present Value are observed, then the math is checked to ensure that it increments at the rate expected given
Prescale.

Configuration Requirements: If there is no Prescale property present in any Accumulator object, then this test shall be skipped.
Test Steps:

1. IF (Value Set is writable) THEN

WRITE Value_Set = (any valid value V)
ELSE

MAKE (Present Value equal any valid value V)
MAKE (the Accumulator increase its Present Value)
READ V, =Present_Value)
READ V3 = Present_Value)
IF (the Accumulator is stopped) THEN

CHECK (V3 = V; = ((Prescale-multiplier) * pulse-count of signals generated by the measuring instrument) /
(Prescale-moduloDivide) + V)

ELSE

CHECK (Vi < V; <V3)

nhkwe

7.3.2.X37.3 Logging_Record in Accumulator Test

Reason for Change: New test for Accumulator object.
Purpose: To verify the correct values represented in Logging Record of Accumulator.

Test Concept: Two readings of the Logging Object acquiring the Logging Record are performed, Pvprior being the value

from the first, and Present Value matching what is observed in the second Logging Record. Then all fields are checked to
ensure these match the values expected.

Configuration Requirements: The IUT shall be configured so that Logging Record capture is testable. If there is no
Logging Record property present in any Accumulator object, then this test shall be skipped.

© 2022 by BACnet International. All rights reserved. 1 3 8

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. MAKE (the Logging Object acquire the Logging Record)

2. Pvprjor = present-value parameter in the Logging Record

3. MAKE (the Logging Object acquire another Logging Record)
4. CHECK (Logging Record list of values are:

timestamp: the local date and time,
present-value: Present Value,
accumulated-value: Present_Value - Pvprior,

accumulated-status: NORMAL)

7.3.2.X37.4 Logging_Record in Accumulator RECOVERED Test
Reason for Change: New test for Accumulator object.
Purpose: To verify the correct values represented in Logging Record of Accumulator after one or more writes to

Value Before Change or Value Set.

Test Concept: The effect of the Logging Object acquiring the Logging Record is checked to ensure that after one or more
writes to Value Before Change or Value Set, it matches the values expected.

Configuration Requirements: The IUT shall be configured so that Logging Record capture is testable. If there is no
Logging Record property present in any Accumulator object, or if neither Value Before Change nor Value Set is writable
in an object which does have a Logging Record property, then this test shall be skipped.

Test Steps:

1. MAKE (the Logging Object acquire the Logging Record)

2. Pvprjor = present-value parameter in the Logging_Record

3. WRITE (either Value Before Change or Value Set in the object that contains Logging Record)
4. MAKE (the Logging Object acquire another Logging Record)

5. CHECK (Logging_ Record list of values are:

timestamp: the local date and time,
present-value: Present Value,
accumulated-value: (Present_Value - Value Set) + (Value Before Change - PVprior)s

accumulated-status: RECOVERED)

7.3.2.X37.5 Logging_Record in Accumulator STARTING Test
Reason for Change: New test for Accumulator object.

Purpose: To verify the correct values represented in Logging Record of Accumulator when no data has been acquired since
startup by the object identified by Logging Object.

Test Concept: The Logging Record is observed when no data has been acquired by the object identified by Logging_ Object,
to ensure that it matches the values expected.

Configuration Requirements: The IUT shall be in a state when no data has been acquired since startup by the object identified
by Logging_Object. If there is no Logging Record property present in any Accumulator object, then this test shall be skipped.

Test Steps:
1. CHECK (Logging Record list of values are:

timestamp: unspecified,
present-value: Present Value,

© 2022 by BACnet International. All rights reserved. 1 39

BACnet Testing Laboratories - Specified Tests

accumulated-value: 0,
accumulated-status: STARTING)
2. MAKE (the Logging Object acquire the Logging Record)
3. CHECK (Logging_ Record list of values are:
timestamp: the local date and time,
present-value: Present Value,
accumulated-value: same as present-value,
accumulated-status: STARTING)

7.3.2.X37.6 Out_Of Service Accumulator Test
Reason for Change: New test for Accumulator object.

Purpose: This test case verifies that Present Value, Pulse Rate, and the Reliability property are writable when
Out_Of Service is TRUE.

Test Concept: Select one instance of each appropriate object type and test it as described. Verify the interrelationship between
the Out_Of Service, Status_Flags, and Reliability properties. If the Out_Of Service property of the object under test is not
writable, and the value of the property cannot be changed by other means, then this test shall be omitted. If the Reliability
property is not supported then step 5 shall be omitted.

Test Steps:

1. IF (Out_Of Service is writable) THEN

WRITE Out_Of Service = TRUE
ELSE

MAKE (Out_Of Service TRUE)

2. VERIFY Out_Of Service =TRUE

VERIFY Status Flags = (?, ?, ?, TRUE)

4. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
WRITE Present Value =X
VERIFY Present Value =X

W

}
5. IF (Reliability is present and writable) THEN

REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
NO _FAULT DETECTED) DO {
WRITE Reliability = X
VERIFY Reliability = X
VERIFY Status_Flags = (?, TRUE, ?, TRUE)
WRITE Reliability = NO_FAULT DETECTED
VERIFY Reliability = NO_FAULT DETECTED
VERIFY Status_Flags = (?, FALSE, ?, TRUE)
h
6. IF (the object has a Pulse_Rate property) THEN {
REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
WRITE Pulse Rate =X
VERIFY Pulse Rate =X
H
}
7. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE
ELSE
MAKE (Out_Of Service FALSE)
8. VERIFY Out_Of Service = FALSE
9. VERIFY Status Flags=(?, ?, ?, FALSE)

© 2022 by BACnet International. All rights reserved. 140

BACnet Testing Laboratories - Specified Tests

7.3.2.X37.7 Value_Set Writing Test
Reason for Change: New test for Accumulator object.

Purpose: Verifying that writes to the Value Set are reflected atomically into the object's properties.

Test Concept: Writing the Value Set shall be reflected atomically in the Value Set and Present Value properties, while the
old Present Value is stored into the Value Before Change property, and the Value Change Time shall update.

Test Steps:

1. READ OIdV = Present_Value

2. WRITE Value Set=(NewV, any valid value)

3. VERIFY Value Set=NewV

4. VERIFY Present Value =NewV

5. VERIFY Value Before Change = OIldV

6. VERIFY Value Change Time = (approximately the current local time)

7.3.2.X37.8 Value_Before_Change Writing Test
Reason for Change: New test for Accumulator object.

Purpose: To verify the correct atomic operations of writing the Accumulator Value Before Change.

Test Concept: Write the Value Before Change and verify that it is reflected atomically in the Value Before Change
property, while the old Present Value is stored into the Value Set property, and the Value Change Time shall update.

Test Steps:

1. READ OIdV = Present Value

2. WRITE Value Before Change = (NewV, any valid value)

3. VERIFY Value Before Change =NewV

4. VERIFY Value Set=O0IldV

5. VERIFY Value Change Time = (approximately the current local time)

7.3.2.X38 Pulse Converter Object Tests

7.3.2.X38.1 Adjust_Value Write Test

Reason for Change: No test exists for this functional requirement. There is no SSPC proposal for this change.

Purpose: To verify the correct write operation of a Pulse Converter's several properties, when writing the Adjust Value.
Count_Before Change reflects the prior Count before a write to the Adjust Value property.

Configuration Requirements: Select a Pulse Converter object for which the pulse can be stopped so that Count remains
unchanged during the test.

Test Steps:

2. READ OIdC = Count

3. WRITE Adjust Value = (NewA, any valid value)

4. VERIFY Present Value = Count * Scale Factor5. VERIFY Count Change Time ~= (the current local time)
6. VERIFY Count Before Change = OldC

© 2022 by BACnet International. All rights reserved. 14 1

BACnet Testing Laboratories - Specified Tests

7.3.2.X38.2 Scale_Factor Test

Purpose: To verify the correct effect of Scale Factor on the Present Value in Pulse Converter.

Test Concept: The IUT shall be configured with a Scale Factor whose influence on the behavior of Present Value is
observable. After Present Value is read, then the value derived from Count and Scale Factor is compared to the expected
Present Value.

Test Steps:

1. IF (Scale Factor is writable) THEN
WRITE Scale Factor = (any valid value V)
ELSE
MAKE (Scale_Factor equal any valid value V)
2. VERIFY (Present_Value = conversion specified by Scale Factor V, coefficient times the Count property)

7.3.2.X38.3 Out_Of_Service Pulse Converter Test

Purpose: This test case verifies that Present Value and the Reliability property are writable when Out_Of Service is TRUE.
It also verifies the interrelationship between the Out Of Service, Status Flags, and Reliability properties. If the PICS
indicates that the Out_Of Service property of the object under test is not writable, and if the value of the property cannot be
changed by other means, then this test shall be omitted.

Test Concept: The IUT will select one instance of each appropriate object type and test it as described. If the Reliability
property is not supported then step 5 shall be omitted.

Test Steps:

1. IF (Out_Of Service is writable) THEN

WRITE Out_Of Service = TRUE
ELSE

MAKE (Out_Of Service TRUE)

2. VERIFY Out_Of Service = TRUE

VERIFY Status Flags = (?, FALSE, ?, TRUE)

4. REPEAT X = (any values meeting the functional range requirements of 7.2.1) DO {
WRITE Present_Value =X
VERIFY Present Value =X

[O8)

5. IF (Reliability is present and writable) THEN
REPEAT X = (any values of the Reliability enumeration appropriate to the object type except

NO_FAULT DETECTED) DO {

WRITE Reliability = X

VERIFY Reliability = X

VERIFY Status Flags = (?, TRUE, ?, TRUE)

WRITE Reliability = NO _FAULT DETECTED

VERIFY Reliability =NO_FAULT DETECTED

VERIFY Status_Flags = (?, FALSE, ?, TRUE)

}
6. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE
ELSE
MAKE (Out_Of Service FALSE)
7. VERIFY Out Of Service = FALSE
8. VERIFY Status Flags =(?, ?, ?, FALSE)

© 2022 by BACnet International. All rights reserved. 142

BACnet Testing Laboratories - Specified Tests

7.3.2.X38.5 Update_Time Reflects Change to the Count and is Updated Atomically Test

Purpose: To verify the correct atomic operations of change to the Pulse Converter's several properties, for an inherent change
in Count.

Test Steps:

1. READ OIdV = Present Value

2. READ OIdC = Count

3. READ OIdU = Update Time

4. READ OIdT = Count_Change Time

5. READ OIdA = Adjust Value

6. READ OldS = Scale Factor

7. READ OIdB = Count_Before Change

8. WAIT (for a change in Count to any valid value, different from OldC so that it can be distinguished)

9. CHECK Present Value is recalculated, increasing in proportion to the change in Count multiplied by OIdS (or such that
Present_Value minus OIdA is still the same fixed difference)

10. VERIFY Update Time = (approximately the current local time, and different from OldU)

11. VERIFY Count Change Time = OIldT

7.3.2.X38.6 Adjust_Value Out-of-Range WriteProperty Test

Purpose: To verify the correct atomic operations of change to the Pulse Converter Count property, when an attempt is made
to write Adjust_Value with a value that would cause an overflow or underflow condition in Count. The test is performed once
using WriteProperty and once using WritePropertyMultiple, if [UT supports both services.

Test Steps:

1. READ OIdV = Present Value

2. READ OIdC = Count

3. READ OIdU = Update Time

4. READ OIdT = Count_Change Time
5. READ OIdA = Adjust Value

6. READ OIdS = Scale Factor

7. READ OIdB = Count Before Change
8. TRANSMIT WriteProperty-Request

'Property Identifier' = Adjust Value
'Property Value' = (NewA, a valid value that would cause an overflow or underflow condition in Count)
9. RECEIVE BAChnet-Error-PDU
'Error Class' = PROPERTY
'Error Code' = VALUE_OUT _OF RANGE
10. VERIFY Update Time = OldU
11. VERIFY Adjust_Value = OldA
12. VERIFY Count Before Change = OldB

7.3.2.X40 Channel Object Tests

7.3.2.X40.2 Last_Priority Test

Purpose: To verify that the initial value of Last Priority is 16. To verify that a Channel object correctly retains the priority of
written values. To verify that a Last Priority will have a default priority of 16 if the last attempt to write to the Present Value
was done without specifying the priority.

© 2022 by BACnet International. All rights reserved. 143

BACnet Testing Laboratories - Specified Tests

Test Concept: First, confirm that the default value of Last Priority is 16. Next, write a valid value to a Channel object using
a valid priority level other than 16 and then check the value of Last Priority to make sure it shows the specified priority level.
Finally, write a valid value to a Channel object again but without specifying priority and then check the value of Last_Priority
to make sure that it now shows 16 again.

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to a
writable Present Value property which is either on local device or remote device.

Test Steps:

1. READ LEN = List Of Object Property References, ARRAY INDEX =0

2. VERIFY Last Priority =16

3. WRITE Present_Value = (Any valid value), PRIORITY = (Y: Any valid value < 16)
4. WAIT (Channel Write Fail Time * LEN)

5. VERIFY Last Priority =Y

6. WRITE Present Value = (Any valid value)

7. WAIT (Channel Write Fail Time * LEN)

8. VERIFY Last Priority = 16

7.3.2.X40.3 WriteGroup Service Support Test
Purpose: To verify that the Present_Value of the Channel object can be written by WriteGroup Service

Test Concept: The Channel object, O1, is written to via WriteGroup and it is verified that the Present Value of the object is
updated correctly.

Test Steps:
1. READ X =0l, Present Value
2. TRANSMIT WriteGroup-Request,
'Group Number' = (one of the Control Group values configured in O1),
"Write Priority' = (any valid value),
'Change List' = (O1's channel number, no overriding priority, Y: a value different than X)

3. VERIFY Present Value=Y

7.3.2.X40.4 Propagation Entirety Test

Purpose: To verify that the Channel object keeps propagating the value to each local/remote object property reference in its
List Of Object Property References after propagating the value fails for one or more target.

Test Concept: The Channel object, O1, is configured with at least 1 referenced target which the Channel object won’t send
the write to due to an invalid datatype coercion error. The Channel object's Present Value is written, and the writes to remote
targets are checked. Once all writes complete, the Write _Status is verified to be FAILED and all targets the Channel object
sent the write to are verified to have accepted the written value.

Configuration Requirements: Configure the Channel object's List Of Object Property References so that at least one of the
target references (contained in entry X of List Of Object Property References) will result in an invalid datatype coercion
when the value WrittenValue is written to the Channel object. The rest of the target reference(s) shall be selected such that
they will accept the written value as is without coercion. Refer to the Table 12-63 — Datatype Coercion Rules from ASHRAE
135 for the invalid datatypes.

Test Steps:

© 2022 by BACnet International. All rights reserved. 144

BACnet Testing Laboratories - Specified Tests

READ LEN = List Of Object Property References, ARRAY INDEX =0
READ N1 =List Of Object Property References, ARRAY INDEX =X
WRITE Present Value = WRITTEN VALUE
WAIT (Channel Write Fail Time * LEN)
REPEAT REF = (each reference in O1.List Of Object Property References) {
IF (REF is not contained in the IUT) THEN
RECEIVE WriteProperty-Request
'Object Identifier' = (Object Identifier of N1),
'"Property Identifier' = (Property Identifier of N1),
'Property Value'= WrittenValue
IF (REF <> N1) THEN
TRANSMIT BAChnet-SimpleACK-PDU

Nk W=

}
VERIFY Write Status = FAILED

7. REPEAT REF = (each reference in O1.List Of Object Property References) {
IF (REF <> N1) THEN
VERIFY REF = WRITTEN VALUE

o

7.3.2.X40.5 Write_Status Test

Purpose: To verify that the Write_Status of the Channel object is IDLE when it's List Of Object Property References is
empty, and is IN._ PROGRESS while the Channel object's Present Value is being propagated, FAILED when propagation
failed, and SUCCESSFUL when propagation succeeds.

Test Concept: The Channel object’s List Of Object Property Refereces is read and verified to be empty. Then, the Channel
object’s Write Status is verified to be IDLE. Next, any valid value is written to the Channel object’s Present Value and
Write Status is verified to be IDLE still. An object property reference, R1, that the IUT cannot reach is set into the
List Of Object Reference and then any valid value is written to the Present Value and the Write Status is verified to be
IN_PROGRESS. After the IUT determines that the referenced device is offline, the Write Status is verified to be FAILED.
Finally, any wvalid reference, R2, that will cause successful value propagation is set to the
List Of Object Property References and the test is repeated to verify that Write Status becomes SUCCESSFUL.

Test Steps:
1. READ LEN =List Of Object Property References, ARRAY INDEX =0

-- IDLE test

READ L =List Of Object Property References
VERIFY L = (empty)

VERIFY Write Status = IDLE

WRITE Present_Value = (any valid value)
VERIFY Write Status = IDLE

Sk v

-- IN_ PROGRESS and FAIL test

7. WRITE List Of Object Property References = (R1)-- write the whole array
8. WRITE Present_Value = (any valid value)

9. VERIFY Write Status =IN_PROGRESS

10. WAIT (Channel Write Fail Time * LEN)

11. VERIFY Write Status = FAILED

© 2022 by BACnet International. All rights reserved. 145

BACnet Testing Laboratories - Specified Tests

-- SUCCESSFUL test

12. WRITE List_ Of Object Property References = (R2)-- write the whole array
13. WRITE Present_Value = (any valid value)

14. WAIT (Channel Write Fail Time * LEN)

15. VERIFY Write Status = SUCCESSFUL

7.3.2.X40.6 Allow_Group_Delay_Inhibit Test
Purpose: To verify that no Execution_Delay will be applied to any of the writes if Allow_Group Delay Inhibit is TRUE.

Test Concept: Setup List Of Object Property References to contain 2 valid entries PR1, PR2 and provide each with an
execution delay (ED1 and ED2). Set Allow_Group Delay Inhibit to TRUE so that no delays will occur between writes to
referenced properties. Write to the Channel object’s Present Value and verify that no delay occurs between writes to the
referenced properties.

Set Allow_Group Delay Inhibit to FALSE so that delays will occur between writes to referenced properties. Write to the
Channel object’s Present_Value and verify that delays occur between writes to the referenced properties.

Configuration Requirements: PR1 and PR2 shall be references to writable properties and shall be the same datatype. ED1
and ED2 shall be values which are large enough that the delay between writes is sufficient for the test. V1 and V2 shall be of
the expected datatype for PR1 and PR2 so that no coercion occur, and shall be different values. This test shall be skipped if
the Channel object does not support at least 2 entries in the List Of Object Property References.

Test Steps:

1. READ LEN = List_ Of Object Property References, ARRAY INDEX =0
-- Setup the Channel object

2. WRITE List_Of Object Property References = (PR1, PR2)

3. WRITE Execution Delay = (ED1, ED2)

-- Test that delays are inhibited

WRITE Allow Group Delay Inhibit= TRUE
WRITE Present_Value =V1

WAIT (Channel Write Fail Time * LEN)
VERIFY PR1 =V1

VERIFY PR2=V1

VERIFY Write Status = SUCCESSFUL

WXk

-- Test that delays are not inhibited

10. WRITE Allow_Group Delay Inhibit=FALSE
11. WRITE Present Value = V2

12. WAIT (Channel Write Fail Time * LEN)
13. VERIFY PR1=V1

14. VERIFY PR2=V1

15. VERIFY Write_Status = IN_ PROGRESS
16. WAIT (ED1)

17. VERIFY PR1=V2

18. VERIFY PR2=V1

19. VERIFY Write Status = IN_ PROGRESS
20. WAIT (ED2 — ED1)

21. VERIFY PR2=V2

22. VERIFY Write_Status = SUCCESSFUL

© 2022 by BACnet International. All rights reserved. 146

BACnet Testing Laboratories - Specified Tests

7.3.2.X40.7 Numeric to BOOLEAN Coercion Rule Test

Purpose: To verify that the Channel object correctly propagates all numeric datatype values to a BOOLEAN target based on
Coercion Rule 1 — Numeric to BOOLEAN.

Test Concept: Write a value of 0 is to the Present Value of the Channel object with a BOOLEAN target object property
reference, verify that a target object property has a value of FALSE, and that Write Status of the Channel object shows
SUCCESSFUL. When any non-zero numeric value is written to the Present Value of the same Channel object, verify that a
target object property has a value of TRUE, and a Write Status shows SUCCESSFUL.

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to a
writable BOOLEAN object property.

Test Steps:
1. READ LEN =List Of Object Property References, ARRAY INDEX =0
2. READ B =List Of Object Property References, ARRAY INDEX =X

3. WRITE Present Value =0

4. WAIT (Channel Write Fail Time * LEN)

5. VERIFY B=FALSE

6. VERIFY Write Status = SUCCESSFUL

7. WRITE Present Value = (Any non-zero numeric value)

8. WAIT (Channel Write Fail Time * LEN)

9. VERIFY B=TRUE

10. VERIFY Write Status = SUCCESSFUL

7.3.2.X40.8 BOOLEAN to Numeric Coercion Rule Test

Purpose: To verify that the Channel object can correctly propagate BOOLEAN values to a numeric target object property
reference based on Coercion Rule 2 - BOOLEAN to Numeric defined in ASHRAE 135.

Test Concept: When a value of FALSE is written to the Present Value of the Channel object with a numeric target object
property reference, verify that the target object property has a value of 0, and a Write Status of the Channel object shows
SUCCESSFUL. When a value of TRUE is written to the present value of the same Channel object, verify that a target object
property has a value of 1, and a Write_Status shows SUCCESSFUL.

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to a
writable numeric object property on the IUT. The referenced property shall not be 0 at the start of the test.

Test Steps:

READ LEN = List Of Object Property References, ARRAY INDEX =0
READ N = List Of Object Property References, ARRAY INDEX =X
VERIFY N <> 0 -- non-zero so that coercion is verified in the following write
WRITE Present Value = FALSE

WAIT (Channel Write Fail Time * LEN)

VERIFY N =0

VERIFY Write Status = SUCCESSFUL

WRITE Present Value = TRUE

WAIT (Channel Write Fail Time * LEN)

VERIFY N =1

VERIFY Write Status = SUCCESSFUL

e AR N S

— O

© 2022 by BACnet International. All rights reserved. 147

BACnet Testing Laboratories - Specified Tests

7.3.2.X40.9 Unsigned/INTEGER/REAL/Double to Numeric Coercion Rule Test

Purpose: To verify that the Channel object correctly propagates Unsigned, INTEGER, REAL or Double datatype values to a
numeric target object property reference.

Test Concept: Select a Channel object with a numeric target property, N. Select an Unsigned, INTEGER, REAL or Double
value, V1, which is in the acceptable range for N, and which coerces to value V2 based on N’s datatype. Write V1 to the
Present Value of the Channel object. Verify that the N changes to V2 and that Write Status of the Channel object is
SUCCESSFUL.

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to the
selected numeric property N. Configure the Channel object with no execution delays.

Test Steps:

1. READ LEN = List Of Object Property References, ARRAY INDEX =0
2. VERIFY List Of Object Property References =N, ARRAY INDEX =X
3. WRITE Present Value=V1

4. WAIT (Channel Write Fail Time * LEN)

5. VERIFYN=V2

6. VERIFY Write Status = SUCCESSFUL

7.3.2.X40.10 Invalid Datatype Coercion Test

Purpose: To check that the Channel object does not write to a target object property reference and the Write Status indicates
FAILED when invalid datatype coercion occur.

Test Concept: When an invalid data type value is written to a Present Value of the Channel object, verify that a target object
reference value does not change.

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to a
writable object property of a specific data type on the IUT such that the Channel object will fail to propagate
InvalidDataTypeValue. Refer to the Table 12-63 - Datatype Coercion Rules from ASHRAE 135 for the invalid datatypes.

Test Steps:

1. READ LEN =List Of Object Property References, ARRAY INDEX =0

2. READ N =List Of Object Property References, ARRAY INDEX =X

3. WRITE Present_Value = (InvalidDataTypeValue: Any invalid data type value)
4. WAIT (Channel Write Fail Time * LEN)

5. VERIFY N <> InvalidDataTypeValue

6. VERIFY Write Status = FAILED

7.3.2.X40.11 No Coercion Test

Purpose: To check that the Channel object can successfully write to a target object property reference without any value
conversions and Write Status indicates SUCCESSFUL when no coercion occurs.

Test Concept: When a valid data type value is written to a Present Value of the Channel object using a value that require no
coercion, verify that a written value is directly mapped to a target object reference and a Write Status of the Channel object
shows SUCCESSFUL.

© 2022 by BACnet International. All rights reserved. 148

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to a
writable object property of a specific data type on the IUT such that no coercion will occur. Refer to the Table 12-63 —
Datatype Coercion Rules from ASHRAE 135 for the data types that require no coercion.

Test Steps:

1. READ LEN = List_ Of Object Property References, ARRAY INDEX =0

2. READ N =List Of Object Property References, ARRAY INDEX =X

3. WRITE Present Value = (ValidDataTypeValue: Any value of a datatype that requires no coercion)
4. WAIT (Channel Write Fail Time * LEN)

5. VERIFY N = ValidDataTypeValue

6. VERIFY Write_Status = SUCCESSFUL

7.3.2.X40.12 Write Priority Test

Purpose: To check that the Channel object uses a priority level specified by a write service when the Channel object propagate
its Present Value to (a) target object property reference(s). If no priority level is specified, check that 16 is used by default.

Test Concept: When a valid data type value is written to a Present Value of the Channel object by a WriteProperty request
and a 'Priority' is provided in the write, the Channel object will use this same priority to command the referenced properties.
When another value is written to a Present Value of the Channel object by a WriteProperty request with no 'Priority’ specified,
the Channel object will use a priority 16 by default to command the referenced properties.

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to a
writable object property of a specific data type on the IUT such that no coercion will occur. Refer to the Table 12-63 —
Datatype Coercion Rules from ASHRAE 135 for the data types that require no coercion. The referenced property must contain
a Priority Array property.

Test Steps:

1. READ LEN =List_ Of Object Property References, ARRAY INDEX =0
2. READ N =List Of Object Property References, ARRAY INDEX =X

3. TRANSMIT WriteProperty-Request,

'Object Identifier' = (Object Identifier of the Channel object)

'Property Identifier'= Present Value

'Property Value'= (V1: Any value of a datatype that requires no coercion)
'Priority' = (P1: Any valid value but 16)

4. WAIT (Channel Write Fail Time * LEN)

RECEIVE BACnet-Simple ACK-PDU

6. TRANSMIT ReadProperty-Request,
'Object Identifier' = (Object Identifier of N)
'Property Identifier = Priority Array
'Property Array Index' = Pl

7. RECEIVE ReadProperty-ACK,
'Object Identifier' = (Object Identifier of N)
'"Property Identifier' = Priority Array
'"Property Array Index'= P1

hd

'Property Value'= V1
8. TRANSMIT WriteProperty-Request,
'Object Identifier' = (Object Identifier of the Channel object)
'Property Identifier'= Present Value
'Property Value'= (V2: Any value of a datatype that requires no coercion)

9. WAIT (Channel Write Fail Time * LEN)

10. TRANSMIT ReadProperty-Request,
'Object Identifier' = (Object Identifier of N)
'Property Identifier = Priority Array
'"Property Array Index'= 16

© 2022 by BACnet International. All rights reserved. 149

BACnet Testing Laboratories - Specified Tests

11. RECEIVE ReadProperty-ACK,
'Object Identifier' = (Object Identifier of N)
'"Property Identifier' = Priority Array
'Property Array Index'= 16
'Property Value'= V2

7.3.2.X40.13 Writing with a NULL Value Test

Purpose: To check that the Channel object ignores datatype errors when writing a NULL value to a non-commandable target.

Test Concept: This test is to check a special exception of Write_Status reporting SUCCESSFUL after propagating a NULL
value to both a commandable and non-commandable property. Writing a NULL value to a commandable property will result
in a property relinquishing a value to a Relinquish Default value. However, writing a NULL value to a non-commandable
property will result in a property remaining a current value. If a non-commandable target property is on a remote device, the
IUT will receive either an ERROR INVALID DATATYPE or REJECT INVALID PARAMETER DATA TYPE. The
Write Status after such events should report SUCCESSFUL instead of FAILED.

Configuration Requirements: Configure entry X of the Channel object's List Of Object Property References to refer to a
commandable property that accepts NULL value and configure entry Y of the List Of Object Property References to a non-
commandable property that rejects a NULL value with either ERROR INVALID DATATYPE or REJECT
INVALID PARAMETER DATA TYPE. For acommandable property, all prioritized commands has to be relinquished and
any minimum on/off time has to be accounted for prior to the test. An initial value of a commandable property, N1 must be
different from a value of its Relinquish Default. N1's Priority Array has only one non-Null value in it and it is in the priority
array level that the Channel object is targeting.

Test Steps:

1. READ LEN = List Of Object Property References, ARRAY INDEX =0

-- Read an initial value of target properties

2. READ P1 =List Of Object Property References: ARRAY INDEX = X, which is a commandable property

3. READ P2 =List Of Object Property References: ARRAY INDEX =Y, which is a non-commandable property

-- Find expected values of the target properties after a NULL value is written to them
4. READ V1 =PI1.Relinquish_Default
5. READV2=P2

-- Make the Channel object to propagate NULL value to targets
6. WRITE Present_ Value = NULL
7. WAIT (Channel Write Fail Time * LEN)
8. IF (P2 is on external) THEN
RECEIVE WritePropertyMultiple-Error
'Error Class'= PROPERTY,
'Error Code'= INVALID DATATYPE |
RECEIVE BAChnet-Reject-PDU
'Reject Reason' = INVALID PARAMETER DATATYPE

--Check that P1 has Relinquish_Default value and P2 remains the same
9. VERIFY P1=V1
10. VERIFY P2=V2

--Check that the Channel object ignores the datatype error and Write Status is SUCCESSFUL
11. VERIFY Write_Status= SUCCESSFUL

© 2022 by BACnet International. All rights reserved. 1 50

BACnet Testing Laboratories - Specified Tests

7.3.2.X45 Elevator Group Object Tests

7.3.2.X45.1 Machine_Room_ID property references a Positive Integer Value Object

Reason for Change: No tests exist.

Purpose: To verify that the Machine Room_ID property of an Elevator Group object can only reference a Positive Integer
Value object or an object with instance number of 4194303.

Test Concept: The Machine Room_ID property of an Elevator Group object, EG1, is read to verify that it contains an
object reference to a Positive Integer Value object, PIV, or an object with instance number of 4194303. If the property is
writable, an attempt is made to write an object reference, O1, that is not a Positive Integer Value object and has an instance
number 0-4194302 (inclusive) to verify that an error is returned.

Test Steps:

1. IF (Machine Room_ID contains room identification number) THEN
VERIFY (EG1), Machine Room_ID = (PIV)
ELSE
VERIFY (EG1), Machine Room_ID = (any object type, 4194303)
2. IF (Machine Room_ID is writeable) THEN
Transmit WriteProperty-Request
'Object Identifier'= EGI,
'Property Identifier'= Machine Room ID,

'"Property Value'= Ol
Receive BACnet-Error-PDU
'Error Class'= PROPERTY,
'Error Code'= VALUE OUT OF RANGE

7.3.2.X45.2 Linking of Lift and Escalator Objects under Group_Members property of the Elevator Group Object

Reason for Change: No tests exist.

Purpose: This test verifies that objects in the Group Members property of Elevator Group objects contain a reference back
to the Elevator Group that has it listed as a member.

Test Concept: The Group Members property of each Elevator Group object is read to identify member Lift and Escalator
objects. The Elevator Group property is read from each member Lift object and Escalator object to verify it contains a
reference back to the appropriate Elevator Group object. The Elevator Group property of the remaining Lift and Escalator
objects are read to verify that it contains an object identifier instance of 4194303.

Configuration Requirements: If the IUT supports a Group_Members property that can be made to contain a reference to one
or more Lift objects, than it shall be configured as such. If the IUT supports a Group Members property that can be made to
contain a reference to one or more Escalator objects, it shall be configured as such.

Test Steps:

1. REPEAT EGO = (each Elevator Group object in the IUT) {
READ L1 = (EGO, Group_Members)
IF (L1 is not empty) THEN
REPEAT O1 = (each Lift or Escalator object in L1) {
READ EGP = (01, Elevator_Group)
VERIFY EGP = EGO

© 2022 by BACnet International. All rights reserved. 1 5 1

BACnet Testing Laboratories - Specified Tests

}

i

3. REPEAT O1 = (each remaining Lift or Escalator object in the IUT) {
READ EGP = (Ol, Elevator_Group)
VERIFY EGP = (any object type, 4194303)

}

7.3.2.X45.3 Landing_Call_Control Test

Reason for Change: No tests exist.

Purpose: To verify that writing to the Landing_Call_Control property updates the Landing_Call Control and
Landing_Calls properties in the Elevator Group object and updates the Assigned Landing_Calls property of a linked Lift
object

Test Concept: The Landing_Call_Control property of an Elevator Group object (EG1) is written with a value that represents
a request to travel upwards from FNI. The Landing Call Control and Landing Calls properties of EG1 and the
Assigned Landing Calls property of the linked Lift object (L1) are checked to verify they updated correctly. The
Landing_Call Control property is written with a value that represents a request to travel downwards from FN2 and the
aforementioned properties are checked again. The optional 'floor-text' parameter is used in one of the WRITE steps to verify
the server will ignore this parameter when present. In the test steps, DF represents a valid destination floor.

Configuration Requirements: Lift object (L1) is contained in the Group Members property of the Elevator Group object
(EG1) and has a door at array index Y on the same side of the landing call. FN1 and FN2 values should be sufficiently far
away from the current position of L1 to allow for reading of the property values. No other processes shall be generating
landing calls during this test.

Notes to Tester: If the Elevator Group contains more than 1 lift, the value written to Landing_Call Control may get
assigned to any other lift in the group based on the lift algorithm.

Test Steps:

. WRITE EG1, Landing_Call Control = (FN1, UP | DF (DF > FN1), "test string")
. VERIFY EG]1, Landing_Call Control = (FN1, UP | DF, floor-text (optional))
. VERIFY EG]1, Landing_Calls = (FN1, UP | DF, floor-text (optional))
. IF (L1 contains the Assigned Landing_Calls property)
VERIFY L1, Assigned Landing_Calls, ARRAY INDEX (Y) = (FN1, UP)

. WAIT (a time interval sufficient for the car to complete the call + Internal Processing Fail Time)
. VERIFY EGI, Landing_Calls = ()
7. IF (L1 contains the Assigned Landing_Calls property)

VERIFY L1, Assigned Landing Calls, ARRAY INDEX (Y)=()
8. WRITE EGI, Landing Call Control = (FN2, DOWN | DF (DF < FN2))
9. VERIFY EGI, Landing Call Control = (FN2, DOWN | DF, floor-text (optional))
10.VERIFY EG1, Landing Calls = (FN2, DOWN | DF, floor-text (optional))
11.IF (L1 contains the Assigned Landing_Calls property)

VERIFY L1, Assigned Landing_Calls = (FN1, DOWN)
12.WAIT (a time interval sufficient for the car to complete the call + Internal Processing Fail Time)
13.VERIFY EGlI, Landing_Calls = ()
14. TF (L1 contains the Assigned Landing_Calls property)
VERIFY L1, Assigned Landing_Calls, ARRAY INDEX (Y)=()

B W N —

AN D

7.3.2.X46 Lift Object Tests

© 2022 by BACnet International. All rights reserved. 1 52

BACnet Testing Laboratories - Specified Tests

7.3.2.X46.1 Array Size of the Lift Object Properties Based on Number of Car Doors

Reason for Change: No tests exist.

Purpose: To verify that the size of the arrays for the Car Door Text, Assigned Landing_Calls, Making Car_Call,
Registered Car_Call, Car_Door_ Status, Car Door Command and Landing Door_Status properties are the same.

Test Concept: The array size for each of the above properties, if present, is read and the sizes are compared to verify they
are all equal.

Test Steps:

VERIFY (L1), Car Door Text = (Number of car doors present in the Lift), ARRAY INDEX =0
VERIFY (L1), Assigned Landing Calls = (Number of car doors present in Lift), ARRAY INDEX =0
VERIFY (L1), Making Car Call = (Number of car doors present in the Lift), ARRAY INDEX =0
VERIFY (L1), Registered Car Call = (Number of car doors present in the Lift), ARRAY INDEX =0
VERIFY (L1), Car_Door_Status = (Number of car doors present in the Lift), ARRAY INDEX =0
VERIFY (L1), Car_Door_Command = (Number of car doors present in the Lift), ARRAY INDEX =0
VERIFY (L1), Landing_Door_Status = (Number of car doors present in the Lift), ARRAY INDEX =0
CHECK (Array index 0 of all these properties shall be same)

e A el

7.3.2.X46.2 Lift Properties Operational Test

Reason for Change: No tests exist.
Purpose: To verify that the property values in the Lift object update when it responds to a call.

Test Concept: The test starts with the Lift object, L1, in the lowest floor that it serves, LF, and property values are checked.
A request is made to move the lift to the highest floor that it serves, HF, and property values are checked while the lift is
moving and again when the lift arrives at HF. If the IUT does not contain the property specified in the test step, that step
shall be skipped. In the test steps, DSR is a specific array index corresponding to the car door servicing the request.

Configuration Requirements: At the start of the test, the lift corresponding to L1 is at LF and there are no active calls for L1.
Throughout the test, L1 is in a normal operating state such that Car Mode = NORMAL, Out_Of Service = FALSE, and no
other processes shall be attempting to control L1.

Test Steps:

1. READ LF = Car_ Position

2. READ DSI =Car_Door_Status

3. VERIFY Floor Text = (any value), ARRAY INDEX = LF
4. VERIFY Floor Text = (any value), ARRAY INDEX = HF
5. REPEAT N = (each array element) DO {

VERIFY Assigned Landing Calls = {}, ARRAY INDEX =N
}

6. REPEAT N = (each array element) DO {
VERIFY Registered Car Calls = {}, ARRAY INDEX =N
}

7. VERIFY Car Moving Direction <> UP | DOWN

8. VERIFY Car Mode = NORMAL

9. VERIFY Next_Stopping Floor =LF

10. VERIFY Passenger Alarm = FALSE

11. VERIFY Reliability = NO FAULT DETECTED

12. VERIFY Out_Of Service = FALSE

13. VERIFY Car Drive Status = STATIONARY | UNKNOWN

14. REPEAT N = (each array element) DO {

© 2022 by BACnet International. All rights reserved. 1 53

BACnet Testing Laboratories - Specified Tests

VERIFY Landing Door Status = (a list containing an entry {LF, DS1[N]}), ARRAY INDEX =N
H
15. MAKE (A command that will cause L1 to travel to HF)

--Complete steps 16 — 19 before L1 reaches HF

16. IF (command was generated via Landing call) THEN
VERIFY Assigned Landing Calls = (HF, DOWN), ARRAY INDEX = DSR
j

ELSE --command was generated via Car call

VERIFY Making Car Call = (HF), ARRAY INDEX = DSR
VERIFY Registered Car_Calls = (HF), ARRAY INDEX = DSR
VERIFY Car_Assigned Direction = (UP)
b

17. VERIFY Car Moving Direction = UP

18. VERIFY Next Stopping Floor = HF

19. VERIFY Car Drive Status <> STATIONARY

20. WAIT (for L1 to reach HF) + Internal Processing Fail Time

21. REPEAT N = (each array element) DO {
VERIFY Registerd Car Calls = {}, ARRAY INDEX =N
b

22. VERIFY Car Position = HF

23. VERIFY Car_Moving_Direction <> UP | DOWN

24. VERIFY Next Stopping_Floor = HF

25. READ DS2 = Car_Door_Status

26. REPEAT (N = each array element) DO{
VERIFY Landing_Door_Status = (a list containing an entry {LF, DS2[N]}), ARRAY INDEX =N

}

7.3.2.X46.3 Out_Of_Service, Status_Flags for Lift Object

Reason for Change: No tests exist.

Purpose: To verify the interrelationship between Out Of Service and Status Flags and that properties dictated by the
standard to be writable when Out_Of Service is TRUE are writable when Out_Of Service is TRUE.

Test Concept: Out_Of Service is set to TRUE and Status_Flags is checked to verify the Out_Of Service flag is set. While
Out_Of Service is TRUE, each of the properties (represented by LP), if present in the object, is read to obtain the current
property value, X, and written with a different property value, Y. The property value is read again to verify it changed to Y.

LP = (Assigned Landing Calls, Registered Car Call, Car Position, Car Moving Direction, Car_ Assigned Direction,
Car_Door_Status, Car Door Zone, Car_Load, Next Stopping_Floor, Passenger Alarm, Energy Meter, Car_Drive Status,
Fault Signals, Landing Door_Status, Making Car_Call, Car Door Command, and Car_Mode)

Test Steps:

1. WRITE Out_Of Service = TRUE

2. VERIFY Out_Of Service =TRUE

3. VERIFY Status Flags = (?, ?, ?, TRUE)

4. REPEAT P = (each property in LP present in the object) DO{
READ X =P
WRITEP =Y

WAIT Internal Processing Fail Time
VERIFY (P =Y)

© 2022 by BACnet International. All rights reserved. 1 54

BACnet Testing Laboratories - Specified Tests

7.3.2.X46.4 Energy Meter_Ref Property Tests
Reason for Change: No tests exist.
Purpose: To verify linking of Energy Meter property and Energy Meter Ref property.
Test Concept: If the Energy Meter Ref property of an object (O1) is present and initialized (contains an instance other than
4194303), then the Energy Meter property, if present, shall have a value of 0.0. If Energy Meter Ref is present and is un-
initialized, then the value of Energy Meter property shall have any valid value.
Test Steps:
1. IF (Energy Meter Refis present and initialized with instance other than 4194303) THEN
VERIFY Energy Meter = 0.0

ELSE
VERIFY Energy Meter = (Any Valid Value)

7.3.2.X47 Escalator Object Tests

7.3.2.X47.1 Out_Of Service, Status_Flags for Escalator Object

Reason for Change: No tests exist.

Purpose: To verify the interrelationship between Out Of Service and Status Flags and that properties dictated by the
standard to be writable when Out_Of Service is TRUE are writable when Out Of Service is TRUE.

Test Concept: Out_Of Service is set to TRUE and Status_Flags is checked to verify the Out_Of Service flag is set. While
Out_Of Service is TRUE, each of the properties (represented by EP), if present in the object, is read to obtain the current
property value, X, and written with a different property value, Y. The property value is read again to verify it changed to Y.

EP = (Power_Mode, Operation_Direction, Escalator Mode , Energy Meter, Fault Signals, and Passenger Alarm)

Test Steps:

1. WRITE Out_Of Service = TRUE

2. VERIFY Out_Of Service = TRUE

3. VERIFY Status Flags = (?, ?, ?, TRUE)

4. REPEAT P = (each property in LP present in the object) DO {
READ X =P
WRITE (P =Y)

WAIT Internal Processing Fail Time
VERIFY (P =Y)

7.3.2.X53 Load Control Object Tests

The Load Control object defines a standardized object whose properties represent the externally visible characteristics of a
mechanism for controlling load requirements. A BACnet device can use a Load Control object to allow external control over
the shedding of a load that it controls. The mechanisms by which the loads are shed are not visible to the BACnet client. The
Load Control Object utilizes parameter control through its writable Requested Shed Level, Start Time, Shed Duration,
Duty Window, Enable and Shed Levels properties.

© 2022 by BACnet International. All rights reserved. 1 55

BACnet Testing Laboratories - Specified Tests

7.3.2.X53.1 Requested_Shed_Level property test with LEVEL choice
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the IUT can accept and execute a shed request with LEVEL choice.

Test Concept: The Requested Shed Level property of the Load Control object is set to a LEVEL choice and it is verified
that the Load Control object behaves as per the Load Control state machine.

Configuration Requirements: The IUT shall be configured so that Present Value is equal to SHED INACTIVE, at the start
of the test. Writing Start Time and/or Shed Duration with values such that current time is after ST+SD forces Present Value
to become equal to SHED INACTIVE.

Notes to Tester: The writing of Duty Window can be skipped, for the tester to see that the VERIFY Duty Window = DW
during a pending or active shed event, that property takes on PAV, the configured pre-agreed upon value.

Test Steps:
1. VERIFY Requested Shed Level = (DRSL : one of the default Requested Shed Level values for a previous shed
request, not necessarily the LEVEL default of 0)
VERIFY Expected_Shed Level = DRSL
VERIFY Actual Shed Level = DRSL
VERIFY Present Value = SHED INACTIVE
VERIFY Shed Duration =0
VERIFY Start_Time = (the fully unspecified datetime value)
VERIFY Duty Window = (PAV, the pre-agreed upon value)
WRITE Enable = TRUE
WRITE Shed Duration = (SD, any value appropriate to the object)
10 WRITE Start Time = (ST, any valid start time including values in the past, present or future, but limited to such that
current_time is before ST + SD)
11. WRITE Duty_Window = (DW, any value appropriate to the object)
12. WRITE Requested Shed Level = (a value appropriate to the object with a LEVEL choice, that is not equal to the default
value: 0)
13. IF (current time is before ST) THEN

VERIFY Present Value =(SHED REQUEST PENDING,

SHED COMPLIANT or
SHED NON COMPLIANT)

WAIT (until Start_Time)
14. VERIFY Present Value = (SHED COMPLIANT or SHED NONCOMPLIANT)
15. IF (ST + DW < ST + SD and ST + DW is in the future) THEN

WAIT (until ST+DW)
16. IF (current time is after ST+DW) THEN

IF (Actual _Shed Level does not comply with Requested Shed Value) THEN

VERIFY Present Value = SHED NONCOMPLIANT

17. VERIFY Shed Duration = SD
18. VERIFY Start Time = ST
19. VERIFY Duty Window = DW
20. VERIFY Expected Shed Level = (any value appropriate to the choice, that is not equal to the default value)
21. VERIFY Actual Shed Level = (any value appropriate to the choice, that is not equal to the default value)
-- the above VERIFY statements apply all through the time that there is a pending or active shed event
22. WAIT (until the shed request has completed, at ST+SD)
23. VERIFY Requested Shed Level =0 -- the default LEVEL value
24. VERIFY Expected Shed Level =0 -- the default LEVEL value
25. VERIFY Actual Shed Level =0 -- the default LEVEL value
26. VERIFY Shed Duration =0

O NG AW

© 2022 by BACnet International. All rights reserved. 1 56

BACnet Testing Laboratories - Specified Tests

27. VERIFY Start Time = (the fully unspecified datetime value)
28. VERIFY Duty Window = PAV

7.3.2.X53.2 Shed_Levels property test
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify writability of Shed Levels property and verify that when commanded with the LEVEL choice, the Load
Control object shall take a shedding action described by the corresponding element in the Shed Level Descriptions array.

Test Concept: The Shed Levels property of the Load Control object being tested is written to BACnetARRAY of unsigned
integers representing the shed levels for the LEVEL choice of BACnetShedLevel that have meaning for this particular Load
Control object. Verify that is updating correctly. The array shall be ordered by increasing shed amount.

Test Steps:

1. READ N1 = Shed Levels, ARRAY INDEX =0

2. VERIFY (Shed Level Descriptions =N1, ARRAY INDEX = 0)

3. WRITE Shed_Levels = (any content that is different from the current value, but nonetheless still ordered by increasing
shed amount)

4. READ N2 =Shed Levels, ARRAY INDEX = 0 -- obtaining the length of the new value

5. VERIFY (Shed Level Descriptions = N2, ARRAY INDEX = 0)

7.3.2.X53.3 Load Control Status_Flags and Reliability Test

Purpose: To ensure Status_Flags reflects the Reliability property value.
Test Concept: Write to Reliability and verify the interrelationship between the Status_Flags and Reliability.

Configuration Requirements: The selected object is configured such that its Reliability is NO_FAULT DETECTED before
execution of this test. If the Reliability property is not present or not writable, then this test shall be skipped.

Test Steps:

1. VERIFY Reliability = NO_FAULT DETECTED
2. VERIFY Status Flags = (?, FALSE, ?, FALSE)
3.REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
NO _FAULT DETECTED) DO {
WRITE Reliability = X
VERIFY Reliability = X
VERIFY Status_Flags = (TRUE, TRUE, ?, FALSE)
WRITE Reliability = NO_FAULT DETECTED
VERIFY Reliability = NO_FAULT DETECTED
VERIFY Status Flags = (? FALSE, ?, FALSE)

}

7.3.2.X53.4 Requested_Shed_Level property test with PERCENT choice

Reason for Change: This test is not specified in any SSPC proposal.
Purpose: To verify the performance of a shed request with PERCENT choice.

Test Concept: The Requested Shed Level property of the Load Control object is set to a PERCENT choice and it is verified
that the series of required actions which that sets into operation occur correctly.

© 2022 by BACnet International. All rights reserved. 1 57

BACnet Testing Laboratories - Specified Tests

Test Steps: The test steps defined in test 7.3.2.X53.1 shall be followed except that the Requested Shed Level property of the
Load Control object is written to a PERCENT choice, and the default value for a shed request with PERCENT choice in
Requested_Shed Level, Expected Shed Level, and Actual Shed Level properties is 100

7.3.2.X53.5 Requested_Shed_Level property test with AMOUNT choice

Reason for Change: This test is not specified in any SSPC proposal.
Purpose: To verify the performance of a shed request with AMOUNT choice.

Test Concept: The Requested _Shed Level property of the Load Control object is set to an AMOUNT choice and it is verified
that the series of required actions which that sets into operation occur correctly.

Test Steps: The test steps defined in test 7.3.2.X53.1 shall be followed except that the Requested Shed Level property of the
Load Control object is written to an AMOUNT choice, and the default value for a shed request with AMOUNT choice in
Requested Shed Level, Expected Shed Level, and Actual Shed Level properties is 0.0

7.3.2.X54 Lighting Output Object Tests

7.3.2.X54.21 Lighting Output Tracking Test

Purpose: To verify that the Tracking_Value property follows the Present_Value property.

Test Concept: Write to the Present Value of a Lighting Output object, O1, and verify that the Tracking Value property
follows Present Value once In-Progress returns to IDLE.

Configuration Requirements: The IUT shall be configured with a lighting output, O1, that can be observed during the test.
O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have a value of NULL and no
internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1 and Out Of Service =
FALSE.

Test Steps:
1. WRITE Present Value = 100, PRIORITY =PTY1
2. VERIFY Present Value = 100
3. WHILE (In_Progress < IDLE) DO {
}
4. VERIFY Tracking Value =100
5. WRITE Present Value =1, PRIORITY =PTY1
6. VERIFY Present Value =1
7. WHILE (In_Progress <~ IDLE) DO {
}
8. VERIFY Tracking Value =1
9. WRITE Present Value =0, PRIORITY =PTY1
10. VERIFY Present Value =0
11. WHILE (In_Progress < IDLE) DO {

i
12. VERIFY Tracking Value =0

© 2022 by BACnet International. All rights reserved. 1 58

BACnet Testing Laboratories - Specified Tests

7.3.2.X54.22 Lighting Output Present Value between 0.0 and 1.0 Test

Purpose: To verify that writing a value numerically greater than 0.0 but less than 1.0 to Present Value shall result in
Present_Value taking on the value 1.0.

Test Concept: Select a value, V1, which is numerically greater than 0.0 and less than 1.0. Write V1 to Present Value and
verify that Present Value takes on the value 1.0.

Configuration Requirements: The Lighting Output object, O1, shall be configured such that all slots in the Priority Array
numerically less than PTY1 have a value of NULL and no internal algorithms are issuing commands to O1 at a priority
numerically less than or equal to PTY1. Present Value shall be different from 1.0.

Test Steps:

1. VERIFY Present Value <> 1.0

2. WRITE Present Value = a value numerically greater than 0.0 but less than 1.0
3. VERIFY Present Value=1.0

7.3.2.X54.31 Lighting Command Operation NONE Test

Purpose: To verify that the [UT can execute WriteProperty service requests when an attempt is made to write a value that is
outside of the supported range.

Test Concept: The TD writes the Lighting Command Operation NONE to the IUT, and expects Error Class of PROPERTY
and an Error Code of VALUE OUT OF RANGE

Test Steps:
1. VERIFY (Objectl), P1 = (the value defined for this property in the EPICS);
2. TRANSMIT WriteProperty-Request,
'Object Identifier' = Ol
'"Property Identifier' = Lighting Command
'"Property Value'= NONE
3. RECEIVE BACnet-Error PDU,
'Error Class'= PROPERTY,
'Error Code'= VALUE OUT OF RANGE
4. VERIFY (Objectl), Lighting Command = (the value defined for this property in the EPICS)

7.3.2.X54.32 Lighting Command Operation FADE_TO Test

Purpose: To verify the correct operation of FADE TO lighting command by observing the value of Present Value,
In_Progress and Tracking Value.

Test Concept: The TD writes to the Present Value at each end of the range (i.e. 0% or 100%), and then writes to the Lighting
Command Operation with FADE TO with a long enough fade-time to allow In_Progress and Tracking_Value to be observed
while set to FADE ACTIVE. The Tracking Value will be checked at the end of the fade to verify that it tracked the target
level. The IUT shall be tested for fade up (0% to 100%) and fade down (100% to 0%).

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY'1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
V1>1and V2 <100%

Test Steps:
-- Start with 0% Present_Value to test fade up
1. WRITE Present Value =0, ARRAY INDEX =PTY1

© 2022 by BACnet International. All rights reserved. 1 59

BACnet Testing Laboratories - Specified Tests

2. VERIFY Present Value =0
3. WAIT Internal Processing Fail Time
4. VERIFY Tracking Value =0

-- Write a FADE TO command (operation, target-level, priority, fade-time)
5. WRITE Lighting Command = (FADE_TO, V1, PTY1, FT)

6. WAIT Internal Processing Fail Time

7. VERIFY Priority Array = V1, ARRAY INDEX =PTY1

8. VERIFY Present Value =V1

-- In a half way of fading up, check In_Progress and Tracking Value
9. WAITFT/2

10. VERIFY In Progress = FADE ACTIVE,

11. VERIFY Tracking Value ~=V1/2

12. WAIT FT/2

-- When fading up is completed, check In_Progress and Tracking Value
13. VERIFY In_Progress = IDLE
14. VERIFY Tracking Value =V1

-- Now repeat the test with 100% Present_Value to test fade down
15. WRITE Present Value = 100, ARRAY INDEX =PTY1

16. VERIFY Present Value = 100

17. WAIT Internal Processing Fail Time

18. VERIFY Tracking Value = 100

-- Write a FADE TO command (operation, target-level, priority, fade-time)
19. WRITE Lighting Command = (FADE TO, V2, PTY1, FT)

20. WAIT Internal Processing Fail Time

21. VERIFY Priority Array = V2, ARRAY INDEX =PTY1

22. VERIFY Present Value = V2

-- In a half way of fading down, check In_Progress and Tracking Value
23. WAIT FT/2

24. VERIFY In Progress = FADE ACTIVE,

25. VERIFY Tracking Value ~=V1/2

26. WAIT FT/2

-- When fading down is completed, check In Progress and Tracking Value
27. VERIFY In Progress = IDLE
28. VERIFY Tracking Value =V2

7.3.2.X54.33 Lighting Command Operation RAMP_TO Test

Purpose: To verify the correct operation of RAMP _TO lighting command by observing the value of Present Value,
In_Progress and Tracking_ Value.

Test Concept: The TD writes to Present Value at each end of the range (i.e. 0% or 100%), and then writes to the Lighting
Command Operation with RAMP_TO with a slow enough ramp rate to allow In_Progress and Tracking Value to be observed
while set to RAMP_ACTIVE. The Tracking Value will be checked at the end of the ramp to verify that it tracked the target
level. The IUT shall be tested for ramp up (0% to 100%) and ramp down (100% to 0%).

© 2022 by BACnet International. All rights reserved. 1 60

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY'1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
V1>1and V2 <100%

Test Steps:

-- Start with 0% Present Value to test ramp up

1. WRITE Present Value =0, ARRAY INDEX =PTY1
2. VERIFY Present Value =0

3. WAIT Internal Processing Fail Time

4. VERIFY Tracking Value =0

-- Write a RAMP_TO command (operation, target-value, priority, ramp-rate)
5. WRITE Lighting Command = (RAMP_TO, V1, PTY, any valid rate)
6. WAIT Internal Processing Fail Time

7. VERIFY Priority Array = V1, ARRAY INDEX =PTY1

8. VERIFY Present Value =V1

-- Check In_Progress while ramping up
9. VERIFY In_Progress = RAMP_ ACTIVE

-- Make sure that Tracking_Value increases with the ramp-rate
10. WHILE (In_Progress < IDLE) DO {

11. VERIFY Tracking Value >0<VI

12. CHECK (Tracking Value is increasing with the ramp-rate)}

-- When ramping up is completed, check In Progress and Tracking Value
13. VERIFY In Progress = IDLE
14. VERIFY Tracking Value=V1

-- Now repeat the test with 100% Present Value to test ramp down
15. WRITE Present Value = 100, ARRAY INDEX =PTY1

16. VERIFY Present Value = 100

17. WAIT Internal Processing Fail Time

18. VERIFY Tracking Value = 100

-- Write a RAMP_TO command (operation, target-value, priority, ramp-rate)
19. WRITE Lighting Command = (RAMP_TO, V2, PTY, any valid rate)
20. WAIT Internal Processing Fail Time

21. VERIFY Priority Array = V2, ARRAY INDEX =PTY1

22. VERIFY Present Value =V2

-- Check In_Progress while ramping up
23. VERIFY In Progress = RAMP ACTIVE,

-- Make sure that Tracking Value decreases with the ramp-rate
24. WHILE (In_Progress <> RAMP_ACTIVE) DO {

25. VERIFY Tracking Value <0

26. VERIFY Tracking Value > V2

27. CHECK (Tracking Value is decreasing with the ramp-rate)}

-- Check In_Progress and Tracking Value

28. VERIFY In Progress = IDLE
29. VERIFY Tracking Value =V2

© 2022 by BACnet International. All rights reserved. 1 6 1

BACnet Testing Laboratories - Specified Tests

7.3.2.X54.34 Lighting Command Operation STEP_UP Test

Purpose: To verify the correct operation of STEP UP lighting command by observing the value of Present Value,
In_Progress and Tracking_Value.

Test Concept: The TD writes to Present Value at 0%, and then writes to the Lighting Command Operation with STEP_UP
and any step increment. The Tracking Value shall remain at 0% to ignore the operation. Next, the TD writes to Present Value
at 1%, and then writes to the Lighting Command Operation with STEP_UP and a step increment greater than 99%, the
Tracking_Value shall be 100%. The TD writes to Present Value at 1%, and then writes to the Lighting Command Operation
with STEP_UP and a step increment less than 99%, the Tracking Value shall be 1% plus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY'1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY 1.

Test Steps:

-- Start with 0% Present Value

1. WRITE Present Value =0, ARRAY INDEX =PTY1
2. VERIFY Present Value =0

3. WAIT Internal Processing Fail Time

4. VERIFY Tracking Value =0

-- Write a STEP_UP command (operation, priority, step-increment)
5. WRITE Lighting Command = (STEP_UP, PTY1, any valid value)
6. WAIT Internal Processing Fail Time

-- Confirm that the command was ignored since Tracking Value was 0
7. VERIFY Priority Array =0, ARRAY INDEX =PTY1

8. VERIFY Present Value=0

9. VERIFY Tracking Value =0

-- Now test with Tracking Value >0

10. WRITE Present Value = 1, ARRAY INDEX =PTY1
11. VERIFY Present Value =1

12. WAIT Internal Processing Fail Time

13. VERIFY Tracking Value =1

-- Keep stepping up while continuously checking Priority Array, Present Value and Tracking Value
14. REPEAT X = (1 through (100 - step-increment) by step-increment) DO {
WRITE Lighting Command = (STEP_UP, PTY1, any valid value)
WAIT Internal Processing Fail Time
VERIFY Priority Array = X + step-increment, ARRAY INDEX =PTY1
VERIFY Present_Value = X + step-increment
VERIFY Tracking Value = X + step-increment
H
-- Now step up one more time to confirm that the values will not exceed 100
15. WRITE Lighting Command = (STEP_UP, PTY 1, any valid value)
16. WAIT Internal Processing Fail Time
17. VERIFY Priority Array = 100, ARRAY INDEX =PTY1
18. VERIFY Present Value =100
19. VERIFY Tracking Value = 100

7.3.2.X54.35 Lighting Command Operation STEP_DOWN Test

© 2022 by BACnet International. All rights reserved. 1 62

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that writing this Lighting Command Operation is reflected in the Tracking Value, that writes resulting in
a step below 1% are limited to 1%, and that this command is ignored if the Tracking Value is 0.0%.

Test Concept: The TD writes to Present Value at 0%, and then writes to the Lighting Command Operation with
STEP DOWN and any step increment. The Tracking Value shall remain at 0%. The TD writes to Present Value at 100%,
and then writes to the Lighting Command Operation with STEP. DOWN and a step increment greater than 99%, the
Tracking_Value shall be 1%. The TD writes to Present_Value at 100%, and then writes to the Lighting Command Operation
with STEP_ DOWN and a step increment less than 99%, the Tracking Value shall be 100% minus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY 1.

Test Steps:

-- Start with 0% Present Value

1. WRITE Present Value =0, ARRAY INDEX =PTY1
2. VERIFY Present Value =0

3. WAIT Internal Processing Fail Time

4. VERIFY Tracking Value =0

-- Write a STEP_ DOWN command (operation, priority, step-increment)
5. WRITE Lighting Command = (STEP_ DOWN, PTY1, any valid value)
6. WAIT Internal Processing Fail Time

-- Confirm that the command was ignored since Tracking Value was 0
7. VERIFY Priority Array =0, ARRAY INDEX =PTY1

8. VERIFY Present Value =0

9. VERIFY Tracking Value =0

-- Now test with Tracking Value = 100

10. WRITE Present Value = 100, ARRAY INDEX =PTY1
11. VERIFY Present Value =100

12. WAIT Internal Processing Fail Time

13. VERIFY Tracking Value =100

-- Keep stepping down while continuously checking Priority Array, Present Value and Tracking Value
14. REPEAT X = (100 through (1 + step-increment) by step-increment) DO{
WRITE Lighting Command = (STEP_ DOWN, PTY1, any valid value)
WAIT Internal Processing Fail Time
VERIFY Priority Array = X - step-increment, ARRAY INDEX = PTY1
VERIFY Present Value = X - step-increment
VERIFY Tracking_Value = X - step-increment
}
-- Now step down one more time to confirm that the values will not go down below 1
15. WRITE Lighting Command = (STEP_ DOWN, PTY 1, any valid value)
16. WAIT Internal Processing Fail Time
17. VERIFY Priority Array = 1, ARRAY INDEX =PTY1
18. VERIFY Present Value =1
19. VERIFY Tracking Value =1

7.3.2.X54.36 Lighting Command Operation STEP_ON Test

Purpose: To verify that writing this Lighting Command Operation is reflected in the Tracking_Value, that this command will
set the Tracking Value to 1% if the Tracking Value is 0.0%, and that it otherwise adheres to STEP_UP.

© 2022 by BACnet International. All rights reserved. 1 63

BACnet Testing Laboratories - Specified Tests

Test Concept: The TD writes to Present Value at 0%, and then writes to the Lighting Command Operation with STEP_UP
and any step increment. The Tracking Value shall be 1%. The TD writes to Present Value at 1%, and then writes to the
Lighting Command Operation with STEP_UP and a step increment greater than 99%, the Tracking Value shall be 100%.
The TD writes to Present Value at 1%, and then writes to the Lighting Command Operation with STEP UP and a step
increment less than 99%, the Tracking Value shall be 1% plus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY 1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY 1.

Test Steps:

-- Start with 0% Present Value

1. WRITE Present Value =0, ARRAY INDEX =PTY1
2. VERIFY Present Value =0

3. WAIT Internal Processing Fail Time

4. VERIFY Tracking Value=0

-- Write a STEP_ON command (operation, priority, step-increment)
5. WRITE Lighting Command = (STEP_ON, PTY 1, any valid values)
6. WAIT Internal Processing Fail Time

-- Confirm that the Present Value and Tracking Value became 1
7. VERIFY Priority Array = 1, ARRAY INDEX = PTY1

8. VERIFY Present Value =1

9. VERIFY Tracking Value =1

-- Keep stepping on while continuously checking Priority Array, Present Value and Tracking Value
10. REPEAT X = (1 through (100 — step-increment)) DO {
WRITE Lighting Command = (STEP_ON, PTY1, any valid values)
WAIT Internal Processing Fail Time
VERIFY Priority Array = X + step-increment, ARRAY INDEX =PTY1
VERIFY Present Value = X + step-increment
VERIFY Tracking Value = X + step-increment
H
-- Now step on one more time to confirm that the values will not exceed 100
11. WRITE Lighting Command = (STEP_ON, PTY 1, any valid values)
12. WAIT Internal Processing Fail Time
13. VERIFY Priority Array = 100, ARRAY INDEX =PTY1
14. VERIFY Present Value =100
15. VERIFY Tracking Value = 100

7.3.2.X54.37 Lighting Command Operation STEP_OFF Test

Purpose: To verify that writing this Lighting Command Operation is reflected in the Tracking Value, that writes resulting in
a step below 1% are limited to 1%, and that this command is ignored if the Tracking Value is 0.0%.

Test Concept: The TD writes to Present Value at 0%, and then writes to the Lighting Command Operation with
STEP_DOWN and any step increment. The Tracking Value shall remain at 0%. The TD writes to Present Value at 100%,
and then writes to the Lighting Command Operation with STEP DOWN and a step increment greater than 99%, the
Tracking Value shall be 1%. The TD writes to Present_Value at 100%, and then writes to the Lighting Command Operation
with STEP_ DOWN and a step increment less than 99%, the Tracking Value shall be 100% minus the step increment.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.

© 2022 by BACnet International. All rights reserved. 1 64

BACnet Testing Laboratories - Specified Tests

Test Steps:

-- Start with 0% Present Value

1. WRITE Present Value =0, ARRAY INDEX =PTY1
2. VERIFY Present Value =0

3. WAIT Internal Processing Fail Time

4. VERIFY Tracking Value =0

-- Write a STEP_OFF command (operation, priority, step-increment)
5. WRITE Lighting Command = (STEP_ OFF, PTY 1, step-increment)
6. WAIT Internal Processing Fail Time

-- Confirm that the command was ignored since Tracking Value was 0
7. VERIFY Priority Array =0, ARRAY INDEX =PTY1

8. VERIFY Present Value =0

9. VERIFY Tracking Value =0

-- Now test with Tracking Value = 100

10. WRITE Present Value = 100, ARRAY INDEX =PTY1
11. VERIFY Present Value = 100

12. WAIT Internal Processing Fail Time

13. VERIFY Tracking Value =100

-- Keep stepping off while continuously checking Priority Array, Present Value and Tracking Value
14. REPEAT X = (100 through (1 + step-increment)) DO {

WRITE Lighting Command = (STEP_ OFF, PTY 1, step-increment)

WAIT Internal Processing Fail Time

VERIFY Priority Array = X - step-increment, ARRAY INDEX =PTY1

VERIFY Present Value = X - step-increment

VERIFY Tracking_Value = X - step-increment

-- Confirm that the Present Value and Tracking Value become 0 when STEP OFF command is executed while
Tracking Value is 1

15. WRITE Lighting Command = (STEP_ OFF, PTY 1, step-increment)
16. WAIT Internal Processing Fail Time

17. VERIFY Priority Array =0, ARRAY INDEX =PTY1

18. VERIFY Present Value =0

19. VERIFY Tracking Value =0

7.3.2.X54.41 Transition None Test

Purpose: To verify that the Tracking_Value property immediately follows the Present Value property if Transition is NONE.

Test Concept: Setup a Lighting Output object, O1, to use its complete supported value range. Set Present_Value to the highest
supported value, and then to the lowest supported value, verifying that there is no delay in the transitions.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have
avalue of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
If present, Min_Actual Value shall be set to 1, and Max_Actual Value shall be set to 100. Transition shall be set to NONE.

Test Steps:
1. VERIFY Transition = NONE

© 2022 by BACnet International. All rights reserved. 1 65

BACnet Testing Laboratories - Specified Tests

VERIFY In Progress =IDLE

WRITE Present Value = 100, ARRAY INDEX =PTY1
VERIFY In_Progress = IDLE

VERIFY Tracking_Value = 100

WRITE Present Value =1, ARRAY INDEX =PTY1
VERIFY In_Progress = IDLE

VERIFY Tracking Value =1

%N LR W

7.3.2.X54.42 Transition Test

Purpose: To verify that the Lighting Output object transitions using the configured function and transitions at the configured
speed when Transition is set to either FADE or RAMP.

Test Concept: Setup a Lighting Output object, O1, to use fading or ramping as the default transition method. Present Value
is changed to V1 which is larger than the initial Present Value, V0, so that the output will fade or ramp up. Halfway through
the process, verify that Tracking Value is approximately equal to the value halfway between VO and V1. The physical output
shall also be verified that it is fading or ramping from VO to V1. When the process completes, verify that Tracking Value
reached V1. Repeat the process fading or ramping down from V1 to V2.

Configuration Requirements: O1 shall be configured such that all slots in the Priority Array numerically less than PTY1 have
a value of NULL and no internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1.
The Transition property is set to FADE or RAMP, Present Value is VO and In_Progress is IDLE.

To test FADE functionality, T is FADE, A is FADE ACTIVE, W1 and W2 are (Default Fade Time / 2), and
Default Fade Time is sufficiently large so as to allow the intermediate progress checks.

To Test RAMP functionality, T is RAMP, A is RAMP_ACTIVE, W1 is (((V1 — V0) / Default Ramp Rate) / 2), W2 is ((
(V1 —=V2)/Default Ramp Rate)/2), and Default Ramp Rate is sufficiently small so as to allow the intermediate progress
checks.

Test Steps:
VERIFY Transition =T
VERIFY In Progress =IDLE
V0 =READ Present_Value
WRITE Present Value = V1, ARRAY INDEX =PTY1
VERIFY Present Value = V1
WAIT W1
VERIFY Tracking Value ~= (V1 +V0)/2
VERIFY In_Progress = A
CHECK (the physical output is fading from VO to V1)
. WAIT W1
. VERIFY In Progress =IDLE
. VERIFY Tracking Value =V1
. WRITE Present Value = V2, ARRAY INDEX =PTY1
. VERIFY Present_Value = V2
. WAIT W2
. VERIFY Tracking Value ~=(V2+ V1) /2
. VERIFY In_Progress = A
. CHECK (the physical output is fading V1 to V2)
. WAIT W2
. VERIFY In Progress = IDLE
. VERIFY Tracking Value = V2

VXA W=

N O e
— OO0 INN DWW —O

© 2022 by BACnet International. All rights reserved. 1 66

BACnet Testing Laboratories - Specified Tests

7.3.2.X54.51 Feedback_Value Clamping Test

Purpose: To verify that the Feedback Value remains in the normalized range when the physical lighting output is outside the
normalized range.

Test Concept: Set the normalized range to be the largest range supported by the device. Make the physical output be above
the normalized range by setting it to the maximum supported value and then shrinking the normalized range. The
Feedback Value is immediately tested to verify that it takes on the value 100.

Reset the normalized range. Make the physical output be below the normalized range by setting it to the minimum supported
value and then shrinking the normalized range. The Feedback Value is immediately tested to verify that it takes on the value
1.

Configuration Requirements: The Lighting Output object, O1, shall be configured to transition slowly when Present Value
changes, such as by ramping, fading or stepping, if possible.

Ol shall be configured such that all slots in the Priority Array numerically less than PTY1 have a value of NULL and no
internal algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY 1.

Test Steps:

-- Verify Feedback Value when output is above Max_Actual Value
WRITE Max_Actual Value =100

WRITE Min_Actual Value =1

WRITE Present_Value = 100, PRIORITY =PTY1

WHILE In_Progress <> IDLE {}

WRITE Max_Actual Value = (Lowest supported Max_Actual Value)
VERIFY Feedback Value =100

A

-- Verify Feedback Value when output is below Min_Actual Value

7. WRITE Max_Actual Value =100

8. WRITE Min_Actual Value=1

9. WRITE Present_Value = 1, PRIORITY =PTY1

10. WHILE In_Progress <> IDLE {}

11. WRITE Min_Actual Value = (Highest supported Min_Actual Value)
12. VERIFY Feedback Value =1

7.3.2.X54.61 Min_Actual_Value and Max_Actual_Value Test

Purpose: To verify that Min_Actual Value remains less than Max_Actual Value and within the allowable range when either
is written to a value that would violate these conditions.

Test Concept: Write a value to Min_Actual Value which is larger than Max_Actual Value. Verify that Max Actual Value
became equal to Min_Actual Value. Next, write a value to Max_Actual Value which is less than Min_Actual Value. Verify
that Min_Actual Value became equal to Max_Actual Value.

Verify that neither Min_Actual Value nor Max_Actual Value will accept a value outside the range 1.0 to 100.0.
Configuration Requirements: The IUT shall be configured with a lighting output, O1. Min_Actual Value shall be set to a
value less than Max_Actual Value, and Max_Actual Value shall be within the allowable range for Min_Actual Value and
not equal to Min_Actual Value’s maximum supported value. If the IUT cannot be configured to meet these requirements,

then this test shall be skipped.

Test Steps:

© 2022 by BACnet International. All rights reserved. 1 67

SNk =

BACnet Testing Laboratories - Specified Tests

V1 =READ Max_Actual Value
WRITE Min_Actual Value = V2, a value greater than V1
VERIFY Max_Actual Value =V2
WRITE Max_Actual Value = V3, a value less than V2
VERIFY Min_Actual Value =V3
TRANSMIT WritePropertyRequest

'Object Identifier' = O1,

'Property Identifier' = Min_Actual Value,

'Property Value' = (any value outside the range 1.0 to 100.0)
RECEIVE BACnet-Error-PDU,

'Error Class' = PROPERTY,

'Error Code' = VALUE OUT OF RANGE
TRANSMIT WritePropertyRequest

'Object Identifier' = O1,

'Property Identifier' = Max_Actual Value,

'Property Value' = (any value outside the range 1.0 to 100.0)
RECEIVE BACnet-Error-PDU,

'Error Class' = PROPERTY,

'Error Code' = VALUE OUT _OF RANGE

7.3.2.X54.62 Min_Actual_Value and Max_Actual_Value Scaling Test

Purpose: To verify that the physical output level changes to the expected scaled value as Present Value changes.

Test Concept: Set Min_Actual Value to a value other than the lowest supported minimum value, and set Max_Actual Value

to a value other than the highest support value but larger than Min_Actual Value.

Then write 1.0 to Present_Value and measure the physical output. Repeat the procedure to measure the physical output after
writing 100.0 to Present Value. After obtaining these upper and lower bound values, write a value between 1.0 and 100.0,
measure the physical output, and confirm that the measured value is approximately the same as the expected scaled value.

Configuration Requirements: The IUT shall be configured with a lighting output, O1 that can be observed during the test. O1
shall be configured such that all slots in the Priority Array numerically less than PTY1 have a value of NULL and no internal
algorithms are issuing commands to O1 at a priority numerically less than or equal to PTY1 and Out_Of Service = FALSE.

Test Steps:

1. WRITE Min_Actual Value = (a supported value that is not the lowest supported value)

2. WRITE Max_Actual Value = (a supported value which is not the highest support value)

3. WRITE Present Value =1.0, ARRAY INDEX =PTY1

4. CHECK(the value of the physical output is Min_Actual Value)

5. WRITE Present Value = 100.0, ARRAY INDEX =PTY1

6. CHECK(the value of the physical output is Max_Actual Value)

7. WRITE Present Value = (V1, a value between 1.0 and 100.0 exclusive), ARRAY INDEX =PTY1
8. MAKE(measure the value of the physical output and record in MV)

9. CHECK (MV ~=Min_Actual Value + (V1/100) * (Max_Actual Value — Min_Actual Value))

7.3.2.X55 Access Door Object Tests

7.3.2.X55.1.X1 Commandable Present_Value Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

© 2022 by BACnet International. All rights reserved. 1 68

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that writing to the Present Value will cause a corresponding change to the physical output.

Test Concept: The IUT shall be configured with a door control output that can be observed during the test. The Present Value
property is written with each of the following wvalues: UNLOCK, LOCK, PULSE UNLOCK,
EXTENDED PULSE UNLOCK and the Access Door object is monitored to ensure that the door locks and unlocks
appropriately.

Configuration Requirements: The Relinquish Default shall have the value LOCK. All writes are at a priority higher than any
internal algorithms writing to this property. Out Of Service shall be set to FALSE. Prior to the test the Present Value shall
have the value LOCK and the IUT is in a state that would cause the door to be locked.

Test Steps:

-- Test UNLOCK value
1. WRITE Present Value = UNLOCK
2. WAIT (Internal Processing Fail Time)
3. IF (Lock_Status is present) THEN
VERIFY Lock_Status = UNLOCKED
4. CHECK (that the door control output is in a state that would cause the door to be unlocked)

-- Test LOCK value
5. WRITE Present Value = LOCK
6. WAIT (Internal Processing Fail Time)
7. IF (Lock_Status is present) THEN
VERIFY Lock Status= LOCKED
8. CHECK (that the door control output is in a state that would cause the door to be locked)

-- Test PULSE UNLOCK value
9. WRITE Present Value = PULSE UNLOCK
10. WAIT (Internal Processing Fail Time + Door Unlock Delay Time if present)
11. TF (Lock_Status is present) THEN
VERIFY Lock Status = UNLOCKED
12. CHECK (that the IUT is in a state that would cause the door to be unlocked)
13. WAIT (Door Pulse Time)
14. VERIFY Present Value = LOCK
15. TF (Lock_Status is present) THEN
VERIFY Lock Status = LOCKED
16. CHECK (that the door control output is in a state that would cause the door to be locked)

-- Test EXTENDED PULSE UNLOCK value

17. WRITE Present Value = EXTENDED PULSE UNLOCK
18. WAIT (Internal Processing Fail Time + Door Unlock Delay Time if present)

7.3.2.X55.1.X2 Door_Status, Lock_Status and Door_Alarm_State Tests

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies that Door Status, Lock Status and Door Alarm_ State properties are writable when
Out_Of Service is TRUE.

Test Concept: Set Out Of Service to TRUE and then make sure one at a time that Door Status, Lock Status and
Door Alarm_State, if present, are writable.

© 2022 by BACnet International. All rights reserved. 1 69

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: If the Out Of Service property of this object is not writable, and if the Out Of Service
property cannot be changed by other means, then this test shall be omitted. All writes to the Present Value shall be performed
at a priority higher (numerically smaller) than any internal algorithms writing to this property. For testing Door Alarm_State,
test only values listed in either the Alarm_Values or Fault Values.

Test Steps:

1. MAKE (Out_Of Service TRUE)
. VERIFY Status_Flags = (,?,2,TRUE)
3. IF (Door_Status is present) THEN
REPEAT X = (all values of the Door_Status enumeration values supported by the property)
DO {
WRITE Door_Status =X
VERIFY Door_Status =X
}
4. TF (Lock_Status is present) THEN
REPEAT X = (all values of the Lock _Status enumeration values supported by the property)
DO {
WRITE Lock Status =X
VERIFY Lock_Status =X
}
5. IF (Door_Alarm_State is present) THEN
REPEAT X = (all values of the Door Alarm_State enumeration values supported by the property)
DO {
WRITE Door Alarm_State = X
VERIFY Door Alarm_State = X

7.3.2.X55.1.X3 Door_Status with Physical Door Status Tests

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the Door Status property reflects the state of the physical door (CLOSED, OPENED, UNUSED and
DOOR_FAULT if the object supports detecting door faults).

Test Concept: The IUT is configured to monitor the state of a physical door. The physical door may be represented by a
BAChnet input object or through some proprietary method.

Configuration Requirements: The IUT shall be configured such that it can determine the state of a door. The Access Door
object associated with this physical door shall be configured with Out_Of Service = FALSE.

Test Steps:

1. MAKE (set physical door to the closed state)

2. VERIFY Door_Status = CLOSED

3. MAKE (set physical door to the opened state)

4. VERIFY Door_Status = OPENED

5. IF (the object supports detecting door faults) THEN

MAKE (set the physical door to a state that would cause the Door_Status to take on a value of
DOOR_FAULT)
VERIFY Door_Status = DOOR_FAULT
6. IF (possible to remove a door status input associated with the door) THEN
MAKE (remove a door status input associated with the door)
7. VERIFY Door_Status = UNUSED | UNKNOWN

© 2022 by BACnet International. All rights reserved. 1 70

BACnet Testing Laboratories - Specified Tests

7.3.2.X55.1.X4 Lock_Status Tests

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the Lock Status property reflects the state of the physical lock. (LOCKED, UNLOCKED and LOCK
_FAULT if the object supports detecting lock faults).

Test Concept: The IUT monitors the state of a physical lock. The state of the physical lock may be represented by a BACnet
input object or through some proprietary method.

Configuration Requirements: The IUT shall be configured such that it can monitor the state of the physical lock. The
Access_Door object associated with this physical door shall be configured with Out_Of Service = FALSE. The physical lock
shall be manipulated other than through the Access Door object.

Notes to tester: The physical lock shall be manipulated other than through the Access Door object.

Test Steps:
1. MAKE (set the physical lock to a state that would cause the Lock Status to take on a value of
LOCKED)

2. VERIFY Lock_ Status = LOCKED
3. MAKE (set the physical lock to a state that would cause the Lock Status to take on a value of
UNLOCKED)
4. VERIFY Lock Status = UNLOCKED
5. IF (the object and the lock support detecting lock faults) THEN
MAKE (set the physical lock to a state that would cause the Lock Status to take on a value of
LOCK _FAULT)
VERIFY Lock Status = LOCK_FAULT

7.3.2.X55.1.X5 Secured_Status Tests

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the Secured Status property reflects the state of the physical lock, the physical door and the state of
the Access Door object.

Test Concept: Start the test by creating a condition where the Secured_Status = SECURED. Then create various conditions
one at a time to verify that the Secured_Status becomes UNSECURED when it should.

Configuration Requirements: All writes to the Present Value shall be performed at a priority higher than any internal
algorithms writing to this property. If this object supports intrinsic reporting then the Alarm_Values property shall be empty.
If this object supports the Masked Alarm_Values property then it shall be empty. Out_Of Service is FALSE.

Test Steps:
-- Create a condition where the Secured_Status becomes SECURED
1. WRITE Present Value = LOCK
2. WAIT (Internal Processing Fail Time)
3. VERIFY Status Flags = (FALSE 2,2, ?
4. TIF (Lock Status property is present) THEN
MAKE (Lock Status = LOCKED or UNUSED)
5. MAKE (Door_Status = CLOSED or UNUSED)

© 2022 by BACnet International. All rights reserved. 1 7 1

BACnet Testing Laboratories - Specified Tests

-- Verify that the Secured_Status is SECURED when it should
6. VERIFY Secured_Status = SECURED

-- Verify that Secured_Status is UNSECURED when Present Value is anything other than LOCKED
7. REPEAT X = (UNLOCK, PULSE UNLOCK, EXTENDED PULSE UNLOCK) DO {

WRITE Present_Value =X

WAIT (Internal Processing Fail Time)

VERIFY Secured_Status = UNSECURED

}

-- Recreate a condition where the Secured _Status becomes SECURED again
8. WRITE Present_Value = LOCK
9. WAIT (Internal Processing Fail Time)
10. VERIFY Secured Status = SECURED

-- Verify that Secured Status is UNSECURED when Masked Alarm_Value, if exist, is NOT empty
11. IF (Masked Alarm_Values is present) THEN
MAKE (Masked Alarm_Values = (any valid BACnetDoorAlarmState enumeration))
WAIT(Internal Processing Fail Time)
VERIFY Secured Status = UNSECURED

-- Recreate a condition where the Secured Status becomes SECURED again
MAKE (Masked Alarm Values = {})
WAIT (Internal Processing Fail Time)
VERIFYSecured Status = SECURED

-- Verify that Secured Status is UNSECURED when Lock Status, if present, is anything other than LOCKED or UNUSED
12. IF (Lock Status property is present) THEN
REPEAT X = (UNLOCKED. UNKNOWN, LOCK FAULT) DO {
MAKE (Lock_Status = X)
WAIT (Internal Processing Fail Time)
VERIFY Secured_Status = UNSECURED
}
REPEAT X = (LOCKED, UNUSED) DO {
MAKE (Lock_Status = X)
VERIFY Secured Status = SECURED

}

-- Verify that Secured_Status is UNSECURED when Door_Status, is anything other than CLOSED or UNUSED
13. REPEAT X = (OPEN, UNKNOWN, DOOR_FAULT) DO {

MAKE (Door_Status = X)

WAIT (Internal Processing Fail Time)

VERIFY Secured_Status = UNSECURED

}

REPEAT X = (CLOSED, UNUSED) DO {
MAKE (Door_Status = X)
WAIT (Internal Processing Fail Time)
VERIFY Secured_Status = SECURED

}

-- Verify that Secured_Status is UNSECURED when In_Alarm bit of Status_Flag is True
14. IF (Alarming is supported) THEN
IF (Alarm_Values is writable) THEN
WRITE Alarm_Values = { AV: any valid value}
MAKE (trigger an alarm by using a physical door/lock to create the door alarm state AV)
WAIT (Internal Processing Fail Time + Time Delay)
VERIFY Status Flags = (TRUE, FALSE, ?, ?)

© 2022 by BACnet International. All rights reserved. 172

BACnet Testing Laboratories - Specified Tests

VERIFY Secured_Status = UNSECURED

7.3.2.X55.1.X6 Door_Unlock_Delay_Time Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that when the Door Unlock Delay Time property has a non-zero value, the output is delayed in unlocking
when a PULSE UNLOCK or EXTENDED PULSE UNLOCK is written to the Present Value and not when UNLOCK is
written.

Test Concept: When unlocking the door by writing PULSE_UNLOCK to the Present Value of the Access Door object, it is
verified that the door is still locked for the specified Door Pulse Time then the door is unlocked. The same test is done for
EXTENDED PULSE UNLOCK, but this time it is verified that the door is still locked for the specified
Door Extended Pulse Time then the door is unlocked.

Configuration Requirements: The IUT shall be configured with a door control output that can be observed during the test.
The Relinquish_Default shall have the value LOCK. All writes to the Present Value shall be performed at a priority higher
than any internal algorithms writing to this property. Door Unlock Delay Time shall be set to a non-zero value which is
sufficient to observe the delay and check the status of the lock. Out Of Service shall be set to FALSE. Prior to the test the
Present Value shall have the value LOCK and the IUT is in a state that would cause the door to be locked.

Test Steps:

-- Test PULSE_ UNLOCK
1. WRITE Present Value = PULSE UNLOCK
2. WAIT (Internal Processing Fail Time)
3. BEFORE Door Unlock Delay Time
IF (Lock_Status is present) THEN
VERIFY Lock Status = LOCKED
CHECK (that the door control output is in a state that would cause the door to be locked)

4. IF (Lock Status is present) THEN
VERIFY Lock Status = UNLOCKED
CHECK (that the door control output is in a state that would cause the door to be unlocked)
WAIT (Door_Pulse Time)
VERIFY Present_Value = LOCK
IF (Lock_Status is present) THEN
VERIFY Lock Status = LOCKED
9. CHECK (that the door control output is in a state that would cause the door to be locked)

S AN

-- Test EXTENDED PULSE UNLOCK
10. WRITE Present Value = EXTENDED PULSE UNLOCK
11. WAIT (Internal Processing Fail Time)
12. BEFORE Door_Unlock Delay Time
IF (Lock_Status is present) THEN
VERIFY Lock_Status = LOCKED
CHECK (that the door control output is in a state that would cause the door to be locked)

13. IF (Lock_Status is present) THEN
VERIFY Lock_Status = UNLOCKED
14. CHECK (that the door control output is in a state that would cause the door to be unlocked)
15. WAIT (Door Extended Pulse Time)
16. VERIFY Present Value = LOCK
17. 1F (Lock_Status is present) THEN
VERIFY Lock Status = LOCKED

© 2022 by BACnet International. All rights reserved. 1 73

BACnet Testing Laboratories - Specified Tests

18. CHECK (that the door control output is in a state that would cause the door to be locked)

-- Test UNLOCK
19. WRITE Present Value = UNLOCK
20. WAIT (Internal Processing Fail Time)
21. IF (Lock_Status is present) THEN
VERIFY Lock_Status = UNLOCKED
22. CHECK (that the door control output is in a state that would cause the door to be locked)

7.3.2.X55.1.X7 Masked_Alarm_Values Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To verify that the Masked Alarm_Values prevents an intrinsic alarm from occurring.

Test Concept: The Access Door is verified to be in an Out_Of Service stateand is not in an alarm state. Then a non-NORMAL
enumeration value of BACnetDoorAlarmState X is written to the Door Alarm_State and the Access Door object transitions
to an alarm state. X is written to the Masked Alarm Value and Door Alarm State is checked to verify it returned to
NORMAL. The sequence is repeated for all non-NORMAL enumeration values of BACnetDoorAlarmState.

Configuration Requirements: The Masked Alarm_Values list shall be empty at the start of this test. Out_Of Service shall be
set to TRUE to allow writing to the Door Alarm_State property. If Out Of Service is not writeable and cannot be set to
TRUE by any other means, this test shall be skipped. The enumeration BACnetDoorAlarmState value X to be used in the test
has to be present in either the Alarm_Values or Fault Values property.

Test Steps:

1. VERIFY Status_Flags = (FALSE ?, ?, TRUE)

2. VERIFY Door Alarm State = NORMAL

3. REPEAT X = (all valid values of the enumeration BACnetDoorAlarmState except NORMAL)

DO {

WRITE Door Alarm_State = X
WAIT (Internal Processing Fail Time)
VERIFY Status Flags = (TRUE ?, ?, TRUE)
WRITE Masked Alarm_ Values= { X }
WAIT (Internal Processing Fail Time)
VERIFY Door_ Alarm_State = NORMAL
VERIFY Status Flags = (FALSE ?, ?, TRUE)
WRITE Masked Alarm Values= { }
WAIT (Internal Processing Fail Time)

}
7.3.2.X55.1.X8 Door_Open_Too_Long Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the DOOR_OPEN_TOO_ LONG condition is generated when the Access Door object is commanded
to the LOCK state but the physical door remains open beyond Door Open Too Long Time.

Test Concept: Setup the Access Door object to trigger alarm on DOOR_OPEN TOO LONG state using Alarm_Values and
Masked Alarm_Values. Next, set the physical door to the closed state to confirm that the Access Door object is in NORMAL
state. Then, unlock the physical door and set the physical door to the open state. Finally, command the Access Door object
to LOCK and verify that the Door Alarm_State changes to DOOR_OPEN TOO LONG after the specified Time Delay.

© 2022 by BACnet International. All rights reserved. 1 74

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: This test shall be skipped if the IUT does not support intrinsic alarming. The IUT shall be
configured such that it can determine and change the open/closed state of a door. All writes to the Present Value are at a
priority higher than any internal algorithms writing to this property. The Door Alarm_State shall have the value NORMAL
at the start of the test. The Access Door object is configured with DOOR_OPEN_TOO_LONG in the Alarm_Values property
and excluded from Masked Alarm_Values property if present.

Test Steps:

1. MAKE (set the physical door to the closed state)

2. VERIFY Door Alarm_State = NORMAL

3. WRITE Present_ Value = UNLOCK

4. MAKE (set the physical door to the open state)

5. WRITE Present_Value = LOCK

6. WAIT (Internal Processing Fail Time)

7. WHILE (Door Open Too Long Time has not expired) DO {

VERIFY Door_Alarm_State = NORMAL
}
WAIT (Time Delay)
8. VERIFY Door_Alarm_State = DOOR_OPEN _TOO LONG

7.3.2.X56 Access Point Object Tests

The Access Point object type represents the external interface of the access control decision engine for a specific door. A
credential is entered, the access rights of the credential are determined and the access decision is determined based on the
access rights. Testing this authentication and authorization functionality requires the support of other standard BACnet access
control object types. The required and optional object types are shown in figure X1.

The access decision begins with a credential value being sent to the Access Point object for evaluation. Typically the
credential value is read at a Credential Data Input object which extracts the raw credential data from the physical reader,
formats the data and then sends it to the corresponding Access Point object. If the Credential Data Input object type is not
supported then the vendor must provide an alternate method for the credential to be received by the Access Point.

When a credential value is received by the Access Point object it searches through the Access Credential objects to find the
one with a matching credential value. For each credential value being tested a corresponding Access Credential must exist
within the IUT. The only exception to this is when testing for an unknown credential
(DENIED _UNKNOWN_CREDENTIAL).

To determine if access is granted or denied for a specific credential each Access Credential object must reference an Access
Rights object which defines the appropriate access rights corresponding to the specific test being executed.

Some of the allowed and denied access tests require the Access Zone object. In this case an Access Point must be configured
to be an entry access point to the access zone. These tests require that the Access Rights objects reference the Access Zone
rather than the Access Point.

When the access decision is determined the IUT shall provide a method to indicate the result. Typically the decision is
exposed through the Access Door object. When access is granted the door is pulsed unlocked and when denied the door
remains locked. If the Access Door object is not used then another method of showing the result shall be configured.

Unless specified otherwise in the specific test, the access point object (AP1) in the following tests shall have the following
configuration:
a) Authorization Mode shall have the value AUTHORIZE.

b) Out Of Service shall be FALSE.
c) Lockout shall be FALSE.
d) Muster Point shall be FALSE.

© 2022 by BACnet International. All rights reserved. 1 75

e)

BACnet Testing Laboratories - Specified Tests

Authentication_Status shall be READY.

Credential Reader
(optional)

Credential
Data input

optional

optioﬁal'--.....

NOTE: Line direction specifies the
“is referenced by” relationship
between the two objects.

>

Access
Rights
Access .
Zone /— Valid access
Access
Rights
Invalid access
Access
Rights
Invalid access
Access Access
Point

Rights

Valid access

Access
Rights
| Invalid access

Access
Rights

Invalid access

A

Access Door

optional

«. Access Door (optional)

Figure X1: Objects and relationships used for testing Access Point objects

Configuration Requirements:
See 7.3.2.X56
Test Steps:

7.3.2.X56.1 Authentication_Status and Access_Event Test

VERIFY Authentication Status = READY

IF (Out_Of Service is writable) THEN

© 2022 by BACnet International. All rights reserved.

176

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies the authentication and authorization process are disabled when Out_Of Service of the Access
Point object is TRUE. It also verifies the interrelationship between the Out Of Service, Authentication Status,Access_Event
and Access_Event Time properties.

Test Concept: Write TRUE to the Out_Of Service property and verify that the authorization and authentication functions are
disabled. Write FALSE to the Out_Of Service property and verify that they are enabled.

BACnet Testing Laboratories - Specified Tests

WRITE Out_Of Service = TRUE
ELSE
MAKE (Out_Of Service TRUE)
VERIFY Authentication_Status = DISABLED
VERIFY Access Event=OUT _OF SERVICE
VERIFY Access_Event Time = (the time Out_Of Service was set to TRUE)
IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE
ELSE
MAKE (Out_Of Service FALSE)
7. VERIFY Authentication_Status = READY
VERIFY Access_Event = OUT_OF SERVICE RELINQUISHED
9. VERIFY Access Event Time = (the time Out_Of Service was set to FALSE)

ANk W

>

7.3.2.X56.2 Allowed Access Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To verify that a valid credential that is allowed access to this access point at this time is granted access.

Test Concept: A valid credential, that has access to the access point being tested at the current time, is presented at the access
point. It is then verified that access is allowed and the appropriate access event is generated.

Configuration Requirements: See 7.3.2.X56. This test requires the following additional configuration: An active credential
with valid access rights for the access point shall be represented by Access Credential object C1.

Test Steps:

READ EventTag = Access_Event Tag

MAKE (present a valid credential at credential reader for this access point)
VERIFY Access Event = GRANTED

VERIFY Access_Event Time = (the time that the credential was presented)
VERIFY Access_Event Credential = C1

VERIFY Access_Event Tag = EventTag + 1

A e

7.3.2.X56.3 Denied Access Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that a credential that is not allowed access to this access point at this time is denied access. There are a
number of reasons why a credential may be denied access and this test tests the situations which must be supported by the
access point.

Test Concept: To test that a credential, which is not allowed access to this access point, is presented at the access point with
the result that access is allowed and the appropriate access event is generated.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:
a) The vendor shall provide a set of credentials which correspond to Access Credential objects configured such that
access to the access point shall denied for the following reasons:

a. DENIED POINT NO ACCESS RIGHTS =ClI
b. DENIED NO ACCESS RIGHTS =C2
c. DENIED ZONE NO ACCESS RIGHTS =C3
d. DENIED CREDENTIAL NOT YET ACTIVE =C4

© 2022 by BACnet International. All rights reserved. 1 77

BACnet Testing Laboratories - Specified Tests

DENIED_CREDENTIAL_EXPIRED = C5
DENIED_CREDENTIAL_MANUAL DISABLE = C6
DENIED_INCORRECT AUTHENTICATION_FACTOR = C7
DENIED_OUT_OF TIME_RANGE = C8

DENIED THREAT LEVEL = C9

DENIED_PASSBACK = C10
DENIED_UNEXPECTED LOCATION USAGE = C11
DENIED MAX_ATTEMPTS = CI12

DENIED AUTHENTICATION FACTOR LOST =C13
DENIED AUTHENTICATION FACTOR_STOLEN= C14
DENIED_AUTHENTICATION FACTOR_DAMAGED = C15
DENIED_AUTHENTICATION FACTOR_DESTROYED = C16
DENIED_AUTHENTICATION FACTOR_DISABLED = C17
DENIED_AUTHENTICATION FACTOR_ERROR = C18
DENIED_CREDENTIAL_UNASSIGNED = C19
DENIED_CREDENTIAL_NOT PROVISONED = C20
DENIED_CREDENTIAL_LOCKOUT = C21
DENIED_CREDENTIAL_MAX DAYS = C22

DENIED CREDENTIAL MAX_USES = C23
DENIED_CREDENTIAL_DISABLED = C24
DENIED_LOCKOUT = C25

CHELECUNOTVOBE AT SR SO

Notes to Tester: if the IUT does not support any of the above denial reasons then the corresponding credentials are not required
to be supplied.

Test Steps:

1. REPEAT C=(Cl...C25) DO {
READ EventTag = Access_Event Tag
MAKE (present the credential corresponding to C at the credential reader for this access point)
VERIFY Access_Event = (denied reason corresponding to credential C)
VERIFY Access Event Time = (the time that credential C was presented)
VERIFY Access Event Credential = C
VERIFY Access Event Tag = EventTag + 1

}

-- verify unknown credential event

2. READ EventTag = Access_Event Tag

3. MAKE (present a credential which does not correspond to any configured Access Credential object at the credential
reader for this access point)

4. VERIFY Access Event = DENIED UNKNOWN CREDENTIAL

5. VERIFY Access_Event Time = (the time that the credential was presented)

6. VERIFY (Access_Event Credential = (4194303, 7, 4194303)

7. VERIFY Access Event Tag = EventTag + 1

7.3.2.X56.4 Authorization Mode Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To verify each authorization mode supported by this [UT.

Test Concept:

© 2022 by BACnet International. All rights reserved. 1 78

BACnet Testing Laboratories - Specified Tests

For each authorization mode supported by the IUT a valid credential is presented at the access point to verify that the
appropriate action is taken.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:
a) An active credential with valid access rights for the access point shall be represented by Access Credential object
Cl.
b) An active credential with no valid access rights shall be represented by Access Credential object C2.

Note: If the VERIFICATION_ REQUIRED or AUTHORIZATION DELAYED mode is supported the vendor must provide
a mechanism for external verification to be performed.

Test Steps:

-- verify GRANT ACTIVE mode
1. IF (GRANT_ACTIVE is supported) THEN
READ EventTag = Access_Event Tag
WRITE Authorization Mode = GRANT ACTIVE
MAKE (present credential C2 at credential reader for this access point)
VERIFY Access Event = GRANTED
VERIFY Access_Event Time = (the time that credential C2 was presented)
VERIFY Access_Event Credential = C2
VERIFY Access Event Tag =EventTag + 1

-- verify DENY_ ALL mode
2. IF (DENY_ALL is supported) THEN
READ EventTag = Access_Event Tag
WRITE Authorization Mode = DENY_ALL
MAKE (present credential C1 at credential reader for this access point)
VERIFY Access_Event = DENIED DENY ALL
VERIFY Access Event Time = (the time that credential C1 was presented)
VERIFY Access Event Credential = C1
VERIFY Access Event Tag =EventTag + 1

-- verify VERIFICATION REQUIRED mode (verification authorized)
3. IF (VERIFICATION_ REQUIRED is supported) THEN
READ EventTag = Access_Event Tag
WRITE Authorization Mode = VERIFICATION REQUIRED
MAKE (present credential C1 at credential reader for this access point)
VERIFY Access Event = VERIFICATION REQUIRED
VERIFY Access_Event Time = (the time that credential C1 was presented most recently)
VERIFY Access_Event Credential = C1
VERIFY Authentication_Status = WAITING FOR_VERIFICATION
MAKE (external verification process grants access)
VERIFY Access Event = GRANTED
VERIFY Access Event Time = (the time that verification process granted access)
VERIFY Access Event Credential = C1
VERIFY Access Event Tag = EventTag + 1

-- verify VERIFICATION REQUIRED mode (verification denied)
READ EventTag = Access_Event Tag
WRITE Authorization Mode = VERIFICATION REQUIRED
MAKE (present credential C1 at credential reader for this access point)
VERIFY Access_Event = VERIFICATION REQUIRED
VERIFY Access Event Time = (the time that credential C1 was presented)
VERIFY Access Event Credential = C1

© 2022 by BACnet International. All rights reserved. 1 79

BACnet Testing Laboratories - Specified Tests

VERIFY Authentication Status = WAITING FOR VERIFICATION

MAKE (external verification process denies access)

VERIFY Access Event=DENIED VERIFICATION FAILED

VERIFY Access Event Time = (the time that verification process denied access)
VERIFY Access Event Credential = C1

VERIFY Access Event Tag+ 1

-- verify VERIFICATION REQUIRED mode (verification timeout)
READ EventTag = Access_Event Tag
WRITE Authorization Mode = VERIFICATION REQUIRED
MAKE (present credential C1 at credential reader for this access point)
VERIFY Access Event = VERIFICATION REQUIRED
VERIFY Access Event Time = (the time that credential C1 was presented)
VERIFY Access_Event Credential = C1
VERIFY Authentication_Status = WAITING FOR_VERIFICATION
MAKE (external verification process does not respond within verification time)
WAIT Verification Time
VERIFY Access Event=DENIED VERIFICATION TIMEOUT
VERIFY Access_Event Time = (the time that verification process timed out)
VERIFY Access_Event Credential = C1
VERIFY Access Event Tag =EventTag + 1

-- verify AUTHORIZATION DELAYED mode (access granted)

4. IF (AUTHORIZATION DELAYED is supported) THEN
WRITE Authorization Mode = AUTHORIZATION DELAYED
MAKE (present credential C1 at credential reader for this access point)
VERIFY Access_Event = AUTHORIZATION DELAYED
VERIFY Access _Event Time = (the time that credential C1 was presented)
VERIFY Access_Event Credential = C1
MAKE (external verification process does not respond within verification time)
WAIT Verification Time
VERIFY Access Event = GRANTED
VERIFY Access_Event Time = (the time that verification process timed out)
VERIFY Access_Event Credential = C1

-- verify AUTHORIZATION DELAYED mode (access denied)
WRITE Authorization Mode = AUTHORIZATION DELAYED
READ EventTag = Access_Event Tag
MAKE (present credential C1 at credential reader for this access point)
VERIFY Access Event = AUTHORIZATION DELAYED
VERIFY Access Event Time = (the time that credential C1 was presented)
VERIFY Access Event Credential = C1
MAKE (external verification process denies access)
VERIFY Access Event =DENIED VERIFICATION FAILED
VERIFY Access_Event Time = (the time that verification process denied access)
VERIFY Access Event Credential = C1
VERIFY Access Event Tag = EventTag + 1

-- verify NONE mode

5. IF (NONE is supported) THEN
WRITE Authorization Mode = NONE
WAIT Internal Processing Fail Time
VERIFY Authentication Status = DISABLED

© 2022 by BACnet International. All rights reserved. 1 80

BACnet Testing Laboratories - Specified Tests

7.3.2.X56.5 Access Rights Exemptions Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To verify the access rights exemption functionality.

Configuration Requirements:

See 7.3.2.X56. This test requires the following additional configuration:
a) An active credential with no access rights shall be represented by Access Credential object C1.
b) The Authorization Exemption list of C1 shall be empty.

Test Steps:

-- verify access is denied for the credential

1. MAKE (present credential C1 at credential reader for access point AP1)

2. VERIFY Access_Event = DENIED NO ACCESS RIGHTS

3. VERIFY Access Event Time = (the time that the credential was presented)
4. VERIFY Access Event Credential = C1

-- verify access is granted for the credential when the master exemption set to TRUE
MAKE Cl1, Authorization Exemption = (ACCESS_RIGHTS)

MAKE (present credential C1 at credential reader for access point AP1)
VERIFY Access Event = GRANTED

VERIFY Access_Event Time = (the time that the credential was presented)
VERIFY Access_Event Credential = C1

0 %0 Nk

7.3.2.X56.6 Change Authentication Policy Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the Active Authentication Policy property of the Access Point object accepts valid authentication
policy values and does not accept invalid ones. It also verifies that an error response is returned if the authentication policy
is changed to a non-existent policy number.

Test Concept: The Active Authentication Policy is written with values of 1 to X, where X is the number of valid
authentication policies to verify that the value is accepted. Then it is written with a value larger than X to verify that the value
is rejected with a VALUE OUT OF RANGE error. Finally, it is written with a value of 0 to verify that the value is also
rejected with the same error.

Configuration Requirements:

See 7.3.2.X56. This test requires the following additional configuration:
a) The IUT shall be configured with at least one active authentication policy.
b) All authentication policies shall be valid policies.

Test Steps:

-- verify that the active authentication policy can set to all valid policies
1. READ Count = Number Of Authentication Policies
2. REPEAT X = (1 to Count) DO {

WRITE Active Authentication_Policy = X

VERIFY Active Authentication Policy =X

}

-- verify that writing an invalid authentication policy to active authentication policy results in a reject
3. TRANSMIT WriteProperty-Request,

'Object Identifier' = Access_Point object,
'"Property Identifier' = Active_Authentication_Policy,
'"Property Value' = (any value larger than Count)

4 RECEIVE BACnet-Error-PDU,

© 2022 by BACnet International. All rights reserved. 1 8 1

BACnet Testing Laboratories - Specified Tests

'Error Class' = PROPERTY,
'Error Code' = VALUE _OUT OF RANGE

-- verify that writing O to the authentication policy results in a reject
5 TRANSMIT WriteProperty-Request,

'Object Identifier' = Access_Point object,
'"Property Identifier' = Active Authentication_Policy,
'Property Value' = 0
6 RECEIVE BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE

7.3.2.X56.7 Lockout State Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that access is denied for any credential when the access point is in the lockout state. To verify that using
an invalid credential at the an access point multiple times will cause the access point to go into a lockout state. To verify that
the lockout will automatically relinquish after the specified time.

Test Concept: A credential which will result in denied access is repeatedly presented at the access point until the access point
becomes locked out. When the access point becomes locked valid credentials will also be denied access until the lockout
relinquish time has expired.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:
a) The Max_Failed Attempts property, if present, has a value greater than 0
b) An active credential with valid access rights for the access point shall be represented by Access Credential object
ClL.
¢) An active credential with no valid access rights for the access point shall be represented by Access Credential object
C2.
d) The Failed Attempts Events list, if present, shall have at least one entry corresponding to the reason why C2 is
denied access.
e) The Lockout Relinquish Time has a value greater than 0

Test Steps:

-- verify that valid credentials are denied when the Lockout property is TRUE
WRITE Lockout = TRUE

WAIT Internal Processing Fail Time

VERIFY Access Event = LOCKOUT OTHER

VERIFY Access_Event Time = (the time that TRUE was written to the Lockout property)
VERIFY Access Event Credential = (4194303, ?, 4194303)

MAKE (present credential C1 at credential reader for this access point)
VERIFY Access Event =DENIED LOCKOUT

VERIFY Access Event Time = (the time that credential C1 was presented)
VERIFY Access Event Credential = C1

RN LD =

-- verify that using an invalid credential at the an access point multiple times will cause the access point to go into a lockout
state

10. WRITE Lockout = FALSE

11. WAIT Internal Processing Fail Time

12. VERIFY Access_Event = LOCKOUT RELINQUISH

13. VERIFY Access_Event Time = (the time that FALSE was written to the Lockout property)

14. VERIFY Access_Event Credential = (4194303, ?, 4194303)

© 2022 by BACnet International. All rights reserved. 1 82

BACnet Testing Laboratories - Specified Tests

15. IF (Failed Attempts and Max Failed Attempts are supported) THEN
REPEAT X= (1 to Max_Failed Attempts + 1) DO {
READ FailedAttempts = Failed Attempts
MAKE (present credential C2 at credential reader for this access point)
VERIFY (Failed Attempts = FailedAttempts + 1)
H
16. VERIFY (Lockout = TRUE)
17. VERIFY (Access Event=LOCKOUT MAX ATTEMPTS)
18. VERIFY (Access Event Time = the time that Lockout was set to TRUE)
19. VERIFY (Access Event Credential = C2)
20. MAKE (present credential C1 at credential reader for this access point)
21. VERIFY (Access Event=DENIED LOCKOUT)
22. VERIFY (Access Event Time = the time that credential C1 was presented)
23. VERIFY (Access Event Credential = Cl)

-- verify that the lockout will automatically relinquish after the specified time
24. WAIT Lockout Relinquish Time

25. VERIFY (Lockout = FALSE)

26. VERIFY (Access Event = LOCKOUT_ RELINQUISHED)

27. VERIFY (Access Event Time = the time that Lockout was set to FALSE)
28. VERIFY Access_Event Credential = (4194303, ?, 4194303)

29. MAKE (present credential C1 at credential reader for this access point)

30. VERIFY (Access Event = GRANTED)

31. VERIFY (Access Event Time = the time that credential C1 was presented)
32. VERIFY (Access Event Credential = Cl)

7.3.2.X56.8 Threat Level Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To verify Threat Level is used to Grant or Deny access based on the Threat Authority of the Access Credential

Test Concept: Vary the Threat Level of the access point to be lower or equal than the Threat Authority of the credential to
verify that access is granted at this access point. Change the Threat Level of the access point to the higher than the
Threat Authority of the credential to verify that access is denied.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:
a) An active credential with valid access rights for the access point shall be represented by Access Credential object
C1.This credential shall have a Threat Authority of X, where 0 < X <100.

Test Steps:

-- verify that a credential with threat authority greater than threat level of the access point is granted access
WRITE Threat Level = (any value less than X)

MAKE (present credential C1 at credential reader for this access point)

VERIFY Access Event = GRANTED

VERIFY Access _Event Time = (the time that credential C1 was presented)

VERIFY Access Event Credential = C1

A

-- verify that a credential with threat authority equal to the threat level of the access point is granted access
6. WRITE Threat Level =X

7. MAKE (present credential C1 at credential reader for this access point)

8. VERIFY Access Event = GRANTED

9. VERIFY Access_Event Time = (the time that credential C1 was presented)

© 2022 by BACnet International. All rights reserved. 1 83

BACnet Testing Laboratories - Specified Tests

10. VERIFY Access Event Credential = C1

-- verify that a credential with threat authority less than the threat level of the access point is denied access
WRITE Threat_Level = (any value greater than X)

MAKE (present credential C1 at credential reader for this access point)

VERIFY Access Event=DENIED THREAT LEVEL

VERIFY Access_Event Time = (the time that credential C1 was presented)

VERIFY Access Event Credential = C1

11.
12.
13.
14.
15.

7.3.2.X56.9 Denied Access Occupancy Upper Limit Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify occupancy counting, occupancy restrictions and occupancy exemptions.

Test Concept: When occupancy counting is enabled and a valid credential is presented at the access point then this test verifies
that access is granted only if the occupancy limits are not violated. If the occupancy limits are violated then access is denied.
If the credential has an occupancy exemption then the credential will be granted access regardless of the occupancy count of
the zone.

Configuration Requirements:
See 7.3.2.X56. This test requires the following additional configuration:

a) The Access Point object is configured to be an entry access point to an access zone which is represented by Access
Zone object Z1.

b) The Occupancy Upper Limit property of Z1 shall have the value X, where X>0.

¢) A number of active credentials all with valid access rights for the access point shall be represented by Access
Credential objects C1...C(X+1) which shall be configured such that each has valid access to the access point.

d) The Occupancy Upper Limit_Enforced property shall have a value of TRUE.

e) The Occupancy Count Adjust property shall have a value of TRUE.

f) The Occupancy Count property of Z1 shall have the value 0.

g) The Occupancy Count Enable property of Z1 shall have a value of TRUE.

h) The Authorization Exemptions property, if it exists, of C(X+1) shall be empty.

Test Steps:

-- verify that a credential with valid access is granted access while the occupancy count of the zone is less than
the Occupancy Upper_Limit property in the zone
REPEAT C=(C1...CX) DO {

1.

}

READ Count = Z1, Occupancy_Count

MAKE (present credential C at credential reader for this access point)
VERIFY Z1,0ccupancy Count = (Count +1)

VERIFY Access Event = GRANTED

VERIFY Access_Event Time = (the time that credential C was presented)
VERIFY Access _Event Credential = C

-- verify that a credential with valid access is denied access when the occupancy count of the zone becomes
greater than the Occupancy upper limit

READ Count = Z1, Occupancy_Count

VERIFY Z1,0ccupancy Upper_ Limit = Count

MAKE (present credential C(X+1) at credential reader for this access point)

VERIFY Access_Event = DENIED UPPER _OCCUPANCY_LIMIT

VERIFY Access Event Time = (the time that credential C(X+1) was presented)

VERIFY Access Event Credential = C(X+1)

Nk wh

© 2022 by BACnet International. All rights reserved. 1 84

BACnet Testing Laboratories - Specified Tests

8. VERIFY Z1,0ccupancy Count = Count

-- verify that a credential with valid access and an occupancy exemption is granted access when the occupancy count of the

zone becomes greater than the Occupancy upper limit

9. IF (the Authorization Exemption property is not supported or the OCCUPANCY CHECK exemption is not supported)
THEN ¢

10. READ Count = Z1, Occupancy_Count

11. VERIFY Z1,0ccupancy Upper_ Limit = Count
12. WRITE C(X+1), Authorization Exemptions = (OCCUPANCY CHECK)
13. MAKE (present credential C(X+1) at credential reader for this access point)

14. VERIFY Access Event = GRANTED

15. VERIFY Access_Event Time = (the time that credential C(X+1) was presented)
16. VERIFY Access Event Credential = C(X+1)

17. VERIFY Z1,0ccupancy Count = Count + 1

}

7.3.2.X56.10 Denied Access Disabled Credential Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To test that a credential is denied access at an access point when the credential is disabled even when it has valid
access rights.

Test Concept: A disabled credential is presented at an access point and access is denied. For testing purposes, the credential
shall be disabled by setting the Expiration_Time to a time in the past.

Configuration Requirements:

See 7.3.2.X56.1. This test requires the following additional configuration:
a) An access credential with valid access to AP1 shall be represented by Access Credential C1.
b) The Credential Status property shall have the value ACTIVE.
¢) The Reason_For Disable property shall be empty.

Test Steps:

— test granted access when credential is active

VERIFY Reason For Disable = ()

VERIFY Credential Status = ACTIVE

MAKE (present credential C1 at credential reader for access point AP1)

VERIFY API1,Access Event = GRANTED

VERIFY API1,Access Event Time = (the time that the credential C1 was presented)
VERIFY AP1,Access Event Credential = C1

A S

— test denied access when credential is inactive

7. MAKE (Expiration_Time = time < current time)

8. VERIFY Reason_For Disable = (DISABLED EXPIRED)

9. VERIFY Credential Status = INACTIVE

10. MAKE (present credential C1 at credential reader for access point AP1)

11. VERIFY AP1,Access Event=DENIED CREDENTIAL EXPIRED

12. VERIFY AP1,Access_Event Time = (the time that the credential C1 was presented)
13. VERIFY AP1,Access_Event Credential = C1

7.3.2.X57 Access Zone Object Tests

Many of the tests for the Access Zone object require interactions from other BACnet access control objects as a result of a
valid credential being processed. The required and optional BACnet object types are shown in figure X2.

© 2022 by BACnet International. All rights reserved. 1 85

The Access Zone is defined by list of Access Points that act as entry and exit points of the zone. The configuration requires
at least one Access Point object which is configured to be an entry access point and at least one Access Point that is configured
to be an exit access point. Each Access Point object which is part of the Access Zone must have an associated Credential
Data Input or a proprietary method to input credential values to the Access Point.

Properties in the Access Zone are written by the corresponding Access Point object when a valid credential is processed. The
vendor must configure the IUT to have a sufficient number of valid credentials for the test being executed. Each credential
must have an associated Access Credential object. Each Access Credential must have an associated Access Rights object that
provides valid access to the zone.

BACnet Testing Laboratories - Specified Tests

Credential Reader

(optional)
Credential
Datainput |4 ...

optional

optiona.l e

Credential
Data input

<-...,

optional

optional *

NOTE: Line direction specifies the “is
referenced by” relationship between
the two objects.

>

Access
Point

Entry access
point

Access
Point

* Exit access
point

Access
Rights 1

Valid access

Access
Zone

Access
Rights 2

Valid access

Credential 1

Access

Valid Access

Access
Credential 2

Valid Access

== Valid access

Access Access
—1 Rights 3 ~ | Credential 3
Valid access «_' Valid Access
[\EEEES Access
Rights N Credential N

Valid Access

7.3.2.X57.1 Occupancy State Test

Figure X2: Objects used for testing the Access Zone object

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test verifies that the occupancy state reflects the occupancy conditions of the zone.

Test Concept:

Adjust the occupancy count of the zone to levels above, at and below the Occupancy Upper Limit and

Occupancy Lower Limit and verify that the Occupancy State has the appropriate value.

Configuration Requirements:

See 7.3.2.X57. This test requires the following additional configuration:

a) The Access Zone shall not be out of service.
b) Occupancy Count Enable shall have a value of TRUE

¢) The Occupancy Upper Limit shall have a value X where X>0.

d) If the property is supported, the Occupancy Lower Limit shall have a value Y where 0 <Y < X.

Test Steps:

-- test normal case where occupancy count is between the upper and lower limit

1. WRITE Adjust Value=0

2. VERIFY Occupancy Count=0

3. WRITE Adjust Value = X-1

© 2022 by BACnet International. All rights reserved.

186

4.
5.

BACnet Testing Laboratories - Specified Tests

VERIFY Occupancy Count = (X-1)
VERIFY Occupancy_State = NORMAL

-- verify the case where occupancy count is at and above the upper limit
WRITE Adjust Value =1

VERIFY Occupancy Count =X

VERIFY Occupancy_State = AT UPPER_LIMIT

WRITE Adjust Value =1

VERIFY Occupancy Count = X+1

VERIFY Occupancy State = ABOVE _UPPER_LIMIT

6.
7.
8.
9.
10.
11.

-- verify the case where occupancy count is at and above the lower limit
WRITE Adjust Value =0

VERIFY Occupancy Count =0

VERIFY Occupancy State = BELOW_LOWER _LIMIT

WRITE Adjust Value=Y

VERIFY Occupancy Count=Y

VERIFY Occupancy_State = AT LOWER_LIMIT

WRITE Adjust Value =1

VERIFY Occupancy Count=(Y+1)

VERIFY Occupancy_State = NORMAL

12.
13.
14.
15.
16.
17.
18.
19.
20.

-- verify occupancy state when occupancy counting is disabled
21. WRITE Occupancy Count Enable = FALSE
22. VERIFY Occupancy State = DISABLED

7.3.2.X57.2 Occupancy Counting Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the occupancy counting functionality

Test Concept:
Present a credential at the entry and exit access points and test that the occupancy count is properly changed.

Configuration Requirements:
See 7.3.2.X57. This test requires the following additional configuration:

a) The Access Zone shall not be out of service.

b) Occupancy Count Enable shall have a value of TRUE

¢) An access point which is an entry point to this zone shall be represented by Access Point object AP1. The
Occupancy Count_Adjust property for this object shall have a value of TRUE.

d) An access point which is an exit point to this zone shall be represented by Access Point object AP2. The
Occupancy_Count_Adjust property for this object shall have a value of TRUE.

e) Two active credentials with valid access rights for the access points AP1 and AP2 shall be represented by Access
Credential objects C1 and C2.

Test Steps:

-- verify that presenting a credential at the entry access point increases the occupancy count
WRITE Adjust_Value =0

VERIFY Occupancy Count =0

MAKE (present credential C1 at credential reader for access point AP1)

VERIFY Occupancy Count =1

MAKE (present credential C2 at credential reader for access point AP1)

VERIFY Occupancy Count = 2

S A=

© 2022 by BACnet International. All rights reserved. 1 87

BACnet Testing Laboratories - Specified Tests

-- verify that presenting a credential at the exit access point decreases the occupancy count
7. MAKE (present credential C1 at credential reader for access point AP2)

8. VERIFY Occupancy Count = 1

9. MAKE (present credential C2 at credential reader for access point AP2)

10. VERIFY Occupancy Count =0

7.3.2.X57.3 Keeping Track of Credentials Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the zone can keep track of the current credentials in the zone.

Test Concept:

Present a valid credential at an entry access point to this access zone. The object reference of the credential should be in the
credentials in zone list. When the credential is presented to an exit access point for this zone the reference to the credential in
the credential in zone list should be removed.

Configuration Requirements:
See 7.3.2.X57. This test requires the following additional configuration:
a) The Access Zone shall not be out of service.
b) The Credentials In Zone property shall be an empty list.
¢) An access point which is an entry point to this zone shall be represented by Access Point object AP1.
d) An access point which is an exit point to this zone shall be represented by Access Point object AP2.
e) Two active credential with valid access rights for the access points AP1 and AP2 shall be represented by Access
Credential object C1 and C2.

Test Steps:

-- verify that presenting a credential at an entry access point puts it in the Credentials In Zone list
VERIFY Credentials In_Zone = ()

MAKE (present credential C1 at credential reader for access point AP1)

VERIFY Credentials In Zone = (C1)

VERIFY Last Credential Added =C1

VERIFY Last Credential Added Time = (the time that credential C1 was presented at AP1)
MAKE (present credential C2 at credential reader for access point AP1)

VERIFY Credentials_In_Zone = (C1,C2)

VERIFY Last Credential Added =C2

VERIFY Last _Credential Added Time = (the time that credential C2 was presented at AP1)

WX R W=

-- verify that presenting a credential at an exit access point removes it from the Credentials In_Zone list
10. MAKE (present credential C1 at credential reader for access point AP2)

11. VERIFY Credentials In Zone = (C2)

12. VERIFY Last Credential Removed = Cl

13. VERIFY Last Credential Removed Time = the time that credential C1 was presented at AP2

14. MAKE (present credential C2 at credential reader for access point AP2)

15. VERIFY Credentials In Zone = ()

16. VERIFY Last Credential Removed = C2

17. VERIFY Last Credential Removed Time = the time that credential C2 was presented at AP2

7.3.2.X57.4 Passback Mode Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

© 2022 by BACnet International. All rights reserved. 1 88

BACnet Testing Laboratories - Specified Tests

Purpose: To verify the passback functionality and passback exemption. .

Test Concept: A valid credential is presented at the entry access point to this access zone. When the credential is presented a
second time a passback notification should be generated and if the passback mode is set to hard passback then access to the
zone should be denied. If the credential has a passback exemption then access will never be denied due to a passback violation.

Configuration Requirements:
See 7.3.2.X57. This test requires the following additional configuration:

a) The Access Zone shall not be out of service.

b) An access point which is an entry point to this zone shall be represented by Access Point object AP1. The

Authoriztion Mode property of AP1 shall have the value Authorize.

¢) An access point which is an exit point to this zone shall be represented by Access Point object AP2. The

Authoriztion Mode property of AP2 shall have the value Authorize.

d) An active credential with valid access rights for the access point AP1 and AP2 shall be represented by Access

Credential object Cl1.
e) The Cl.Authorization Exemptions list shall be empty.

Test Steps:

-- verify soft passback mode

A e AR e

10
11.

12.
13.

MAKE (Passback Mode = SOFT_PASSBACK)

READ EventTag = AP1,Access Event Tag

MAKE (present credential C1 at credential reader for access point AP1)
VERIFY API, Access Event = GRANTED

VERIFY API1,Access Event Time = (the time that credential C1 was presented)
VERIFY API1,Access Event Credential = C1

VERIFY API1,Access Event Tag = (EventTag + 1)

MAKE (present credential C1 at credential reader for access point AP1)
VERIFY AP1,Access_Event = GRANTED

VERIFY (AP1.Access Event Time = (the time that credential C1 was presented most recently)
VERIFY API.Access Event Credential = C1

VERIFY AP1,Access Event Tag = (EventTag +2)

MAKE (present credential C1 at credential reader for access point AP2)

-- verify hard passback mode

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

MAKE (Passback Mode = HARD PASSBACK)

READ EventTag = AP1,Access Event Tag

MAKE (present credential C1 at credential reader for access point AP1)

VERIFY API1.Access Event = GRANTED

VERIFY AP1.Access Event Time = (the time that credential C1 was presented most recently)
VERIFY AP1.Access Event Credential = C1

VERIFY API1,Access Event Tag=EventTag + 1

MAKE (present credential C1 at credential reader for access point AP1)

VERIFY AP1.Access Event=DENIED PASSBACK

VERIFY AP1.Access Event Time = (the time that credential C1 was presented most recently)
VERIFY API1.Access Event Credential = C1

VERIFY API1,Access Event Tag = (EventTag + 2)

-- verify passback timeout

26.
27.
28.
29.
30.

WAIT (Passback Timeout)

MAKE (present credential C1 at credential reader for access point AP1)
VERIFY AP1.Access Event = GRANTED

VERIFY (AP1.Access Event Time = the time that credential C1 was presented)
VERIFY (AP1.Access Event Credential = C1)

-- verify hard passback off

© 2022 by BACnet International. All rights reserved. 1 89

BACnet Testing Laboratories - Specified Tests

31. MAKE (Passback Mode = PASSBACK OFF)

32. READ EventTag = AP1,Access_Event Tag

33. MAKE (present credential C1 at credential reader for access point AP1)

34. VERIFY AP1.Access Event = GRANTED

35. VERIFY AP1.Access Event Time = (the time that credential C1 was presented most recently)
36. VERIFY AP1.Access_Event Credential = Cl

37. VERIFY AP1,Access Event Tag = EventTag + 1

38. MAKE (present credential C1 at credential reader for access point AP1)

39. VERIFY AP1.Access Event= GRANTED

40. VERIFY AP1.Access_Event Time = (the time that credential C1 was presented most recently)
41. VERIFY (AP1.Access Event Credential = Cl

42. VERIFY AP1,Access_Event Tag = (EventTag + 2)

-- verify passback exemption
43. MAKE (Passback Mode = HARD PASSBACK)
44. MAKE (Cl, Authorization Exemption = (PASSBACK))
45. READ EventTag = AP1,Access_Event Tag
46. MAKE (present credential C1 at credential reader for access point AP1)
47. VERIFY AP1.Access_Event = GRANTED
48. VERIFY AP1.Access Event Time = (the time that credential C1 was presented most recently)
49. VERIFY AP1.Access Event Credential = Cl
50. VERIFY AP1,Access Event Tag =EventTag + 1
51. MAKE (present credential C1 at credential reader for access point AP1)
52. VERIFY APl.Access Event= GRANTED
53. VERIFY AP1.Access Event Time = (the time that credential C1 was presented most recently)
54. VERIFY AP1.Access Event Credential = Cl
55. VERIFY AP1,Access Event Tag = (EventTag + 2)

7.3.2.X59 Access Rights Object Tests

Many of the tests for the Access Rights object require interactions from other BACnet access control objects as a result of a
credential being processed. The required and optional BACnet object types are shown in figure d.

The Access Rights object specifies both positive and negative access rights. This list of access rights is used by the Access
Point object to determine the access decision. To test the access rights the vendor must configure the IUT to have at least one
Access Point object which is referenced in the Access Rights objects used for this test.

Each Access Point object used in the test must have an associated Credential Data Input or a proprietary method to input
credential values to the Access Point.

The vendor must configure the IUT such that for each Access Rights object there is at least one corresponding Access
Credential object that references the Access Rights object.

When the access decision is determined the IUT shall provide a method to show the result. Typically the decision is exposed
through the Access Door object. When access is granted the door is pulsed unlocked and when denied the door remains
locked. If the Access Door object is not used then another method of showing the result shall be configured.

© 2022 by BACnet International. All rights reserved. 1 90

BACnet Testing Laboratories - Specified Tests

Credential Reader
(optional) Access Access Access
Point Rights Credential
¢ | valid access < | Valid Access
Ve d Access
Credential | """ " L — Ac_:cess — Credential
Data input optional . k Rights]
) Invalid access
. Invalid access
optional N
Access o Access
: Rights Credential
optional Invalid access «_ Invalid access
Access Door (optional)
NOTE: Line direction specifies the “is e, b Access Door
referenced by” relationship between
the two objects. tional
» optiona

Figure d: Objects used for testing the Access Rights object

7.3.2.X59.1 Enable Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: This test verifies that the access rights object does not allow access when the Enable property is FALSE.

Test Concept: Present a valid credential at the access point. Since the access rights object that provides the access rights to
the access point is not enabled access shall be denied.

Configuration Requirements:
See 7.3.2.X59. This test requires the following additional configuration:
a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
¢) ARI shall have the Enable property set to TRUE
d) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:

-- verify access granted with this access rights object when enable property is TRUE
1. MAKE (present credential C1 at credential reader for access point AP1)

2. VERIFY AP1,Access_Event = GRANTED

3. VERIFY AP1,Access Event Time = (the time that the credential was presented)
4. VERIFY APIl,Access Event Credential = C1

-- verify access denied with this access rights object when Enable property is FALSE
WRITE ARI, Enable = FALSE

MAKE (present credential C1 at credential reader for access point AP1)
VERIFY AP1,Access Event=DENIED NO ACCESS RIGHTS

VERIFY API1,Access Event Time = (the time that the credential was presented)
VERIFY API1,Access Event Credential = C1

R

© 2022 by BACnet International. All rights reserved. 1 9 1

BACnet Testing Laboratories - Specified Tests

7.3.2.X59.2 Negative Rules Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To verify that the negative access rules result in access denied.

Configuration Requirements:
See 7.3.2.X59. This test requires the following additional configuration:
a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies negative access rights to AP1 shall be represented by Access Rights object
ARI.
¢) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:

1. MAKE (present credential C1 at credential reader for access point AP1)

2. VERIFY AP1,Access Event=DENIED POINT NO ACCESS RIGHTS

3. VERIFY APl,Access Event Time = (the time that the credential was presented)
4. VERIFY API,Access Event Credential = C1

7.3.2.X59.3 Positive Access Rules Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To verify that the positive access rules explicitly enable access to an access point.

Test Concept: Present a credential at the access point. The access point at which the credential is trying to get entry is in the
positive rules list and that rule is valid at the current time. Access to the access point is granted.

Configuration Requirements:
See 7.3.2.X59. This test requires the following additional configuration:
a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies positive access rights to AP1 shall be represented by Access Rights object
ARI.
¢) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:

1. MAKE (present credential C1 at credential reader for access point AP1)

2. VERIFY AP1,Access_Event = GRANTED

3. VERIFY AP1,Access_Event Time = (the time that the credential was presented)
4. VERIFY AP1,Access_Event Credential = Cl

7.3.2.X59.4 Accompaniment Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the accompaniment functionality works properly.

Test Concept: Present a credential which needs accompaniment at the access point. Wait for the accompaniment time, as
specified in the access point. When this times out the credential should be denied entry to the access point. Present the first
credential again at the access point. Present a second credential at the access point which has the rights to accompany the first
credential. Access should be granted to the first credential.

Configuration Requirements:
See 7.3.2.X59. This test requires the following additional configuration:
a) An access point shall be represented by Access Point object AP1. If the Accompaniment_Time property is supported
it shall be set to a value > 0.

© 2022 by BACnet International. All rights reserved. 1 92

BACnet Testing Laboratories - Specified Tests

b) An access rights object which specifies positive access rights to AP1 shall be represented by Access Rights object
ARL.

¢) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1 that
requires accompaniment.

d) An active credential which has access rights which allow it to accompany a credential with access rights specified
by ARI1 through AP1, shall be represented by Access Credential object C2.

e) An active credential which has valid access rights to AP1 but which does not meet the accompaniment requires of
ARI1, shall be represented by Access Credential object C3.

Test Steps:

-- valid access through the access point

READ Tag = Access_Event Tag

MAKE (present credential C1 at credential reader for access point AP1)

MAKE (present credential C2 at credential reader for access point AP1)

VERIFY API1,Access Event = GRANTED

VERIFY AP1,Access Event Time = (the time that the credential C1 was presented)
VERIFY AP1,Access Event Credential = C1

VERIFY AP1,Access Event Tag =(Tag+ 1)

Nk v

-- no accompaniment presented
8. MAKE (present credential C1 at credential reader for access point AP1)
9. WAIT AP1,Accompaniment_Time
10. VERIFY AP1,Access Event = DENIED NO ACCOMPANIMENT
11. VERIFY AP1,Access_Event Time = (the time that the credential C1 was presented)
12. VERIFY AP1,Access_Event Credential = C1
13. VERIFY Access Event Tag=(Tag + 2)

-- Invalid accompaniment
14. MAKE (present credential C1 at credential reader for access point AP1)
15. MAKE (present credential C3 at credential reader for access point AP1)
16. VERIFY AP1,Access Event = DENIED INCORRECT ACCOMPANIMENT
17. VERIFY AP1,Access Event Time = (the time that the credential C1 was presented)
18. VERIFY AP1,Access Event Credential = C1
19. VERIFY AP1,Access Event Tag = (Tag + 3)

7.3.2.X60 Access Credential Object Tests

Many of the tests for the Access Credential object require interactions from other BACnet access control objects as a result
of a credential being processed. The required and optional BACnet object types are shown in figure e.

The Access Credential defines a list of credential values (authentication factors) that are used to identify the credential. The
credential values are used by the Access Point object in determining the access control decision. To test the Access Credential
object the vendor must configure the IUT to have at least one Access Point object. Each Access Credential used in this test
must reference an Access Rights object which references the Access Point object

Each Access Point object used in the test must have an associated Credential Data Input or a proprietary method to input
credential values to the Access Point.

The vendor must configure the IUT such that for each Access Rights object there is at least one corresponding Access
Credential object that references the Access Rights object.

When the access decision is determined the IUT shall provide a method to show the result. Typically the decision is exposed
through the Access Door object. When access is granted the door is pulsed unlocked and when denied the door remains
locked. If the Access Door object is not used then another method of showing the result shall be configured.

© 2022 by BACnet International. All rights reserved. 1 93

BACnet Testing Laboratories - Specified Tests

Credential Reader
(optional) Access Access Access
Credential Point Rights Credential
Data input A E R > 1 iieee [€] \Vaidaceess
optional opEion.aI
X Access Door (optional)
NOTE: Line direction specifies the “is optional
referenced by” relationship between . . Access Door
the two objects. ..
o > optional

Figure e: BACnet Objects used for testing the Access Credential object

7.3.2.X60.1 Credential Status, Credential Disable and Reason for Disable Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify the ability to disable the credential and set the associated reason and to enable the credential.

Test Concept: The credential status is set to INACTIVE and the corresponding reason or reasons are written to the

Reason_For Disable list.

Configuration Requirements:

See 7.3.2.X60. This test requires the following additional configuration:
a) An access credential shall be represented by Access Credential C1.
b) The Credential Status property shall have the value ACTIVE.
c¢) The Reason For Disable property shall be empty.

Note: This tests only verifies the most common disable
DISABLED NOT YET ACTIVE, DISABLED EXPIRED).

Test Steps:

-- test DISABLED MANUAL

VERIFY Credential Status = ACTIVE

VERIFY Reason For Disable = ()

MAKE (add DISABLED MANUAL to Reason_For Disable property)
VERIFY Reason For Disable = (DISABLED MANUAL)

VERIFY Credential Status = INACTIVE

MAKE (remove DISABLED MANUAL from Reason_For Disable property)
VERIFY Reason_For Disable = ()

VERIFY Credential Status = ACTIVE

e A Sl

-- test DISABLED NOT YET ACTIVE
9. VERIFY Credential Status = ACTIVE
10. VERIFY Reason_For Disable = ()
11. MAKE (set Activation_Time = time > current time)
12. VERIFY Reason_ For Disable = (DISABLED NOT YET ACTIVE)
13. VERIFY Credential Status = INACTIVE
14. MAKE (set Activation_Time = time < current time)

© 2022 by BACnet International. All rights reserved. 1 94

reasons

(DISABLED MANUAL,

BACnet Testing Laboratories - Specified Tests

15. VERIFY Reason For Disable = ()
16. VERIFY Credential Status = ACTIVE

-- test DISABLED EXPIRED
17. VERIFY Credential Status = ACTIVE
18. VERIFY Reason_For Disable = ()
19. MAKE (set Expiration_Time = time < current time)
20. VERIFY Reason For Disable = (DISABLED EXPIRED)
21. VERIFY Credential Status = INACTIVE
22. MAKE (set Expiration_Time = time > current time)
23. VERIFY Reason For Disable = ()
24. VERIFY Credential Status = ACTIVE

7.3.2.X60.2 Activation Time and Expiration Time Test

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.
Purpose: To test the activation time and expiration time functionality of this object.

Test Concept: The Activation Time of the credential is set to a time in the future and the credential should be disabled. The
Expiration_Time is set to a time in the past and the credential should be disabled.

Configuration Requirements:

See 7.3.2.X60. This test requires the following additional configuration:
a) The Credential Status property shall have the value ACTIVE.
b) The Reason For Disable property shall be empty.
¢) The Activation Time shall have an initial value of OxFF
d) The Expiration_Time shall have an initial value of OxFF.

Test Steps:

-- test activation time

VERIFY Credential Status = ACTIVE

VERIFY Reason For Disable = ()

MAKE (set Activation Time = time > current time)

VERIFY Credential Status = INACTIVE

VERIFY Reason For Disable = (DISABLED NOT YET ACTIVE)
MAKE (set Activation_Time = time < current time)

VERIFY Credential Status = ACTIVE

VERIFY Reason_For Disable = ()

PRNAN R DD =

-- test expiration time

9. VERIFY Credential Status = ACTIVE

10. VERIFY Reason For Disable = ()

11. MAKE (Expiration_Time = time < current time)

12. VERIFY Credential Status = INACTIVE

13. VERIFY Reason For Disable = (DISABLED EXPIRED)
14. MAKE (Expiration_Time = time > current time)

15. VERIFY Credential Status = ACTIVE

16. VERIFY Reason For Disable = ()

7.3.2.X60.3 Disabled Access Rights Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

© 2022 by BACnet International. All rights reserved. 1 95

BACnet Testing Laboratories - Specified Tests

Purpose: To verify the enable field disables an access right for this credential when set to FALSE.

Configuration Requirements:
See 7.3.2.X60. This test requires the following additional configuration:
a) An access point shall be represented by Access Point object AP1.
b) An access rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
¢) An active credential where Assigned Access Rights[1].Assigned-Access-Rights = AR1 shall be represented by
Access Credential object C1. Assigned Access_Rights[1].Enable shall be TRUE.

Test Steps:

MAKE (present credential C1 at credential reader for access point AP1)
VERIFY API1,Access Event = GRANTED

VERIFY AP1,Access Event Time = (the time that the credential was presented)
VERIFY APIl,Access Event Credential = C1

WRITE Assigned Access_Rights[1].Enable = FALSE

MAKE (present credential C1 at credential reader for access point AP1)
VERIFY AP1,Access Event=DENIED NO ACCESS RIGHTS

VERIFY API1,Access Event Time = (the time that the credential was presented)
VERIFY AP1,Access Event Credential = C1

WX R W=

7.3.2.X60.4 Days Remaining and Uses Remaining Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To test the days remaining and uses remaining functionality of this object.

Test Concept:
Set the Days Remaining property to 0. The credential will become inactive and the corresponding reason for disable put in
the Reason_For Disable property.

Set the Uses Remaining to 0. The credential will become inactive and the corresponding reason for disable will be put in the
Reason_For_ Disable property.

Configuration Requirements:

See 7.3.2.X60. This test requires the following additional configuration:
a) The Credential Status property shall have the value ACTIVE.
b) The Reason For Disable property shall be empty.
c¢) Days Remaining shall have a value of -1 or >0.
d) Uses Remaining shall have a value of -1 or >0.

Test Steps:

-- test day remaining

VERIFY Credential Status = ACTIVE

VERIFY Reason_For Disable = ()

MAKE (Days Remaining =0)

VERIFY Credential_Status = INACTIVE

VERIFY Reason_For Disable = (DISABLED MAX DAYS)
MAKE (Days_Remaining = -1 OR Days_Remaining > 0)
VERIFY Credential Status = ACTIVE

VERIFY Reason_For Disable = ()

PRI BB =

-- test uses remaining
9. VERIFY Credential Status = ACTIVE

© 2022 by BACnet International. All rights reserved. 1 96

BACnet Testing Laboratories - Specified Tests

10. VERIFY Reason For Disable = ()

11. MAKE (Uses_Remaining =0)

12. VERIFY Credential Status = INACTIVE

13. VERIFY Reason_For Disable = (DISABLED MAX USES)
14. MAKE (Uses Remaining =-1 OR Uses Remaining > 0)
15. VERIFY Credential Status = ACTIVE

16. VERIFY Reason For Disable = ()

7.3.2.X60.5 Absentee Limit Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify the absentee limit functionality of this object.

Test Concept: Set the Absentee Limit property some value >= 0. Use the credential to access an access point. Change the
current date to one that is greater than (current date + Absentee Limit) and attempt to gain access to an access point. Access
should be denied because the credential should be disabled due to inactivity.

Configuration Requirements:

See 7.3.2.X60. This test requires the following additional configuration:
a) Absentee Limit >=0
b) The Credential Status property shall have the value ACTIVE.
¢) The Reason For Disable property shall be empty.
d) Days Remaining shall have a value > 0.
e) Last Use Time shall be set to a valid date and time.

Test Steps:

1. VERIFY Credential Status = ACTIVE

2. VERIFY Reason_For Disable = ()

3. TRANSMIT UTCTimeSynchronization-Request, 'Time' = (any day and time greater than Absentee Limit days)
4. VERIFY Credential Status = INACTIVE

5. VERIFY Reason For Disable = (DISABLED INACTIVITY)

- clear the condition

6. MAKE (set Absentee Limit > number of days since Last Use Time)
7. VERIFY Credential Status = ACTIVE

8. VERIFY Reason_For Disable = ()

7.3.2.X60.6 Last Access Point, Last Use Time and Last Access Event Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the Last Access Point, Last Access Event and Last Use Time properties are updated when this
credential is used at an access point.

Configuration Requirements:

See 7.3.2.X60. This test requires the following additional configuration:
a) An access point shall be represented by Access Point object AP1.
b) Anaccess rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
¢) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.

Test Steps:
1. MAKE (present credential C1 at credential reader for access point AP1)

© 2022 by BACnet International. All rights reserved. 1 97

BACnet Testing Laboratories - Specified Tests

VERIFY API1,Access Event = GRANTED

VERIFY AP1,Access_Event Time = (the time that the credential was presented)
VERIFY AP1,Access_Event Credential = C1

VERIFY Last Access_Point = AP1

VERIFY Last Use Time = AP1,Access Event Time

VERIFY Last Access Event = GRANTED

NNk

7.3.2.X60.7 Extended Time Enable Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that a credential used at an access point with the extended flag set to TRUE results in the corresponding
door to pulse open for a Pulse Extended period of time as defined in the door object.

Configuration Requirements:
See 7.3.2.X60. This test requires the following additional configuration:
a) An access door shall be represented by Access Door object AD1 and Door Delay Time shall be 0.
b) An access point, which controls AD1, shall be represented by Access Point object AP1.
c) Anaccess rights object which specifies valid access rights to AP1 shall be represented by Access Rights object AR1.
d) An active credential with access rights specified by AR1 shall be represented by Access Credential object C1.
e) The Extended Time Enable property shall be FALSE.

Test Steps:

-- verify that PULSE _UNLOCK is written when the extended time enable is FALSE
MAKE (present credential C1 at credential reader for access point AP1)
VERIFY API1,Access Event = GRANTED

VERIFY API1,Access Event Time = (the time that the credential was presented)
VERIFY AP1,Access Event Credential = C1

BEFORE Door Pulse Time VERIFY ADI, Present Value = PULSE UNLOCK

SR W=

-- verify that EXTENDED PULSE UNLOCK is written when the extended time enable is TRUE
6. WRITE Extended Time Enable = TRUE

7. MAKE (present credential C1 at credential reader for access point AP1)

8. VERIFY API,Access Event = GRANTED

9. VERIFY AP1,Access_Event Time = (the time that the credential was presented)

10. VERIFY AP1,Access Event Credential = C1

11. BEFORE Door Pulse Time VERIFY ADI, Present Value = EXTENDED PULSE UNLOCK

7.3.2.X61 Credential Data Input Object Tests

The Credential Data Input object type represents a device or process that reads an authentication factor from a physical device
such as a card reader, key pad or biometric device. There are countless variations and authentication formats supported for
these devices. As such, there is not a standard format or device configuration that can be mandated for these tests.

The vendor must configure the IUT such that the Credential Data Input device can read an authentication factor from the
corresponding physical device including setting the Supported Formats[1] property to the correct authentication factor format
(figure f). This configuration is considered to be a local matter and will not be tested.

© 2022 by BACnet International. All rights reserved. 1 98

BACnet Testing Laboratories - Specified Tests

Credential Reader

Credential Data
input

D
|

-
|
\

I Proprietary configuration >

Figure f: Credential Data Input configuration

7.3.2.X61.1 Return From Out Of Service Undefined Test
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the Present Value. Format-Type becomes undefined when out of service is set to false.

Configuration Requirements:
See 7.3.2.X61. This test requires the following additional configuration:
a) The Out Of Service property shall be TRUE.

Test Steps:

1. WRITE Out_Of Service = FALSE
2. VERIFY Present Value. Format-Type = UNDEFINED
3. VERIFY Present Value. Format-Class = 0

7.3.2.X61.2 Read Valid Authentication Factor Test

Purpose: To verify that Present Value is set to the proper value when an authentication factor with a recognized format is
read at the corresponding physical device.

Configuration Requirements:
See 7.3.2.X61. This test requires the following additional configuration:
a) The Out_Of Service property shall be FALSE.
b) Two authentication factors, AF1 and AF2, shall be provided which can be read by the physical device which have
the format specified in Supported Formats[1].

Test Steps:

-- test AF1

1. MAKE (present AF1 at the credential reader)

2. VERIFY Present Value. Format-Type = Supported Formats[1]. Format-Type
3. VERIFY Present Value. Format-Class = Supported Formats[1]. Format-Class
4. VERIFY Present Value. Value = the authentication format value of AF1

-- test AF2

5. MAKE (present AF2 at the credential reader)

6. VERIFY Present Value. Format-Type = Supported Formats[1]. Format-Type
7. VERIFY Present_Value. Format-Class = Supported Formats[1]. Format-Class
8. VERIFY Present Value. Value = the authentication format value of AF2

© 2022 by BACnet International. All rights reserved. 1 99

BACnet Testing Laboratories - Specified Tests

7.3.2.X62 Network Port Object Tests

Configuration Requirements: In addition to the requirements listed for each test, the Network Port object which is being tested
shall be configured and operating and have no changes pending, unless required by the specific test’s specification.

7.3.2.X62.1 Network Port Configuration Tests

These tests verify that Network Port objects reflect the configuration in use, and for writable ones, change the network
configuration.

7.3.2.X62.1.1 Configure Network Through Network Port Object Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: This test verifies that Network Port properties control aspects of the network configuration as expected.

Test Concept: Given the complexity of the Network Port object, and the impact changes to the Network Port has on the test
network, this test is provided to allow testing of the Network Port functionality as the network is reconfigured for other tests.
The Network Port object is modified to meet the conditions of the new test network setup. The changes are activated, the TD
is reconfigured to match, and communication with the IUT is re-verified. The configuration of the network is expected to be
tested in more detail as the other datalink tests are applied.

Configuration Requirements: The test network is configured such that the TD and IUT can communicate, but the
configuration does not match the target network configuration. P1 through PN are Network Port properties that need to be
written in order to transition the network from the current setup to the target network setup. This set of properties shall be
selected from the set of the properties that are writable in the IUT.

Test Steps:

1. REPEAT P=P1 ... PN {
WRITE P = (NV: the value required for the target network setup)
VERIFY P=NV
}
2. VERIFY Changes Pending = TRUE
3. REPEAT P=PI1 .. PN {
CHECK (the new value for P is not in use by the network port, unless the new value is the same as the
old value)
}

4. TRANSMIT ReinitializeDevice-Request
'Reinitialized State of Device' = WARMSTART | ACTIVATE _CHANGES
'Password' = (any valid password)
5. RECEIVE BACnet-SimpleACK-PDU
6. MAKE(change the TD network setup and the network setup of all other devices on the network to match the
target network setup)
7. WAIT Activate Changes Fail Time
8. VERIFY Changes Pending = FALSE

7.3.2.X62.1.2 Verify Network Configuration Through Network Port Object Test
Reason for Change: New test per Addendum 135-2012ai.

© 2022 by BACnet International. All rights reserved. 200

BACnet Testing Laboratories - Specified Tests

Purpose: This test verifies that Network Port properties correctly reflect aspects of the network configuration as expected.

Test Concept: Given the complexity of the Network Port object, and the impact changes to the Network Port has on the test
network, this test is provided to allow testing of the Network Port functionality as the network is reconfigured for other tests.
The TUT’s network configuration is modified to meet the conditions of the new test network setup. The TD is reconfigured
to match, and communication with the IUT is re-verified. The Network Port object is then checked to ensure it reflects the
new network setup.

Test Steps:

1. MAKE(configure the network, including reconfiguring the TD, IUT, and other devices on the network)
2. CHECK(that the value of each of the present Network Port properties which applies to the associated data link reflects the
current network setup)

7.3.2.X62.1.3 Network Port Non-Volatility Properties Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: This test verifies that after Network Port properties are changed, and activated, the revised value is maintained
through a power failure and device restart.

Test Concept: Write one or more properties, P1 ... PN, of a Network Port object which are required for proper operation of
the network port. If any of the properties utilize the pending changes functionality, activate the changes. Restart the [UT
device by temporarily removing power. When the device has resumed operation after that restart, verify that the new values
for the properties were maintained across the reset and are in use by the port.

Test Steps:

1. REPEAT P=PI ... PN {
WRITE P = (a new value different from the property’s current value)
H
2. IF any of the properties utilize the pending change functionality THEN
VERIFY Changes Pending = TRUE
TRANSMIT ReinitializeDevice-Request
'Reinitialized State of Device' = WARMSTART | ACTIVATE _CHANGES
'Password' = (any valid password)
RECEIVE BACnet-SimpleACK-PDU
MAKE(reconfigure the TD and other devices on the network to the new network settings)
WAIT Activate Changes Fail Time
ELSE
VERIFY Changes Pending = FALSE
3. REPEAT P=PI ... PN {
VERIFY P = (the new value for the property)
}
4. MAKE (the IUT power cycle to reinitialize)
5.REPEAT P=P1 .. PN {
VERIFY P = (the new value for the property)
CHECK (that the value for P is in use by the network port)

}

7.3.2.X62.1.4 Network Port Configuration Conflict Test
Reason for Change: New test per Addendum 135-2012ai.

© 2022 by BACnet International. All rights reserved. 20 1

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that either multiple clients can write to a Network Port object at the same time, or the
CONFIGURATION_IN_PROGRESS error is reported.

Test Concept: The TD simulates 2 devices (TD and TD2), attempting to write to properties in a Network Port object, O1. The
IUT must either accept the second write, or the IUT returns an error with an error class of DEVICE and an error code of
CONFIGURATION_IN_ PROGRESS. Finally, the Network Port’s changes are activated and then verified.

1. TRANSMIT WriteProperty-Request,
SOURCE =TD,
'Object Identifier' = Ol,
'Property Identifier' = (P1: a writable property which utilizes the pending changes
functionality),
'Property Value'= (any valid value),
2. RECEIVE BACnet-Simple-ACK
3. TRANSMIT WriteProperty-Request,
SOURCE = TD2,
'Object Identifier' = Ol,
'Property Identifier' = (P2: a writable property which utilizes the pending changes
functionality, and is different than P1, if possible),
'Property Value'= (any valid value),
4. RECEIVE BACnet-Simple-ACK
DESTINATION = IUT
| BACnet-Error-PDU
'Error Class' = DEVICE,
'Error Code' = CONFIGURATION IN PROGRESS

5. TRANSMIT ReinitializeDevice-Request,

'Reinitialized State of Device'= ACTIVATE CHANGES,

'"Password' = (any valid password)
RECEIVE BACnet-SimpleACK-PDU
MAKZE(reconfigure the TD and other devices on the network to the new network settings)
WAIT Activate Changes Fail Time
IF P1 is a different property than P2 THEN

CHECK(P1’s value is in use by the network port)

10. CHECK(P2’s value is in use by the network port)

O PR

7.3.2.X62.2 Network-Number-Is Updates Network_Number_Quality Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that Network Number Quality is updated when the IUT learns its Network Number from Network-
Number-Is.

Test Concept: Write 0 to Network Number to set Network Number Quality to UNKNOWN. Send a Network-Number-Is
message to the IUT indicating that the Network Number is learned and verify that Network Number Quality changes to
LEARNED. Send a Network-Number-Is message to the IUT indicating that the Network Number is configured and verify
that Network Number Quality changes to LEARNED CONFIGURED. Write 0 to Network Number and verify that
Network Number Quality changes to UNKNOWN.

Configuration Requirements: Select a Network Port object, O1, which is enabled and has a writable Network Number.
Connect the TD to the network associated with Network Port O1. This test shall be skipped if the TD cannot be directly

connected to the IUT’s network.

-- set network number quality to UNKNOWN

© 2022 by BACnet International. All rights reserved. 202

BACnet Testing Laboratories - Specified Tests

WRITE Network Number = 0
TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device'= ACTIVATE_CHANGES,
"Password' = (any valid password)
3. RECEIVE BACnet-SimpleACK-PDU
4. WAIT Activate Changes Fail Time
5. VERIFY Network Number Quality = UNKNOWN

N =

-- make IUT learn the network number

6. TRANSMIT Network-Number-Is
DESTINATION = LOCAL_BROADCAST | IUT,
'Network Number' = (N1: any valid value)
'Flag' =0 -- learned

7. VERIFY Network Number Quality = LEARNED

8. VERIFY Network Number = N1

-- make IUT learn the network number from a configure device
9. TRANSMIT Network-Number-Is
DESTINATION = LOCAL BROADCAST | IUT,
'Network Number' = (N2: any valid value)
'Flag' =1 -- configured
10. VERIFY Network Number Quality = LEARNED CONFIGURED
11. VERIFY Network Number = N2

-- configure the IUT’s network number

12. WRITE Network Number = (N3: any valid value other than 0)

13. TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device'= ~ ACTIVATE CHANGES,
'Password' = (any valid password)

14. RECEIVE BACnet-SimpleACK-PDU

15. WAIT Activate Changes Fail Time

16. VERIFY Network Number Quality = CONFIGURED

17. TRANSMIT Network-Number-Is
DESTINATION = LOCAL BROADCAST | IUT,
'Network Number' = (N4: any valid value)
'Flag' =1 -- configured
18. VERIFY Network Number Quality = CONFIGURED
19. VERIFY Network Number = N3

-- revert network number quality to UNKNOWN

20. WRITE Network Number = 0

21. TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device'= ACTIVATE _CHANGES,
'Password' = (any valid password)

22. RECEIVE BAChnet-SimpleACK-PDU

23. WAIT Activate Changes Fail Time

24. VERIFY Network Number Quality = UNKNOWN

7.3.2.X62.3 Network Port Command Tests
Reason for Change: New test per Addendum 135-2012ai.

© 2022 by BACnet International. All rights reserved. 203

BACnet Testing Laboratories - Specified Tests

7.3.2.X62.3.1 IDLE Command Rejected
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that the Command property does not accept write of IDLE.

Test Concept: Write IDLE to the command property and verify that an error-class of PROPERTY with an error-code of
VALUE OUT OF RANGE is returned.

Configuration Requirements: Execute the test against a Network Port object with a writable Command property. This test
shall be skipped if the IUT does not support the Command property. The Network Port object shall have no pending changes.

1. TRANSMIT WriteProperty-Request,
'Object Identifier' = (a Network Port object),
"Property Identifier' = Command,
'Property Value'= IDLE
2. RECEIVE BACnet-Error-PDU
'Error Class'= PROPERTY,
'Error Code' = VALUE_OUT_OF RANGE

7.3.2.X62.3.2 DISCARD_CHANGES Command Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that the Network Port discards pendig changes when the Command DISCARD CHANGES is received.

Test Concept: Write values to one or more properties, P1 .. Px, which utilize the pending changes functionality. Write
DISCARD CHANGES to the Command property and verify that the properties have reverted to their previous values.

Configuration Requirements: Execute the test on a Network Port object which supports the DISCARD CHANGES
command. This test shall be skipped if the IUT does not support the the DISCARD CHANGES command.

-- save initial values of the properties and change each one to a new value

1. REPEAT I = (in the range 1 through the number of properties being written) {
V[I]=READ P[I]
WRITE P[I] = (a value different than V[I], if possible)

H

-- discard the changes
2. WRITE Command = DISCARD CHANGES
3. WAIT Activate Changes Fail Time

-- verify that no changes are pending any more
4. VERIFY Changes Pending = FALSE
5. VERIFY Command = IDLE

-- verify that the properties have reverted in value, and that the old value remains in use by the port
6. REPEAT I = (in the range 1 through the number of properties being written) {

VERIFY P[I] = V[I]

CHECK(the value V[I] is in use by the network port)
H

-- command the device to activate any changes which should have no effect
7. TRANSMIT ReinitializeDevice-Request
'Reinitialized State of Device' = WARMSTART | ACTIVATE _CHANGES

© 2022 by BACnet International. All rights reserved. 204

BACnet Testing Laboratories - Specified Tests

'Password' = (any valid password)
8. RECEIVE BACnet-SimpleACK-PDU
9. MAKE(reconfigure the TD and other devices on the network to the new network settings)
10. WAIT Activate Changes Fail Time
11. VERIFY Command = IDLE

-- verify that the properties retain their original values, and that that value remains in use by the port
12. REPEAT I = (in the range 1 through the number of properties being written) {

VERIFY P[I] = V[I]

CHECK(the value V[I] is in use by the network port)

7.3.2.X62.3.3 RENEW_FD_REGISTRATION Command Tests

7.3.2.X62.3.3.1 RENEW_FD_REGISTRATION Command Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that the Network Port attempts to renew its Foreign Device registration when commanded to do so.

Test Concept: Starting with a Network Port object which is already registered with a BBMD as a Foreign Device, command
the Network Port to RENEW_FD REGISTATION but do have the TD respond. Verify that the Network Port attempts to
renew its Foreign Device registration. Wait until the Network Port has completed its attempt and verify that the Relibaility
has been set to RENEW_FD REGISTATION_ FAILURE. Command the Network Port to RENEW _FD REGISTRATION
and have the TD respond. Verify that the attempt succeeds and that Reliability is reset to NO_FAULT DETECTED.
Command the Network Port to RENEW_FD REGISTRATION and have the TD respond. Verify that the attempt succeeds.

Configuration Requirements: Configure a Network Port for BACnet/IP or BACnet/IPv6 in FOREIGN mode. Allow the [UT
to complete its registration with the TD acting as the BBMD before continuing. If the IUT does not support registrering as a
Foreign Device, or the IUT does not support the RENEW_ FD REGISTRATION command, then this test shall be skipped.
The Network Port object shall have no pending changes.

-- make sure our initial conditions are good

1. VERIFY Changes Pending = FALSE

2. VERIFY Reliability = NO FAULT DETECTED
3. VERIFY BACnet I[P Mode = FOREIGN

-- request the renewal, and wait for it to timeout
4. WRITE Command = RENEW_FD REGISTRATION
5. BEFORE Internal Processing Fail Time
RECEIVE Register-Foreign-Device
‘Time-to-Live’ = FD Subscription Lifetime

6. WAIT Foreign Device Registration Fail Time
7. VERIFY Reliability = RENEW _FD REGISTRATION FAILURE
8. VERIFY Command = IDLE

-- re-request the renewal, and allow it to succeed
9. WRITE Command = RENEW_FD REGISTRATION
10. BEFORE Internal Processing Fail Time
RECEIVE Register-Foreign-Device
‘Time-to-Live’ = FD_Subscription_Lifetime
11. TRANSMIT BVLC-Result,

© 2022 by BACnet International. All rights reserved. 205

BACnet Testing Laboratories - Specified Tests

‘Result Code’ = Successful completion
12. VERIFY Reliability = NO_FAULT DETECTED
13. VERIFY Command = IDLE

14. WAIT (a random amount of time significantly less than FD_Subscription Lifetime)

-- re-request the renewal, and allow it to succeed
15. WRITE Command = RENEW_FD REGISTRATION
16. BEFORE Internal Processing Fail Time

RECEIVE Register-Foreign-Device

‘Time-to-Live’ = FD_Subscription_Lifetime

17. TRANSMIT BVLC-Result,

‘Result Code’ = Successful completion
18. VERIFY Reliability = NO_FAULT DETECTED
19. VERIFY Command = IDLE

7.3.2.X62.3.3.2 RENEW_FD_REGISTRATION Command Failure Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that Network Port object respond to RENEW_FD REGISTRATION commands when the command is
not supported / enabled.

Test Concept: Attempt to command a Network Port which is either not an BACnet/IP nor BACnet/IPv6 port or which is not
in FOREIGN mode, to renew its FD subscription. Verify that the attempt fails with an error class of PROPERTY and an error
code of VALUE OUT OF RANGE.

Configuration Requirements: Select a Network Port which is not in FOREIGN mode. If the IUT does not support the
Command property, then this test shall be skipped.

-- make sure our initial conditions are good
1. IF Network Type is IPV4 or IPV6 THEN
2. VERIFY BACnet IP Mode <> FOREIGN

3. TRANSMIT WriteProperty-Request,
'Object Identifier' = (the Network Port object),
'Property Identifier' = Command,

'Property Value'= RENEW_FD SUBSCRIPTION,
4. RECEIVE BACnet-Error-PDU

'Error Class' = PROPERTY,

'Error Code' = VALUE OUT OF RANGE

5. VERIFY Command = IDLE

7.3.2.X62.3.4 RESTART_SLAVE_DISCOVERY Command Tests

7.3.2.X62.3.4.1 RESTART_SLAVE_DISCOVERY Command Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that the Network Port restarts the slave discovery process when commanded to.

Test Concept: Starting with a Network Port object which is configured as an MS/TP Slave Proxy, command the Network
Port to RESTART SLAVE DISCOVERY. Verify that the IUT restarts slave discovery.

© 2022 by BACnet International. All rights reserved. 206

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: Configure an MSTP Network Port object to act as an MS/TP Slave Proxy with
Auto_Slave Discovery set to TRUE. Configure the TD to act as an MS/TP slave. Delay the stat of the test until after the
IUT has completed its initial slave confirmation. If the IUT does not support automatic slave discovery, or the IUT does not
support the RESTART SLAVE DISCOVERY command, then this test shall be skipped.

Notes to Tester: The IUT may interrogate the slave addresses in any order. The IUT is allowed to generate any other traffic
during the test including, and is not limited to reading property values from the devices it finds.

Test Steps:

-- make sure our initial conditions are good
1. VERIFY Network Type = MSTP

2. VERIFY Slave Proxy Enable = TRUE

-- request the renewal, and wait for it to timeout

3. WRITE Command = RESTART SLAVE DISCOVERY

4. BEFORE Slave Proxy Confirm Interval

REPEAT addr=(all MS/TP addresses excluding the IUT’s MAC address) DO {
RECEIVE DESTINATION=addr, SRC=IUT

ReadProperty-Request,
‘Object Identifier’ = (DEVICE,4194303),
‘Property Identifier’ =Protocol_Services_Supported

}
5. VERIFY Command = IDLE

7.3.2.X62.3.42 RESTART_SLAVE_DISCOVERY Command Failure Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that Network Port object respond to RESTART SLAVE DISCOVERY commands when the command
is not supported / enabled.

Test Concept: Attempt to command a Network Port which is not acting as a slav proxy to RESTART SLAVE DISCOVERY.
Verify that the attempt fails with an error class of PROPERTY and an error code of VALUE OUT OF RANGE.

Configuration Requirements: Select a Network Port which is not configured to be a slave proxy. If the IUT supports slave
proxy functionality, this test shall be skipped as the standard does not specify how the IUT should respond when slave proxy
is supported but not enabled. If the IUT does not support the Command property, then this test shall be skipped.

1. TRANSMIT WriteProperty-Request,
'Object Identifier' = (the Network Port object),
'Property Identifier' = Command,
'"Property Value'= RESTART _SLAVE DISCOVERY
2. IF Network Type is MSTP THEN
RECEIVE BACnet-Error-PDU

'Error Class' = PROPERTY,
'Error Code' = OPTIONAL FUNCTIONALITY_ SUPPORTED
ELSE
RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE

3. VERIFY Command = IDLE

© 2022 by BACnet International. All rights reserved. 207

BACnet Testing Laboratories - Specified Tests

7.3.2.X62.3.5 RENEW_DHCP Command Tests

7.3.2.X62.3.5.1 RENEW_DHCP Command Test

Reason for Change: New test per Addendum 135-2012ai.
Purpose: To verify that the Network Port attempts to renew its addressing infofmation when commanded to.

Test Concept: Starting with a Network Port object which is configured to use DHCP and which supports the RENEW DHCP
command, command the port to RENEW_DHCP. Verify that the IUT requests a renewal of addressing information.

Configuration Requirements: Configure a Network Port object which is for MS/TP and as an MS/TP Slave Proxy. Configure
the TD to act as an MS/TP slave. Delay the stat of the test until after the IUT has completed its initial slave confirmation. If
the IUT does not support registrering as a Foreign Device, or the IUT does not support the RENEW _FD REGISTRATION
command, then this test shall be skipped.

-- make sure our initial conditions are good
1. IF Network Type =1PV4 THEN
VERIFY IP_ DHCP_ Enable = TRUE
2. If Network Type =IPv6 THEN
VERIFY IPv6_Auto Addressing Enable = TRUE

-- request the renewal, and wait for it to timeout

3. WRITE Command = RENEW_DHCP

4. CHECK(that the IUT requested a renewal of its addressing information)
5. VERIFY Command = IDLE

7.3.2.X62.3.5.2 RENEW_DHCP Command Failure Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that Network Port object respond to RENEW_ DHCP commands when the command is not supported /
enabled.

Test Concept: Attempt to command a Network Port which is either not an BACnet/IP nor BACnet/IPv6 port or which is not
in configured for auto-addressing. Verify that the attempt fails with an error class of PROPERTY and an error code of
VALUE OUT OF RANGE.

Configuration Requirements: Select a Network Port which is not an IP or IPV6 port setup for autoaddressing. If the IUT does
not support the Command property, then this test shall be skipped.

-- make sure our initial conditions are good

1. IF Network Type is IPV4 and IP. DHCP_Enable is present THEN
VERIFY IP DHCP ENABLE = FALSE

2. IF Network Type is IPV6 and IPV6_Auto_Addressing_Enabled is present THEN
VERIFY IPV6_Auto Addressing_Enabled = FALSE

3. TRANSMIT WriteProperty-Request,
'Object Identifier' = (the Network Port object),
'Property Identifier' = Command,
'Property Value'= RENEW_DHCP

4. IF Network Type is [IPV4 or IPV6 THEN
RECEIVE BAChnet-Error-PDU

© 2022 by BACnet International. All rights reserved. 208

BACnet Testing Laboratories - Specified Tests

'Error Class' = PROPERTY,
'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
ELSE
RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE

5. VERIFY Command = IDLE

7.3.2.X62.3.6 RESTART_AUTONEGOTIATION Command Tests

7.3.2.X62.3.6.1 RESTART _AUTONEGOTIATION Command Test

Reason for Change: New test per Addendum 135-2012ai.
Purpose: To verify that the Network Port attempts to re-autonegotiate its link speed when commanded to.

Test Concept: Starting with a Network Port object which is configured to auto-negotiate its linkspeed and which supports the
RESTART AUTONEGOTIATION command, is commanded to restart autonegotiation. The link speed is changed, and it is
verified that the IUT performs link speed negotiation an is able to communicate with the new speed.

Configuration Requirements: The TD and IUT are connected on a network for which the IUT performs link speed auto
negotiation. The Network Port object for the port is configured to perform auto-negotiation, If the IUT does not support the
RESTART AUTONEGOTIATION command, then this test shall be skipped.

-- make sure our initial conditions are good
1. VERIFY Link Speed Autonegotiate = TRUE

-- request the renewal, and wait for it to timeout
WRITE Command = RESTART AUTONEGOTIATION
MAKE(change the link speed for the network or link)
WAIT Auto Negotiation Fail Time
CHECK(check any external indications that the new link speed was detected)
VERIFY Command = IDLE -- the act of validating the command
-- property is sufficient to validate that the command worked

Nownkw

7.3.2.X62.3.6.2 RESTART _AUTONEGOTIATION Command Failure Test

Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that Network Port objects respond to the RESTART AUTONEGOTIATION command with the correct
error codes when the command is not supported / enabled.

Test Concept: Starting with a Network Port object which is not configured to auto-negotiate its linkspeed or which does not
support the RESTART AUTONEGOTIATION, command it to restart autonegotiation. Verify that the correct error code is
returned.

Configuration Requirements: If the network port support auto-negotiation, disable it. If the IUT does not support the

Command property, or all Network Port object support auto-negotiation and it cannto be disabled, then this test shall be
skipped.

© 2022 by BACnet International. All rights reserved. 209

BACnet Testing Laboratories - Specified Tests

-- make sure our initial conditions are good
1. VERIFY Link Speed Autonegotiate = TRUE

-- request the renewal, and wait for it to timeout
2. TRANSMIT WriteProperty-Request,
'Object Identifier' = (the Network Port object),
'"Property Identifier' = Command,
'Property Value'= RESTART AUTONEGOTIATION

3. IF the port does not support autonegotiation THEN
RECEIVE BACnet-Error-PDU

'Error Class' = PROPERTY,
'Error Code' = OPTIONAL FUNCTIONALITY NOT_SUPPORTED
ELSE
RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT _OF RANGE

7.3.2.X62.3.7 DISCONNECT Command Tests

7.3.2.X62.3.7.1 DISCONNECT Command Test

Reason for Change: New test per Addendum 135-2012ai.
Purpose: To verify that the Network Port attempts to disconnect its link speed when commanded to.

Test Concept: Starting with a Network Port object which supports the DISCONNECT command. The port is commanded to
disconnect. The disconnection of the link is verified.

Configuration Requirements: The TD and IUT are connected on a network which supports disconnection. If the IUT does
not support the DISCONNECT command, then this test shall be skipped.

-- make sure our initial conditions are good
1. VERIFY Network Type = (a network type that supports disconnection, such as PTP)

2. WRITE Command = DISCONNECT
3. CHECK(that the link was disconnected)

7.3.2.X62.3.7.2 DISCONNECT Command Failure Test

Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that Network Port objects respond to the DISCONNECT command with the correct error codes when the
command is not supported / enabled.

Test Concept: With a Network Port object for a network which does not support disconnection, command it to disconnect.
Verify that the correct error code is returned.

Configuration Requirements: If the IUT does not support the Command property, or all Network Port object support
disconnection then this test shall be skipped.

1. TRANSMIT WriteProperty-Request,
'Object Identifier' = (the Network Port object),

© 2022 by BACnet International. All rights reserved. 2 1 O

BACnet Testing Laboratories - Specified Tests

'"Property Identifier' = Command,
'Property Value'= DISCONNECT
2. RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE

7.3.2.X62.3.8 RESTART_PORT Command Tests

7.3.2.X62.3.8.1 RESTART_PORT Command Test

Reason for Change: New test per Addendum 135-2012ai.
Purpose: To verify that the Network Port attempts to restart its port when commanded to.

Test Concept: With a Network Port object which supports the RESTART PORT command, command the port to restart. The
restart of the port is verified.

Configuration Requirements: If the IUT does not support the RESTART PORT command, then this test shall be skipped.
-- make sure our initial conditions are good

1. WRITE Command = RESTART PORT
2. CHECK(that the port was restarted)

7.3.2.X62.3.8.2 RESTART_PORT Command Failure Test

Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that Network Port objects respond to the RESTART PORT command with the correct error codes when
the command is not supported.

Test Concept: With a Network Port object which does not support the RESTART PORT command, command the port to
restart. Verify that the correct error code is returned.

Configuration Requirements: If the IUT does not support the Command property, or all Network Port object support
disconnection then this test shall be skipped.

1. TRANSMIT WriteProperty-Request,
'Object Identifier' = (the Network Port object),
'Property Identifier' = Command,

'Property Value'= RESTART PORT
2. RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = OPTIONAL FUNCTIONALITY NOT_SUPPORTED

7.3.2.X62.3.9 No Commands if Changes Pending Test

Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that the Network Port disallows commands, except DISCARD CHANGES, when Changes Pending.

© 2022 by BACnet International. All rights reserved. 21 1

BACnet Testing Laboratories - Specified Tests

Test Concept: using Network Port object NP, write values to one or more properties, P1 .. Px, which utilize the pending
changes functionality. Write each of the other commands and verify they are rejected.

Configuration Requirements: Execute the test on a Network Port object which supports the Command property.

-- write some properties
1. REPEATP=(P1 .. Px) {

WRITE NP, P = (any valid value)
b

-- verify that changes are pending
2. VERIFY Changes Pending = TRUE

-- write each supported Command value, except DISCARD CHANGES
3. REPEAT CMD = (all non-IDLE valid values that NP supports except DISCARD CHANGES) {
TRANSMIT WriteProperty-Request
'Object Identifier' = NP
'"Property’ = Command,
'Property Value' = CMD
RECEIVE BACnet-Error-PDU
'Error Class' = PROPERTY,
'Error Code' = INVALID VALUE_IN_THIS STATE

¥

-- revert the Network Port object

4. TF the IUT supports DISCARD CHANGES THEN {
WRITE Command = DISCARD_CHANGES

+ ELSE {
MAKE(the IUT discard its changes)
}

7.3.2.X62.4 Hierarchical Network Port Tests

7.3.2.X62.4.1 Valid Hierarchy Test

Reason for Change: New test per Addendum 135-2012ai.
Purpose: To verify that the set of network port objects in the IUT are organized in a valid hierarchy.
Test Concept: Visit each Network Port object which represents a configured application layer port. Ensure that the top

Network Port object has a Protocol Level of BACNET APPLICATION or NON_BACNET APPLICATION. Visit each
Network Port object in the hierarchy ensuring that the Protocol Level properties are valid.

1. REPEAT NP = (object id of each Network Port object which has a Protocol Level of
BACNET _APPLICATION or NON_BACNET APPLICATION) {
2. REPEAT NPx = (object id of each Network Port object in NP’s hierarchy) {

PL = READ (Network Port, NPx), Protocol Level

IF PL is BACNET APPLICATION or NON BACNET APPLICATION THEN
ERROR Invalid Protocol Level in child Network Port object

IF PL is PHYSICAL THEN
VERIFY (Network Port, NPx), Reference Port =4194303

© 2022 by BACnet International. All rights reserved. 2 1 2

BACnet Testing Laboratories - Specified Tests

7.3.2.X62.4.2 Properties in Referenced Network Port Reflected in Top Network Port Object
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that properties in referenced Network Port objects are reflected in the top Network Port object.

Test Concept: Visit each Network Port object which represents a configured BACnet application layer port. Visit each
Network Port object in the hierarchy ensuring that the properties in the referenced Network Port object exist and have the
same value in the top Network Port object.

1. REPEAT NP = (object id of each Network Port object which has a Protocol Level of
BACNET APPLICATION) {
-- verify that the required properties exist for this Network Port object based
-- on its Network Type
2. REPEAT P = (each required property for NP’s Network Type, see Table 12-72) {
VERIFY (Network Port, NP), P = (any valid value)

i
3. REPEAT NPx = (object id of each Network Port object in NP’s hierarchy) {
-- verify that the expected properties exist in the Network Port object based
-- on its Network Type and Protocol Level. In addition, verify that the property
-- value is inherited into NP (unless already inherited from a different Network Port)
REPEAT P = (each expected property in NPx based on its Network Type and
Protocol_Level as defined in Table 12-73) {
V1 = READ (Network Port, NPx), P
IF P is not in a higher Network Port object in this hierarchy THEN
VERIFY (Network Port, NP), P=V1

7.3.2.X62.4.3 Changes Reflected in Top Network Port Object
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that changing properties in child Network Port objects result in the new property values reflected in the
top Network Port object.

Test Concept: Write a writable, inheritable property within a Network Port’s hierarchy and verify that the new value is
reflected in the top Network Port object after activating the change, if required.

Configuration Requirements: Select a Network Port object, O1, which represents a configured network port, has a
Protocol_Level of BACNET APPLICATION, which references a Network Port object and for which there is a writable
inherited property, P, within hierarchy. Let O2 be the Network Port object which contains P.

V1=READ 02, P
VERIFY O1,P=V1
WRITE 02, P = (V2: any valid value different that V1)
IF 02, Changes Pending THEN

TRANSMIT ReinitializeDevice

'Reinitialized State of Device' = ACTIVATE CHANGES
RECEIVE BACnet-SimpleACK-PDU
MAKZE(reconfigure the TD and other devices on the network to the new network settings)

bl e

© 2022 by BACnet International. All rights reserved. 2 1 3

BACnet Testing Laboratories - Specified Tests

WAIT Activate Changes Fail Time
5. VERIFY O1,P=V2

7.3.2.X62.4.4 Changes Reflected in Lower Network Port Objects
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that changing properties in the top Network Port object results in the new property values reflected in the
child Network Port objects.

Test Concept: Write a writable, inherited property within a top Network Port object and verify that the new value is reflected
in the property from which value is inherited after activating the change, if required.

Configuration Requirements: Select a Network Port object, O1, which represents a configured network port, has a
Protocol Level of BACNET APPLICATION, which references a Network Port object and for which there is a writable
inherited property, P, in O1 which inherits is value from property P in O2.

V1=READ 02, P
VERIFY O1,P=V1
WRITE Ol1, P = (V2: any valid value different that V1)
IF O1, Changes_Pending THEN
TRANSMIT ReinitializeDevice
'Reinitialized State of Device' = ACTIVATE _CHANGES
RECEIVE BAChnet-SimpleACK-PDU
MAKE(reconfigure the TD and other devices on the network to the new network settings)
WAIT Activate Changes Fail Time
5. VERIFY 02,P=V2

B

7.3.2.X62.5 APDU_Length Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that the Device object does not report a Max APDU_Length Accepted that is larger than the largest value
reported by the configured and enabled Network Port objects.

Test Concept: Determine the largest APDU_Length property for all configured and enabled Network Port objects with a
Protocol Level of BACNET APPLICATION. Verify that each is larger than 50 and less than or equal the maximum allowed
for the attached datalink. Verify that the Max APDU Length Supported property of the Device object is not larger than that
maximum.

1. MAX APDU=0
2. REPEAT NP = (all configured and enabled Network Port objects with a
Protocol_Level of BACNET APPLICATION) {
IF NP.APDU_Length <50 THEN
ERROR "APDU_Length must not be less than 50."
IF NP.APDU_Length > (the maximum allowable for the Network Type) THEN
ERROR "APDU _Length is too large for the connected Network Type"
IF MAX APDU <> NP.APDU Length THEN
MAX APDU =NP.APDU_Length

}
3. VERIFY (Device, 4194303), Max APDU Length Supported <= MAX APDU

Note to Tester: the maximum allowable APDU Length for a network type should be calculated from the maximum NPDU
size minus 21 according to SSPC interpretation IC135-2020-2.

© 2022 by BACnet International. All rights reserved. 2 1 4

BACnet Testing Laboratories - Specified Tests

7.3.2.X62.6 Routing_Table Test
Reason for Change: New test per Addendum 135-2012ai.

Purpose: To verify that routes are added to the Routing_Table property of the Network Port object when they are found.

Test Concept: Starting with a clear routing table, send an I-Am-Router-To-Network message with multiple networks listed
and verify that all are added to the Routing Table. Send the remaining Nmax-2 I-Am-Router-To-Network messages to the
IUT and verify that the entries are placed into the Routing_Table. Verify that no other Network Port objects are affected by
the messages.

Configuration: All enabled Network Port objects, NP1 .. NPx, have empty Routing Table properties. NP1 is the Network
Port for port A. Nmax is the smaller of the maximum number of entries the IUT can hold in its routing table, and the maximum
that can be encoded in a single segment ReadProperty response. N1 .. Nmax is a set of random network numbers, none of
which are in use by the IUT. R1 .. Rmax are the router MAC addresses for each of the network numbers in N1 .. Nmax. R1
and R2 shall be the same. The TD and IUT shall be on the same BACnet network and there shall be no other routers connected.

Notes to Tester: If the network cannot be configured with the TD and the IUT on the same network, the test shall be adjusted
to include the router to the TDs network instead of having a cleared routing table from the start of the test.

Test Steps:
-- verify that no routes are known
1. REPEAT NP = (all enabled Network Port objects with a Protocol Level of BACNET APPLICATION) {
VERIFY NP, Routing_Table = ()
H

-- verify that the IUT notices all routes in the I-Am-Router-To-Network
2. IF the IUT supports storing the address of more than 1 router THEN
TRANSMIT PORT A
DESTINATION = LOCAL BROADCAST,
SOURCE R1,
I-Am-Router-To-Network,
Network Numbers = N1, N2
VERIFY NP1, Routing_Table = (
(N1, R1, AVAILABLE, (optionally, any valid index)),
(N2, R2, AVAILABLE, (optionally, any valid index))
) -- the order of the entries does not matter
ELSE
TRANSMIT PORT A
DESTINATION = LOCAL BROADCAST,
SOURCE R1,
I-Am-Router-To-Network,
Network Numbers = N1
VERIFY NP1, Routing_Table = (
(N1, R1, AVAILABLE, (optionally, any valid index)),

)

-- verify that the IUT supports up to Nmax entries
4. REPEAT NP = (all enabled Network Port objects, except NP1, with a Protocol Level of
BACNET APPLICATION) {
VERIFY NP, Routing_Table = ()

i
5. REPEAT N,R = (N2 up to Nmax, R2 up to Rmax) {
TRANSMIT PORT A
DESTINATION = LOCAL BROADCAST,
SOURCE =R

© 2022 by BACnet International. All rights reserved. 2 1 5

BACnet Testing Laboratories - Specified Tests

I-Am-Router-To-Network,
Network Numbers = N

}
6. VERIFY NP1, Routing_Table = (
N1, R1, AVAILABLE, (optionally, any valid index),
N2, R2, AVAILABLE, (optionally, any valid index),

Nmax, Rmax, AVAILABLE, (optionally, any valid index)
) -- the order of the entries does not matter

-- verify that the other Network Port objects are unaffected
7. REPEAT NP = (all enabled Network Port objects, except NP1, with a Protocol Level of
BACNET APPLICATION) {
VERIFY NP, Routing_Table = ()

7.3.2.X62.7 DHCP Tests

7.3.2.X62.7.1 Basic IPv4 DHCP Test

Reason for Change: No test for this functionality.
Purpose: Verify that the IUT is able to participate in IPv4 DHCP and correctly report its DHCP status.

Test Concept: The DHCP server is removed from network. The TUT is then configured with an IPv4 network requiring
DHCP, and if required, its DHCP settings are cleared. The related Network Port object is queried to verify that the DHCP
related properties have the appropriate values indicating DHCP has not completed. The DHCP is connected to the network.
It is verified that the IUT obtains network setttings from the DHCP server, and that the DHCP properties reflect the current
status.

Configuration Requirements: The DHCP is disconnected from the network or turned off. The IUT is configured for DHCP
and any settings it previously received via DHCP are cleared.

1. IF the IUT has a second enabled network port THEN
VERIFY I[P DHCP Enable = True
IF IP. DHCP_ Lease Time property is present THEN
VERIFY IP_DHCP Lease Time=0
IF IP_ DHCP Lease Time Remaining property is present THEN
VERIFY IP_DHCP_lLease Time Remaining =0
IF IP_DHCP_Server property is present THEN
VERIFY IP_DHCP_Server = X’00000000°
2. MAKE(connect the DHCP server to the network)
WAIT until the [UT obtains DHCP information
4. IFIP_DHCP Lease Time property is present THEN
VERIFY IP_ DHCP Lease Time = (0 or the value provided by the DHCP server)
5. IFIP_DHCP Lease Time Remaining property is present THEN
VERIFY I[P DHCP Lease Time Remaining = (0 or a value less than that provided by the DHCP server)
6. IFIP_DHCP_Server property is present THEN
VERIFY IP_DHCP_Server = (the DHCP server’s address or X’00000000°)
7. VERIFY IP_Address = (the value served by the DHCP server)
8. VERIFY IP_Default Gateway = (the value served by the DHCP server)

W

© 2022 by BACnet International. All rights reserved. 2 1 6

BACnet Testing Laboratories - Specified Tests

7.3.2.X62.7.2 Basic IPv6 DHCP Test
Purpose: Verify that the IUT is able to participate in IPv6 DHCP and correctly report its DHCP status.

Test Concept: The DHCP server is removed from network. The IUT is then configured with an IPv6 network requiring
DHCP, and if required, its DHCP settings are cleared. The related Network Port object is queried to verify that the DHCP
related properties have the appropriate values indicating DHCP has not completed. The DHCP is connected to the network.
It is verified that the IUT obtains network setttings from the DHCP server, and that the DHCP properties reflect the current
status.

Configuration Requirements: The DHCP is disconnected from the network or turned off. The IUT is configured for DHCP
and any settings it previously received via DHCP are cleared.

1. IF the IUT has a second enabled network port THEN
VERIFY IPv6 DHCP Enable = True
IF IPv6_DHCP Lease Time property is present THEN
VERIFY IPv6_ DHCP_ Lease Time =0
IF IPv6_DHCP_Lease Time Remaining property is present THEN
VERIFY IPv6 DHCP_Lease Time Remaining =0
IF IPv6 DHCP_Server property is present THEN
VERIFY IPv6_DHCP_Server = X’00000000°
2. MAKE(connect the DHCP server to the network)
WAIT until the IUT obtains DHCP information
4. IF IPv6 DHCP Lease Time property is present THEN
VERIFY IPv6 DHCP Lease Time = (0 or the value provided by the DHCp server)
5. IFIPv6 DHCP Lease Time Remaining property is present THEN
VERIFY IPv6 DHCP Lease Time Remaining = (0 or a value less than that provided by the DHCp server)
6. IFIPv6 DHCP_ Server property is present THEN
VERIFY IPv6_ DHCP_Server = (the DHCP server’s address or X’00000000°)
7. VERIFY IPv6_Address = (the value served by the DHCP server)
8. VERIFY IPv6 Default Gateway = (the value served by the DHCP server)

W

7.3.2.X63 Timer Object Tests

7.3.2.X63.1.1 Timer State_Change_Values

Reason for Change: No test exists for this functionality.
Purpose: Verify all State Change Values property transitions.

Test Concept: Start this test in the IDLE state. Write Timer Running and observe the object enter RUNNING state, and after
time passes, observe it enters the EXPIRED state. Force it into the IDLE state. Write Timer Running again observe it enter
RUNNING state, then write Timer Running again and observe it make the RUNNING TO_RUNNING transition. Force it
into the IDLE state again. Observe that per State Change Values transitions, all writes take place.

Configuration Requirements: The State Change Values property, if present, holds a valid configuration.

Test Steps:

1. WRITE Timer Running = TRUE

2. CHECK (IUT exhibits any changes configured in IDLE TO RUNNING transition)

3. READ RT = Present_Value

4. WAIT RT

5. CHECK (IUT exhibits any changes configured in RUNNING TO EXPIRED transition)
6. WRITE Timer State = IDLE

© 2022 by BACnet International. All rights reserved. 2 1 7

BACnet Testing Laboratories - Specified Tests

7. CHECK (IUT exhibits any changes configured in EXPIRED TO IDLE transition)
8. WRITE Timer_Running = TRUE
9. CHECK (IUT exhibits any changes configured in IDLE_ TO RUNNING transition)
10. BEFORE the timer expires
WRITE Timer Running = TRUE
11. CHECK (IUT exhibits any changes configured in RUNNING TO RUNNING transition)
12. WRITE Timer_State = IDLE
13. CHECK (IUT exhibits any changes configured in RUNNING TO_IDLE transition)
14. VERIFY Present Value =0

7.3.2.X63.1.2 Timer Running then Expired Test

Reason for Change: No test exists for this functionality.
Purpose: Verify that Timer T1 when set to RUNNING, enters the EXPIRED state after the configured time.

Test Concept: Start this test in the IDLE state. Write Timer Running and observe it enter RUNNING state, with its current
configuration. After time passes, observe it enters the EXPIRED state. Observe that specified properties take their required
values.

Configuration Requirements: T1 starts this test with the Timer_ State equal to IDLE.

Test Steps:
1. VERIFY Timer State = IDLE
2. WRITE Timer Running = TRUE
3. CHECK (IUT exhibits any changes configured in IDLE TO RUNNING transition)
4. IF (Default Timeout property is present in T1) THEN {
READ DV = Default Timeout
VERIFY Initial Timeout =DV
}
. VERIFY Timer_State = RUNNING
. READ RT = Present_Value
. WAIT RT
. CHECK (IUT exhibits any changes configured in RUNNING TO_ EXPIRED transition)
. VERIFY Timer_State = EXPIRED
10. VERIFY Present Value =0
11. VERIFY Last_State Change = RUNNING_TO_EXPIRED
12. IF (Update_Time property is present in T1) THEN {
READ UT = Update Time
VERIFY UT ~= (the current date and time)
IF (Expiration_Time property is present in T1) THEN
VERIFY Expiration_Time = UT

0 3 O\ L

Ne

}
ELSE IF (Expiration_Time property is present in T1) THEN
VERIFY Expiration Time ~= (the current date and time)

7.3.2.X63.1.3 Default_Timeout Test

Reason for Change: No test exists for this functionality.

Purpose: Verify that starting the Timer running via Timer Running uses Default Timeout.

© 2022 by BACnet International. All rights reserved. 2 1 8

BACnet Testing Laboratories - Specified Tests

Test Concept: Start this test in the IDLE state. Default Timeout is a valid non-zero value, different from the value which is
Initial Timeout at start of test. Write Timer Running and observe the Timer enter RUNNING state. Observe that specified
properties take their required values.

Configuration Requirements: Timer starts this test with the Timer State equal to IDLE. IUT is configured with
Initial Timeout and Default Timeout being different. If this cannot be done, then this test shall be skipped.

Test Steps:

1. READ PrevIT = Initial Timeout

2. VERIFY Default Timeout <> PrevIT

3. WRITE Timer Running = TRUE

4. VERIFY Present Value ~= Default Timeout

7.3.2.X63.1.4 Running Timer by writing the Present_Value

Reason for Change: No test exists for this functionality.
Purpose: Start or Restart the Timer by writing the Present Value property.

Test Concept: Start the Timer with a non-zero value PV 1, written to the Present Value property, and observe that the Timer
counts down according to the new value written.

Configuration Requirements: This test can start with T1 in any of the IDLE, EXPIRED, or RUNNING states.

Test Steps:
1. IF (Default Timeout property is present in T1) THEN
READ DT = Default Timeout
2. READ PrevIT = Initial Timeout
3. WRITE Present_Value = (PV1, any valid non-zero value, sufficiently different from DT and PrevIT so that it is clear that
countdown is according to the new value written)
4. VERIFY Present Value <=PV1

7.3.2.X63.1.5 Restarting An Expired Timer

Reason for Change: No test exists for this functionality.

Purpose: Verify that writes to Timer Running with TRUE while in the EXPIRED state are successful.
Test Concept: Start this test with the Timer State equal to EXPIRED. Write TRUE to Timer Running.
Configuration Requirements: T1 starts this test with the Timer_State equal to EXPIRED.

Test Steps:

1. VERIFY Timer State = EXPIRED

2. WRITE Timer Running = TRUE
3. VERIFY Timer State = RUNNING

7.3.2.X63.1.6 Already Running Timer restarted by writing the Present_Value

Reason for Change: No test exists for this functionality.

Purpose: Verify Timer can be restarted while running by writing Present_Value.

© 2022 by BACnet International. All rights reserved. 2 1 9

BACnet Testing Laboratories - Specified Tests

Test Concept: Configure and run the Timer T1 as necessary to put it into RUNNING state. Then write the Timer with a
different non-zero value written to the Present_Value property and observe that specified properties take their required values
and all configured State Change Values transitions if any, take place. The timer counts down and observe that it operates
according to the new value written.

Configuration Requirements: T1 starts this test with the Timer State equal to RUNNING. If Present Value is not writable,
this test shall be skipped.

Test Steps:

1. VERIFY Timer State = RUNNING

2. WRITE Present_Value = (any valid non-zero value)

3. CHECK (IUT exhibits any changes configured in RUNNING TO RUNNING transition)
4. VERIFY Timer Running = TRUE

5. VERIFY Last_State Change = RUNNING TO RUNNING

7.3.2.X63.1.7 Already Running Timer restarted with Default Timeout

Reason for Change: No test exists for this functionality.
Purpose: Verify the success of writes to Timer Running with TRUE while already in the RUNNING state.

Test Concept: Configure and run the Timer T1 as necessary to put it into RUNNING state with an Initial Value different
from Default Value. Then write the Timer Running property with TRUE, and observe that Present Value restarts with the
value from Default Timeout.

Configuration Requirements: T1 starts this test with the Timer State equal to RUNNING. In service of observing the change
between step 3 and step 6, it is necessary that at the test start, the Timer went into RUNNING state with an Initial Value
different from Default Value.

Test Steps:

. VERIFY Timer State = RUNNING

. READ DV = Default_Timeout

. VERIFY Initial Timeout <> DV

. WRITE Timer Running = TRUE

. CHECK (IUT exhibits any changes configured in RUNNING_TO_RUNNING transition)
. VERIFY Initial Timeout =DV

. VERIFY Present Value ~=DV

. VERIFY Timer Running = TRUE

. VERIFY Last_State Change = RUNNING TO RUNNING

O 01O\ L K Wi~

7.3.2.X63.1.8 Timer accepts all the required datatypes in an Internal Reference

Reason for Change: No test exists for this functionality.

Purpose: Verify that the IUT with a modifiable List Of Object Property References, accepts all the required datatypes.
Test Concept: Verify in a Timer object, T1, that supports modification, the IUT allows altering the
List Of Object Property References to refer to an object within the IUT. Repeat for each of the datatypes required for
Timers with writable List Of Object Property References. Also write State Change Values or its entries with values of
that datatype.

Notes to Tester: It is required that the IUT allows modifying the Timer one property at a time.

Test Steps:

© 2022 by BACnet International. All rights reserved. 220

BACnet Testing Laboratories - Specified Tests

1. REPEAT (for all the required datatypes: values of type NULL, BOOLEAN, Unsigned, INTEGER, REAL, and
ENUMERATED ¢{

WRITE (the State Change Values and/or List Of Object Property References with that datatype, and which
references an object within the TUT)

i
2. CHECK (Did the IUT accept the writes, and apply the modified values to properties correctly?)

7.3.2.X63.1.9 Timer supports writing an External Device

Reason for Change: No test exists for this functionality.
Purpose: Verify that IUT allows its List Of Object Property References to refer to an external device.

Test Concept: Verify in a Timer object TI1 that supports modification, the IUT allows altering the
List Of Object Property References to refer to an object in an external device.

Configuration Requirements: If there is no Timer object in IUT which supports reference to an object in an external device,
then this test shall be skipped.

Test Steps:

1. WRITE List_ Of Object Property References = (a value that is different, and which contains one or more references to
objects which are in one or more external devices)

2. VERIFY List_Of Object Property References = (the value written)

7.3.2.X63.1.10 Forcing Timer Expiration by writing Zero

Reason for Change: No test exists for this functionality.
Purpose: Interrupt the Timer while it is RUNNING, via a value of zero written to the Present Value property.

Test Concept: Configure and start the Timer T1 to operate according to its values. Then write a value of zero to the
Present_Value property and observe that specified properties take their required values and that the State Change Values
operations take place.

Configuration Requirements: T1 starts this test with the Timer State equal to RUNNING.

Test Steps:
. VERIFY Timer Running = TRUE
. VERIFY Timer_State = RUNNING
. WRITE Present_Value =0
. CHECK (IUT exhibits any changes configured in FORCED _TO_EXPIRED transition)
. VERIFY Timer_State = EXPIRED
. VERIFY Last_State Change = FORCED_TO_EXPIRED
. VERIFY Present Value =0
. IF (Update_Time property is present in T1) THEN {
READ UT = Update Time
VERIFY UT ~= (the current date and time)
IF (Expiration_Time property is present in T1) THEN
VERIFY Expiration Time = UT

OO DN bW~

}
ELSE IF (Expiration Time property is present in T1) THEN
VERIFY Expiration_Time ~= (the current date and time)

© 2022 by BACnet International. All rights reserved. 22 1

BACnet Testing Laboratories - Specified Tests

7.3.2.X63.1.11 Forcing Timer Expiration by writing FALSE

Reason for Change: No test exists for this functionality.
Purpose: Interrupt the Timer while it is RUNNING, via a value of FALSE written to the Timer Running property.

Test Concept: Configure and start Timer T1 to operate according to its values. Then write FALSE to Timer Running and
observe that specified properties take their required values and all configured State Change Values transitions if any, take
place.

Configuration Requirements: T1 starts this test with the Timer State equal to RUNNING.

Test Steps:
. VERIFY Timer Running = TRUE
. VERIFY Timer State = RUNNING
. WRITE Timer Running = FALSE
. CHECK (IUT exhibits any changes configured in FORCED_TO_EXPIRED transition)
. VERIFY Timer_State = EXPIRED
. VERIFY Last_State Change = FORCED _TO_EXPIRED
. IF (Update_Time property is present in T1) THEN {
READ UT = Update Time
VERIFY UT ~= (the current date and time)
IF (Expiration_Time property is present in T1) THEN
VERIFY Expiration Time = UT

NN DN RN

ELSE IF (Expiration_Time property is present in T1) THEN
VERIFY Expiration_Time ~= (the current date and time)

7.3.2.X63.1.12 Forcing Timer Expiration by writing IDLE

Reason for Change: No test exists for this functionality.
Purpose: Interrupting the Timer while it is RUNNING, via a value of IDLE written to the Timer_State property.

Test Concept: Configure and start the Timer T1 to operate according to its values. Then write IDLE to Timer State and
observe that specified properties take their required values and all configured State Change Values transitions if any, take
place.

Configuration Requirements: T1 starts this test with the Timer_ State equal to RUNNING.

Test Steps:
. VERIFY Timer Running = TRUE
. VERIFY Timer State = RUNNING
. WRITE Timer_ State = IDLE
. CHECK (IUT exhibits any changes configured in RUNNING TO IDLE transition)
. VERIFY Timer State = IDLE
. VERIFY Last_State Change = RUNNING_TO IDLE
. IF (Expiration_Time property is present in T1) THEN

VERIFY Expiration Time = (the unspecified datetime value)
8. IF (Update Time property is present in T1) THEN

VERIFY Update Time = (the current date and time)

9. VERIFY Present Value =0

~N N bW~

© 2022 by BACnet International. All rights reserved. 222

BACnet Testing Laboratories - Specified Tests

7.3.2.X63.1.13 Resetting Timer by writing IDLE

Reason for Change: No test exists for this functionality.
Purpose: Verify the correct behaviors when Timer State is written from EXPIRED to IDLE value.

Test Concept: Configure and run the Timer as necessary to put it into EXPIRED state. Then write IDLE to Timer State and
observe that specified properties take their required values and all configured State Change Values transitions if any, take
place.

Configuration Requirements: T1 starts this test with the Timer State equal to EXPIRED.

Test Steps:
. VERIFY Timer_State = EXPIRED
. WRITE Timer State = IDLE
. CHECK (IUT exhibits any changes configured in EXPIRED TO IDLE transition)
. VERIFY Timer_State = IDLE
. VERIFY Timer Running = FALSE
. VERIFY Last_State Change = EXPIRED TO IDLE
. IF (Expiration_Time property is present in T1) THEN

VERIFY Expiration_Time = (the unspecified datetime value)
7. IF (Update_Time property is present in T1) THEN

VERIFY Update Time = (the current date and time)

8. VERIFY Present Value =0

AN AR W~

7.3.2.X63.1.14 Timer Object Operation Unaffected by Changes to Local Time and Local_Date

Reason for Change: No test exists for this functionality.
Purpose: Verify that Timer expiration is not affected by time changes.

Test Concept: Configure and start the Timer T1 to operate according to its values. Then before the Timer expires, change
Local Date / Local Time to a NewDate / NewTime in the past or future and observe that the length of time until Timer
expiration is not affected, and that expiry still occurs at the time indicated in Present Value.

Configuration Requirements: T1 starts this test with the Timer State equal to RUNNING.

Test Steps:
. VERIFY Timer Running = TRUE
. VERIFY Timer_ State = RUNNING
. READ PV_beforeTimeChange = Present Value
. MAKE (Local Date/ Local Time = NewDate/ NewTime)
. VERIFY Present_Value ~= PV _beforeTimeChange, continuing its decreasing trend
. VERIFY Local Date = NewDate
. VERIFY Local Time ~= NewTime
. WAIT PV_beforeTimeChange
. VERIFY Present Value =0
. IF (Update_Time property is present in T1) THEN
VERIFY Update Time ~= (the current date and time)
10. IF (Expiration_Time property is present in T1) THEN
VERIFY Expiration_Time ~= (the current date and time)

O 00U A AW —

Hints to Tester: To ensure that testing would detect an implementation which prematurely expires when the Local Time
becomes a time that the Timer would not be RUNNING, select NewDate / NewTime which when converted to local date/time
using UTC Offset and Daylight Saving Status, is earlier or later than the window of time that the Timer would be
RUNNING when it started.

© 2022 by BACnet International. All rights reserved. 223

BACnet Testing Laboratories - Specified Tests

7.3.2.X63.1.15 Changes made by State_Change Values are at Correct Priority

Reason for Change: No test exists for this functionality.

Purpose: Verify by changing the Priority for Writing property that subsequent State Change Values operations use the right
Priority.

Test Concept: Write Timer Running and observe it enter RUNNING state, with its current configuration. After time passes,
observe it enters the EXPIRED state. Observe that specified properties take their required values.

Configuration Requirements: Start this test in the IDLE state. O1 P1 is any commandable property amongst the elements of
List Of Object Property References. O1 should contain in its Priority Array at the index which will change, a value which
is different from the values in State Change Values, for the operations which will take place, for ease of ensuring that the
Timer commanded the change.

Test Steps:
1. WRITE Priority _for Writing = (any valid value, different from what it had)

2. READ ValueltR = State Change Values, ARRAY INDEX =IDLE TO RUNNING
3. WRITE Timer Running = TRUE
4. VERIFY Timer State = RUNNING
5. READ RT = Present_Value
6. IF (ValueltR is a value other than no-value) THEN
VERIFY (Ol), Priority Array = ValueltR, ARRAY INDEX = Priority for Writing
7. WAIT RT
8. READ ValueRtE = State_ Change Values, ARRAY INDEX = RUNNING TO_EXPIRED
9. VERIFY Timer_State = EXPIRED
10. IF (ValueRtE is a value other than no-value) THEN

VERIFY (O1), Priority Array = ValueRtE, ARRAY INDEX = Priority for Writing

7.3.2.X63.1.16 Changing Default_Timeout Test

Reason for Change: No test exists for this functionality.
Purpose: Reconfigure the Default Timeout and see that governs the length the timer runs.

Test Concept: Start this test in the IDLE state. Configure the Timer with an updated Default Time and observe it operates
according to the new value written.

Configuration Requirements: T1 starts this test with the Timer_ State equal to IDLE.

Test Steps:

1. READ IT = Initial Timeout

2. WRITE Default Timeout = (any valid value, different from IT and different from what it had)
3. WRITE Timer Running = TRUE

4. VERIFY Present_Value ~= Default Timeout

7.3.2.X63.2.1 Writing Timer with an Unsupported External Reference

Reason for Change: No test exists for this functionality.

Purpose: Verify the correct Result(-) when List Of Object Property References does not support objects in an external
device.

© 2022 by BACnet International. All rights reserved. 224

BACnet Testing Laboratories - Specified Tests

Test Concept: Attempt writing List Of Object Property References of a Timer object T1 which does not support referring
to an object in an external device. Verify the IUT returns the correct Result(-).

Configuration Requirements: If the IUT supports referring to an object in an external device in all of its Timer objects, then
this test shall be skipped.

Test Steps:
1. TRANSMIT WriteProperty-Request,

'Object Identifier' = T1

'Property Identifier' = List Of Object Property References

'Property Value' = (a value that is different, and which references an object in an external device)
2. RECEIVE BAChnet-Error-PDU,

'Error Class' = PROPERTY

'Error Code' = OPTIONAL FUNCTIONALITY NOT SUPPORTED

7.3.2.X63.2.2 Writing an Unsupported Datatype to State_Change_ Values

Reason for Change: No test exists for this functionality.
Purpose: Verify the correct Result(-) when State Change Values is written with a datatype that instance does not support.

Test Concept: Attempt writing State Change Values of a Timer object T1 with a datatype that instance does not support.
Verify the IUT returns the correct Result(-).

Configuration Requirements: The State Change Values property initially holds a valid configuration.

Test Steps:
1. TRANSMIT WriteProperty-Request,

'Object Identifier' = T1

'Property Identifier' = State Change Values

'Property Value' = (a value which contains a datatype that T1 does not support)
2. RECEIVE BACnet-Error-PDU,

'Error Class' = PROPERTY

'Error Code' = DATATYPE _NOT_SUPPORTED

7.3.2.X63.2.3 Invalid Property Writing in a Timer

Reason for Change: No test exists for this functionality.
Purpose: Verify the correct Result(-) when Timer_ State or Present Value is written with an invalid value.

Test Concept: Attempt writing of a Timer object T1 with a value outside the supported range and not zero being written to
the Present Value property, or a value of other than IDLE written to the Timer State property. Verify the IUT returns the
correct Result(-).

Configuration Requirements: The State Change Values property, if present, holds a valid configuration.

Test Steps:
1. TRANSMIT WriteProperty-Request,

'Object Identifier' = T1

'Property Identifier' = Present Value

'"Property Value' = (a value that is outside the supported range and not zero)
2. RECEIVE BACnet-Error-PDU,

'Error Class' = PROPERTY

© 2022 by BACnet International. All rights reserved. 225

BACnet Testing Laboratories - Specified Tests

'Error Code' = VALUE OUT OF RANGE
3. TRANSMIT WriteProperty-Request,

'Object Identifier' = T1

'"Property Identifier' = Timer State

'Property Value' = (a value other than IDLE)
4. RECEIVE BACnet-Error-PDU,

'Error Class' = PROPERTY

'Error Code' = VALUE _OUT OF RANGE

7.3.2.X63.2.4 Expired Timer Ignores Writing Zero

Reason for Change: No test exists for this functionality.
Purpose: Verify the success of writes to Present Value of a Timer with an expiration value while in the EXPIRED state.

Test Concept: With a Timer object in the EXPIRED state, write 0 to PresentValue and verify that the object remains in the
EXPIRED state.

Configuration Requirements: The Timer object starts the test with Timer State equal to EXPIRED.
Test Steps:
1. VERIFY Timer State = EXPIRED

2. WRITE Present_Value =0
3. VERIFY Timer_ State = EXPIRED

7.3.2.X63.2.5 Expired Timer Ignores Writing FALSE

Reason for Change: No test exists for this functionality.

Purpose: Verify the success of writes to Timer Running property of a Timer with an expiration value while in the EXPIRED
state.

Test Concept: With a Timer object in the EXPIRED state, write FALSE to Timer Running and verify that the object remains
in the EXPIRED state.

Configuration Requirements: The Timer starts this test with Timer State equal to EXPIRED.
Test Steps:
1. VERIFY Timer State = EXPIRED

2. WRITE Timer_ Running = FALSE
3. VERIFY Timer State = EXPIRED

7.3.2.X63.2.6 Idle Timer Ignores Writing Zero

Reason for Change: No test exists for this functionality.
Purpose: Verify the success of writes to Present Value of a Timer with an expiration value while in the IDLE state.

Test Concept: With a Timer object in the IDLE state, write 0 to Present Value and verify that the object remains in the IDLE
state.

Configuration Requirements: The Timer starts this test with Timer State equal to IDLE.

© 2022 by BACnet International. All rights reserved. 226

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. VERIFY Timer State = IDLE
2. WRITE Present_Value =0

3. VERIFY Timer_ State = IDLE

7.3.2.X63.2.7 Idle Timer Ignores Writing FALSE

Reason for Change: No test exists for this functionality.

Purpose: Verify the success of writes to Timer Running property of a Timer with an expiration value while already in the
IDLE state.

Test Concept: With a Timer object in the IDLE state, write FALSE to Timer Running and verify that the object remains in
the IDLE state.

Configuration Requirements: The Timer starts this test with Timer State equal to IDLE.

Test Steps:

1. VERIFY Timer State = IDLE

2. WRITE Timer Running = FALSE
3. VERIFY Timer_ State = IDLE

7.3.2.X63.2.8 Idle Timer Ignores Writing IDLE

Reason for Change: No test exists for this functionality.
Purpose: Verify the success of writes to Timer_State of a Timer with the reset value while already in the IDLE state.

Test Concept: With a Timer object in the IDLE state, write IDLE to Timer_ State and verify that the object remains in the
IDLE state.

Configuration Requirements: The Timer starts this test with Timer State equal to IDLE.

Test Steps:

1. VERIFY Timer State = IDLE
2. WRITE Timer State = IDLE
3. VERIFY Timer State = IDLE

7.3.2.X63.2.9 Default_Timeout Written Outside Supported Range

Reason for Change: No test exists for this functionality.
Purpose: Verify the correct Result(-) when Default Timeout is written with an invalid value.

Test Concept: Attempt writing Timer object T1 with a value outside the supported range to the Default Timeout property.
Verify the IUT returns the correct Result(-).

Configuration Requirements: If Default Timeout is not present or is not writable, this test shall be skipped.

Test Steps:
1. TRANSMIT WriteProperty-Request,
'Object Identifier' = T1
'Property Identifier' = Default Timeout
'Property Value' = (a value lower than Min_Pres Value)

© 2022 by BACnet International. All rights reserved. 227

BACnet Testing Laboratories - Specified Tests

2. RECEIVE BACnet-Error-PDU,

'Error Class' = PROPERTY

'Error Code' = VALUE _OUT_OF RANGE
3. TRANSMIT WriteProperty-Request,

'Object Identifier' = T1

'"Property Identifier' = Default Timeout

'"Property Value' = (a value higher than Max Pres Value)
4. RECEIVE BACnet-Error-PDU,

'Error Class' = PROPERTY

'Error Code' = VALUE _OUT _OF RANGE

7.3.2.X64 Audit Log Object Tests

7.3.2.X64.1 One Audit Log Holds all of an Objects History Test

Reason for Change: There is no test for this functionality.

Purpose: Ensure that, for any arbitrary object, there is at least one Audit Log into which all of the object's audit notifications
are placed.

Test Concept: Send a sequence of audit notifications which contain entries for multiple objects to the IUT. At least some of
the objects shall have multiple audit records in the sequence. For each object instance represented in the audit notifications
sent to the IUT, verify that there is at least one Audit Log which contains the all of the audit notifications for the object.

Configuration Requirements: S is a sequence of audit notifications which contain entries for multiple objects to the [IUT where
at least some of the objects shall have multiple audit records in the sequence.

Test Steps:

1. REPEAT AN = (each notification in S) DO {
TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = AN
H
2. REPEAT O = (each object represented in S) DO {
SO = (the sequence of notifications in S for object O)
FOUND = (false)
REPEAT AL = (each Audit Log object) DO {
IF (AL contains all notifications in SO) THEN
FOUND = (true)
}
IF (FOUND is false) THEN {
ERROR "no audit log was found which contains all notifications for object"

}

7.3.2.X64.2 Audit Notification Basic Combining Test

Reason for Change: There is no test for this functionality.
Purpose: Ensure that Audit Log objects correctly combine related audit notification records.

Test Concept: Send a sequence, SEQI, of unrelated audit notifications to the IUT and verify that the notifications are not
combined. Send a source audit notification, SN1, followed by a sequence, SEQ2, of unrelated audit notifications and verify

© 2022 by BACnet International. All rights reserved. 228

BACnet Testing Laboratories - Specified Tests

that the notifications are not combined. Send a target audit notification, TN1, which should be combined with SN1. Verify
that SN1 and TN1 are combined in the Audit Log. Repeat the process with new notifications but send the target notification
before the source notification.'

Configuration Requirements: An audit log that should receive the combined SN/TN notification is AL. The Target Value and
Current Value fields in SN and TN shall not be greater than 500 octets. D1 shall be the device sending the source notification
and D2 shall be the device sending the target notification. It is acceptable if D1 is the same as D2.

Test Steps:

-- the source notification is sent before the target notification
1. REPEAT AN = (each notification in SEQ1) DO {
TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = (D1 or D2),
'Notifications' = AN

[\ g

. TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = D1,
'Notifications' = SN1
3. REPEAT AN = (each notification in SEQ2) DO {
SOURCE = (D1 or D2),
TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = AN

-~

. TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = D2,
'Notifications' = TNI
. CHECK(that no record exists in AL which is just SN1)
. CHECK(that no record exists in AL which is just TN1)
. CHECK(that a record exists in AL which is the combination of SN1 and TN1)
. CHECK(that the combined record has all of the source and target fields provided in SN1 and TN1, and no more.)

03 N D

-- the target notification is sent before the source notification
9. REPEAT AN = (each notification in SEQ3) DO {
TRANSMIT UnconfirmedAuditNotification-Request,

SOURCE = (D1 or D2),
'Notifications' = AN
j
10. TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = DI,
"Notifications' = TN2
11. REPEAT AN = (each notification in SEQ4) DO {
SOURCE = (D1 or D2),
TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = AN
§
12. TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = D2,
'Notifications' = SN2

13. CHECK(that no record exists in AL which is just SN2)

14. CHECK(that no record exists in AL which is just TN2)

15. CHECK(that a record exists in AL which is the combination of SN2 and TN2)

16. CHECK(that the combined record has all of the source and target fields provided in SN2 and TN2, and no more.)

© 2022 by BACnet International. All rights reserved. 229

BACnet Testing Laboratories - Specified Tests

7.3.2.X64.3 Audit Notification Combining Failure Test

Reason for Change: There is no test for this functionality.
Purpose: Ensure that Audit Log objects correctly combine related audit notification records which indicate failed actions.

Test Concept: Send a source audit notification SN. Send a target audit notification, TN, which should be combined with SN
and which indicates that the action failed. Verify that SN and TN are combined in the Audit Log.

Configuration Requirements: An audit log that should receive the combined SN/TN notification is AL. The Target Value and
Current Value fields in SN and TN shall not be greater than 500 octets.

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
"Notifications' = SN
2. TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = TN
3. CHECK(that no record exists in AL which is just SN)
4. CHECK(that no record exists in AL which is just TN)
5. CHECK(that a record exists in AL which is the combination of SN and TN)
6. CHECK(that the combined record has all of the source and target fields provided in SN and TN, and no more.)

7.3.2.X64.4 Audit Notification Non-combining Test

Reason for Change: There is no test for this functionality.
Purpose: Ensure that Audit Log objects correctly do not combine unrelated audit notification records.

Test Concept: Send a sequence of unrelated audit notifications to the IUT each differing by 1 field in the matching criteria.
Verify that the notifications are not combined.

Configuration Requirements: SEQ is a sequence of audit notifications where each record differs from the previous record by
1 field. For the sequence, SN is a source notification with user-id, user-role, target-value fields, and without source-comment
field, and TN is the matching target notification with user-id, user-role, target-value fields. The sequence is:

{

(SN),

(SN but with source-comment field),
(TN with differing operation-source),
(TN with differing operation),

(TN with differing invoke-id),

(TN with differing target-device),
(TN with differing target-property),
(TN with differing user-id),

(TN with differing user-role),

(TN with differing target-value),

(TN with target-timestamp equal to source-timestamp + APDU_Timeout * 3)

}

Test Steps:
1. REPEAT AN = (each notification in SEQ) DO {

TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = AN

© 2022 by BACnet International. All rights reserved. 230

BACnet Testing Laboratories - Specified Tests

2. REPEAT AN = (each notification in SEQ) DO {
CHECK(that AN is in an Audit Log and is not combined)
H

7.3.2.X64.5 Audit Notification Combining Duplicate Test

Reason for Change: There is no test for this functionality.
Purpose: Ensure that Audit Log objects correctly drop duplicate notifications.

Test Concept: Send a source audit notification SN. Verify it is placed in the log. Send a sequence, SEQI, of unrelated audit
notifications and verify SN is not combined with any. Resend SN and verify that SN was not re-added to the log.

Send a target audit notification, TN, which should be combined with SN. Verify that SN and TN are combined in the Audit
Log. Send a sequence, SEQ2, of unrelated audit notifications. Resend TN and verify that TN was not re-added to the log.

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
"Notifications' = SN
2. CHECK(that SN is in the Audit Log)
3. REPEAT AN = (each notification in SEQ1) DO {
TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = AN

-~

. CHECK(that SN is in the Audit Log and is not combined)
5. TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = SN
6. CHECK(that SN is in the Audit Log only once and is at its original position)

7. TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = TN
. CHECK(that SN is in the Audit Log only once, is combined with TN, and is at its original position)
9. CHECK(that the combined record has all of the source and target fields provided in SN and TN, and no more.)

o]

10. REPEAT AN = (each notification in SEQ2) DO {
TRANSMIT UnconfirmedAuditNotification-Request,

'Notifications' = AN
H
11. TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = TN

12. CHECK(that TN is in the Audit Log only once, is combined with SN and is at SN's original position)

7.3.2.X64.6 Audit Notification Combining Target Value Preference Test

Reason for Change: There is no test for this functionality.

Purpose: Ensure that Audit Log objects use the Current Value from a target notification when it is provided in both the source
and target notifications.

Test Concept: Send a target audit notification TN1 which includes the Current Value field with a value CV1-T.

Send a source audit notification, SN1, which should be combined with TN1, and which contains a Current Value field with
avalue CV1-S (CVI1-S is different than CV1-T). Verify that SN1 and TN are combined in the Audit Log and that the Current
Value in the log uses CV1-T. Repeat the steps sending a target notification TN2 before the source notification SN2 where
CV2-S is different than CV2-T.

© 2022 by BACnet International. All rights reserved. 23 1

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
"Notifications' = TN1
2. TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = SN1
3. CHECK(that TN is in the Audit Log only once, is combined with SN1, and that target-value is CV1-T)

4. TRANSMIT UnconfirmedAuditNotification-Request,

'Notifications' = SN2
5. TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = TN2

6. CHECK(that SN2 is in the Audit Log only once, is combined with TN2, and that target-value is CV2-T)

7.3.2.X64.7 Accepts Audit Notifications from an Audit Forwarder Test

Reason for Change: There is no test for this functionality.

Purpose: Ensure that Audit Log accepts forwarded audit notifications.

Test Concept: The notification forwarder, AF1, sends a forwarded source notification, SN 1, from the original sending device
D1, to the IUT. Verify that the IUT places the notification in the Audit Log. AF1 then sends a forwarded target notification,
TNI1, from the original target device D2, to the IUT. Verify that the IUT combines the target with the source notification.

Configuration Requirements: The test network consists of a source device D1, a target device D2, and a notification forwarder,
AF1.

Test Steps:

1. TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = AF1,
'Notifications' = SN1

2. TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = AF1,
'Notifications' = TN1

3. CHECK(that SN1 and TN1 are combined in the Audit Log)

7.3.2.X64.8 Hierarchical Logging Test

Reason for Change: There is no test for this functionality.
Purpose: Ensure that an Audit Log configured with a parent correctly forwards notifications to the parent log.

Test Concept: An Audit Log, AL1, configured to reference a parent log located in another device, is sent a sequence of audit
notifications. Within the sequence will some notifications which should be combined and some which should not be
combined. Verify that the IUT forwards the notifications to the parent before the vendor specified maximum forwarding
delay.

Configuration Requirements: The Audit Log, AL1, is configured with a Member Of set to AL2, where AL2 is in the TD.

AL1's Delete On_Forward shall be set to TRUE. SEQ is a sequence of audit notifications where at least 2 are related and
should be combined.

© 2022 by BACnet International. All rights reserved. 232

BACnet Testing Laboratories - Specified Tests

Notes to Tester: The standard does not provide guidance on how long an Audit Log object has before it must forward audit
notifications to its parent. As such, the vendor is allowed to specify the maximum time as long as it is not unreasonable
(delays on the order of days are clearly unreasonable; delays on the order of minutes are clearly acceptable).

Notes to Tester: When receiving notifications from the IUT, those notifications which should be combined, may be sent
combined or not at the IUT's discretion.

Test Steps:
1. REPEAT AN = (each notification in SEQ) DO {
TRANSMIT UnconfirmedAuditNotification-Request,
SOURCE = (a value appropriate to the notification),
'Notifications' = AN
§
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE Audit Notification Forwarder Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = (one or more of the notifications from SEQ)
+ ELSE {
BEFORE Audit Notification Forwarder Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (one or more of the notifications from SEQ)
TRANSMIT BACnet-SimpleACK-PDU

}

3. WHILE (not all notifications in SEQ have been sent by the IUT) {
IF the IUT is configured to send unconfirmed audit notifications THEN {
RECEIVE UnconfirmedAuditNotification-Request,

"Notifications' = (one or more of the as yet unreceived notifications from SEQ)
+ ELSE {
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = (one or more of the as yet unreceived notifications from SEQ)

TRANSMIT BACnet-SimpleACK-PDU
H

i
4. CHECK(that the notifications in SEQ are still in AL1)
5. CHECK(that the notifications in SEQ which are to be combined are combined in AL1)

7.3.2.X65 Audit Reporter Object Tests

7.3.2.X65.4 Target Audit Reporting - Basic Notification Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that target audit notifications are properly formed.

Test Concept: The IUT is made to send a target audit notification. It is verified that the target fields are present, no source
fields are present, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report all auditable operations. The IUT is configured so that the
notification will be reported through Audit Reporter AR.

Test Steps:

© 2022 by BACnet International. All rights reserved. 233

BACnet Testing Laboratories - Specified Tests

1. MAKE(perform an auditable operation, O, on IUT)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = O,

-- source-comment absent

target-comment = (any valid value, or absent unless O is GENERAL),

invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = IUT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

result = (the reason for failure if the op failed, otherwise absent)

1)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = O,

-- source-comment absent

target-comment = (any valid value, or absent unless O is GENERAL),

invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = IUT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

result = (the reason for failure if the op failed, otherwise absent)

© 2022 by BACnet International. All rights reserved. 234

BACnet Testing Laboratories - Specified Tests
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.5 Target Audit Reporting - Unconfirmed Service Operation Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that target audit notifications for unconfirmed services do not contain Invokeld information.

Test Concept: An auditable unconfirmed service is performed on the IUT and it is verified that the resulting target audit
notification does not contain an Invokeld, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report audit notifications for an unconfirmed service. If the [UT does
not support audit reporting for any unconfirmed services, this test shall be skipped. The IUT is configured so that the
notification will be reported through Audit Reporter AR.

Test Steps:

1. MAKE(perform an auditable operation, O, which uses an unconfirmed service, on IUT)
2. IF the IUT is configured to send unconfirmed audit notifications for operation O THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = O,

-- source-comment absent

target-comment = (any valid value, or absent unless O is GENERAL),

-- invoke-id absent,

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = IUT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

result = (the reason for failure if the op failed, otherwise absent)

1)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,

© 2022 by BACnet International. All rights reserved. 23 5

BACnet Testing Laboratories - Specified Tests

-- source-object absent
operation = O,
-- source-comment absent
target-comment = (any valid value, or absent unless O is GENERAL),
-- invoke-id absent,
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),
target-device = IUT,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a property),
target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),
target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),
current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),
result = (the reason for failure if the op failed, otherwise absent)

i)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.6 Target Audit Reporting - Confirmed Service Operation Audit Notification

Reason for Change: There is no test for this functionality.
Purpose: Verify that target audit notifications for confirmed services contain Invokeld information.

Test Concept: An auditable confirmed service is performed on the IUT and it is verified that the resulting target audit
notification contains an Invokeld, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report audit notifications for an unconfirmed service. The IUT is
configured so that the notification will be reported through Audit Reporter AR.

Test Steps:

1. MAKE(perform an auditable operation, O, which uses an unconfirmed service, on IUT)
2. IF the IUT is configured to send unconfirmed audit notifications for operation O THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({ -- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = O,
-- source-comment absent
target-comment = (any valid value, or absent unless O is GENERAL),
-- invoke-id absent,
source-user-id = (the value from the operation if provided, otherwise
absent),
source-user-role = (the value from the operation if provided, otherwise
absent),
target-device = IUT,

© 2022 by BACnet International. All rights reserved. 236

BACnet Testing Laboratories - Specified Tests

target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a
property),
target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),
target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),
current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),
result = (the reason for failure if the op failed, otherwise absent)

1)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({ -- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = O,
-- source-comment absent
target-comment = (any valid value, or absent unless O is GENERAL),
-- invoke-id absent,
source-user-id = (the value from the operation if provided, otherwise
absent),
source-user-role = (the value from the operation if provided, otherwise
absent),
target-device = IUT,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a
property),
target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),
target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),
current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),
result = (the reason for failure if the op failed, otherwise absent)

1)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.7 Target Audit Reporting - Operations with Priority Test

Reason for Change: There is no test for this functionality.

Purpose: Verify that target audit notifications which for writes which convey a priority include the priority in the notification.

© 2022 by BACnet International. All rights reserved. 237

BACnet Testing Laboratories - Specified Tests

Test Concept: An auditable write, which includes a priority, is performed on a commandable object in the IUT and it is
verified that the resulting target audit notification contains a priority, and other notification fields represent the auditable
operation performed.

Configuration Requirements: The IUT is configured to report audit notifications for writes on a commandable object, O1.
The IUT is configured so that the notification will be reported through Audit Reporter AR using unconfirmed notifications.
If the IUT does not support the Priority Array property in any object for which audit reporting can be configured, this test
shall be skipped.

Test Steps:
1. TRANSMIT WriteProperty-Request,
'Invoke Id' = 1,

'Object Identifier' = Ol,
'Property Identifier' = Present Value,
'"Property Value' = (V: any valid value),
"Priority’ = (PRIO: a priority in the range 1 - 15)
2. BEFORE Internal Processing Fail Time
RECEIVE BAChnet-SimpleACK-PDU
|
(BACnet-Error-PDU,
'Error Type' = (E : any error)
)
3. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = WRITE,
-- source-comment absent
target-comment = (any valid value, or absent),
invoke-id =1,
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),
target-device = IUT,
target-object = O1,
target-property = Present_Value,
target-priority = PRIO,
target-value =V,
current-value = (the value before the write. may be absent if the value size is
larger than 32 encoded octets),
result = (E, if the op failed, otherwise absent)

1)
+ ELSE {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
"Notifications' = ({
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = WRITE,
-- source-comment absent
target-comment = (any valid value, or absent),

© 2022 by BACnet International. All rights reserved. 23 8

BACnet Testing Laboratories - Specified Tests

invoke-id =1,

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = [UT,

target-object = O1,

target-property = Present_Value,

target-priority = PRIO,

target-value =V,

current-value = (the value before the write. may be absent if the value size is
larger than 32 encoded octets),

result = (E, if the op failed, otherwise absent)

1)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.8 Target Audit Reporting - Target Value and Current_Value Test

Reason for Change: There is no test for this functionality.

Purpose: Verify that the IUT reports target values and current values, when the audited operation contains a value (such as
for writes).

Test Concept: An auditable operation, which contains a value, is performed on object O1 and property P1. The resulting audit
notification is verified to contain the provided value and the value before the operation.

Configuration Requirements: The IUT is configured to report all audit notifications. If possible, a property which is not
changing shall be the target of the operation so that the current value field can be validated. If the IUT does not have any
objects which support reporting of operation which contain target value, this test shall be skipped. AR is the Audit Report
through which O1 reports audit notifications.

Test Steps:
1. IF P1 is not changing outside of the operation THEN {
READ IV = 01, P1
2. MAKE(perform an auditable operation, on O1, P1, which provides a target value, V,
which is less than 32 octets in size)
3. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = (the operation performed),
-- source-comment absent
target-comment = (any valid value, or absent),
invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),
source-user-id = (the value from the operation if provided, otherwise
absent),
source-user-role = (the value from the operation if provided, otherwise
absent),
target-device = IUT,
target-object = O1,

© 2022 by BACnet International. All rights reserved. 239

BACnet Testing Laboratories - Specified Tests

target-property = P1,

target-priority = (the priority from the operation, or absent if 16 or not
provided in the operation),

target-value =V,

current-value = (CV: any valid value),

result = (E, if the op failed, otherwise absent)

3
} ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = (the operation performed),

-- source-comment absent

target-comment = (any valid value, or absent),

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = IUT,

target-object = O1,

target-property = P1,

target-priority = (the priority from the operation, or absent if 16 or not
provided in the operation),

target-value =V,

current-value = (CV: any valid value),

result = (E, if the op failed, otherwise absent)

})
TRANSMIT BACnet-SimpleACK-PDU

4. IF the P1 is not changing outside of the operation THEN
CHECK(CV equals IV)

7.3.2.X65.9 Target Audit Reporting - Error Audit Notification Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that operations that fail are properly reported in audit notifications.

Test Concept: An auditable operation, which will fail with a Result(-) or Result(+) with error information is performed on
the IUT. It is verified that an audit notification is sent which contains the error that occurred. The auditable operation
performed shall be one for which the IUT will report failures via audit notifications.

Configuration Requirements: The IUT is configured to report all audit notifications.

Test Steps:

1. MAKE(perform an auditable operation, O, on IUT which will fail (via return of a BACnetErrorPDU,
or a Result(+) with error information)

2. IF the IUT is configured to send unconfirmed audit notifications for operation O THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time

© 2022 by BACnet International. All rights reserved. 240

BACnet Testing Laboratories - Specified Tests

RECEIVE UnconfirmedAuditNotification-Request,
"Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = O,

-- source-comment absent

target-comment = (any valid value, or absent),

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = IUT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a
property),

target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),

target-value = (the target value or absent if no target value for the

operation. may be absent if the value size is larger than 32

encoded octets),

current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

result = (the error reported for the operation)

1)
+ ELSE {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
"Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = (the operation performed),

-- source-comment absent

target-comment = (any valid value, or absent),

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = IUT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a
property),

target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),

target-value = (the target value or absent if no target value for the

operation. may be absent if the value size is larger than 32

© 2022 by BACnet International. All rights reserved. 24 1

BACnet Testing Laboratories - Specified Tests

encoded octets),

current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

result = (the error reported for the operation)

1)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.10 Target Audit Reporting - GENERAL Operation Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that GENERAL operation audit notifications contain a Target Comment.

Test Concept: An auditable GENERAL operation, is performed on the IUT. It is verified that an audit notification is sent
which contains the error that occurred.

Configuration Requirements: The IUT is configured to report all audit notifications. If the IUT does not generate GENERAL
audit notifications, this test shall be skipped.

Test Steps:
1. MAKE(make the IUT generate a GENERAL audit notification)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
"Notifications' = ({
-- source-timestamp absent
target-timestamp = (IUT's local time),
source-device = TD,
-- source-object absent
operation = GENERAL,
-- source-comment absent
target-comment = (any valid value),
invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),
source-user-id = (the value from the operation if provided, otherwise
absent),
source-user-role = (the value from the operation if provided, otherwise
absent),
target-device = IUT,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a
property),
target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),
target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),
current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),
result = (the reason for failure if the op failed, otherwise absent)

1)

© 2022 by BACnet International. All rights reserved. 242

BACnet Testing Laboratories - Specified Tests

} ELSE {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
"Notifications' = ({

-- source-timestamp absent

target-timestamp = (IUT's local time),

source-device = TD,

-- source-object absent

operation = GENERAL,

-- source-comment absent

target-comment = (any valid value),

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = [UT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a
property),

target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),

target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),

current-value = (the value before the op or absent if no target value.
may be absent if the value size is larger than 32 encoded
octets),

result = (the reason for failure if the op failed, otherwise absent)

1)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.11 Source Audit Reporting - Basic Notification Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that source audit notifications are properly formed.

Test Concept: The IUT is made to send a source audit notification. It is verified that the source fields are present, no target
fields are present, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report all auditable source operations. The IUT is configured with AR
as the source Audit Reporter object.

Test Steps:
1. MAKE(the IUT perform an auditable operation, O, on the TD)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent

© 2022 by BACnet International. All rights reserved. 243

} ELSE {

BACnet Testing Laboratories - Specified Tests

source-device = IUT,

source-object = (the object which initiated the op or absent if not initiated by an
object),

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

1)

BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,

"Notifications' = ({

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not initiated by an
object),

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

i)

TRANSMIT BACnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved. 244

BACnet Testing Laboratories - Specified Tests

7.3.2.X65.12 Source Audit Reporting - Same Device Notification Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that source and target fields are in audit notifications are performed by the IUT on the IUT.

Test Concept: The IUT is made to perform an auditable operation on itself. It is verified that the source and target fields are
present, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report all auditable operations. The IUT is configured with AR as the
source Audit Reporter object. If the IUT is unable to perform an auditable operation on itself, this test shall be skipped.

Test Steps:
1. MAKE(the IUT perform an auditable operation, O, on the itself)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (T: IUT's local time),
target-timestamp = T,
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an
object),
operation = O,
source-comment = (any valid value or absent),
target-comment = (any valid value or absent),
-- invoke-id absent
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),
target-device = IUT,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a property),
target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),
target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),
current-value = (the value before the op if the op targeted a property, or absent),
result = (the reason for failure if the op failed, otherwise absent)

1)
} ELSE {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,

'Notifications' = ({
source-timestamp = (T: IUT's local time),
target-timestamp =T,
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an

object),

operation = O,
source-comment = (any valid value or absent),
target-comment = (any valid value or absent),
-- invoke-id absent
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),

© 2022 by BACnet International. All rights reserved. 245

BACnet Testing Laboratories - Specified Tests

target-device = IUT,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent),

result = (the reason for failure if the op failed, otherwise absent)

})
TRANSMIT BACnet-SimpleACK-PDU

}

Notes to Tester: The IUT is allowed to send the notifications as 2 separate notifications in the same audit notification message,
or in separate messages. When sending separate notifications, one shall be a correctly formed target notification and the other
a correctly formed source notification for the operation performed.

7.3.2.X65.13 Source Audit Reporting - Unconfirmed Service Operation Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that source audit notifications for unconfirmed services do not contain Invokeld information.

Test Concept: An auditable unconfirmed service is performed by the IUT and it is verified that the resulting source audit
notification does not contain an Invokeld, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report source audit notifications for an unconfirmed service. If the
IUT does not support source audit reporting for any unconfirmed services, this test shall be skipped. The IUT is configured
with AR as the source Audit Reporter object.

Test Steps:
1. MAKE(the IUT perform an auditable operation, O, on the TD which uses an unconfirmed service)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an
object),
operation = O,
source-comment = (any valid value or absent),
-- target-comment absent
-- invoke-id absent
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),
target-device = TD,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a property),
target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),
target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded

© 2022 by BACnet International. All rights reserved. 246

BACnet Testing Laboratories - Specified Tests

octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

5)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not initiated by an
object),

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

-- invoke-id absent

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

1)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.14 Source Audit Reporting - Confirmed Service Operation Audit Notification

Reason for Change: There is no test for this functionality.
Purpose: Verify that source audit notifications for confirmed services contain Invokeld information.

Test Concept: An auditable confirmed service is performed by the IUT and it is verified that the resulting source audit
notification contains an Invokeld, and other notification fields represent the auditable operation performed.

Configuration Requirements: The IUT is configured to report source audit notifications for a confirmed service. If the [UT
does not support source audit reporting for any confirmed services, this test shall be skipped. The IUT is configured with AR
as the source Audit Reporter object.

Test Steps:
1. MAKE(the IUT perform an auditable operation, O, on the TD which uses an confirmed service)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
Notifications' = ({

© 2022 by BACnet International. All rights reserved. 247

} ELSE {

BACnet Testing Laboratories - Specified Tests

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not initiated by an
object),

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

invoke-id = (the Invoke Id from the operation),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

1)

BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,

'Notifications' = ({

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not initiated by an
object),

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

invoke-id = (the Invoke Id from the operation),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the reason for failure if the op failed, otherwise absent)

i)

TRANSMIT BACnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved. 248

BACnet Testing Laboratories - Specified Tests

7.3.2.X65.15 Source Audit Reporting - Operations with Priority Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that source audit notifications which for writes which convey a priority include the priority in the notification.

Test Concept: An auditable write, which includes a priority, is performed on a commandable object by the IUT and it is
verified that the resulting source audit notification contains a priority, and other notification fields represent the auditable
operation performed.

Configuration Requirements: The IUT is configured to report audit notifications for writes on a commandable object, O1.
The IUT is configured with AR as the source Audit Reporter object. If the IUT does not provide priorities in auditable
operations it performed, this test shall be skipped.

Test Steps:
1. MAKE(the IUT perform an auditable operation in containing a priority, other than 16, on the TD)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an
object),
operation = O,
source-comment = (any valid value or absent),
-- target-comment absent
invoke-id = (the Invoke Id from the operation),
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),
target-device = TD,
target-object = (the target object),
target-property = (the target property),
target-priority = (the priority supplied),
target-value = (the target value.
may be absent if the value size is larger than 32 encoded
octets),
current-value = (any valid value, or absent),
result = (the reason for failure if the op failed, otherwise absent)

1)
} ELSE {
BEFORE AR .Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,

"Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an

object),

operation = O,
source-comment = (any valid value or absent),
-- target-comment absent
invoke-id = (the Invoke Id from the operation),
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),

© 2022 by BACnet International. All rights reserved. 249

BACnet Testing Laboratories - Specified Tests

target-device = TD,

target-object = (the target object),

target-property = (the target property),

target-priority = (the priority supplied),

target-value = (the target value.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (any valid value, or absent),

result = (the reason for failure if the op failed, otherwise absent)

1)
TRANSMIT BACnet-SimpleACK-PDU

}

7.3.2.X65.16 Source Audit Reporting - Error Audit Notification Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that operations performed by the IUT which fail are properly reported in audit notifications.

Test Concept: The IUT is made to perform an auditable operation on the TD and the TD returns an Error-PDU. It is verified
that a source audit notification is sent which contains the error that occurred. This is repeated twice more with the TD returning
a Reject PDU, and then an Abort PDU.

Configuration Requirements: The IUT is configured to report all audit notifications. The IUT is configured with AR as the
source Audit Reporter object.

Test Steps:
-- Error-PDU
1. MAKE(the IUT perform an auditable operation on TD which will fail (via return of a BACnetErrorPDU,
or a Result(+) with error information)
2. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent
source-device = IUT,
source-object = (the object which initiated the op or absent if not
initiated by an object),
operation = O,
source-comment = (any valid value or absent),
-- target-comment absent
invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),
source-user-id = (the value from the operation if provided, otherwise
absent),
source-user-role = (the value from the operation if provided, otherwise
absent),
target-device = TD,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a
property),
target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),
target-value = (the target value or absent if no target value for the

© 2022 by BACnet International. All rights reserved. 250

BACnet Testing Laboratories - Specified Tests

operation. may be absent if the value size is larger than 32
encoded octets),

current-value = (the value before the op if the op targeted a property, or
absent. May be absent even if targeting a property),

result = (the error reported for the operation)

5)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not
initiated by an object),

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

invoke-id = (the invoke id from the operation, or absent if it was
unconfirmed),

source-user-id = (the value from the operation if provided, otherwise
absent),

source-user-role = (the value from the operation if provided, otherwise
absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a
property),

target-priority = (the priority supplied, or absent if the target is not a
property. shall be 16 or absent if no priority supplied and the
target is a property),

target-value = (the target value or absent if no target value for the
operation. may be absent if the value size is larger than 32
encoded octets),

current-value = (the value before the op if the op targeted a property, or
absent. May be absent even if targeting a property),

result = (the error reported for the operation)

TRANSMIT BACnet-SimpleACK-PDU
H

-- Reject-PDU
3. MAKE(the TUT perform an auditable operation on TD which will fail (via return of a BACnetRejectPDU))
4. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an
object),
operation = O,
source-comment = (any valid value or absent),
-- target-comment absent
invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),

© 2022 by BACnet International. All rights reserved. 25 1

BACnet Testing Laboratories - Specified Tests

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the error reported for the operation)

1)
+ ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an
object),
operation = O,
source-comment = (any valid value or absent),
-- target-comment absent
invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),
source-user-id = (the value from the operation if provided, otherwise absent),
source-user-role = (the value from the operation if provided, otherwise absent),
target-device = TD,
target-object = (the target object or absent if the target is not an object),
target-property = (the target property or absent if the target is not a property),
target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),
target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),
current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),
result = (the error reported for the operation)
}) TRANSMIT BACnet-SimpleACK-PDU

b

-- Abort-PDU
3. MAKE(the IUT perform an auditable operation on TD which will fail (via return of a BACnetAbortPDU))
4. IF the IUT is configured to send unconfirmed audit notifications THEN {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = ({
source-timestamp = (IUT's local time),
-- target-timestamp absent
source-device = IUT,
source-object = (the object which initiated the op or absent if not initiated by an
object),

© 2022 by BACnet International. All rights reserved. 252

BACnet Testing Laboratories - Specified Tests

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the error reported for the operation)

5)
} ELSE {
BEFORE AR.Maximum_Send Delay + Notification Fail Time
RECEIVE ConfirmedAuditNotification-Request,
'Notifications' = ({

source-timestamp = (IUT's local time),

-- target-timestamp absent

source-device = IUT,

source-object = (the object which initiated the op or absent if not initiated by an
object),

operation = O,

source-comment = (any valid value or absent),

-- target-comment absent

invoke-id = (the invoke id from the operation, or absent if it was unconfirmed),

source-user-id = (the value from the operation if provided, otherwise absent),

source-user-role = (the value from the operation if provided, otherwise absent),

target-device = TD,

target-object = (the target object or absent if the target is not an object),

target-property = (the target property or absent if the target is not a property),

target-priority = (the priority supplied, or absent if the target is not a property.
shall be 16 or absent if no priority supplied and the target is a
property),

target-value = (the target value or absent if no target value for the operation.
may be absent if the value size is larger than 32 encoded
octets),

current-value = (the value before the op if the op targeted a property, or absent.
May be absent even if targeting a property),

result = (the error reported for the operation)

1)
TRANSMIT BACnet-SimpleACK-PDU

7.3.2.X65.17 Source Audit Reporting - Single Source Audit Reporter Object Test

Reason for Change: There is no test for this functionality.

Purpose: Verify that the IUT contains a single Audit Report for source audit reporting.

© 2022 by BACnet International. All rights reserved. 253

BACnet Testing Laboratories - Specified Tests

Test Concept: Check all Audit Reporter objects in the IUT and verify that only one is for source audit reporting.

Test Steps:
1. SourceAR = NONE
2. REPEAT AR = (each Audit Reporter object) DO {
IF AR.Audit_Source Reporter is TRUE THEN
IF SourceAR is not NONE THEN
ERROR "Multiple Audit Reporter objects setup for source reporting."

i
3. CHECK(SourceAR is not NONE)

7.3.2.X65.18 Audit Forwarding Test

Reason for Change: There is no test for this functionality.
Purpose: Verify that the IUT forwards received audit notifications.

Test Concept: Send a sequence of confirmed and unconfirmed, unicast and broadcast audit notifications to the IUT and verify
they are forwarded.

Configuration Requirements: The IUT is configured with an Audit Log, AL, which is setup to forward and delete audit
notifications with no delay. The IUT is configured to send notifications unconfirmed.

Test Steps:
-- Unicast confirmed
1. TRANSMIT ConfirmedAuditNotification-Request,
"Notifications' = (N1: a list of 1 or more notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = N1
4. TRANSMIT ReadRange-Request,
'Object Identifier' = AL,
'Property Identifier' = Log_Buffer,
'Reference Index' = 1,
'Count' = 10
5. RECEIVE ReadRange-Ack,
'Object Identifier' = AL,
'Property Identifier' = Log_Buffer,
'Result Flags' = (False, False, False),
'Count' =0

-- Unicast unconfirmed
6. TRANSMIT UnconfirmedAuditNotification-Request,
'Notifications' = (N2: a list of 1 or more notifications)
7. BEFORE Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = N2
8. TRANSMIT ReadRange-Request,
'Object Identifier' = AL,
'Property Identifier' = Log_Buffer,
'Reference Index' = 1,
'Count' = 10
9. RECEIVE ReadRange-Ack,

© 2022 by BACnet International. All rights reserved. 254

BACnet Testing Laboratories - Specified Tests

'Object Identifier' = AL,

'"Property Identifier' = Log_Buffer,
'Result Flags' = (False, False, False),
'Count' =0

-- Local Broadcast
10. TRANSMIT UnconfirmedAuditNotification-Request,
DESTINATION = LOCAL BROADCAST,
'Notifications' = (N3: a list of 1 or more notifications)
11. BEFORE Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = N3
12. TRANSMIT ReadRange-Request,
'Object Identifier' = AL,
'Property Identifier' = Log Buffer,
'Reference Index' =1,
'Count' = 10
13. RECEIVE ReadRange-Ack,
'Object Identifier' = AL,
'Property Identifier' = Log_Buffer,
'Result Flags' = (False, False, False),
'Count' =0
-- Global Broadcast
10. TRANSMIT UnconfirmedAuditNotification-Request,
DESTINATION = GLOBAL BROADCAST,
'Notifications' = (N4: a list of 1 or more notifications)
11. BEFORE Notification Fail Time
RECEIVE UnconfirmedAuditNotification-Request,
'Notifications' = N4
12. TRANSMIT ReadRange-Request,
'Object Identifier' = AL,
'"Property Identifier' = Log_Buffer,
'Reference Index' = 1,
'Count' = 10
13. RECEIVE ReadRange-Ack,
'Object Identifier' = AL,
'Property Identifier' = Log_Buffer,
'Result Flags' = (False, False, False),
'Count' =0

7.3.2.X66 Staging Object Tests

7.3.2.X66.1 Clamping Present_Value to Max_Pres_Value or Min_Pres_Value

Reason for Change: No test exists for this functionality.

Purpose: To verify that Present Value will be modified internally to stay within the boundaries of Min Pres Value or

Max_Pres Value.

Test Concept: Present_Value is written with a value greater than Max_Pres_Value. If the value is accepted, Present Value is
read to verify that it clamped to Max_Pres_Value. If Stages is writable, an attempt is made to reduce the limit defined in the
last stage. If successful, Present Value is checked to verify it changed to match the new limit. Present Value is then written
with a value less than Min_Pres Value. If the value is accepted, Present Value is read to verify that it clamped to
Min_Pres_Value. If Min_Pres_Value is writable, the value is increased and Present Value is read to verify that it matches

the new Min_Pres_Value.

Configuration Requirements: None

© 2022 by BACnet International. All rights reserved. 255

BACnet Testing Laboratories - Specified Tests

Test Steps:

1.

3.

*

10.

11.

12.

READ MAXPV1 =Max_Pres Value
READ PV1 = Present_Value
TRANSMIT WriteProperty-Request
'Object-Identifier' = (the Staging object under test),
'"Property Identifer' = Present Value,
'Property Value' = (a value greater than MAXPV1)
RECEIVE BACnet-SimpleACK-PDU |
(BACnet-Error-PDU,
'Error Class' = Property,
'Error Code' = VALUE OUT OF RANGE)
IF (a BACnet-SimpleACK-PDU was received) THEN
VERIFY Present Value = MAXPV1
ELSE
VERIFY Present Value =PV1
WRITE Present_Value = MAXPV1
IF (Stages is writable) THEN
READ NS = Stages[0]
READ STGN = Stages, ARRAY INDEX = NS
TRANSMIT WriteProperty-Request
'Object-Identifier' = (the Staging object under test),
'Property Identifer' = Stages,
'Property Array Index'= NS,
'Property Value' = {
Limit = (STAGEPV1: any value less than STGN.Limit)
Values = STGN.Values,
DeadBand = STGN.Deadband
}
RECEIVE BACnet-Simple ACK-PDU |
(BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = VALUE _OUT _OF RANGE)
IF (a BACnet-SimpleACK-PDU was received) THEN
VERIFY Present Value = STAGEPV1
READ MINPV1 =Min_Pres Value
READ PV2 = Present_Value
TRANSMIT WriteProperty-Request
'Object-Identifier' = (the Staging object under test),
'Property Identifer' = Present Value,
'"Property Value' = (a value less than MINPV1)
RECEIVE BACnet-SimpleACK-PDU |
(BACnet-Error-PDU,
'Error Class' = PROPERTY,
'"Error Code' = VALUE _OUT_OF RANGE)
IF (a BACnet-SimpleACK-PDU was received) THEN
VERIFY Present Value = MINPV1
ELSE
VERIFY Present_Value = PV2
WRITE Present_Value = MINPV1
IF (Min_Pres_Value is writable) THEN
READ STG1 = Stages, ARRAY INDEX =1
TRANSMIT WriteProperty-Request

'Object-Identifier' = (the Staging object under test),
'Property Identifer' = Min_Pres Value,
'Property Value' = (MINPV2: MINPV1< MINPV2< (STG1.Limit - STG1.Deadband))

© 2022 by BACnet International. All rights reserved. 256

BACnet Testing Laboratories - Specified Tests

WAIT Internal Processing Fail Time
VERIFY Present_Value = MINPV2

7.3.2.X66.2 Present_Stage Evaluation
Reason for Change: No test exists for this functionality.
Purpose: To verify that Present_Stage evaluates correctly based on the Present Value, stage limits, and deadband values.

Test Concept: Present Value is written with different values that exercise the Present Stage evaluation algorithm. After each
write to Present Value, Present_Stage is read to verify that the algorithm evaluates correctly.

K -------------------------------- Stages[N+1].Limit ------------- }

V4
V3 . ‘ A
----------- L e d ek o4 oL - Stages[N].Limit «-c=—- - ¥
V2 |
Stages[N].Deadband

K _______________________ Stages[N-1].Limit or Min_Pres_Value ----____ y

Configuration Requirements: The Staging object used for this test must be configured with at least two stages. If supported,
Deadband shall be configured with a non-zero value for stage N (Stage[N].deadband <> 0). At the start of the test, the Staging
object is configured with Present Value = V1.

Test Steps:

1. READ N = Present_Stage
2. VERIFY Present Value=V1
3. If (Stages[N].Deadband > 0) THEN {
WRITE Present_Value = (V2: Stages[N].Limit - Stages[N].Deadband < V2 < Stages[N].Limit)
VERIFY Present Stage =N
WRITE Present_Value = (V3: Stages[N].Limit < V3 < Stages[N].Limit + Stages[N].Deadband)
VERIFY Present_Stage =N
WRITE Present_Value = V2
VERIFY Present Stage =N
WRITE Present_Value = (V4: Stages[N].Limit + Stages[N].Deadband < V4 < Stages[N+1].Limit)
VERIFY Present Stage = N+1
WRITE Present_Value = V3
VERIFY Present Stage = N+1
WRITE Present_Value = V2
VERIFY Present Stage = N+1
WRITE Present Value =V1
VERIFY Present Stage =N

WRITE Present_Value = V4
VERIFY Present Stage = N+1
WRITE Present_Value = V1
VERIFY Present_Stage =N

Nk

© 2022 by BACnet International. All rights reserved. 257

BACnet Testing Laboratories - Specified Tests

7.3.2.X66.3 Present_Stage Evaluates on Restart
Reason for Change: No test exists for this functionality.
Purpose: To verify that Present_Stage is re-evaluated on device restart.

Test Concept: Present Value is written with a value, V3, that exceeds Stages[N].limit but does not exceed the deadband
threshold and cause a change to Present Stage. The IUT is restarted and Present Stage is read to verify that it is now (N+1).
Present Value is then written with a value, V2, that is below Stages[N].limit but above the deadband threshold so
Present_Stage remains at (N+1). The IUT is restarted and Present _Stage is read to verify that it is now N.

/ Restart Restart \

Stages[N].Deadband

k ___________________ Stages[N-1].Limit or Min_Pres_Value ------__ J

Configuration Requirements: The Staging object used for this test must be configured with at least two stages. Deadband
shall be configured with a non-zero value for stage N (Stage[N].Deadband <> 0). If deadband for stage N cannot be configured
this way in a Staging object which does not support Default Present Value, this test shall be skipped. At the start of the test,
the Staging object is configured with Present Value = V1 and Present Stage = N. If the IUT supports remote
Target References then at least 1 shall be set to an object outside the IUT.

Test Steps:

1. VERIFY Present Stage =N

2. VERIFY Present Value=V1

3. WRITE Present Value = (V3: Stages[N].Limit < V3 < (Stages[N].Limit + Stages[N].Deadband))
4. VERIFY Present Stage =N

5. IF (ReinitializeDevice - WARMSTART execution is supported) THEN {

TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device' = ~ WARMSTART
'Password' = (any valid password)
RECEIVE BACnet-SimpleACK-PDU
+ ELSE {
MAKE (power cycle the IUT to make it reinitialize)
}

WAIT for the IUT to complete its restart
CHECK(that the IUT wrote to all Target References which are outside the device)
VERIFY Present Value = V3
9. VERIFY Present Stage = N+1
10. WRITE Present Value = (V2: (Stages[N].Limit - Stages[N].Deadband) < V2 < Stages[N].Limit)
11. VERIFY Present Stage = N+1
12. IF (ReinitializeDevice - WARMSTART execution is supported) THEN {
TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device'= WARMSTART
'Password' = (any valid password)
RECEIVE BACnet-SimpleACK-PDU
} ELSE {
MAKE (power cycle the IUT to make it reinitialize)
}

el

© 2022 by BACnet International. All rights reserved. 258

BACnet Testing Laboratories - Specified Tests

13. WAIT for the IUT to complete its restart

14. CHECK(that the IUT wrote to all Target References which are outside the device)
15. VERIFY Present Value = V2

16. VERIFY Present_Stage = N+1

7.3.2.X66.4 Default_Present_Value is Abided on Restart
Reason for Change: No test exists for this functionality.
Purpose: To verify that Default Present Value defines the Staging object's value on device restart.

Test Concept: A staging object which contains Default Present Value. The stage associated with Default Present Value is
S1. The staging object starts with the value V2, which evaluates to a different stage, S2. The IUT is restarted and it is verified
that the staging object takes on Default Present Value, changes to the stage S1 and performs the associated writes. The IUT
is restarted again and it is verified that the staging object maintains its value, remains in stage S1 and performs the associated
writes for the stage S1.

Configuration Requirements: If the IUT supports remote Target References then at least 1 shall be set to an object in the TD.

Test Steps:

1. VERIFY Default Present Value =V1

2. VERIFY Present Value =V2

3. VERIFY Present_Stage = S2

4. TIF (ReinitializeDevice - WARMSTART execution is supported) THEN {

TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device' = ~ WARMSTART
'Password' = (any valid password)
RECEIVE BACnet-SimpleACK-PDU
+ ELSE {
MAKE (power cycle the IUT to make it reinitialize)
}

WAIT for the IUT to complete its restart
CHECK(that the IUT wrote to all Target References which are outside the device)
VERIFY Present Value =V1
VERIFY Present Stage = S1
IF (ReinitializeDevice - WARMSTART execution is supported) THEN {
TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device'= ~ WARMSTART
'Password' = (any valid password)
RECEIVE BAChnet-Simple ACK-PDU
+ ELSE {
MAKE (power cycle the IUT to make it reinitialize)

Lo

10. WAIT for the IUT to complete its restart

11. CHECK(that the IUT wrote to all Target References which are outside the device)
12. VERIFY Present Value=V1

13. VERIFY Present Stage = S1

7.3.2.X66.5 Writing to Target References
Reason for Change: No test exists for this functionality.
Purpose: To verify that a change of Present_Stage results in the target references being written as per the stage definition.

Test Concept: A Stage object, O1, is selected for testing. O1's Present Value is written with a value that results in a change
of Present_Stage. Each Present Value of the Target References is monitored to verify that its value is set in accordance with

© 2022 by BACnet International. All rights reserved. 259

BACnet Testing Laboratories - Specified Tests

Stage[Present Stage].Values. Ol's Present Value is written again with a value that returns Present Stage to its initial value.
Again, the Target References are monitored to verify that they have been written with the appropriate values.

Configuration Requirements: Target References is configured with references to existing binary objects with writable
Present_Value properties. The Stages property is configured with at least two stages, X and Y, such that Stages[X].Values
<> Stages[Y].Values. Present_Stage shall be X at the start of the test. Throughout the test, O1 is expected to be properly
configured such that Reliability is NO_FAULT DETECTED.

Test Steps:

1. VERIFY Present Stage =X

2. WRITE Present_Value = (any value that causes Present_Stage to change to Y)
3. VERIFY Present Stage=Y

4. REPEAT J=(I1 ... Target References[0])= DO {

READ O = Target References, ARRAY INDEX =]
VERIFY O, Present_Value = Stages[Y].Values[J]
WRITE Present Value = (any value that causes Present_Stage to change to X)
VERIFY Present Stage =X
7. REPEAT J = (1.. Target References[0]) =DO {
READ O = Target References, ARRAY INDEX =]
VERIFY O, Present_Value = Stages[X].Values[J]

ARG

7.3.2.X66.6 Stage Value Bitstring is Same Length as Target_ References
Reason for Change: No test exists for this functionality.

Purpose: To verify that the bitstring length for the Values component of each stage is equal and corresponds to the number
of entries in the Target References property.

Test Concept: For each staging object in the IUT, the Stages and Target References properties are read. For each object,
the length of the 'Values' bitstring from the first stage is extracted. This length is compared to the length of the 'Values'
bitstring in every other stage and the size of the Target References property to verify equality.

Configuration Requirements: None
Test Steps:

1. REPEAT O = (each Staging object in the [UT) DO {

READ NS = O, Stages, ARRAY INDEX =0

READ STG1 = Stages, ARRAY INDEX = 1

NUMBITS = (number bits in STG1.Values)

REPEAT N = (2 through NS) DO {
-- check that the length of Stages[1].Values equals length of Stages[N].Values.
READ STGN = Stages, ARRAY INDEX =N
IF number of bits in STGN.Values <> NUMBITS THEN

ERROR "Length of the Values bitstrings are not the same in all stages."

H

VERIFY Target References = NUMBITS, ARRAY INDEX =0

}

7.3.2.X66.7 Max_Pres_Value Equals Last Stage Limit
Reason for Change: No test exists for this functionality.
Purpose: To verify that Max_Pres Value is equivalent to the Limit defined in the last Stage.

Test Concept: Max_Pres Value is read and checked for equality with the Limit defined in the last element of the Stages
array.

Configuration Requirements: None

© 2022 by BACnet International. All rights reserved. 260

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. READ N = Stages, ARRAY INDEX =0
2. VERIFY Max_Pres Value = Stages[N].Limit

7.3.2.X66.8 CONFIGURATION_ERROR when Min_Pres_Value is too Large
Reason for Change: No test exists for this functionality.

Purpose: To verify that Reliability has a value of CONFIGURATION ERROR when Min Pres_Value has a value greater
than Stages[1].Limit - Stages[1].Deadband.

Test Concept: Min_Pres_Value is made to exceed the value of Stages[1].Limit - Stages[1].Deadband by first writing directly
to Min_Pres_Value, then by making a change to Stages[1].Limit, and then by making a change to Stages[1].Deadband. After
each modification, if it is successful, Reliability is verified to have a value of CONFIGURATION ERROR and then the
modification is reversed, and Reliability is verified to have a value of NO_ FAULT DETECTED.

Configuration Requirements: At the start of the test, the Staging object used for this test, O1, shall be properly configured
such that Reliability = NO_FAULT DETECTED. At the start of the test, Present Value shall be equal to Min_Pres Value.

Test Steps:

1. READ MINPVI =Min Pres Value

2. VERIFY Present Value = MINPV1

3. VERIFY Reliability =NO FAULT DETECTED
4. READ STG1 = Stages, ARRAY INDEX =1

5. SL =STG1.Limit

6. SV =STGl.Values

7. SD =STG1.Deadband

8. IF (Min_Pres Value is writable) THEN

TRANSMIT WriteProperty-Request,

'Object Identifier' = Ol

'Property Identifier' = Min_Pres Value,

'"Property Value'= (MINPV2: where MINPV2 > (SL-SD))
RECEIVE BACnet-SimpleACK-PDU |
(BACnet-Error-PDU,

'Error Class' = Property,

'Error Code' = VALUE OUT OF RANGE)

IF (a BACnet-Simple-ACK-PDU was received) THEN

VERIFY Min_Pres_Value = MINPV2

VERIFY Reliability = CONFIGURATION ERROR

VERIFY Present Value = MINPV2

VERIFY Present_Stage =1

WRITE Min_Pres Value = MINPV1

VERIFY Reliability = NO_FAULT DETECTED
ELSE

VERIFY Present Value = MINPV1

VERIFY Reliability = NO_FAULT DETECTED

9. IF (Stages is writable) THEN
TRANSMIT WriteProperty-Request,

'Object Identifier' = (the staging object under test),
'"Property Identifier' = Stages,
'"Property Array Index' = 1,
'"Property Value' = {
Limit = (NL: where NL-SD < Min_Pres Value),
Values =SV,
DeadBand = SD
}

© 2022 by BACnet International. All rights reserved. 26 1

BACnet Testing Laboratories - Specified Tests

RECEIVE BACnet-SimpleACK-PDU |
(BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = VALUE_OUT_OF RANGE)
IF (a BACnet-SimpleACK-PDU was received) THEN
VERIFY Stages = { Limit=NL, Values=SV, Deadband=SD }, ARRAY INDEX = 1
VERIFY Reliability = CONFIGURATION_ERROR
VERIFY Present Value = MINPV1
VERIFY Present Stage = 1
WRITE Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX =1
VERIFY Reliability = NO_FAULT DETECTED
ELSE
VERIFY Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX = 1
VERIFY Reliability =NO_FAULT DETECTED
TRANSMIT WriteProperty-Request,

'Object Identifier' = (the staging object under test),
'"Property Identifier' = Stages,
'"Property Array Index' = 1,
'Property Value' = {
Limit=SL,
Values=SV,
Deadband=(ND: where SL-ND < Min_Pres_Value)
}

RECEIVE BACnet-SimpleACK-PDU |
(BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE)
IF (a BACnet-SimpleACK-PDU was received) THEN
VERIFY Stages = { Limit=SL, Values=SV, Deadband=ND }, ARRAY INDEX =1
VERIFY Reliability = CONFIGURATION_ ERROR
VERIFY Present Value = MINPV1
VERIFY Present_Stage =1
WRITE Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX =1
VERIFY Reliability = NO FAULT DETECTED
ELSE
VERIFY Stages = { Limit=SL, Values=SV, Deadband=SD }, ARRAY INDEX =1
VERIFY Reliability = NO _FAULT DETECTED

7.3.2.X66.9 COMMUNICATION_FAILURE on Failed Write to External Target Reference
Reason for Change: No test exists for this functionality.
Purpose: To verify that Reliability is set to COMMUNICATION FAILURE when an attempt to write to a remote target fails.

Test Concept: The Staging object is configured with a Target Reference aimed at an object in the TD. The Staging object's
Present Value is written such that a change to Present Stage occurs. When the external target property is written by the IUT,
the TD shall not respond. The test verifies that the write to Present Value returns a Result(+) and Reliability is set to
COMMUNICATION FAILURE.

Configuration Requirements: The Staging object used for this test shall be configured with at least one object, O1, in the
Target References property which is located in the TD. The Stages property shall be configured with two stages such that
Stages[S].Values = {...V1...} and Stages[S+1].Values = {...V2...} where V1 and V2 correspond to the target, O1, and V1
<> V2. At the start of the test, the Staging object is properly configured such that Reliability = NO_FAULT DETECTED
and Present Stage = S. If no Staging object in the IUT supports external references in the Target References property, this
test shall be skipped.

Test Steps:

© 2022 by BACnet International. All rights reserved. 262

BACnet Testing Laboratories - Specified Tests

READ S = Present_Stage
. WRITE Present_Value = (X: a value that will change Present_Stage to S+1)
3. RECEIVE WriteProperty-Request,

N =

'Object Identifier' = Ol,
'Property Identifier' = Present_Value,
'Property Value' = V2

4. WAIT (Number Of APDU_Retries + 1) * (Internal Processing Fail Time + APDU_Timeout)
5. VERIFY Reliability = COMMUNICATION_ FAILURE

7.3.2.X66.10 Fault Indicated on Failed Write to Local Target Reference
Reason for Change: No test exists for this functionality.
Purpose: To verify that Reliability is set when an attempt to write to a local target fails.

Test Concept: The Staging object is configured with a Target Reference aimed at an object in the [UT which is not writable
or non-existent. The Staging object's Present Value is written such that a change to Present_Stage occurs. The test verifies
that the write to the Staging object’s Present_Value returns a Result(+) and Reliability is set to indicate a failure to write one
of the targets.

Configuration Requirements: The Staging object used for this test shall be configured with at least one object, O1, in the
Target References property which is local to the IUT, yet not writable or non-existent. The Stages property shall be
configured with two stages such that Stages[S].Values = {...V1...} and Stages[S+1].Values = {...V2...} where V1 and V2
correspond to the target, Ol, and V1 <> V2. At the start of the test, the Staging object is properly configured such that
Reliability = NO_FAULT DETECTED and Present_Stage = S. If no Staging object can be configured to reference a non-
writable or non-existent local object, this test shall be skipped.

Test Steps:

1. READ S =Present_Stage

-- cause the staging object to write to the non-existent or non-writable target object
2. WRITE Present Value = (X: a value that will change Present Stage to S+1)
3. VERIFY Reliability <> NO FAULT DETECTED

7.3.2.X66.11 Out_Of Service, Status_Flags, and Reliability for Staging Object
Reason for Change: No test exists for this functionality.

Purpose: To verify that Present Value and Reliability are writable when Out_Of Service is TRUE, to verify the relationship
between Out_Of Service, Status_Flags, and Reliability, and to verify that writes to Target References only occur when
Out_Of Service is FALSE.

Test Concept: The Out_Of Service property is set to TRUE and the value of the Status Flags property is validated.
Present Value is modified to verify that Present Stage evaluates but writes to Target References do not occur. If the IUT
supports Reliability values other than NO FAULT DETECTED, writability for that property is tested and the value of the
Status_Flags property is validated. The Out_Of Service property is set to FALSE and the value of the Status_Flags property
is validated. The Present_Value for one of the Target References is checked to verify that it has the correct value, indicative
of a write that occurred when transitioning Out_Of Service from TRUE to FALSE.

Configuration Requirements: The Staging object used for this test shall be configured with at least one object in the
Target References property. The Stages property shall be configured with two stages such that Stages[S].Values = {V1...}
and Stages[S+1].Values = {V2...} where V1 <> V2. At the start of the test, the Staging object is properly configured such
that Reliability = NO_FAULT DETECTED and Present Stage = S.

Test Steps:

1. READ SF1 = Status_Flags
2. VERIFY Reliability =NO FAULT DETECTED
3. VERIFY Present Stage =S

© 2022 by BACnet International. All rights reserved. 263

BACnet Testing Laboratories - Specified Tests

4. READ Ol = Target References, ARRAY INDEX =1
VERIFY Ol, Present Value=V1
6. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = TRUE
ELSE
MAKE (Out_Of Service TRUE)
7. VERIFY Out_Of Service = TRUE
8. VERIFY Status Flags =(?, ?, ?, TRUE)
9. WRITE Present_Value = (PV: (Stages[S].Limit + Stages[S].Deadband) < PV < Stages[S+1].Limit)
10. VERIFY Present Value =PV
11. VERIFY Present Stage = S+1
12. VERIFY Ol, Present Value =V1
13. IF (the IUT supports Reliability values other than NO FAULT DETECTED) THEN
REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
NO FAULT DETECTED) DO {
WRITE Reliability = X
VERIFY Reliability = X
VERIFY Status_Flags = (?, TRUE, ?, TRUE)
WRITE Reliability = NO_FAULT DETECTED
VERIFY Reliability = NO_FAULT DETECTED
VERIFY Status_Flags = (?, FALSE, ?, TRUE)
}
14. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE
ELSE
MAKE (Out Of Service FALSE)
15. VERIFY Status Flags = SF1
16. VERIFY Reliability = NO FAULT DETECTED
17. IF (Present Stage = S+1) THEN
VERIFY Ol, Present Value = V2

b

7.3.2.X66.12 Stages Array Sizing Test
Reason for Change: No test exists for this functionality.

Purpose: This test case verifies that, when the size of the of the Stages array is changed by writing to the ARRAY INDEX,
the size of the array changes accordingly and any new entries are properly initialized.

Test Concept: The Stages array is increased by writing the array size. It is verified that the Stages property is extended and
that the new entries contain 'Limit' = 0.0, 'Values' = {0...0}, and 'Deadband' = 0.0. Reliability is verified to be
CONFIGURATION_ERROR. Present Stage is verified to be 1. Present Value is verified to be Min_Pres Value. If the
Stage Names property is present, the size of the array is checked to verify that it matches the size of the Stages array.

Throughout the test, the array size of the Stage Names property is checked to verify it is consistent with the array size of the
Stages property.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO FAULT DETECTED and Present Stage = S. The size of the Stages array is greater than 1 and less than the maximum
array size.

Test Steps:

1. READ N = Stages, ARRAY INDEX =0
2. IF (Stage Names is present) THEN {
VERIFY = Stage Names =N, ARRAY INDEX =0

READ NT = Target References, ARRAY INDEX =0
WRITE Stages = N+X, ARRAY INDEX =0 -- where (X>1)

© 2022 by BACnet International. All rights reserved. 264

BACnet Testing Laboratories - Specified Tests

VERIFY Stages = N+X, ARRAY INDEX =0
VERIFY Stages = (0.0,{0...0},0.0), ARRAY INDEX = N+X -- where the number of bits in Values is NT
VERIFY Reliability = CONFIGURATION ERROR
VERIFY Present_Stage = 1
READ MV =Min_Pres_Value
VERIFY Present Value = MV
IF (Stage Names is present) THEN {
VERIFY Stage Names = N+X, ARRAY INDEX =0
WRITE Stages = N, ARRAY INDEX =0
VERIFY Stage Names =N, ARRAY INDEX =0

— YN w

— O

7.3.2.X66.13 Present_Stage Evaluates on Change to Stages Property
Reason for Change: No test exists for this functionality.
Purpose: To verify that Present_Stage gets re-evaluated when the Stages property is changed.

Test Concept: Present Value is written with a value, V3, that exceeds Stages[N].limit but does not exceed the deadband
threshold and cause a change to Present Stage. The Stages property is written with a new value such that Stage[N] is
unaffected by the change. Present Stage is read to verify that it is now (N+1). Present Value is then written with a value,
V2, that is below Stages[N].limit but above the deadband threshold so Present Stage remains at (N+1). The Stages property
is written with a new value such that Stage[N] is unaffected by the change. Present Stage is read to verify that it is now N.

Stages[N].Deadband

k ___________________ Stages[N-1].Limit or Min_Pres_Value ------__ y

Configuration Requirements: The Staging object used for this test must be configured with at least two stages. Deadband
shall be configured with a non-zero value for stage N (Stage[N].Deadband <> 0). If deadband for stage N cannot be configured
this way, this test shall be skipped. At the start of the test, the Staging object is configured with Present Value = V1 and
Present_Stage = N.

Test Steps:

1. VERIFY Present Stage =N

2. VERIFY Present Value=V1

3. READ STAGESI = Stages

4. WRITE Present Value = (V3: Stages[N].Limit < V3 < (Stages[N].Limit + Stages[N].Deadband))
5. VERIFY Present Stage =N

6. IF (Stages is writable) THEN

WRITE Stages = (STAGES2: any valid value different from STAGESI but
with the same value for Stage[N])
ELSE
MAKE Stages = (STAGES2: any valid value different from STAGES1but
with the same value for Stage[N])
7. VERIFY Present Value = V3
8. VERIFY Present_Stage = N+1

© 2022 by BACnet International. All rights reserved. 265

BACnet Testing Laboratories - Specified Tests

9. WRITE Present_Value = (V2: (Stages[N].Limit - Stages[N].Deadband) < V2 < Stages[N].Limit)
10. VERIFY Present Stage = N+1
11. IF (Stages is writable) THEN
WRITE Stages = (STAGES3: any valid value different from STAGES2 but
with the same value for Stage[N])
ELSE
MAKE Stages = (STAGES3: any valid value different from STAGES2 but
with the same value for Stage[N])
12. VERIFY Present Value = V2
13. VERIFY Present_Stage =N

7.3.2.X66.14 CONFIGURATION_ERROR when Limits are Out of Order
Reason for Change: No test exists for this functionality.

Purpose: To verify that Stages defined in the staging object are arranged in ascending order and, if not, Reliability is set to
CONFIGURATION_ERROR.

Test Concept: Write Stages out of order; use specific values that violate the limit value ascension rule. Verify that the object
identifies the problem and sets Reliability.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO FAULT DETECTED.

Test Steps:

1. VERIFY Reliability = NO FAULT DETECTED

2. READ NS = Stages, ARRAY INDEX =0

3. N = (any value where 1 <= N <NS)

4. WRITE Stages = {
Limit = (LIM: where LIM > Stages[N+1].Limit),
Values = (any valid value of the correct length),
Deadband = (any valid value)

}, ARRAY INDEX =N

5. VERIFY Reliability = CONFIGURATION ERROR

6. VERIFY Present Value = Min Pres Value

7. VERIFY Present Stage =1

7.3.2.X66.15 CONFIGURATION_ERROR when Deadband <0
Reason for Change: No test exists for this functionality.

Purpose: To verify that Stages defined in the staging object do not have a Deadband value less than 0, or if they do, when
Deadband is less than 0, Reliability is set to CONFIGURATION ERROR.

Test Concept: Write an entry in the Stages property, changing the deadband to a negative value. Verify that the either the
write fails, or that Reliability is set to CONFIGURATION ERROR.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO_FAULT DETECTED.

Test Steps:

1. VERIFY Reliability = NO_FAULT DETECTED
2. READ NS = Stages, ARRAY INDEX =0
2. N = (any value where 1 <= N <NS)
3. TRANSMIT WriteProperty-Request,
'Object Identifier' = (the staging object under test),

© 2022 by BACnet International. All rights reserved. 266

BACnet Testing Laboratories - Specified Tests

'"Property Identifier' = Stages,
'"Property Array Index'= N,
'"Property Value' = {

Limit = Stages[N].Limit,
Values = Stages[N].Values,
Deadband = (any negative value)
§
4. RECEVE BACnet-SimpleACK-PDU |
(BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE)
5. IF (a BACnet-SimpleACK-PDU was received) THEN {
VERIFY Reliability = CONFIGURATION ERROR
VERIFY Present Value =Min Pres Value
VERIFY Present Stage =1

7.3.2.X66.16 CONFIGURATION_ERROR when Stages Size is less than Two
Reason for Change: No test exists for this functionality.

Purpose: To verify that the Stages array has a minimum length of two, and if not, Reliability is set to
CONFIGURATION ERROR.

Test Concept: Write the Stages property, without an array index, setting the length of the array to 1. Verify that the either the
write fails, or that Reliability is set to CONFIGURATION ERROR.

Configuration Requirements: At the start of the test, the Staging object is properly configured such that Reliability =
NO FAULT DETECTED.

Test Steps:

1. VERIFY Reliability = NO_FAULT DETECTED
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = (the staging object under test),
'Property Identifier' = Stages,

'"Property Array Index'= 0,

'Property Value' = (Oorl)

3. RECEVE BAChnet-SimpleACK-PDU |
(BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = VALUE _OUT_OF RANGE)
5. IF (a BACnet-SimpleACK-PDU was received) THEN {
VERIFY Reliability = CONFIGURATION_ERROR
VERIFY Present Value =Min_Pres Value
VERIFY Present Stage =1

7.3.2.X66.17 Stage Names and Stages Size Equality Test

Reason for Change: No test exists for this functionality.

Purpose: To verify that the size of the Stage Names array is equal to the size of the Stages array.
Test Concept: Verify that the Stages array and Stage Names array are of the same length.

Test Steps:

1. READ N = Stages, ARRAY INDEX =0

© 2022 by BACnet International. All rights reserved. 267

BACnet Testing Laboratories - Specified Tests

2. VERIFY Stage Names =N, ARRAY INDEX =0

7.3.2.X66.18 Stage Names Array Sizing Test
Reason for Change: No test exists for this functionality.

Purpose: This test case verifies that, when the size of the Stage Names array is changed by writing to the ARRAY INDEX,
the size of the array and the size of the Stages array changes accordingly and new values added to the Stages array are
initialized to contain 'Limit' = 0.0, 'Values' = {0...0}, and 'Deadband' = 0.0, and Reliability is set to
CONFIGURATION ERROR.

Test Concept: Resize the Stage Names array larger by writing the size and verify that Stages is also resized. Shrink the array
back and verify Stages. Resize once more by writing the whole array and verify that Stages resizes correctly. Each time verify
that new stages are correct.

Configuration Requirements: If the Stages property is not resizable by writing to it, this test shall be skipped.

Test Steps:

1. READ N = Stage Names, ARRAY INDEX =0

2. WRITE Stage Names = N+1, ARRAY INDEX =0

3. VERIFY Stages = N+1, ARRAY INDEX =0

4. VERIFY Stages = {Limit=0.0, Values={0...0}, Deadband=0.0}, ARRAY INDEX = N+1
5. WRITE Stage Names =N, ARRAY INDEX =0

6. VERIFY Stages =N, ARRAY INDEX =0

. WRITE Stage Names = (an array, of strings, with a length, N2, which the [UT will accept other than N)
. VERIFY Stages = N2, ARRAY INDEX =0
. VERIFY Stages = (an array of length N2 of stages consistent with the object's configuration)
0. IF (N2 > N) THEN ¢{
REPEAT J=(N ... N2) {
VERIFY Stages = {Limit=0.0, Values={0...0}, Deadband=0.0}, ARRAY INDEX =]
}

— O 00

7.3.2.X66.19 Target References Array Sizing Test
Reason for Change: No test exists for this functionality.

Purpose: To verify that a change to size of the Target References array results in an equivalent change to the length of the
'"Values' portion of all elements of the Stages property and that new bits in the "Values' are set to '0".

Test Concept: Resize the Target References array larger, and verify that the values field in each stage is updated with new
bits. Resize the array smaller and verify that the values field in each stage is resized smaller.

Configuration Requirements: The staging object is configured with at least 1 Target Reference.

Test Steps:

1. READ STAGESI = Stages

2. NTR = (length of STAGES1[0].Values)

3. WRITE Target References = NTR+1, ARRAY INDEX =0
4. REPEATJ=(1... STAGES1[0]) DO {

VERIFY Stages = {
Limit=STAGES1[J].Limit,
Values=(the value of STAGES1[J].Values with 1 more 0 tacked on the end),
DeadBand=STAGESI [J].Deadband
}, ARRAY INDEX =]

© 2022 by BACnet International. All rights reserved. 268

BACnet Testing Laboratories - Specified Tests

5. WRITE Target References = NTR, ARRAY INDEX =0
6. REPEATJ=(1... STAGESI1[0]) DO {
VERIFY Stages = {
Limit=STAGESI1[J].Limit,
Values=(the value of STAGES1[J].Values),
DeadBand=STAGES1[J].Deadband
}, ARRAY INDEX =]

7.3.2.X66.20 Writing Target References with an Unsupported External Reference
Reason for Change: No test exists for this functionality.
Purpose: To verify the correct Result(-) when Target References does not support objects in an external device.

Test Concept: Attempt writing Target References of a Staging object with an external object reference. Verify the IUT returns
the correct Result(-).

Configuration Requirements: The IUT is configured with a Staging Value object which does not support references to external
objects. If the IUT cannot be configured this way, this test shall be skipped.

Test Steps:

1. READ X = Target References
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = (the staging object under test),

'Property Identifier' = Target References,

'Property Array Index'= 1,

'Property Value' = (a reference to a binary object in the TD)

3. RECEIVE BACnet-Error-PDU,
'Error Class' = PROPERTY
'Error Code' = OPTIONAL FUNCTIONALITY NOT _SUPPORTED

© 2022 by BACnet International. All rights reserved. 269

BACnet Testing Laboratories - Specified Tests

8. APPLICATION SERVICE INITIATION TESTS

8.1 AcknowledgeAlarm Service Initiation Tests

[Change test 8.1 to a section heading only and renumber existing 8.1 test to 8.1.1 and change its name to be singular Test vs
Tests]

8.1.1 AcknowledgeAlarm Service Initiation Test

Reason for Change: Corrected the 'Event State Acknowledged' field to allow for OFFNORMAL for any of the off-normal
states.

Purpose: To verify that the IUT is capable of acknowledging alarms and events that are reported to the IUT via the
ConfirmedEventNotification and UnconfirmedEventNotfication services.

Configuration: For this test, the tester shall choose 1 object, O1, in the TD, which is configured to send event notifications to
the IUT. The tester places O1 into an alarm state such that the transition requires an acknowledgment.

Test Steps:
1. TRANSMIT ConfirmedEventNotification-Request | UnconfirmedEventNotification-Request,
'Subscriber Process Identifier' = (a value acceptable to the IUT configured in the Notification Class
object for the IUT),
'Initiating Device Identifier' = TD,
'Event Object Identifier' = oOl,
'"Time Stamp' = (any valid value, T1),
'Notification Class' = (the value configured in O1),
'Priority' = (any value selected by the TD),
'Event Type' = (any value selected by the TD),
'Message Text' = (optional, any valid value),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE,
'From State' = (any valid value),
'"To State' = (any valid value, S1),
'Event Values' = (any event values appropriate to the event type)

2. IF (the ConfirmedEventNotification choice was selected) THEN
RECEIVE BACnet-SimpleACK-PDU

3. MAKE (the IUT acknowledge O1)
4. RECEIVE AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (any process identifier),
'Event Object Identifier' = Ol,
'Event State Acknowledged' = S1, or OFFNORMAL if S1 is an off-normal state
'Time Stamp' = T1,
'Acknowledgement Source' = (any valid value),
'Time of Acknowledgement' = (any valid value)

5. TRANSMIT BACnet-SimpleACK-PDU

8.1.X2 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the 'Initiating Device Identifier'
Parameter

Reason for Change: Added a new test ensuring correct behaviour acknowledging an event notification that has been forwarded
by a Notification Forwarder.

Purpose: To verify that the IUT is correctly implemented to send AcknowledgeAlarm directly to the device indicated by the
’Initiating Device Identifier’ parameter of the event notification, in alarms and events that are reported to the IUT via the

© 2022 by BACnet International. All rights reserved. 270

ConfirmedEventNotification and UnconfirmedEventNotfication services. Requests having the 'Initiating Device Identifier’

BACnet Testing Laboratories - Specified Tests

parameter equal-to and different from SOURCE, are both tested.

Test Concept: Two times. a purposefully constructed event notification is sent, and it is observed that IUT is acknowledging

directly to the device indicated by the 'Initiating Device Identifier' parameter of the event notification.

Configuration: For this test, the tester shall choose an object O1, and tester places O1 into an alarm state such that the transition
requires an acknowledgment. Then purposefully the EventNotification packet which is sent is crafted to represent that a
Notification Forwarder was involved, so though SOURCE is from the TD, the O1 resides in a different device TD1. Then the
steps are repeated but with 'Initiating Device Identifier' representing that O1 is in TD and thus the same device. Each time it

is observed that the AcknowledgeAlarm is sent to the device represented as the 'Initiating Device Identifier'.

Test Steps:
1. TRANSMIT ConfirmedEventNotification-Request | UnconfirmedEventNotification-Request,
'Subscriber Process Identifier' = (a value acceptable to the IUT configured in the Notification Class
object for the IUT),

[O8)

(9,

7.

8.

'Initiating Device Identifier' = TDI, // representing that O1 is in different device from SOURCE
'Event Object Identifier' = Ol,

'Time Stamp' = (any valid value, T1),

'Notification Class' = (the value configured in O1),

'Priority' = (any value selected by the TD),

'Event Type' = (any value selected by the TD),

'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE,

'From State' = (any valid value),

'"To State' = (any valid value, S1),

'Event Values' = (any event values appropriate to the event type)

IF (the ConfirmedEventNotification choice was selected) THEN

RECEIVE BACnet-SimpleACK-PDU

MAKE (the IUT acknowledge O1)
RECEIVE AcknowledgeAlarm-Request, DESTINATION=TD1

'Acknowledging Process Identifier' = (any process identifier),

'Event Object Identifier' = oOl,

'Event State Acknowledged' = S1, or OFFNORMAL if S1 is an off-normal state
'"Time Stamp' = T1,

'Acknowledgement Source' = (any valid value),

'Time of Acknowledgement' = (any valid value)

TRANSMIT BACnet-SimpleACK-PDU
TRANSMIT ConfirmedEventNotification-Request | UnconfirmedEventNotification-Request,

'Subscriber Process Identifier' = (a value acceptable to the [UT configured in the Notification Class
object for the IUT),

'Initiating Device Identifier' = TD, // representing that O1 is present in same device as SOURCE

'Event Object Identifier' = Ol,

'"Time Stamp' = (any valid value, T1),

'Notification Class' = (the value configured in O1),

'Priority' = (any value selected by the TD),

'Event Type' = (any value selected by the TD),

'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE,

'From State' = (any valid value),

'To State' = (any valid value, S1),

'Event Values' = (any event values appropriate to the event type)

IF (the ConfirmedEventNotification choice was selected) THEN

RECEIVE BACnet-SimpleACK-PDU

MAKE (the IUT acknowledge O1)

© 2022 by BACnet International. All rights reserved. 27 1

BACnet Testing Laboratories - Specified Tests

9. RECEIVE AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (any process identifier),

'Event Object Identifier' = Ol,

'Event State Acknowledged' = S1, or OFFNORMAL if S1 is an off-normal state
'Time Stamp' = T1,

'Acknowledgement Source' = (any valid value),

'Time of Acknowledgement' = (any valid value)

10. TRANSMIT BACnet-SimpleACK-PDU

8.2 ConfirmedCOVNotification Service Initiation Tests

8.2.1 Change of Value Notification for Changes to Present_Value in Objects with a COV_Increment

Reason for Change: Updated description of the 'List of Values' to improve readability. Updated 'Configuration Requirements'.
Add clarification to test that the last COVNotification shall reflect the correct values. Removed unnecessary RECEIVE
BACnet-SimpleACK-PDU steps. Improved test name and wording to include generic object references.

Purpose: To verify that the IUT can 1n1t1ate ConﬁrmedCOVNotlﬁcatlon service requests conveymg a change of the
Present_Value property 3 iehtin Z § natog t H o

Jla-lue—aﬁd—Peﬁm;e#ﬁege%Va-hte in Numertc Objects

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present Value of the monitored object is changed by an amount less than
the COV increment and it is verified that no COV notification is received. The Present Value is then changed by an amount
greater than the COV increment and a notification shall be received. The Present Value may be changed using the
WriteProperty service or by another means such as changing the input signal represented by an Analog Input object. For some
implementations it may be necessary to write to the Out Of Service property first to accomplish this task. For
implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out Of Service property shall have a value of FALSE. Select
an object where Present Value is not expected to change outside the tester's control by more than COV_Increment or which
has a writable Out Of Service. In devices where the COV Increment is always less than the minimal change that
Present Value can make, skip steps 8 through 10.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present Value and Status Flags.

Test Steps:

REPEAT X = (one supported object of each type
1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L

2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),

© 2022 by BACnet International. All rights reserved. 272

BACnet Testing Laboratories - Specified Tests

'List of Values' = (the initial Present Value and initial Status Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,

'Object Identifier' = X,
'Property Identifier' = COV_Increment
6. RECEIVE BACnet-ComplexACK-PDU,
'Object Identifier' = X,
'Property Identifier' = COV _Increment,
'Property Value' = (a value "increment" that will be used below)

7. IF (Out_Of Service is writable) THEN
WRITE X, Out_Of Service = TRUE
——RECEPNVEBAChet-SimpleACK—PBY
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier'= IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the—initialReportedPV = the current Present Value, and new

Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present Value is now writable) THEN

WRITE X, Present Value = (any value that differs from—initialPresent—Valae" ReportedPV by less than
"increment")
— RECEIVE BACaet-SimpleACKPDUY

ELSE

MAKE (Present_Value = any value that differs from “initial Present—Value" ReportedPV by less than "increment")
9. WAIT Notification Fail Time
10. CHECK (werify~that no COV notification was transmitted)
11. IF (Present_Value is now writable) THEN

WRITE X, Present Value = (any value that differs from “initial Present—Valae" ReportedPV by an amount greater
than "increment")
—— RECEIVE BACnet-SimpleACKPDY

ELSE

MAKE (Present Value = any value that differs from “initial Present—Valae" ReportedPV by an amount greater than
"increment")
12. BEFORE NotificationFailTime

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the new Present Value and new Status_Flags)

13. TRANSMIT BACnet-SimpleACK-PDU

14. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = X

15. RECEIVE BACnet-SimpleACK-PDU

16. IF (Out_Of Service is writable) THEN

WRITE X, Out_Of Service = FALSE
———RECEIVE BACnct-SimpleACK-PDUY
8.2.2 Change of Value Notification for Changes to Status_Flags Property

a N

2

© 2022 by BACnet International. All rights reserved. 273

BACnet Testing Laboratories - Specified Tests
Reason for Change: Add more primitive value objects. Updated 'Configuration Requirements'. Removed extraneous
SimpleACKs after WRITE statements. Updated descriptive text for 'List of Value' property.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property-efAnalogtnput-AnalegOu ad-Analeg e-obi

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Status Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or
by another means. For some implementations writing to the Out_Of Service property will accomplish this task. For
implementations where it is not possible to write to Status Flags or Out Of Service or change the Status Flags by any
other means, this test shall be skipped

Configuration Requirements: At the beginning of the test, the Out Of Service property shall have a value of FALSE. Select
an object where Present Value is not expected to change outside the tester's control by more than COV _Increment. If the
COV _Increment is supported or which has a writable Out_Of Service.

Test Steps:

REPEAT X = (one supported object of each type

1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L

2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the initial Present Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE X, Out_Of Service = TRUE | WRITE X, Status Flags = (a value that differs from "initial Status Flags") |
MAKE (Status_Flags = any value that differs from "initial Status_Flags")
IE (Woite] . ¥ S\ THEN
—RECERNEBAChetSimpleACKPDL
76. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'"Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (theinitialthe current Present_Value and new Status_Flags)

87. TRANSMIT BAChnet-SimpleACK-PDU

98. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = X

109.RECEIVE BACnet-SimpleACK-PDU

H10. IF (Out_Of Service was changed in step 5) THEN
WRITE X, Out_Of Service = FALSE

——RECEIVE BACaet-SimpleACKPDU

© 2022 by BACnet International. All rights reserved. 274

BACnet Testing Laboratories - Specified Tests

8.2.3 Change of Value Notification for Changes to Present_Value in Objects without a COV_Increment

Q alue Neo om-a- Bing nn Bing Outp and-Bing alue_Obic Prase

= U smgr U . O v 1 . ALATEE S ol v g Ppat—ant D . Y v H

Reason for Change: Updated the 'Configuration Requirements'. Removed extraneous SimpleACKs that appear after WRITE
statements. Modified descriptive text for 'List of Values' properties. Add clarification to test that the last COVNotification
shall reflect the correct values.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the

Present_Value property of BinaryInput; Binary-Output-and Binary-Valae-objects that do not support COV_Increment.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present Value of the monitored object is changed and a notification shall
be received. The Present Value may be changed using the WriteProperty service or by another means such as changing the
input signal represented by a Binary Input object. For some implementations it may be necessary to write to the
Out_Of Service property first to accomplish this task. For implementations where it is not possible to write to these properties
at all the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are equally
acceptable.

Configuration Requirements: At the beginning of the test, the Out Of Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control or which has a writable Out_Of Service.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present Value and Status_Flags.

Test Steps:

REPEAT X = (one supported object of each type

1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L

2. RECEIVE BAChnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the initial Present Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of Service is writable) THEN
WRITE X, Out_Of Service = TRUE
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'"Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the—mitialReportedPV = the current Present Value, andnew Current

Status_Flags)

© 2022 by BACnet International. All rights reserved. 275

BACnet Testing Laboratories - Specified Tests

TRANSMIT BAChnet-SimpleACK-PDU
6. IF (Present_Value is now writable) THEN
WRITE X, Present_Value = (any value that differs from “intial Present—Valae" ReportedPV)
ELSE
MAKE (Present Value = any value that differs from “initial Present—Value" ReportedPV)
7. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'"Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the new Present_Value and new-Current Status_Flags)

8. TRANSMIT BACnet-SimpleACK-PDU

9. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = X

10. RECEIVE BAChnet-SimpleACK-PDU

11. IF (Out_Of Service is writable) THEN
WRITE X, Out_Of Service = FALSE

——RECEIVE BACnet-SimpleACKPDY

8.2.7 Change of Value Notification from Loop Object Present_Value Property

Reason for Change: Added 'Configuration Requirements'. Corrected object reference in step 11. Updated wording for 'List
of Values' properties. Removed extraneous SimpleACKs after WRITE statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of a loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present Value of the monitored object is changed by an amount less than
the COV increment and it is verified that no COV notification is received. The Present Value is then changed by an amount
greater than the COV increment and a notification shall be received.

The Present Value may be changed by placing the Loop Out Of Service and writing directly to the Present Value. For
implementations where this option is not possible an alternative trigger mechanism shall be provided to accomplish this task,
such as changing the Setpoint or the Setpoint Reference. All of these methods are equally acceptable.

The object identifier of the Loop object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of Service property shall have a value of FALSE. Select

an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment or which
has a writable Out_Of Service.

Test Steps:

© 2022 by BACnet International. All rights reserved. 276

BACnet Testing Laboratories - Specified Tests

1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = Ol,

'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L

2. RECEIVE BAChnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = Ol,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the initial Present Value, initial Status_Flags, initial Setpoint, and

initial Controlled Variable Value)
4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,

'Object Identifier' = Ol,
'"Property Identifier' = COV_Increment
6. RECEIVE BACnet-ComplexACK-PDU,
'Object Identifier' = Ol,
'Property Identifier' = COV_Increment,
'Property Value' = (a value "increment" that will be used below)

7. IF (Out_Of Service is writable) THEN
WRITE O1, Out_Of Service = TRUE
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = Ol,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the-initialReportedPV = the current Present_Value, new Status_Flags;

wnitialcurrent Setpoint, and nitialcurrent Controlled Variable Value)
TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present_Value is now writable) THEN
WRITE Ol, Present Value = (any value that differs from “initialPresent—Valae" ReportedPV by less than
"increment")
ELSE
MAKE (Present_Value = any value that differs from “initial Present—Value" ReportedPV by less than "increment")
9. WAIT Notification Fail Time
10. CHECK (verify that no COV notification was transmitted)
11. IF (Present_Value is now writable) THEN
WRITE Ol1, Present_Value = (any value that differs from “initial Present—Valae"ReportedPV by an amount greater
than"increment")
ELSE
MAKE (Present Value = any value that differs from “initial Present—Valae"ReportedPV by an amount greater than
"increment")
12. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = oOl,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the new Present Value, new Status_Flags,—nitialcurrent Setpoint, and

inttial-currentControlled Variable Value)
13. TRANSMIT BACnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved. 277

BACnet Testing Laboratories - Specified Tests

14. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = Ol

15. RECEIVE BACnet-SimpleACK-PDU

16. IF (Out_Of Service is writable) THEN
WRITE EO1, Out_Of Service = FALSE

Delete entire test 8.2.8 from 135.1-2019

© 2022 by BACnet International. All rights reserved. 278

BACnet Testing Laboratories - Specified Tests

8.2.X9 ConfirmedCOVNotification Pulse Converter changing Present_Value

Reason for Change: New test.

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Present_Value property.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present Value of the monitored object is changed by an amount less than
the COV increment and it is verified that no COV notification is received. The Present Value property can be changed by
using the WriteProperty service or by another means. For some implementations writing to the Out_Of Service property will
enable the Present Value property to be changed by the WriteProperty service. The object identifier of the Pulse Converter
object being tested is designated as Ol in the test steps below.

Configuration Requirements: At the beginning of the test, the Out Of Service property shall have a value of FALSE. Select
an object where Present Value is not expected to change outside the tester's control by more than COV_Increment or which
has a writable Out_Of Service.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = Ol,
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = L

2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = Ol,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the initial Present Value, initial Status_Flags, and

Update Time)
4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,
'Object Identifier' = Ol,
'Property Identifier' = COV _Increment
6. RECEIVE BACnet-ComplexACK-PDU,

© 2022 by BACnet International. All rights reserved. 279

BACnet Testing Laboratories - Specified Tests

'Object Identifier' = Ol,
'"Property Identifier' = COV_Increment,
'Property Value' = (a value "increment" that will be used below)

7. IF (Out_Of Service is writable) THEN
WRITE O1, Out_Of Service = TRUE
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = oOl,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (ReportedPV = the current Present Value, new Status Flags, and

current Update Time)
8. TRANSMIT BACnet-SimpleACK-PDU
9. [IF (Present Value is now writable) THEN
WRITE Ol1, Present_Value = (any value that differs from ReportedPV by less than "increment")
ELSE
MAKE (Present_Value = any value that differs from ReportedPV by less than "increment")
10. WAIT Notification Fail Time
11. CHECK (verify that no COV notification was transmitted)
12. IF (Present_Value is now writable) THEN
WRITE Ol, Present_Value = (any value that differs from ReportedPV by an amount greater than "increment")
ELSE
MAKE (Present_Value = any value that differs from ReportedPV by an amount greater than "increment")

13. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = Ol,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the new Present_Value, new Status_Flags, and current Update_Time)

14. TRANSMIT BACnet-SimpleACK-PDU

15. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = 0]

16. RECEIVE BACnet-SimpleACK-PDU

17. IF (Out_Of Service was changed in step 7) THEN
WRITE O1, Out Of Service = FALSE

8.2.X10 ConfirmedCOVNotification Pulse Converter changing Status_Flags
Reason for Change: New Test

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Status_Flags property.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Status Flags property of the monitored object is then changed and a
notification shall be received. For some implementations writing to the Out Of Service property will accomplish this task.
For implementations where it is not possible to write Out_Of Service or change the Status Flags by any other means,
this test shall be skipped. The object identifier of the Pulse Converter object being tested is designated as Ol in the test
steps below.

© 2022 by BACnet International. All rights reserved. 280

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: At the beginning of the test, the Out Of Service property shall have a value of FALSE. Select
an object where Present Value is not expected to change outside the tester's control by more than COV_Increment.
COV_Period is configured high enough that is does not trigger many COV notifications during the execution of the test.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = Ol,
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = L

2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = Ol,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the initial Present Value, initial Status_Flags, and

Update Time)

4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of Service is writable) THEN

WRITE Out_Of Service = TRUE

ELSE

MAKE (Status_Flags = any value that differs from initial Status_Flags)
6. BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = Ol,
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the current Present Value, new Status_Flags, and Update_Time)
7. TRANSMIT BACnet-SimpleACK-PDU
8. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = Ol

9. RECEIVE BACnet-SimpleACK-PDU
10. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE

8.2.X11 Change of Value Notification from an Access Door object Present_Value, Status_Flags and
Door_Alarm_State property

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Access Door objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present Value of the monitored object is changed, and a notification
shall be received. The Present Value may be changed using the WriteProperty service or by another means. For some
implementations it may be necessary to write to the Out Of Service property first to accomplish this task. For
implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger
mechanism to accomplish this task. All these methods are equally acceptable.

© 2022 by BACnet International. All rights reserved. 28 1

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: At the beginning of the test, the Out Of Service property shall have a value of FALSE. Select
an object where Present_Value is not expected to change outside the tester's control, or which has a writable Out_Of Service.
Ifno object has a Door Alarm_State property, then step 9,10,11 shall be skipped. For implementations where it is not possible
to write Out_Of Service or change the Status_Flags by any other means, step 5,6,7 shall be skipped

Test Steps:

REPEAT X = (one supported object of type Access Door) DO {
1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (any value > Ochosen by the TD),
'Monitored Object Identifier' = X,
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,
'"Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the initial Present Value, initial Status_Flags, and
Door_Alarm_State if X has a Door_Alarm_State property)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = TRUE
ELSE
MAKE (Status_Flags = any value that differs from initial Status_Flags)

6. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,
'"Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (ReportedPV=current Present Value, new Status_Flags, and
Door Alarm_State if X has a Door Alarm_State property)
7. TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present_Value is writable) THEN
WRITE X,Present Value = (any value that differs from ReportedPV)
ELSE
MAKE (Present_Value = any value that differs from ReportedPV)
9. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the new Present Value, new Status Flags, and Door Alarm State if X has a
Door_Alarm_State property)
10. TRANSMIT BACnet-SimpleACK-PDU
11. IF (Door Alarm_State is now writable) THEN
WRITE Door_Alarm_State = (any value that differs from its initial Door Alarm_State)
ELSE
MAKE (Door_Alarm_State = any value that differs from its initial Door Alarm_State)
12. BEFORE Notification Fail Time

© 2022 by BACnet International. All rights reserved. 282

BACnet Testing Laboratories - Specified Tests

RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in Step 1),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the new Present Value, new Status_Flags, and Door Alarm_State)
13. TRANSMIT BACnet-SimpleACK-PDU

14. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in the SubscribeCOV-Request),
'Monitored Object Identifier' = X

15. RECEIVE BACnet-SimpleACK-PDU

16. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE

8.2.X12 Change of Value Notification from an Access Point object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status Flags and Access Event Time properties of Access Point objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Access Event Time and Status_Flags of the monitored object is changed,
and a notification shall be received. The properties may be changed using the WriteProperty service or by another means. For
some implementations it may be necessary to write to the Out Of Service property first to accomplish this task. For
implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable. For implementations where it is not possible
to write Out_Of Service or change the Status Flags by any other means, step 5,6,7 shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of Service property shall have a value of FALSE.
Test Steps:

1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (PI: any value > 0 chosen by the TD),
'Monitored Object Identifier' = X,
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = L
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PI,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,
'"Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the initial Access Event, Status Flags, Access Event Tag,
Access_Event Time, Access Event Credential and
Access_Event Authentication Factor if X has an
Access_Event Authentication Factor property)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of Service is writable) THEN
WRITE X,0Out Of Service = TRUE
ELSE
MAKE (Status_Flags = any value that differs from initial Status_Flags)
6. BEFORE Notification Fail Time

© 2022 by BACnet International. All rights reserved. 283

BACnet Testing Laboratories - Specified Tests

RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PI,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the initial Access_Event, new Status_Flags, initial Access_Event Tag,
Access Event Time, Access_Event Credential and
Access_Event Authentication Factor if X has a Access Event Authentication Factor
property)
7. TRANSMIT BACnet-SimpleACK-PDU
8. IF (Access_Event Time is now writable) THEN
WRITE Access_Event Time = (any value that differs from initial Access_Event Time)
ELSE
MAKE (Access_Event Time = any value that differs from initial Access_Event Time)
9. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PI,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (the new values of Access Event, Access_Event Tag, Access Event Time,
Access_Event Credential, and Access Event Authentication Factor if X has
Access Event Authentication Factor property)
10. TRANSMIT BACnet-SimpleACK-PDU
11. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = PI,
'Monitored Object Identifier' = X
12. RECEIVE BACnet-SimpleACK-PDU
13. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service= FALSE
14. CHECK (verify that no notification message has been transmitted)

8.2.X13 Change of Value Notification from a Credential Data Input object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags and Update Time properties of Credential Data Input objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Status Flags and Update Time properties of the monitored object is
changed, and a notification shall be received. The properties may be changed using the WriteProperty service or by another
means. For some implementations it may be necessary to write to the Out_Of Service property first to accomplish this task.
For implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable. For implementations where it is not possible
to write Out_Of Service or change the Status Flags by any other means, step 5,6,7 shall be skipped

Configuration Requirements: At the beginning of the test, the Out Of Service property shall have a value of FALSE.
Test Steps:
1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (PI: any value > Ochosen by the TD),

'Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,
'Lifetime' = L

© 2022 by BACnet International. All rights reserved. 284

BACnet Testing Laboratories - Specified Tests

2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PI,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the initial Present Value, initial Status Flags, and
Update Time (most recent update time when the Present Value was
updated))

4. TRANSMIT BAChnet-SimpleACK-PDU
5. IF (Out_Of Service is writable) THEN
WRITE X, Out_Of Service =TRUE
ELSE
MAKE (Status_Flags = any value that differs from initial Status_Flags)

6. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier'= PI,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the initial Present Value, new Status_Flags, and Update Time

(most recent update time when the Present Value was updated))

7. TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present Value is now writable) THEN

WRITE X, Present Value = (any value that differs from initial Present Value)

ELSE

MAKE (Present_Value = any value that differs from initial Present Value)

9. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PI,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (the new Present_Value, new Status_Flags, and Update Time

(most recent update time when the Present Value was updated))

10. TRANSMIT BACnet-SimpleACK-PDU
11. Verify Update Time received in step 7.
12. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = PI,
'Monitored Object Identifier' = X
13. RECEIVE BACnet-SimpleACK-PDU
14. IF (Out_Of Service is writable) THEN
WRITE Out_Of Service = FALSE
15. CHECK (verify that no notification message has been transmitted)

8.2.X17 Change of Value Notification of Staging Object Present_Value Property
Reason for Change: No test exist for this functionality.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property in Staging objects that support COV_Increment.

© 2022 by BACnet International. All rights reserved. 285

BACnet Testing Laboratories - Specified Tests

Test Concept: A CPV subscription is established, using a Lifetime of L. L shall be set to a value less than 24 hours and large
enough to complete the test. The Present_Value of the monitored object is changed by an amount less than the COV increment
and it is verified that no COV notification is received. The Present Value is then changed by an amount greater than the COV
increment and a notification shall be received.

Configuration Requirements: Select a Staging object where Present Value is not expected to change outside the tester's
control. The object is configured such that the change in Present Value required to change stages is larger than
COV_Increment. If the IUT cannot be configured with such a Staging object, this test shall be skipped.

Test Steps:

1. READ PVI1 = Present Value
2. READ SF1 = Status_Flags
3. READ PS1 = Present_Stage

-- subscribe for COV and receive initial notification
4. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (PID1: any value > 0 chosen by the TD),

'Monitored Object Identifier' = X,
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = L

5. RECEIVE BACnet-SimpleACK-PDU
6. BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
'Initiating Device Identifier' =
'Monitored Object Identifier' =
'"Time Remaining' =

'List of Values' =

PIDI,

IUT,

X)

(any value appropriate for the Lifetime selected),
(PV1, SF1, PS1)

7. TRANSMIT BACnet-SimpleACK-PDU

-- change Present_Value by less than COV_Increment, and not enough to change the stage

8. WRITE X, Present Value = (PV2: a value that differs from PV1 by less than COV_Increment and which is in
the range for the current stage)

9. WAIT Notification Fail Time

10. CHECK (verify that no COV notification was transmitted)

-- change Present_Value by more than COV_Increment, but not enough to change the stage
11. WRITE X, Present_Value = (PV3: a value that differs from PV1 by an amount greater than COV_Increment
and which is in the range for the current stage)
12. BEFORE NotificationFailTime
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' =
'Initiating Device Identifier' =
'Monitored Object Identifier' =
'"Time Remaining' =
'List of Values' =

13. TRANSMIT BACnet-SimpleACK-PDU

-- cleanup the subscription

14. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' =
'Monitored Object Identifier' =

15. RECEIVE BAChnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved.

PID1,

IUT,

X,

(any value appropriate for the Lifetime selected),
(PV3, SF1, PS1)

PIDI,

286

BACnet Testing Laboratories - Specified Tests

8.2.X18 Change of Value Notification of Staging Object Status_Flags Property
Reason for Change: No test existing or this functionality.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Staging objects.

Test Concept: A COV subscription is established, using a Lifetime of L. L shall be set to a value less than 24 hours and large
enough to complete the test. The Status_Flags property of the monitored object is then changed and a notification shall be
received. The value of the Status Flags property can be changed by using the WriteProperty service or by another means.
For implementations where it is not possible to write Out Of Service or change the Status Flags by any other means, this
test shall be skipped.

Configuration Requirements: Select a Staging object where Present Value is not expected to change outside the tester's
control.

Test Steps:

1. VERIFY Out_Of Service = FALSE
2. READ PV1 = Present_Value

3. READ SF1 = Status_Flags

4. READ PS1 = Present_Stage

-- subscribe for COV and receive initial notification
5. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (PID1: any value > 0 chosen by the TD),
'Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L

6. RECEIVE BACnet-SimpleACK-PDU
7. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier'= PIDI,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'"Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (PV1, SF1, PS1)

8. TRANSMIT BACnet-SimpleACK-PDU

-- change Status_Flags and receive notification
9. [IF Out_Of Service is writable THEN

WRITE X, Out_Of Service = TRUE

SF2 = (SF1 with the Out_Of Service bit changed to 1)

ELSE

MAKE (Status_Flags = SF2, any value other than SF1)
10. BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier'= PIDI,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (PV1, SF2, PS1)

11. TRANSMIT BACnet-SimpleACK-PDU
-- cleanup the subscription and Out_Of Service

12. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier'= PIDI,

© 2022 by BACnet International. All rights reserved. 287

BACnet Testing Laboratories - Specified Tests

'Monitored Object Identifier' = X

13. RECEIVE BACnet-SimpleACK-PDU

14. TF (Out_Of Service was changed via writing) THEN
WRITE X, Out_Of Service = FALSE

8.2.X19 Change of Value Notification of Staging Object Present_Stage Property
Reason for Change: No test existing or this functionality.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Stage property of Staging objects.

Test Concept: A COV subscription is established, using a Lifetime of L. L shall be set to a value less than 24 hours and large
enough to complete the test. The Present Stage property of the monitored object is then changed and a notification shall be
received.

Configuration Requirements: Select a Staging object, O1, where Present Value is not expected to change outside the tester's
control. The object shall be configured with Present Value having a value, PV1, which is less then COV_Increment away
from a value, PV2, which will change the current stage to a new stage, PS2. If no Staging object can be configured with a
COV _increment larger than the resolution of Present Value, this test shall be skipped.

Test Steps:

1. VERIFY Present Value =PV1

2. VERIFY Present Stage = PS2

3. READ SF1 = Status_Flags

4. CHECK(The difference between PV1 and PV2 is less than COV_Increment)

-- subscribe for COV and receive initial notification
5. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (PID1: any value > 0 chosen by the TD),
'Monitored Object Identifier' = Ol,

'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L

6. RECEIVE BACnet-SimpleACK-PDU
7. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PID1,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = oOl,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (PV1, SF1, PS1)

8. TRANSMIT BACnet-SimpleACK-PDU

-- change Present_Value and receive notification
9. WRITE X, Present Value =PV2
10. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PIDI1,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = oOl,

'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (PV2, SF1, PS2)

11. TRANSMIT BACnet-SimpleACK-PDU

-- cleanup the subscription

© 2022 by BACnet International. All rights reserved. 288

BACnet Testing Laboratories - Specified Tests

12. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = PID1,
'Monitored Object Identifier' = Ol
13. RECEIVE BACnet-SimpleACK-PDU

8.3 UnconfirmedCOVNotification Service Initiation Tests

8.3.1 Change of Value Notification for Changes to Present_Value in Objects with a COV_Increment

Preperty
Reason for Change: Addendum 135-2008w-1, and 135-2-1-i-1 Add more primitive value objects and the Lighting Output
Object. Add clarification to test that the last COVNotification shall reflect the correct values.

Purpose: To verify that the IUT can initiate UnconﬁrmedCOVNotlﬁcatlon serv1ce requests conveying a change of the
Present_Value property efAnalogtnp palog nd-Analog

Test Steps: The steps for this test case are identical to the test steps in 8.2.1 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present Value and Status Flags.

8.3.2 Change of Value Notification for Changes to Status_Flags Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the I[UT can initiate UnconfirmedCOVNotification serv1ce requests conveying a change of the
Status_Flags property natogInp halog ad-Analos cobie

Test Steps: The steps for this test case are identical to the test steps in 8.2.2 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.3 Change of Value Notification for Changes to Present_Value in Objects without a COV_Increment

Reason for Change: Renamed test. Add clarification to test that the last COVNotification shall reflect the correct values.

Purpose: To verify that the IUT can initiate UnconﬁrmedCOVNotlﬁcatlon serV1ce requests conveying a change of the
Present Value property: ; H : eets of objects that do not support
COV _Increment.

Test Steps: The steps for this test case are identical to the test steps in 8.2.3 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

© 2022 by BACnet International. All rights reserved. 289

BACnet Testing Laboratories - Specified Tests

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present Value and Status_Flags.

[Delete this test from 135.1-2019]

8.3.7 Change of Value Notification from Loop Object Present_Value Property
Reason for Change: Add clarification to test that the last COVNotification shall reflect the correct values.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value property of a Loop object.

Test Steps: The steps for this test case are identical to the test steps in 8.2.7 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present Value and Status Flags.

[Delete this test from 135.1-2019]
8.3.9 Unsubscribed Change of Value Notifications
Reason for Change: Add Process ID Requirement and Abort Conditionality to test.

Unsubscribed COV notifications differ from subscribed COV notifications that use the UnconfirmedCOVNotification service
in two respects. First, no subscription is required. Second, the 'Subscriber Process Identifier' parameter usually has a value of
ZEero.

BACnet Reference Clauses: 13.7.

Purpose: To verify that the IUT can initiate UnconfirmedCOV Notification service requests when no subscription for the COV
notification has been made.

Test Concept: The IUT is configured to send unsubscribed COV notifications. The TD then waits for the notification. Given

that there is no defined trigger, the vendor shall inform the tester how to make the IUT generate the notifications if they are
not sent periodically.

© 2022 by BACnet International. All rights reserved. 290

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. MAKE (the IUT send an unsubscribed COV notification)
2. BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = 0,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (any valid object identifier),
'Time Remaining' = 0,
'List of Values' = (any valid properties and values from the monitored object)

8.3.10 Device Restart Notifications

Reason for Change: CR-0437 pointed out that test 135.1-2013 8.3.10 does not work for devices that don't have a Local Time
property and use a sequence number in Restart Notifications.

Purpose: To verify that the IUT initiates UnconfirmedCOVNotification service requests to each entry in its
Restart Notification Recipients property when it resets.

Test Concept: The IUT is configured to send restart notifications and is then reset. The TD checks for the restart notifications.

Device restart notifications differ from subscribed COV notifications that use the UnconfirmedCOV Notification service in
two respects. First, subscription is made through the Restart Notification Recipients property instead of SubscribeCOV.
Second, the 'Subscriber Process Identifier' parameter always has a value of zero.

Configuration Requirements: For each Recipient of the Restart Notification Recipients property in the IUT which is of the
device form, there shall be a device on the network that will answer Who-Is requests so that the IUT can determine addressing
information before sending the restart notification.

Test Steps:

1. IF (Restart Notification Recipients is writable) THEN

WRITE(Restart_Notification Recipients = any non-empty list of Recipients)

ELSE

MAKE (Restart Notification Recipients contain any non-empty list of Recipients)
2—READ T—=1toecal-TFime
32. MAKE(the IUT reset)
43. REPEAT X = (each entry in the Restart Notification_Recipients) DO {

BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

DESTINATION = X,

'Subscriber Process Identifier' = 0,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = (the TUT Device Identifier),

'"Time Remaining' = 0,

'List of Values' = (System_Status=OPERATIONAL,

Time Of Device Restart = (T2),
Last Restart Reason=(any valid restart reason, R))
}
54. VERIFY Time Of Device Restart=T2
6—CHECKA(T1-—=T2)
75. VERIFY Last Restart Reason =R
6. IF (T2 is not a sequence number) THEN
VERIFY Local Time ~= T2

© 2022 by BACnet International. All rights reserved. 29 1

BACnet Testing Laboratories - Specified Tests

ELSE
MAKE(the IUT reset)
REPEAT X = (each entry in the Restart Notification Recipients) DO {
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOV Notification-Request,
DESTINATION = X,
'Subscriber Process Identifier' = 0,
'Initiating Device Identifier' = IUT,
'"Monitored Object Identifier' = (the IUT Device Identifier),
'Time Remaining' = 0,
'List of Values' = (System_Status=OPERATIONAL,
Time_Of Device_Restart = (T3),
Last Restart Reason=(any valid restart reason, R))
CHECK (T3> T2)

Notes to tester: Not all [UTs can accurately differentiate between the types of restart reasons and thus no requirements are
placed on the value returned in the restart notification(s) step4. The test shall pass regardless of the order in which the restart

notifications are sent to the recipients. FdF-generates-the UnconfirmedCOVNotification-Requests-instep4. The-value of T2
shall-be-the same-for-each-notificationsent-outin-step4- If the Restart Notification Recipients list has multiple recipients,

then the Time_Of Device Restart value is expected to be the same in all notifications resulting from the same restart.

8.3.X1 COVU_Recipients Notifications

Reason for Change: No existing test in the standard.

Purpose: To verify that the IUT initiates UnconfirmedCOVNotification service requests to each entry in its
COVU_Recipients property based on COVU_Period.

Test Concept: The IUT contains a Global Group object, O1, that is configured to periodically send
UnconfirmedCOVNotification using COVU_Period and COVU_Recipients. The TD checks for these notifications.

Configuration Requirements: COVU_Recipients property shall be non-empty and contain at least one device and one address
based recipient. The COVU_Period shall be non-zero.

Notes to tester: The test shall pass regardless of the order in which the IUT generates the UnconfirmedCOVNotification-
Requests in each step.

Test Steps:
1. REPEAT X = (each entry in the COVU_Recipients) DO {

BEFORE COVU_Period + Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

DESTINATION = X,

'Subscriber Process Identifier'= 0,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = Ol,

'Time Remaining' = 0,

'List of Values' = (Member_Status_Flags,

Elements of Present Value)
IF (X is the first entry in the COVU_Recipients) THEN
READ T1 = Local Time
i
2. READ T1 = Local Time
3. REPEAT X = (each entry in the COVU_Recipients) DO {
BEFORE COVU_Period + Notification Fail Time

© 2022 by BACnet International. All rights reserved. 292

BACnet Testing Laboratories - Specified Tests

RECEIVE UnconfirmedCOVNotification-Request,

DESTINATION = X,

'Subscriber Process Identifier'= 0,

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = o1,

'Time Remaining' = 0,

'List of Values' = (Member_Status_Flags,

Elements of Present Value)
IF (X is the first entry in the COVU_Recipients) THEN
READ T2 = Local Time

§
4. CHECK (T2 - T1 ~= COVU_Period)

8.3.X12 UnconfirmedCOVNotification Pulse Converter changing Present_Value

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Present_Value property.

Test Concept: This test is the same as 8.2.X9 except that the SubscribeCOV service request in step 1 shall have a value of
FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be
UnconfirmedCOVNotification requests, and there is no BACnet-SimpleACK-PDU returned in acknowledgment of the
unconfirmed services.

Notes to Tester: The IUT may initiate additional COVNotifications. The final COVNotification shall accurately reflect
Present_Value and Status_Flags.

8.3.X13 UnconfirmedCOVNotification Pulse Converter changing Status_Flags

Purpose: To verify the correct operation of COV in the Pulse Converter object. The Pulse Converter initiates periodic COV
Notifications every COV_Period, even when there are no changes in the object, in addition to the COV notifications that this
object type generates due to changes in the Status_Flags property.

Test Concept: This test is the same as 8.2.X10 except that the SubscribeCOV service request in step 1 shall have a value of
FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification requests shall be
UnconfirmedCOVNotification requests, and there is no BACnet-SimpleACK-PDU returned in acknowledgment of the
unconfirmed services.

8.3.X14 Change of Value Notification from an Access Door object Present Value, Status Flags and
Door_Alarm_State property

Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value, Status_Flag and Door Alarm_State property of Access Door objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X11 except that the SubscribeCOV service request

in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all the ConfirmedCOVNotification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services.

8.3.X15 Change of Value Notification from an Access Point object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flag and Access_Event Time properties of Access Point objects.

© 2022 by BACnet International. All rights reserved. 293

BACnet Testing Laboratories - Specified Tests

Test Steps: The steps for this test case are identical to the test steps in 8.2.X12 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services.

8.3.X16 Change of Value Notification from a Credential Data Input Object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags and Update Time properties of Credential Data Input objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X13 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all the ConfirmedCOVNotification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services.

8.3.X17 Change of Value Notification of Staging Object Present_Value Property
Reason for Change: No test exists for this functionality

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Value property of Staging objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X17 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.X18 Change of Value Notification of Staging Object Status_Flags Property
Reason for Change: No test exists for this functionality

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Staging objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X18 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.X19 Change of Value Notification of Staging Object Present_Stage Property

Reason for Change: No test exists for this functionality

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Present_Stage property of Staging objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.X18 except that the SubscribeCOV service request
in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOV Notification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

© 2022 by BACnet International. All rights reserved. 294

BACnet Testing Laboratories - Specified Tests

8.4 ConfirmedEventNotification Service Initiation Tests

8.4.4 COMMAND_FAILURE Tests (ConfirmedEventNotification)
Reason for Change: Corrects the Status_Flags values expected.

Purpose: To verify the correct operation of the COMMAND_FAILURE algorithm.

Test Concept: pFeedbackValue shall be decoupled from the input signal that is normally used to verify the output. Initially
pMonitoredValue and pFeedbackValue are in agreement. pMonitoredValue is changed and an event notification should be
transmitted indicating a transition to an OFFNORMAL state. pFeedbackValue is changed to again fo agree with

pMonitoredValue. A second event notification is transmitted indicating a return to a NORMAL state.

Configuration Requirements: The IUT shall be configured such that the Event Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed Notifications property shall have a value of TRUE.
The event-generating object shall be in a NORMAL state at the start of the test. pFeedbackValue shall be decoupled from the

input signal that is normally used to verify the output so that it can be independently manipulated.

Test Steps:

—

VERIFY pCurrentState = NORMAL
2. IF (Protocol Revision is present AND Protocol Revision >= 13) THEN
VERIFY Status Flags = FALSE FALSE FALSE EALSEYFALSE, FALSE, 2, ?)
3. IF (pMonitoredValue is writable) THE
WRITE Present Value = (a different value)
ELSE
MAKE (Present_Value take on a different value)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

"Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = 1UT,

'Event Object Identifier' = (the object being tested),

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (the configured notification class),
'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = COMMAND FAILURE,

'Message Text' = (optional, any valid message text),

"Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = OFFNORMAL,

'Event Values' = pMonitoredValue, pStatusFlags, pFeedbackValue

6. TRANSMIT BACnet-SimpleACK-PDU

7. IF (Protocol Revision is present AND Protocol Revision >= 13) THEN
VERIFY pStatusFlags = (TRUE, FALSE, ?, ?

8. VERIFY pCurrentState = OFFNORMAL

9. IF (Protocol Revision is present and Protocol Revision > 1) THEN
VERIFY Event Time Stamps = (the timestamp in step 5, *, *

10. IF (pFeedbackValue is writable) THEN
WRITE pFeedbackValue = (a value consistent with pMonitoredValue)

ELSE

MAKE (pFeedbackValue take on a value consistent with pMonitoredValue)

11. WAIT (pTimeDelay)

12. BEFORE Notification Fail Time

© 2022 by BACnet International. All rights reserved. 295

BACnet Testing Laboratories - Specified Tests

RECEIVE ConfirmedEventNotification-Request,

"Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object being tested),

'Time Stamp' = (any valid time stamp),

'Notification Class' = (the configured notification class),
'Priority' = (the value configured to correspond to a TO-NORMAL transition),
'Event Type' = COMMAND_ FAILURE,

'Message Text' = (optional, any valid message text),
'Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = OFFNORMAL,

'To State' = NORMAL,

'Event Values' = pMonitoredValue, pStatusFlags, pFeedbackValue

13. TRANSMIT BACnet-SimpleACK-PDU
14. IF (Protocol Revision is present AND Protocol Revision >= 13) THEN
VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
15. VERIFY pCurrentState = NORMAL
16. IF (Protocol Revision is present and Protocol Revision > 1) THEN
VERIFY Event Time Stamps = (the timestamp in step 5, *, the timestamp in step 12)

Notes to Tester: The time stamps indicated by "*" in steps 9 and 16 can have a value that indicates an unspecified time or a
time that precedes the timestamp in step 5.

8.4.8.7 Mode Transition Tests when Event State is Maintained

Reason for change: Modify the test case as per CR-0477, when IUT does not support Mode changes which maintain the
current Event State.

Purpose: To verify the correct operation of the CHANGE OF LIFE SAFETY event algorithm for objects transitioning
between the NORMAL, OFFNORMAL and LIFE_ SAFETY ALARM event states when a mode change occurs. Tests are
conducted when a mode change occurs, but the event state does not change. Tests are also conducted when a mode change
occurs simultaneously with an event state change. In this latter case, the test verifies that the notification is immediate rather
than waiting for the time delay.

Test Concept: The object begins the test in a NORMAL state. The Mode is changed. After the time delay expires, the object
should transmit an event notification message. This operation is tested in the OFFNORMAL and LIFE SAFETY ALARM
states as well.

The test is then repeated by changing the Mode property and simultaneously selecting a pMonitoredValue designated in
pAlarmValues. The object should immediately enter the OFFNORMAL state and transmit an event notification message.
pMonitoredValue is then changed to a value corresponding to a NORMAL state, and the Mode is simultaneously written.
The object should immediately enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The IUT shall be configured such that the Event Enable property has a value of TRUE for the
TO-OFFNORMAL, and TO-NORMAL transitions. The 'Issue_Confirmed Notifications' parameter shall have a value of
TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

Test Steps:

1. VERIFY Event Detection Enable = TRUE

2. CHECK (pCurrentState = NORMAL)

3. MAKE (pMonitoredValue have a value that corresponds to a NORMAL state)

4. IF (IUT supports another pMode value which maintains the NORMAL state) THEN {
4—MAKE (pMode = different value that maintains pCurrentState as NORMAL)

© 2022 by BACnet International. All rights reserved. 296

BACnet Testing Laboratories - Specified Tests

5 WAIT (pTimeDelayNormal)
6— BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being
tested),
'Time Stamp' = (T1: any valid time stamp),
'Notification Class' = (the configured notification class),
'Priority' = (the value configured to correspond to a TO-NORMAL transition),
'Event Type' = CHANGE_OF LIFE SAFETY,
'Message Text' = (S1: optional, any valid message text),
'Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = NORMAL,
'Event Values' = pMonitoredValue, pMode, pStatusFlags, pOperationExpected
TRANSMIT BAChnet-SimpleACK-PDU
IF (Protocol Revision is present AND Protocol Revision > 13) THEN
VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
VERIFY pCurrentState = NORMAL
IF (Protocol Revision is present AND Protocol Revision > 1) THEN
VERIFY Event Time Stamps = (¥, *, T1)
IF (Event Message Texts property exists) THEN
VERIFY Event Message Texts = (*, *, S1)

/
5. 2MAKE (pMonitoredValue have a value that corresponds to an OFFNORMAL state)
6. VERIFY pCurrentState = OFFNORMAL
7. IF (IUT supports another pMode value which maintains the OFFNORMAL state) THEN {
13 MAKE (pMode = different value that maintains pCurrentState as OFFNORMAL)
14 WAIT (pTimeDelay)
15 BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being
tested),
'"Time Stamp' = (T2: any valid time stamp),
'Notification Class' = (the configured notification class),
'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = CHANGE_OF LIFE_SAFETY,
'Message Text' = (S2: optional, any valid message text),
"Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = OFFNORMAL,
'To State' = OFFNORMAL,
'Event Values' = pMonitoredValue, pMode, pStatusFlags, pOperationExpected
TRANSMIT BAChnet-SimpleACK-PDU
IF (Protocol Revision is present AND Protocol Revision > 13) THEN
VERIFY pStatusFlags = (TRUE, FALSE, ?, ?7)
VERIFY pCurrentState = OFFNORMAL
IF (Protocol Revision is present AND Protocol Revision > 1) THEN
VERIFY Event Time Stamps = (T2, *, *)
IF (Event_Message Texts property exists) THEN
VERIFY Event Message Texts =(S2, *, *

2 FE TR

© 2022 by BACnet International. All rights reserved. 297

BACnet Testing Laboratories - Specified Tests

/
8. 2-MAKE (pMonitoredValue have a value that corresponds to a LIFE SAFETY ALARM state)
9. IF (IUT supports another pMode value which maintains the LIFE SAFETY ALARM state) THEN {
22 MAKE (pMode = different value that maintains pCurrentState = LIFE_ SAFETY ALARM)
23- WAIT (pTimeDelay)
24- BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object being
tested),
'Time Stamp' = (T3: any valid time stamp),
'Notification Class' = (the configured notification class),
'Priority' = (the value configured to correspond to a TO-NORMAL transition),
'Event Type' = CHANGE_OF LIFE_SAFETY,
'Message Text' = (S3: optional, any valid message text),
'Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = OFFNORMAL,
'To State' = OFFNORMAL,
'Event Values' = pMonitoredValue, pMode, pStatusFlags, pOperationExpected
TRANSMIT BAChnet-SimpleACK-PDU
IF (Protocol Revision is present AND Protocol Revision > 13) THEN
VERIFY pStatusFlags = (TRUE, FALSE, ?, ?7)
VERIFY pCurrentState = OFFNORMAL
IF (Protocol Revision is present AND Protocol Revision > 1) THEN
VERIFY Event_Time Stamps = (T3, *, *)
IF (Event Message Texts property exists) THEN
VERIFY Event Message Texts = (S3, *, *

B EE RE

N~

8.4.9 EXTENDED Test (ConfirmedEventNotification)

Reason for Change: Added clarifying statement in Test Concept. Added Notes to Tester. Added step numbers back for
clarity.

Purpose: To verify the correct generation EXTENDED event notifications.

Test Concept: The event generating object is made to transition to any state by any means necessary. The resulting
ConfirmedEventNotification message is received and verified. The object begins the test in a NORMAL state.

Configuration Requirements: The IUT shall be configured such that the Event Enable property has a value of TRUE for
whichever transition shall be used for the test. The Tssue Confirmed Notifications' parameter shall have a value of TRUE.

D1 and D2 are vendor specific delays (either of them or both may be zero).

Notes to Tester: The time stamps indicated by "*" can have any valid value.

Test Steps:

1. IF (the object generates TO-OFFNORMAL transitions) THEN {
2 READ CS1 = pCurrentState

3. MAKE (an OFFNORMAL condition exist)

4 WAIT D1

© 2022 by BACnet International. All rights reserved. 298

5.

9.

}

BACnet Testing Laboratories - Specified Tests

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =
'Notification Class' =
'Priority' =

'Event Type' =

'Message Text' =

"Notify Type' =
'AckRequired' =

'From State' =

'To State' =

'Event Values' =

(any valid process ID),

IUT,

(the event generating object),

(TS1: the current local time),

(the configured notification class),

(the value configured for TO_ OFFNORMAL),

EXTENDED,

(optional, any valid message text),

EVENT | ALARM,

TRUE | FALSE,

CSl1,

(CS2: any offnormal valid event state),

((pVendorld: any valid vendor id),
(pEventType: any valid event-type),
(a list of 0 or more valid parameters as defined by the Vendor)

)

TRANSMIT BACnet-SimpleACK-PDU
IF (Protocol Revision is present AND Protocol Revision >= 13) THEN
VERIFY pStatusFlags = (TRUE, FALSE,?,?)

VERIFY pCurrentState = CS2

IF (Protocol Revision is present AND Protocol Revision >= 1) THEN
VERIFY Event Time Stamps = (TSI, *, *)

10. IF (the object generates TO_ NORMAL transitions) THEN

11.
12.

13.

14.

}

READ CS1 = pCurrentState

MAKE (a NORMAL condition exist)
WAIT D2

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =
'Notification Class' =
'Priority’' =

'Event Type' =

'Notify Type' =

'Message Text' =
'AckRequired' =

'From State' =

'"To State' =

'Event Values' =

(any valid process ID),

IUT,

(the intrinsic reporting object being tested),

(TS2: the current local time),

(the configured notification class),

(the value configured TO-NORMAL),

EXTENDED,

EVENT | ALARM,

(optional, any valid message text),

TRUE | FALSE,

CSl1,

NORMAL,

((pVendorld: any valid vendor id),

(pEventType: any valid event-type),
(a list of 0 or more valid parameters as defined by the Vendor)

)

TRANSMIT BAChnet-SimpleACK-PDU

15. IF (Protocol Revision is present AND Protocol Revision >= 13) THEN
VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)

16. VERIFY pCurrentState = NORMAL
17. IF (Protocol Revision is present AND Protocol Revision >= 1) THEN
VERIFY Event Time Stamps = (¥, *, TS2)

© 2022 by BACnet International. All rights reserved.

299

BACnet Testing Laboratories - Specified Tests

8.4.17 CHANGE_OF_RELIABILITY ConfirmedEventNotification Tests

8.4.17.1 CHANGE_OF_RELIABILITY with No Fault Algorithm (ConfirmedEventNotifications)

Q 4 L AN L OFE- RE AR h the NONE £4 Aleg hm on maodFvantNag
> > F—a 20 0 - 0

Reason for Change:_Test_ name changed.
Purpose: To verify the correct operation of the None fault algorithm
Test Concept: The Test concept corresponds to 8.5.17.1

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.1, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

Test Steps: The steps for this test case are identical to the test steps in 8.5.17.1, except that the UnconfirmedEventNotification
requests are ConfirmedEventNotification requests and the TD acknowledges receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.1, except that the event notifications
shall be conveyed using a ConfirmedEventNotification service request.

8.4.17.X1 CHANGE_OF_RELIABILITY - FAULT_LISTED Tests (ConfirmedEventNotification)

8.4.17.X1.1 NORMAL to FAULT Transition (ConfirmedEventNotification)

Reason for Change: No tests exist.

Purpose: This test case verifies the correct operation of the FAULT LISTED event algorithm for objects transitioning from
NORMAL to FAULT event states.

Test Concept: The test concept corresponds to 8.5.17.X1.1.

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.X1.1, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.X1.1, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests and the TD acknowledges receiving the

notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.X1.1, except that the event
notifications shall be conveyed using a ConfirmedEventNotification service request.

8.4.17.X1.2 FAULT-to-FAULT transition (ConfirmedEventNotification)

Reason for Change: No tests exist.

Purpose: This test case verifies the correct operation of the FAULT LISTED event algorithm for objects transitioning from
FAULT to FAULT event states.

Test Concept: The test concept corresponds to 8.5.17.X1.2.

Configuration Requirements: The configuration requirements are identical to those in 8.5.17.X1.2, except that the 'Issue
Confirmed Notifications' parameter shall have a value of TRUE.

© 2022 by BACnet International. All rights reserved. 300

BACnet Testing Laboratories - Specified Tests

Test Steps: The test steps for this test case are identical to the test steps in 8.5.17.X1.2, except that the
UnconfirmedEventNotification requests are ConfirmedEventNotification requests and the TD acknowledges receiving the
notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.5.17.X1.2, except that the event
notifications shall be conveyed using a ConfirmedEventNotification service request.

8.4.17.X9.15 CHANGE_OF_RELIABILITY with the FAULT OUT_OF_RANGE Algorithm
(ConfirmedEventNotification)

Reason for Change: No test exists for this functionality.
Purpose: To verify the correct operation of the FAULT OUT OF RANGE event algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT OUT OF RANGE algorithm. Ensure
that no other fault conditions exist in the object. Set pMonitoredValue to outside the range of values considered to be normal
for the object. Verify the correct transition is generated. The fault condition is then removed. It is verified that O1 generates
the correct notifications.

Configuration Requirements: O1 is configured to detect and report faults, to have no fault conditions present. The
Issue_Confirmed Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL
state at the start of the test.

Test Steps:
1. VERIFY pCurrentReliability = NO_FAULT DETECTED
2. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value less than pMinimumNormalValue | a value greater than
pMaximumNormalValue)
ELSE
MAKE (pMonitoredValue = a value less than pMinimumNormalValue | a value greater than
pMaximumNormalValue)
4. BEFORE Notification Fail Time,
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = oOl,

'Time Stamp' = (any valid time stamp),

'Notification Class' = (the class corresponding to the object O1 being tested),

'Priority' = (the value configured to correspond to a TO_FAULT transition),

'Event Type' = CHANGE OF RELIABILITY,

'Message Text' = (optional, any valid message text),

"Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = FAULT,

'Event Values' = (pCurrentReliability, pStatusFlags, (A list of valid values for
properties required to be reported for O1, and 0 or more other
properties of O1))

TRANSMIT BACnet-SimpleACK-PDU
VERIFY pCurrentReliability = UNDER_RANGE | OVER_RANGE
VERIFY pCurrentState = FAULT
VERIFY pStatusFlags = (TRUE, TRUE,?,?)
IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value greater than or equal to pMinimumNormalValue, and pMonitoredValue

LR

© 2022 by BACnet International. All rights reserved. 30 1

BACnet Testing Laboratories - Specified Tests

is less than or equal to pMaximumNormal Value)
ELSE
MAKE (pMonitoredValue = a value, greater than or equal to pMinimumNormalValue, and pMonitoredValue
is less than or equal to pMaximumNormalValue)
10. BEFORE Notification Fail Time,
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = oOl,

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (the class corresponding to the object O1 being tested),
'Priority' = (the value configured to correspond to a TO_FAULT transition),
'Event Type' = CHANGE OF RELIABILITY,

'Message Text' = (optional, any valid message text),

"Notify Type' = EVENT | ALARM

'AckRequired' = TRUE | FALSE,

'From State' = FAULT,

'To State' = NORMAL,

'Event Values' = (pCurrentReliability, pStatusFlags, (A list of valid values for

properties required to be reported for O1, and 0 or more other
properties of O1))

11. TRANSMIT BACnet-SimpleACK-PDU

12. VERIFY pCurrentReliability = NO_FAULT DETECTED

13. VERIFY pCurrentState = NORMAL

14. VERIFY pStatusFlags = (FALSE, FALSE,?, ?

8.4.X10 CHANGE_OF_DISCRETE_VALUE Test (ConfirmedEventNotification)
Reason for Change: No test exists for this functionality.

Purpose: To verify correct operation of the CHANGE OF DISCRETE VALUE event algorithm. This test applies to Event
Enrollment objects with an Event Type of CHANGE OF DISCRETE VALUE.

Test Concept: pMonitoredValue is changed to a value different from the initial value. After pTimeDelay (pTimeDelay is the
value for Time Delay specified in the EventParameters), a TO-NORMAL transition occurs and a
ConfirmedEventNotification is generated by the IUTIL.

Configuration Requirements: An Event Enrollment, EE1 is configured with an Object Property Reference, (O1, P1), such
that P1 is of one of the following datatypes: BOOLEAN, Unsigned, Integer, Enumerated, CharacterString, Octet String, Date,
Time, BACnetObjectldentifier, or BACnetDateTime. Event Enable is configured with a value of (T,T,T) and
Event Algorithm Inhibit = FALSE. The Event Parameters are configured with an Event Algorithm of
CHANGE_OF DISCRETE VALUE and a value for Time Delay that is within the allowable range for the IUT. The
configured notification class is configured to send confirmed notifications to the TD. EEI shall have an Event State of
NORMAL at the start of the test.

Test Steps:
1. VERIFY pCurrentState = Normal
2. MAKE (the referenced property have a value x: x differs from the initial value)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification
'"Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = EE1,
'Time Stamp' = (the current local datetime or time or sequence number),

© 2022 by BACnet International. All rights reserved. 302

BACnet Testing Laboratories - Specified Tests

'Notification Class' = (the notification class configured for EE1),

'Priority’' = (the value configured to correspond to TO-NORMAL),
'Event Type' = CHANGE OF DISCRETE VALUE,

'Message Text' = (optional, any valid message text),

'Notify Type' = ALARM | EVENT,

'Ack Required' = TRUE | FALSE,

'From State' = NORMAL,

'"To State' = NORMAL,

'Event Values' = (x, Status_Flags of O1)

5. TRANSMIT BACnet-SimpleAck-PDU
6. VERIFY pCurrentState = Normal

8.4.X11 ACCESS_EVENT Test (ConfirmedEventNotification)
Reason for Change: Add testing for ACCESS _EVENT algorithm.

Purpose: To verify the correct operation of the ACCESS_EVENT event algorithm.

Test Concept: The object, O1, begins the test in a NORMAL state. An access event, of a type listed in pAccessEvents is made
to occur. It is verified that the IUT sends a confirmed notification of type ACCESS_EVENT. A second access event, of a
type not listed in pAccessEvents, is made to occur, if such is supported by the IUT. It is verified that no notification is
generated. A third access event, of a type listed in pAccessEvents is made to occur. It is verified that the IUT sends a confirmed
notification of type ACCESS_EVENT.

Configuration Requirements: The IUT shall be configured such that the Event Enable property has a value of TRUE for TO-
NORMAL transitions. The Issue_Confirmed Notifications property shall have a value of TRUE. The event-generating object
shall be in a NORMAL state at the start of the test. pAccessEvents shall be configured with at least 1 access event type that
can be made to occur. If possible, at least access event type that can be made to occur shall not be included in pAccessEvents.

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include
this parameter in the notification messages. The time stamps indicated by "*" can have a value that indicates an unspecified
time or a time that precedes the timestamp of the first received notification.

Test Steps:

-- Cause an access-event to occur that should be reported
1. VERIFY Ol, Event_State = NORMAL
2. MAKE(an access event occur which is listed in pAccessEvents)
3. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (the configured process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,

'"Time Stamp' = (Tnormall: the current local time),

'Notification Class' = (the configured notification class),

'Priority' = (the value configured for a TO-NORMAL transition),
'Event Type' = ACCESS_EVENT,

"Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'"To State' = NORMAL,

'Event Values' = { pMonitoredValue, pStatusFlags, pAccessEventTag,

pAccessEventType, pAccessCredential
-- and optionally pAuthenticationFactor

}
4. TRANSMIT BACnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved. 303

BACnet Testing Laboratories - Specified Tests

5. VERIFY Ol, Status_Flags = (FALSE, FALSE,?,?
6. VERIFY Ol, Event State = NORMAL
7. VERIFY O1, Event_Time_ Stamps = (*, *, Tnormall)

-- Cause an access-event to occur that should not be reported

8. IF (the IUT can detect access events which are not in pAccessEvents) THEN {
MAKZE(an access event occur which is not listed in pAccessEvents)
CHECK(no notification is generated)

}

9. VERIFY Ol, Status_Flags = (FALSE, FALSE,?,?)

10. VERIFY O1, Event_State = NORMAL

11. VERIFY Ol, Event_Time Stamps = (*, *, Tnormall)

-- Cause an access-event to occur that should be reported
12. MAKE(an access event occur which is listed in pAccessEvents, and if possible different from the first
access event)
13. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (the configured process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,

'"Time Stamp' = (Tnormal2: the current local time),

'Notification Class' = (the configured notification class),

'Priority' = (the value configured for a TO-NORMAL transition),
'Event Type' = ACCESS_EVENT,

"Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = NORMAL,

'Event Values' = { pMonitoredValue, pStatusFlags, pAccessEventTag,

pAccessEventType, pAccessCredential
-- and optionally pAuthenticationFactor

14. TRANSMIT BACnet-SimpleACK-PDU

15. VERIFY Ol, Status_Flags = (FALSE, FALSE,?,?)
16. VERIFY O1, Event State = NORMAL

17. VERIFY Ol, Event_Time Stamps = (*, *, Tnormal2)

8.4.X18 CHANGE_OF_TIMER ConfirmedNotification Tests

8.4.X18.X1 CHANGE_OF_TIMER ConfirmedEventNotification Test
Reason for Change: New algorithm for Protocol Revision 17.

Purpose: To verify the correct operation of the CHANGE OF TIMER event algorithm. This test applies to objects that

support an Event_Type of CHANGE OF TIMER.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed, typically by putting the
Timer into operation where it conducts its usual operations, such that pMonitoredValue becomes equal to any of the values
contained in pAlarmValues. After pTimeDelay time later in that same value, the object shall enter the OFFNORMAL state
and transmit an event notification message. The pMonitoredValue is then changed such it is no longer equal to any of the
values contained in pAlarmValues. After pTimeDelayNormal time later in that same value, the object shall enter the

NORMAL state and transmit an event notification message.

© 2022 by BACnet International. All rights reserved. 304

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The O1 shall be configured such that the Event Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient List of
the configured Notification Class shall have a value of TRUE. The Recipient List of the configured Notification Class shall
contain recipients. The event-generating object shall be in a NORMAL state at the start of the test.

Test Steps:
1. VERIFY Event_State = NORMAL
2. MAKE (pMonitoredValue equal to any of the values contained in pAlarmValues)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = O1,

'"Time Stamp' = (the current local datetime or time or sequence number),

'Notification Class' = (the notification class configured for O1),

'Priority' = (the value configured in transition),

'Event Type' = CHANGE_OF TIMER,

'Message Text' = (optional, any valid message text),

'Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = OFFNORMAL,

'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional

notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one
is available)

5. TRANSMIT BAChnet-SimpleACK-PDU
6. VERIFY Status Flags = {TRUE, FALSE, ?, ?
7. VERIFY Event State = OFFNORMAL
8. MAKE (pMonitoredValue <> any of the values contained in pAlarmValues)
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'"Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (0]

'"Time Stamp' = (the current local datetime or time or sequence number),
'Notification Class' = (the notification class configured for O1),

'Priority' = (the value configured in transition),

'Event Type' = CHANGE OF TIMER,

'Message Text' = (optional, any valid message text),

'Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = OFFNORMAL,

'To State' = NORMAL,

'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional

notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one
is available)

11. TRANSMIT BACnet-SimpleACK-PDU

12. VERIFY Status Flags = {FALSE, FALSE, ?, ?}

13. VERIFY Event_State = NORMAL

© 2022 by BACnet International. All rights reserved. 305

BACnet Testing Laboratories - Specified Tests

8.4.X18.X2 CHANGE_OF_TIMER Offnormal-to-Offnormal ConfirmedEventNotification

Reason for Change: New algorithm for Protocol Revision 17, which specifies there is a transition when the object is already
OFFNORMAL, and the new state is also one of the pAlarmValues.

Purpose: To verify the correct operation of the CHANGE OF TIMER event algorithm when pUpdateTime changes while
the object is already OFFNORMAL, and the new state is also one of the pAlarmValues. This test applies to objects that
support an Event_Type of CHANGE OF TIMER.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed multiple times, typically
by putting the Timer into operation where it conducts its usual operations, such that at multiple points the pMonitoredValue
equal to any of the values contained in pAlarmValues. After the object enters the OFFNORMAL state and transmits a first
event notification message, when pMonitoredValue changes but is again equal to any of the values contained in
pAlarmValues, it is observed to transmit another event notification message. Finally the pMonitoredValue becomes a value
that is not equal to any of the values contained in pAlarmValues. After pTimeDelayNormal time holding at that value, the
object shall enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient List of
the configured Notification Class shall have a value of TRUE. The Recipient List of the configured Notification Class shall
contain recipients. The event-generating object shall be in a NORMAL state at the start of the test. If the pAlarmValues
cannot be configured with two different values to which pMonitored will become equal, then this test shall be skipped.

Test Steps:
1. VERIFY Event State = NORMAL
2. MAKE (pMonitoredValue equal to any of the values contained in pAlarmValues)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = O1,

'Time Stamp' = (the current local datetime or time or sequence number),

'Notification Class' = (the notification class configured for O1),

'Priority' = (the value configured in transition),

'Event Type' = CHANGE_OF TIMER,

'Message Text' = (optional, any valid message text),

'Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = OFFNORMAL,

'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional

notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one
is available)

5. TRANSMIT BAChnet-SimpleACK-PDU
6. VERIFY Status Flags = {TRUE, FALSE, ?, ?
7. VERIFY Event State = OFFNORMAL
8. MAKE (pUpdateTime change, usually by pMonitoredValue becoming a different value, but ensure it is again equal to any
of the values contained in pAlarmValues)
9. BEFORE Notification Fail Time -- Note: no pTimeDelay here
RECEIVE ConfirmedEventNotification-Request,
'"Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,
'Time Stamp' = (the current local datetime or time or sequence number),
'Notification Class' = (the notification class configured for O1),

© 2022 by BACnet International. All rights reserved. 306

BACnet Testing Laboratories - Specified Tests

"Priority' = (the value configured in transition),

'Event Type' = CHANGE OF TIMER,

'Message Text' = (optional, any valid message text),

'Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = OFFNORMAL,

"To State' = OFFNORMAL,

'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional

notification parameters: pLastStateChange, if one is available, pInitial Timeout, if one is available, pExpirationTime, if one
is available)

10. TRANSMIT BACnet-SimpleACK-PDU
11. VERIFY Status_Flags = {TRUE, FALSE, ?, ?
12. VERIFY Event_State = OFFNORMAL
13. MAKE (pMonitoredValue <> any of the values contained in pAlarmValues)
14. WAIT (pTimeDelayNormal)
15. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = 0O1

'"Time Stamp' = (the current local datetime or time or sequence number),
'Notification Class' = (the notification class configured for O1),

'Priority' = (the value configured in transition),

'Event Type' = CHANGE OF TIMER,

'Message Text' = (optional, any valid message text),

"Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = OFFNORMAL,

"To State' = NORMAL,

'Event Values' = pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential optional

notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, if one
is available)

16. TRANSMIT BACnet-SimpleACK-PDU

17. VERIFY Status Flags = {FALSE, FALSE, ?, ?}

18. VERIFY Event State = NORMAL

8.5 UnconfirmedEventNotification Service Initiation Tests

8.5.17 CHANGE_OF_RELIABILITY Tests

8.5.17.1 CHANGE_OF_RELIABILITY with No Fault Algorithm (UnconfirmedEventNotifications)

[] N N b, B NON A N red N

Reason for Change:_ChaI_lged title to use the No Fault vs NON agorithm. Fixed Status_Flags values in steps 4 and 8.

Purpose: Fe—verify-the-correct-operation—of the NONEfaultalgorithm—To verify the correct operation of an object that

supports first stage reliability evaluation and does not apply a standardized fault algorithm.
Test Concept: Select an object, Ol that supports first stage reliability evaluation and does not apply a standardized fault

algorithm. Ensure that no other fault conditions exist for the object. Create a fault condition. Verify the transition to fault is
generated with Reliability set to R1. Remove the fault condition and verify the object transitions out of fault.

© 2022 by BACnet International. All rights reserved. 307

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: O1 is configured to detect and report faults using unconfirmed event notifications. Ol is
configured to have no fault conditions present and the Event_State is NORMAL.

Test Steps:
1. VERIFY pCurrentReliability = NO FAULT DETECTED
2. VERIFY Event State = NORMAL
3. MAKE(OI enter a fault condition)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (the current local time or sequence number),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = FAULT,
'Event Values' = (R1 any valid BACnetReliability,

(T, T,?2,7),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1)
)
VERIFY pCurrentReliability = R1
VERIFY Event_State = FAULT
MAKE(Olclear the fault condition)
BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = O1,

P AW

'"Time Stamp' = (the current local time or sequence number),
'Notification Class' = (the notification class configured for O1),
"Priority’' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = FAULT,
'To State' = NORMAL,
'Event Values' = (NO_FAULT DETECTED,

(2F,F, 2, 7),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1)

)
9. VERIFY pCurrentReliability = NO_FAULT DETECTED

10. VERIFY Event State = NORMAL

Notes to Tester: The mechanism to enter the no fault state NONEfault-algerithin is a local matter.

© 2022 by BACnet International. All rights reserved. 308

BACnet Testing Laboratories - Specified Tests

8.5.17.2 CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING Algorithm
(UnconfirmedEventNotifications)

Reason for Change: Added steps to verify the pCurrentState after each transition change.
Purpose: To verify the correct operation of the FAULT CHARACTERSTRING fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT CHARACTERSTRING algorithm,
and no other fault conditions exist for the object. pMonitoredValue is changed to a fault string and back to a non-fault string.
It is verified that O1 generates the correct transitions.

Configuration Requirements: O1 is configured to detect and report faults, to have no fault conditions present, and to be in the
NORMAL state. FVSET is the set of character strings defined as fault values for O1. ONVSET is the set of character strings
defined as offnormal values for Ol. FV1 contain a substring that exists in FVSET. If the empty string is included in the
FVSET, then FV1 should be the empty string. NFV1 is a string value that does not contain substrings from FVSET or
ONVSET. The 'Issue Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO FAULT DETECTED
. VERIFY pCurrentState = NORMAL

3. IF (pMonitoredValue is writable) THEN

WRITE pMonitoredValue = FV1
ELSE

MAKE (pMonitoredValue = FV1)

4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = Ol,

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (the notification class configured for O1),

'Priority' = (the value configured for the transition),

'Event Type' = CHANGE OF RELIABILITY,

'Message Text' = (optional, any valid message text),

'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'"To State' = FAULT,

'Event Values' = (MULTI_STATE FAULT,
(T,T,?2,7),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = MULTI_STATE _FAULT
VERIFY pCurrentState = FAULT
7. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = NFV1
ELSE
MAKE (pMonitoredValue = NFV1)
8. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

S

'Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = Ol,

'Time Stamp' = (any valid time stamp),

'Notification Class' = (the notification class configured for O1),

© 2022 by BACnet International. All rights reserved. 309

BACnet Testing Laboratories - Specified Tests

"Priority' = (the value configured for the transition),

'Event Type' = CHANGE OF RELIABILITY,

'Message Text' = (optional, any valid message text),

'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = FAULT,

'To State' = NORMAL,

'Event Values' = (NO_FAULT DETECTED,
(F,F,?2,?),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

9. VERIFY pCurrentReliability = NO_FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

Notes to Tester: Note that a string is considered a substring of itself. Values required and allowed for Ol are described in
standard 135 as "Properties Reported in CHANGE OF RELIABILITY Notifications" (Table 13-5 in 135-2016) along with
supporting paragraphs.

8.5.17.3 CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm (UnconfirmedEventNotifications)
Reason for Change: Added missing verification of pCurrentState after each transition and fixed Status_Flags value in step 8.

Purpose: To verify the correct operation of the FAULT EXTENDED fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT EXTENDED algorithm, and either
pMonitoredValue is configured. Ensure that no other fault conditions exist for the object. In object O1, a condition is created
that is detected as a fault by the FAULT EXTENDED algorithm configured. The fault condition is then removed. It is verified
that O1 generates the correct notifications.

Configuration Requirements: O1 is configured to detect and report faults. O1 is configured to have no fault conditions present,
and has an Event_State of NORMAL. The 'Issue Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:
1. VERIFY pCurrentReliability =NO FAULT DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE (a fault condition exist)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE_OF RELIABILITY,
'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = FAULT,
'Event Values' = ((R1: any valid reliability value),
(T, T,?,?),

(a vendor specified set of values))
5. VERIFY pCurrentReliability = R1

© 2022 by BACnet International. All rights reserved. 3 10

BACnet Testing Laboratories - Specified Tests

6. VERIFY pCurrentState = FAULT
7. MAKE (remove the fault condition)
8. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE_OF RELIABILITY,
'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = FAULT,
'To State' = NORMAL,
'Event Values' = (NO_FAULT DETECTED,

(2F,F, 2, 7),

(a vendor specified set of values))
9. VERIFY pCurrentReliability = NO_FAULT DETECTED
10. VERIFY pCurrentState = NORMAL

8.5.17.4 CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm
(UnconfirmedEventNotifications)

Reason for Change: Added verification of pCurrentState after each transition.
Purpose: To verify the correct operation of the FAULT LIFE SAFETY fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT LIFE SAFETY algorithm. Ensure
that no other fault conditions exist in the object. Set pMonitoredValue to FVI1, a value which indicates a
FAULT LIFE SAFETY fault condition. Verify the correct transition is generated. The fault condition is removed by setting
pMonitoredValue to NV1, a value which indicates NO_ FAULT DETECTED and verify the correct transition is generated.

Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. Ol
is initially configured to have no fault conditions present, and has an Event State of NORMAL. FV1 is a value for
pMonitoredValue which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault
condition. The 'Issue Confirmed Notification' parameter shall have a value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO FAULT DETECTED
. VERIFY pCurrentState = NORMAL

3. IF (pMonitoredValue is writable) THEN

WRITE pMonitoredValue = FV1
ELSE

MAKE (pMonitoredValue = FV1)

4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = oOl,

'Time Stamp' = (any valid time stamp),

'Notification Class' = (the notification class configured for O1),

© 2022 by BACnet International. All rights reserved. 3 1 1

BACnet Testing Laboratories - Specified Tests

"Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = FAULT,
'Event Values' = (MULTI_STATE FAULT,

(T, T,?2,?),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))
VERIFY pCurrentReliability = MULTI STATE _FAULT
VERIFY pCurrentState = FAULT
7. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = NV1
ELSE
MAKE (pMonitoredValue =NV1)
8. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

SN

'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = oOl,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
"Priority’ = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = FAULT,
'To State' = NORMAL,
'Event Values' = (NO_FAULT DETECTED,

(F,F, 2,7,

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

9. VERIFY pCurrentReliability =NO _FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

8.5.17.5 CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm (UnconfirmedEventNotifications)
Reason for Change: Added verification of pCurrentState after each transition.

Purpose: To verify the correct operation of the FAULT STATE fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT STATE algorithm. Ensure that no
other fault conditions exist in the object. Set pMonitoredValue to FV1, a value which indicates a FAULT STATE fault
condition. Verify the correct transition is generated. The fault condition is removed by setting pMonitoredValue to NV1, a
value which indicates NO_FAULT DETECTED and verify the correct transition is generated.

Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1
is initially configured to have no fault conditions present, and an Event State of NORMAL. FV1 is a value for
pMonitoredValue which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault
condition. The 'Issue Confirmed Notifications' parameter shall have a value of FALSE.

© 2022 by BACnet International. All rights reserved. 3 12

BACnet Testing Laboratories - Specified Tests

Test Steps:
1. VERIFY pCurrentReliability = NO FAULT DETECTED
. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = FV1
ELSE
MAKE (pMonitoredValue = FV1)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'"To State' = FAULT,
'Event Values' = (MULTI_STATE FAULT,
(T,T,?2,7),
(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = MULTI STATE FAULT
6. VERIFY pCurrentState = FAULT
7. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = NV1
ELSE
MAKE (pMonitoredValue = NV1)
8. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = FAULT,
'"To State' = NORMAL,
'Event Values' = (NO_FAULT DETECTED,
(F,F,2,7),
(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))
9. VERIFY pCurrentReliability = NO_FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

© 2022 by BACnet International. All rights reserved. 3 13

BACnet Testing Laboratories - Specified Tests

8.5.17.6 CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm
(UnconfirmedEventNotifications)

Reason for Change: Added verification of pCurrentState after each transition.

Purpose: To verify the correct operation of the FAULT STATUS FLAGS fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT STATUS FLAGS algorithm. Ensure
that no other fault conditions exist for the object. Set pMonitoredValue to FV1, a value which indicates a
FAULT STATUS FLAGS fault condition. Verify the correct transition is generated. The fault condition is removed by
setting pMonitoredValue to NV1, a value which indicates NO_FAULT DETECTED and verify the correct transition is

generated.

Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1
is initially configured to have no fault conditions present, and Event_State is NORMAL. FV1 is a value for pMonitoredValue
which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition. The

'Issue Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:

1.
2.
3.

S

VERIFY pCurrentReliability = NO_FAULT DETECTED
VERIFY pCurrentState = NORMAL
IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = FV1
ELSE
MAKE (pMonitoredValue = FV1)
BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = FAULT,
'Event Values' = (MEMBER_FAULT,

(T,T,?2,7),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))
VERIFY pCurrentReliability = MEMBER FAULT
VERIFY pCurrentState = FAULT
IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = NV1
ELSE
MAKE (pMonitoredValue = NV1)
BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = Ol,

'Time Stamp' = (any valid time stamp),

'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),

© 2022 by BACnet International. All rights reserved. 3 14

BACnet Testing Laboratories - Specified Tests

'Event Type' = CHANGE OF RELIABILITY,

'Message Text' = (optional, any valid message text),

'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = FAULT,

'To State' = NORMAL,

'Event Values' = (NO_FAULT DETECTED,
(F,F,?2,7),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

9. VERIFY pCurrentReliability = NO FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

8.5.17.7 Event Enrollment Fault Condition Precedence Tests

8.5.17.7.1 Internal Faults Take Precedence Over Monitored Object Faults
Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults

over faults in the monitored object.

Test Concept: Select an Event Enrollment object EE1 which can detect internal faults and which monitors an object O1 that
can detect faults. Test that an internal unreliable operational fault takes precedence over a monitored object fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT DETECTED

2. VERIFY pCurrentState = NORMAL

3. MAKE(a condition exist which will cause O1 to transition into fault)

4. VERIFY pCurrentReliability = MONITORED OBJECT FAULT

5. VERIFY pCurrentState = FAULT

6. MAKE(a condition exist which will cause EE1 to transition into internal fault R1)
7. VERIFY pCurrentReliability = R1

8. MAKE(clear the condition that caused EE1 to enter into an internal fault)

9. VERIFY pCurrentReliability = MONITORED OBJECT FAULT
10. MAKE(clear the condition that caused O1 to transition into fault)
11. VERIFY pCurrentReliability = NO FAULT DETECTED

12. VERIFY pCurrentState = NORMAL

8.5.17.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to faults in the monitored object over
faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object EE1 which applies a fault algorithm and which monitors an object O1 that
can detect faults. Test that a monitored object fault takes precedence over a standard fault algorithm fault.

Test Steps:
1. VERIFY pCurrentReliability = NO_FAULT DETECTED

2. VERIFY pCurrentState = NORMAL
3. MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)

© 2022 by BACnet International. All rights reserved. 3 1 5

BACnet Testing Laboratories - Specified Tests

VERIFY pCurrentReliability = R1

VERIFY pCurrentState = FAULT

MAKE(a condition exist which will cause O1 to transition into fault)
VERIFY pCurrentReliability = MONITORED OBJECT FAULT
MAKE(clear the condition that caused O1 to transition into fault)

9. VERIFY pCurrentReliability = R1

10. MAKE(clear the condition for the fault algorithm)

11. VERIFY pCurrentReliability = NO_FAULT DETECTED

12. VERIFY pCurrentState = NORMAL

NN

8.5.17.7.3 Internal Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults
over faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object EE1 which can detect internal faults and which applies a fault algorithm.
Test that an internal unreliable operational fault takes precedence over a standard fault algorithm fault.

Test Steps:

VERIFY pCurrentReliability = NO FAULT DETECTED

VERIFY pCurrentState = NORMAL

MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)
VERIFY pCurrentReliability = R1

VERIFY pCurrentState = FAULT

MAKE(a condition exist which will cause EE1 to transition into internal fault R2, different from R1)
VERIFY pCurrentReliability = R2

MAKE(clear the condition that caused EE1 to enter into an internal fault)

. VERIFY pCurrentReliability = R1

10. MAKE(clear the condition for the fault algorithm)

11. VERIFY pCurrentReliability = NO FAULT DETECTED

12. VERIFY pCurrentState = NORMAL

RN W=

8.5.17.8 CHANGE_OF _RELIABILITY of Event Enrollment Object, Monitored Object Fault
(UnconfirmedEventNotifications)

Reason for Change: Added verify of pCurrentState after each transition.

Purpose: To verify the proper operation of the Event Enrollment object’s fault detection when the monitored object enters
the fault state.

Test Concept: Select an Event Enrollment object EE1 that monitors an object M1 that can transition into FAULT. Starting
with both objects in a NORMAL state, cause a condition which results in a fault in M1. Verify EE1 reports the fault. Clear
the condition and verify EE1 reports the return to NORMAL.

Configuration Requirements: EE1 is configured to process faults in M1 and to report those using unconfirmed event
notifications. EE1 and M1 are each initially configured to have no fault conditions present, and Event_State is NORMAL.

The 'Issue Confirmed Notifications' parameter shall have a value of FALSE.

Test Steps:

© 2022 by BACnet International. All rights reserved. 3 16

BACnet Testing Laboratories - Specified Tests

1. VERIFY pCurrentReliability = NO_FAULT DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE (M1 enter any fault state)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = EE1,
'Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for EE1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE_OF RELIABILITY,
'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = FAULT,
'Event Values' = (MONITORED OBJECT FAULT,
(T, T,2,7),
M1,
(optional, property value of M1),
(optional, M1 Status_Flags, (?, T, ?, ?)),
(0 or more other properties of M1))
5. VERIFY pCurrentReliability = MONITORED OBJECT FAULT
6. VERIFY pCurrentState = FAULT
7. MAKE (M1 clear fault state)
8. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request

"Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'Time Stamp' =
'Notification Class' =
'Priority' =

'Event Type' =

'Message Text' =

'Notify Type' =
'AckRequired' =

'From State' =

"To State' =

'Event Values' =

(any valid process identifier),
IUT,
EE1,
(any valid time stamp),
(the notification class configured for EE1),
(the value configured for the transition),
CHANGE OF RELIABILITY,
(optional, any valid message text),
ALARM | EVENT,
TRUE | FALSE,
FAULT,
NORMAL,
(NO_FAULT DETECTED,
(F,F, 2,7,
M1,
(optional, property value of M1),
(optional, M1 Status_Flags, (?, F, 2, 7)),
(0 or more other properties of M1))

9. VERIFY pCurrentReliability = NO FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

8.5.17.9 CHANGE_OF_RELIABILITY of Event Enrollment Object Fault (UnconfirmedEventNotifications)

Reason for Change: Added verification of pCurrentState after each transition.

© 2022 by BACnet International. All rights reserved.

317

BACnet Testing Laboratories - Specified Tests

Purpose: To verify the Event Enrollment object generates a fault event when the object enters into fault due to an internal

unreliable operation.

Test Concept: Select an Event Enrollment object EEI that can be made to enter into fault due to an internal unreliable
operation. Starting EE1 in a NORMAL state, cause a condition which results in an internal fault. Verify that EE1 reports the

fault. Clear the condition and verify that EE1 reports the return to NORMAL.

Configuration Requirements: EE1 is configured to be able to enter a fault state and to report. EE1 is initially configured to
have no fault conditions present, and Event_State is NORMAL. The 'Issue Confirmed Notifications' parameter shall have a

value of FALSE.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT DETECTED
2. VERIFY pCurrentState = NORMAL

3. MAKE (EEI enter any internal fault state)

4. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =
'Notification Class' =
'Priority' =

'Event Type' =

'Message Text' =

'Notify Type' =
'AckRequired' =

'From State' =

'"To State' =

'Event Values' =

VERIFY pCurrentReliability = R1
VERIFY pCurrentState = FAULT
MAKE (EE]1 clear fault state)

BEFORE Notification Fail Time

PN

(any valid process identifier),

IUT,

EEl,

(any valid time stamp),

(the notification class configured for EE1),

(the value configured for the transition),

CHANGE OF RELIABILITY,

(optional, any valid message text),

ALARM | EVENT,

TRUE | FALSE,

NORMAL,

FAULT,

((R1: any value other than
MONITORED_OBJECT FAULT
and NO_FAULT DETECTED),

(T, T,2,?),

(M1, any valid monitored object),
(optional, property value of M1),
(optional, M1 Status Flags, (?, F, 2, 7)),
(0 or more other properties of M1)

RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =
'Notification Class' =
'Priority' =

'Event Type' =

'Message Text' =

"Notify Type' =
'AckRequired' =

'From State' =

'To State' =

'Event Values' =

© 2022 by BACnet International. All rights reserved.

(any valid process identifier),

IUT,

EEl,

(any valid time stamp),

(the notification class configured for EE1),
(the value configured for the transition),
CHANGE_OF RELIABILITY,
(optional, any valid message text),
ALARM | EVENT,

TRUE | FALSE,

FAULT,

NORMAL,

(NO _FAULT DETECTED,

318

BACnet Testing Laboratories - Specified Tests

(F,F,72,?),
M1,
(optional, property value of M1),
(optional, M1 Status_Flags, (?, F, ?, 7)),
(0 or more other properties of M 1))

9. VERIFY pCurrentReliability = NO_FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

8.5.17.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL (UnconfirmedEventNotifications)
Reason for Change: Fix the Status Flags in step 7. Added verify of pCurrentState after each transition.

Purpose: To verify that objects go to the NORMAL state after leaving the FAULT state, then transition to OFFNORMAL if
the condition still exists.

Test Concept: Select a fault detecting object O1 which is able to detect OFFNORMAL conditions. Make O1 transition to an
OFFNORMAL state and then transition to FAULT. Remove the condition causing the FAULT and verify O1 transitions from
FAULT to NORMAL, then verify that the object transitions from NORMAL to the original OFFNORMAL state.

Configuration Requirements: O1 is configured to detect and report unconfirmed events and faults. O1 is configured to have
no fault conditions present, and Event State is NORMAL. The 'Issue Confirmed Notifications' parameter shall have a value
of FALSE.

Test Steps:
1. VERIFY pCurrentReliability = NO FAULT DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE(Oltransition to an off normal state)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = oOl,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
"Priority' = (the value configured for the transition),
'Event Type' = (ET1, any valid off normal event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = OFFNORMAL,
'Event Values' = (property-values appropriate for O1)

5. VERIFY pCurrentState = OFFNORMAL
6. MAKE(O1 enter a fault state)
7. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = Ol,

'Time Stamp' = (the current local time or sequence number),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,

© 2022 by BACnet International. All rights reserved. 3 19

BACnet Testing Laboratories - Specified Tests

'Message Text' =
'Notify Type' =
'AckRequired' =
'From State' =
'"To State' =
'Event Values' =

8. MAKE(O1 clear the fault condition)
9. BEFORE Notification Fail Time

(optional, any valid message text),
ALARM | EVENT,
TRUE | FALSE,
OFFNORMAL,
FAULT,
((R1 any valid BACnetReliability),
(2T, T,2,7),
(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

RECEIVE UnconfirmedEventNotification-Request

'"Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
'"Time Stamp' =
'Notification Class' =
"Priority’ =

'Event Type' =

'Message Text' =

'Notify Type' =
'AckRequired' =

'From State' =

'"To State' =

'Event Values' =

(any valid process identifier),
IUT,
Ol,
(any valid time stamp),
(the notification class configured for O1),
(the value configured for the transition),
CHANGE_OF RELIABILITY,
(optional, any valid message text),
ALARM | EVENT,
TRUE | FALSE,
FAULT,
NORMAL,
(NO_FAULT DETECTED,
(F,F,2,7),
(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

10. VERIFY pCurrentReliability =NO_FAULT DETECTED

11. VERIFY pCurrentState = NORMAL
12. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =

(any valid process identifier),

IUT,
o1,

'"Time Stamp' = (the current local time or sequence number),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = ET1,

'Message Text' = (optional, any valid message text),

"Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = OFFNORMAL,

'Event Values' =

(property-values appropriate for O1)

11. VERIFY pCurrentReliability = NO FAULT DETECTED
12. VERIFY pCurrentState = OFFNORMAL

8.5.17.X1 CHANGE_OF_RELIABILITY - FAULT_LISTED Tests (UnconfirmedEventNotification)

© 2022 by BACnet International. All rights reserved.

320

BACnet Testing Laboratories - Specified Tests

8.5.17.X1.1 NORMAL to FAULT Transition (UnconfirmedEventNotification)

Reason for Change: No tests exist.

Purpose: This test case verifies the correct operation of the FAULT LISTED event algorithm for objects transitioning from
NORMAL to FAULT event states.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT LISTED algorithm. Ensure that no
fault conditions exist in the object. Set pMonitoredList to FV1, a non-empty list of supported faults. Verify the correct
transition is generated. The fault condition is removed by setting pMonitoredList to an empty list. Verify the correct transition
is generated.

Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1
is initially configured to have no fault conditions present, and has an Event State of NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO FAULT DETECTED
. VERIFY pCurrentState = NORMAL
3. IF (pMonitoredList is writable) THEN
WRITE pMonitoredList = FV1
ELSE
MAKE (pMonitoredList = FV1)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,
'Process Identifier' = (any valid process Identifier),
'Initiating Device Identifier' = IUT
'Event Object Identifier' = O1

'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'"To State' = FAULT,
'Event Values' = (FAULT LISTED,

(T, T,??),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))
5. VERIFY pCurrentReliability = FAULTS LISTED
VERIFY pCurrentState = FAULT
7. IF (pMonitoredList is writable) THEN
WRITE pMonitoredList = (an empty list)
ELSE
MAKE (pMonitoredList = (an empty list)
8. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,
'Process Identifier' = (any valid process Identifier),
'Initiating Device Identifier' = IUT
'Event Object Identifier' = O1

o

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (the notification class configured for O1),
'Priority’ = (the value configured for the transition),
'Event Type' = CHANGE_OF RELIABILITY,

© 2022 by BACnet International. All rights reserved. 32 1

9.

'Message Text' =
"Notify Type' =
'AckRequired' =
'From State' =
'To State' =
'Event Values' =

BACnet Testing Laboratories - Specified Tests

(optional, any valid message text),
ALARM | EVENT,
TRUE | FALSE,
FAULT,
NORMAL,
(NO_FAULT DETECTED,

(F,F,?7),
(A list of valid values for properties required to be reported

for O1, and 0 or more other properties of O1))

pCurrentReliability = NO _FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

8.5.17.X1.2 FAULT-to-FAULT transition (UnconfirmedEventNotification)

Reason for Change: No tests exist.

Purpose: This test case verifies the correct operation of the FAULT LISTED event algorithm for objects transitioning from

FAULT to FAULT event states.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT LISTED algorithm. Ensure that a
fault condition, FV1, exists in the object. Set pMonitoredList to FV2, a non-empty list different from FV1. Verify the correct

transition is generated.

Configuration Requirements: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1
is initially configured to have a fault by having pMonitoredList contain a non-empty list, FV1, and has an Event_State of

FAULT LISTED

RECEIVE UnconfirmedEventNotification-Request,

(any valid process Identifier),

'Initiating Device Identifier' = IUT

(any valid time stamp),
(the notification class configured for O1),
(the value configured for the transition),
CHANGE OF RELIABILITY,
(optional, any valid message text),
ALARM | EVENT,
TRUE | FALSE,
FAULT,
FAULT,
(FAULT LISTED,

(T, T,?7),
(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

FAULT.

Test Steps:

1. VERIFY pCurrentReliability =

. VERIFY pCurrentState = FAULT
3. IF (pMonitoredList is writable) THEN
WRITE pMonitoredList = FV2
ELSE
MAKE (pMonitoredList = FV2)

4. BEFORE Notification Fail Time
'Process Identifier' =
'Event Object Identifier' = O1
'"Time Stamp' =
"Notification Class' =
'Priority' =
'Event Type' =
'Message Text' =
'Notify Type' =
'AckRequired' =
'From State' =
"To State' =
'Event Values' =

5. VERIFY pCurrentReliability =

FAULTS LISTED

6. VERIFY pCurrentState = FAULT

© 2022 by BACnet International. All rights reserved.

322

BACnet Testing Laboratories - Specified Tests

8.5.17.X9.11 CHANGE_OF_RELIABILITY with First Stage Object Fault (UnconfirmedEventNotifications)

Reason for Change: Test does not exist in standard.
Purpose: To verify that fault conditions due to first stage faults are detected and reported.

Test Concept: An object in the IUT, O1, which can detect at least one first stage fault is selected. One of O1’s detectable first
stage faults, R1, is selected for the test. Ol begins the test in the NORMAL state with pCurrentReliability equal to
NO FAULT DETECTED. The first stage fault condition, R1, is made to exist and it is verified that the pCurrentReliability
changes to R1. It is verified that O1 generates the appropriate event notification. The fault condition is removed, and it is
verified that the pCurrentReliability returns to NO_FAULT DETECTED and the appropriate event notification message is
generated.

Configuration Requirements: O1 is configured to detect faults and to report. O1 is initially configured to have no fault
conditions present, and Event State is NORMAL. The 'Issue Confirmed Notifications' parameter shall have a value of
FALSE.

Test Steps:
1. VERIFY pCurrentReliability = NO_FAULT DETECTED
2. VERIFY pCurrentState = NORMAL
3. MAKE (pCurrentReliability = R1)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (any valid time stamp),
"Notification Class' = (the notification class configured for O1),
'Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = FAULT,
'Event Values' = (RI,
(T, T,2,?),

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

5. VERIFY pCurrentReliability = R1

6. VERIFY pCurrentState = FAULT

7. MAKE (pCurrentReliability = NO_FAULT DETECTED)

8. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Ol,
'"Time Stamp' = (any current time stamp),
'Notification Class' = (the notification class configured for O1),
"Priority' = (the value configured for the transition),
'Event Type' = CHANGE OF RELIABILITY,
'Message Text' = (optional, any valid message text),
'Notify Type' = EVENT | ALARM,

© 2022 by BACnet International. All rights reserved. 323

BACnet Testing Laboratories - Specified Tests

'AckRequired' = TRUE | FALSE,

'From State' = FAULT,

'To State' = NORMAL,

'Event Values' = (NO_FAULT DETECTED,
F,F, 2,7,

(A list of valid values for properties required to be reported
for O1, and 0 or more other properties of O1))

9. VERIFY pCurrentReliability = NO _FAULT DETECTED

10. VERIFY pCurrentState = NORMAL

8.5.17.X9.15 CHANGE_OF_RELIABILITY with the FAULT _OUT_OF_RANGE Algorithm
(UnconfirmedEventNotification)

Reason for Change: No tests exists for this functionality.
Purpose: To verify the correct operation of the FAULT OUT_OF RANGE event algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT OUT OF RANGE algorithm. Ensure
that no other fault conditions exist in the object. Set pMonitoredValue to outside the range of values considered to be normal
for the object. Verify the correct transition is generated. The fault condition is then removed. It is verified that O1 generates
the correct notifications.

Configuration Requirements: Ol is configured to detect and report faults, to have no fault conditions present. The
Issue_Confirmed Notifications property shall have a value of TRUE. The event-generating objects shall be in a NORMAL
state at the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.17.X9.15 except that the
ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge
receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.17.X9.15 except that the event
notifications shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these
messages shall be either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.5.X10 CHANGE_OF_DISCRETE_VALUE Test (UnconfirmedEventNotification)
Reason for Change: No test for this functionality.

Purpose: To verify correct operation of the CHANGE OF DISCRETE VALUE event algorithm. This test applies to Event
Enrollment objects with an Event Type of CHANGE OF DISCRETE VALUE.

Test Concept: pMonitoredValue is changed to a value different from the initial value. After pTimeDelayNormal (pTimeDelay
is the value for Time Delay specified in the EventParameters), a TO-NORMAL transition occurs and a
UnconfirmedEventNotification is generated by the IUTI.

Configuration Requirements: An Event Enrollment, EE1 is configured with an Object Property Reference, (O1, P1), such
that P1 is of one of the following datatypes: BOOLEAN, Unsigned, Integer, Enumerated, CharacterString, Octet String, Date,
Time, BACnetObjectldentifier, or BACnetDateTime. Event Enable is configured with a value of (T,T,T) and
Event Algorithm Inhibit = FALSE. The Event Parameters are configured with an Event Algorithm of
CHANGE_OF DISCRETE VALUE and a value for Time Delay that is within the allowable range for the IUT. The
configured notification class is configured to send unconfirmed notifications to the TD. EEI1 shall have an Event State of
NORMAL at the start of the test.

© 2022 by BACnet International. All rights reserved. 324

BACnet Testing Laboratories - Specified Tests

Test Steps:
1. VERIFY pCurrentState = NORMAL
2. MAKE (the referenced property have a value x: x differs from the initial value)
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = EE1,
'"Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for EE1),
'Priority' = (the value configured to correspond to TO-NORMAL),
'Event Type' = CHANGE OF DISCRETE VALUE,
'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,
'Ack Required' = TRUE | FALSE,
'From State' = NORMAL,
'To State' = NORMAL,
'Event Values' = (x, Status_Flags of O1)

5. VERIFY pCurrentState = NORMAL

8.5.X11 ACCESS_EVENT Test (UnconfirmedEventNotification)
Reason for Change: Add testing for ACCESS_EVENT algorithm.

Purpose: To verify the correct operation of the ACCESS_EVENT event algorithm.

Test Concept: The object, O1, begins the test in a NORMAL state. An access event, of a type listed in pAccessEvents is made
to occur. It is verified that the IUT sends a confirmed notification of type ACCESS_EVENT. A second access event, of a
type not listed in pAccessEvents, is made to occur, if such is supported by the IUT. It is verified that no notification is
generated. A third access event, of a type listed in pAccessEvents is made to occur. It is verified that the IUT sends a confirmed
notification of type ACCESS EVENT.

Configuration Requirements: The IUT shall be configured such that the Event Enable property has a value of TRUE for TO-
NORMAL transitions. The Issue_Confirmed Notifications property shall have a value of TRUE. The event-generating object
shall be in a NORMAL state at the start of the test. pAccessEvents shall be configured with at least 1 access event type that
can be made to occur. If possible, at least access event type that can be made to occur shall not be included in pAccessEvents.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X11 except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X11 except that the event notification requests
are UnconfirmedEventNotification requests and the TD does not acknowledge receiving the notifications.

8.5.X18 CHANGE_OF_TIMER Tests

8.5.X18.X1 CHANGE_OF_TIMER UnconfirmedEventNotification Test
Reason for Change: New algorithm for Protocol Revision 17.

Purpose: To verify the correct operation of the CHANGE OF TIMER event algorithm. This test applies to objects that
support an Event_Type of CHANGE OF TIMER.

© 2022 by BACnet International. All rights reserved. 325

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The O1 shall be configured such that the Event Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient List of
the configured Notification Class shall have a value of FALSE. The event-generating object shall be in a NORMAL state at
the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.10.X11 except that the
ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge
receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.10.X11 except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall
be either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.5.X18.X2 CHANGE_OF_TIMER Offnormal-to-Offnormal UnconfirmedEventNotification Test
Reason for Change: New algorithm for Protocol Revision 17.

Purpose: To verify the correct operation of the CHANGE OF TIMER event algorithm. This test applies to objects that
support an Event Type of CHANGE OF TIMER.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed multiple times, typically
by putting the Timer into operation where it conducts its usual operations, such that at multiple points the pMonitoredValue
is equal to any of the values contained in pAlarmValues. After the object enters the OFFNORMAL state and transmits a first
event notification message, when pMonitoredValue changes but is again equal to any of the values contained in
pAlarmValues, it is observed to transmit another event notification message. Finally the pMonitoredValue becomes a value
that is not equal to any of the values contained in pAlarmValues. After pTimeDelayNormal time holding at that value, the
object shall enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient List of
the configured Notification Class shall have a value of FALSE. The Recipient List of the configured Notification Class shall
contain recipients. The event-generating object shall be in a NORMAL state at the start of the test. If the pAlarmValues
cannot be configured with two different values to which pMonitored will become equal, then this test shall be skipped.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.10.X2 except that the
ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge
receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.10.X2 except that the event notifications

shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall
be either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.11 SubscribeCOVProperty Service Initiation Tests

8.11.1 Confirmed Notifications Subscription
Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for confirmed notifications 7o any valid
object, X.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:

© 2022 by BACnet International. All rights reserved. 326

BACnet Testing Laboratories - Specified Tests

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
'Subscriber Process Identifier' = (any valid process identifier),

'Monitored Object Identifier' = any—valid-ebjcetidentificH) X
'Issue Confirmed Notifications'= TRUE,

'Lifetime' = (any-nen-zero-value)l,
'Monitored Property Identifier' = (any-valid-property-identifier)(the property Y to be monitored),
'COV Increment' = (amy—validalaeany REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

8.11.2 Unconfirmed Notifications Subscription
Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for unconfirmed notifications to any
valid object, X.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than 24
hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
'Subscriber Process Identifier' = (any valid process identifier),

'Monitored Object Identifier' = (any-vahd-objeetidentifien).V
'Issue Confirmed Notifications' = FALSE,

'Lifetime' = (any-non-zcro-valueil.,
'Monitored Property Identifier' = (any valid property identifier)(the property Y to be monitored),
'COV Increment' = (amy-—validvaladAany REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

8.11.3 Canceling a Subscription
Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request to cancel a subscription fo any valid
object, X.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any-valid-objectidentifier) X

'Monitored Property Identifier' = (any-valid-property-identifier)(the property Y to be monitored),
'COV Increment' = (amy—validalaeany REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

8.11.X1 Change of Value Notification Tests

© 2022 by BACnet International. All rights reserved. 327

BACnet Testing Laboratories - Specified Tests

8.11.X1.1 Change of Value Notification
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that the IUT can execute COVNotification requests from object types that provides a Property and
Status_Flags properties in COV notifications.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request

'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X

'Issue Confirmed Notifications'= TRUE | FALSE,

'Lifetime' = L,

'Monitored Property Identifier' = (the property Y to be monitored),
'COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU
4. BEFORE Notification Fail Time
IF (the subscription was for confirmed notifications) THEN
TRANSMIT ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier'= TD,

'Monitored Object Identifier' = X

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (values appropriate to the property Y subscribed to, and any other

properties the IUT provides with it, such as Status Flags)
RECEIVE BACnet-SimpleACK-PDU
ELSE
TRANSMIT UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = X
'"Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (values appropriate to the property Y subscribed to, and any other
properties the IUT provides with it, such as Status_Flags)
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying information on

a workstation screen are carried out)

8.11.X1.2 Change of Value Notifications with Invalid Process Identifier
Reason for Change: Added new test to support DS-COVP-A testing.
Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that

does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:
1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
'Subscriber Process Identifier' = (any valid process identifier),

© 2022 by BACnet International. All rights reserved. 328

BACnet Testing Laboratories - Specified Tests

'Monitored Object Identifier' = X
'Issue Confirmed Notifications'= TRUE,

'Lifetime' = L,
'Monitored Property Identifier' = (the property Y to be monitored),
'COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (a process identifier different from the one used in step 1),
'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (values appropriate to the property Y subscribed to, and any other

properties the IUT provides with it, such as Status_Flags)

5. IF (Protocol_Revision is present and Protocol Revision > 10) THEN

RECEIVE
BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (UNKNOWN_SUBSCRIPTION) |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE
BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has
expired.

Test Concept: A subscription for COV notifications is established and then cancelled or allowed to expire. A
ConfirmedCOVNotification is then sent to the [UT to verify it returns the appropriate error or a Somple-Ack.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X
'Issue Confirmed Notifications'= TRUE,

'Lifetime' = L,
'Monitored Property Identifier' = (the property Y to be monitored),
'COV Increment' = (Any REAL value -- optional)

w

TRANSMIT BACnet-SimpleACK-PDU
4. BEFORE Notification Fail Time
TRANSMIT ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (values appropriate to the property Y subscribed to, and any other

© 2022 by BACnet International. All rights reserved. 329

BACnet Testing Laboratories - Specified Tests

properties the IUT provides with it, such as Status_Flags)
RECEIVE BACnet-SimpleACK-PDU
5. MAKE (the IUT stop resubscribing, if it resubscribes automatically)
6. IF (the IUT can cancel the subscription) THEN
RECEIVE SubscribeCOVProperty — Request,
'Subscriber Process Identifier' = (the process identifier used in step 1),
'Monitored Object Identifier' = X
'Monitored Property Identifier' = Y
'COV Increment' = (Any REAL value —optional)
ELSE
WAIT (a value two times Lifetime)
7. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X

'Time Remaining' = (any value appropriate for the Lifetime selected),

'List of Values' = (values appropriate to the property Y subscribed to, and any other

properties the IUT provides with it, such as Status_Flags)
8. IF (Protocol Revision is present and Protocol Revision > 10) THEN

RECEIVE
BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (UNKNOWN_SUBSCRIPTION) |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE BAChnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier
that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X
'Issue Confirmed Notifications'= TRUE,

'Lifetime' = L,
'Monitored Property Identifier' = (the property Y to be monitored),
'COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = (any object Y supporting COV notification except X),
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (any value)

© 2022 by BACnet International. All rights reserved. 330

BACnet Testing Laboratories - Specified Tests

5. IF (Protocol Revision is present and Protocol Revision > 10) THEN

RECEIVE
BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (UNKNOWN_SUBSCRIPTION) |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE
BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (any valid error code for class SERVICES) |

(BAChnet-SimpleACK-PDU)

8.11.X1.5 Change of Value Notifications with Invalid Monitored property
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier
that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X
'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L,
'Monitored Property Identifier' = (the property Y to be monitored),
'COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 1),
'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = X
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (any property supporting COV notification except Y),
5. IF (Protocol Revision is present and Protocol Revision > 10) THEN
RECEIVE
BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (UNKNOWN_SUBSCRIPTION) |
(BAChnet-SimpleACK-PDU)
ELSE
RECEIVE
BACnet-Error-PDU,
'Error Clas's = SERVICES,
'Error Code' = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

© 2022 by BACnet International. All rights reserved. 33 1

BACnet Testing Laboratories - Specified Tests

8.11.X4 Requests 8 Hour Lifetimes
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that the IUT correctly generates subscription requests with lifetimes less than or equal to 8 hours. Either
confirmed or unconfirmed notifications may be used, but at least one of these options shall be supported by the TUT.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X
'Issue Confirmed Notifications'= TRUE | FALSE,

'Lifetime' = (any valid lifetime between 1 and 28800),
'Monitored Property Identifier' = (the property Y to be monitored),
'COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

8.18 ReadProperty Service Initiation Tests

8.18.X1 Reading and Presenting Large List Properties

Reason for Change: there is no appropriate test for reading and presenting large list property values as required by DM-SP-
VM-A.

Purpose: This test case verifies that the IUT is capable of reading and presenting large list properties using ReadRange. It is
a generic test used to test data presentation requirements.

Configuration: For this test, the tester shall choose a list property, P1, from an object, O1. The TD shall be configured to not
support segmentation. The value is P1 shall be too large to read via ReadProperty or ReadPropertyMultiple.

Notes to Tester: The value presented by the IUT may differ from the value transmitted on the wire due to rounding, truncation,
formatting, language conversion, etc.

Notes to Tester: If the IUT has not already determined that the value cannot be read using ReadProperty or
ReadPropertyMultiple, the IUT may initiate a ReadProperty or ReadPropertyMultiple. If this occurs, the IUT shall pass the
test only if it automatically falls back to using ReadRange upon receipt of the correct BACnetReject-PDU from the TD,
indicating that the response is too large.

Test Steps:

1. MAKE (the IUT read P1)
2. WHILE (the complete list has not been read)
RECEIVE ReadRange-Request,

'Object Identifier' = Ol,

'Property Identifier' = P1,

'Range' = (any valid value for P1)
TRANSMIT BACnet-ComplexACK-PDU,

'Object Identifier' = oOl,

'Property Identifier' = P1,

'Result Flags' = (values consistent with the request),

'Item Count' = (values consistent with the request),

'Ttem Data' = (values consistent with the request)

© 2022 by BACnet International. All rights reserved. 332

BACnet Testing Laboratories - Specified Tests

3. CHECK (that the IUT presents a list of values that is consistent with the values received in step 2)

© 2022 by BACnet International. All rights reserved. 333

BACnet Testing Laboratories - Specified Tests

8.20 ReadPropertyMultiple Service Initiation Tests

8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails

The tests defined in this clause are used to verify that an IUT which intiates ReadPropertyMultiple is able to obtain external
property values via the ReadProperty service when interoperating with a device that does not support the
ReadPropertyMultiple service.

8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service
Reason for Change: Modified test to allow multiple objects in addition to single objects.

Purpose: Verifies the IUT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty
when the IUT determines the TD does not support the ReadPropertyMultiple service.

Test Concept: The IUT is configured in a manner that would normally cause it to access one or more properties in the TD via
the ReadPropertyMultiple service. Prior to sending a ReadPropertyMultiple request, however, the IUT determines that the
TD does not support the ReadPropertyMultiple service. The IUT instead attempts to access the TD's property values via the
ReadProperty service (it is assumed that the IUT will make this determination by reading the TD's
Protocol Services Supported property, but this test specifically does not attempt to verify this behavior).

Configuration Requirements: The TD is configured so that it does not support the ReadPropertyMultiple service. The IUT is
configured such that it is eap&bl%ef—accessmg one or more properties of a single or multiple objects in the TD via the

ReadProperty and ReadPropertyMultiple services. Hthe JUTeannotbe-configured-in-this-way;-then-this-test shall be-omitted:

Test Steps:

1. MAKE (a condition in the IUT that would normally cause it to send a ReadPropertyMultiple request to the TD to
access one or more propertyies values-efa-single-objeet)
2. WAIT (a time interval specified by the vendor as sufficient for the IUT to determine that the TD does not support the
ReadPropertyMultiple service)
3. REPEAT X = (the properties that the IUT is to read) DO {
RECEIVE ReadProperty-Request,

'Object Identifier' = (object identifier referenced by X),

'Property Identifier' = (property identifier referenced by X)
TRANSMIT ReadProperty-Ack,

'Object Identifier' = (object identifier referenced by X),

'Property Identifier' = (property identifier referenced by X),

'Property Value' = (any valid value)

8.20.5.2 Fallback to ReadProperty on Reject - UNRECOGNIZED_SERVICE Response
Reason for Change: Modified to allow use of RPM and use of multiple objects.
BACnet Reference Clauses: 15.5 and 15.7

Purpose: Verifies the IUT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty
when the TD returns a Reject-PDU and a Reject Reason of UNRECOGNIZED SERVICE.

Test Concept: The IUT is configured to send the TD a ReadPropertyMultiple request to access one or more properties of one
or more objects. The TD responds with a Reject-PDU and a Reject Reason of UNRECOGNIZED SERVICE. With no
additional configuration, the IUT sends one or more ReadProperty requests to the TD, where each ReadProperty request
specifies an individual property from the original ReadPropertyMultiple request covering all the properties from the original
ReadPropertyMultiple request.

Configuration Requirements: The TD is configured so that it does not support the ReadPropertyMultiple service. The IUT is
configured such that it attempts to acquire values from the TD using the ReadPropertyMultiple service without first
interrogating the TD’s Protocol Services_Supported property. If the IUT cannot be configured in this way then this test shall
be omitted.

© 2022 by BACnet International. All rights reserved. 334

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. MAKE (the IUT send a ReadPropertyMultiple-Request for a list of properties L)
2. RECEIVE ReadPropertyMultiple-Request,
-- the following is repeated for each object O referenced in L
'Object Identifier' = (Oebjeetindentifierof thespecified-objeet),
'List of Property References' = (one or more properties of O as specified in L the-speeified-objeet)
3. TRANSMIT BACnet-Reject-PDU,
'Reject Reason' = UNRECOGNIZED SERVICE
4. REPEAT X = (the properties from L in the order the IUT chooses Step+) DO {
RECEIVE ReadProperty-Request,
'Object Identifier' = (object identifier referenced by X),
'Property Identifier' = (property identifier referenced by X)
TRANSMIT ReadProperty-Ack,
'Object Identifier' = (object identifier referenced by X),
'Property Identifier' = (property identifier referenced by X),
'Property Value'= (any valid value)

8.21 ReadRange Service Initiation Tests

8.21.1 Reading Values with no Specified Range
Reason for change: 135-2008u-3.

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that does not specify any range of values
to be returned.

Test Steps:

1. RECEIVE ReadRange-Request,

'Object Identifier' = (O, any Frendleg object),

'"Property Identifier' = Leg—Buffer(P, any list property the IUT can read)
2. TRANSMIT ReadRange-ACK

'Object Identifier' = O,

'"Property Identifier' =P,

‘Result Flags™ = (TRUE, (bLast), (NOT bLast)),
‘Item Count’ = (C: any valid value)
‘Item Data’ = (C valid records for the requested property)

3. CHECK(that the IUT performs the vendor specified action)

8.21.3 Reading a Range of Values by Position
Reason for change: 135-2008u-3.

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that specifies the range of values to be
returned by position.

Test Steps:

1. RECEIVE ReadRange-Request,
'Object Identifier' = (O, any Frend-fog object),
'"Property Identifier' = Leg—Butfer(P, any list property),
'Reference Index' = (any Unsigned value),
'Count' = (CI, any INTEGER value)

2. TRANSMIT ReadRange-ACK

© 2022 by BACnet International. All rights reserved. 33 5

BACnet Testing Laboratories - Specified Tests

'Object Identifier' = O,
'"Property Identifier' =P,

‘Result Flags™ = ((TRUE if the first was requested, FALSE otherwise), ?, ?),
‘Item Count’ = (C2: any valid value <= |C)|)
‘Item Data’ = (C2 valid records for the requested property)

3. CHECK(that the IUT performs the vendor specified action)

8.21.9 Presents Log Records
8219 P LosR 1s.C -_ SpecificD

Reason for Change: Modified the name of the test and improved the wording of the Purpose. Added 's' to Notes to Tester.

Purpose: To verify that the IUT can initiate one or more ReadRange requests that access and present a tester-specified portion

of log records-havinga-speeifie-datatype,usingany-valid range. [t is a generic test used to test data presentation requirements.

Test Concept: Run test in-Clause-135.7-2019 - 8.21.8 and verify that the data presentation meets the criteria specified by the
BIBB being tested.

Notes to Tester: The values presented by the IUT may differ from the values transmitted on the wire due to rounding,
truncation, formatting, language, conversion, etc.

Notes to Tester: The IUT is not required to display records containing log-status values.

8.22 WriteProperty Service Initiation Tests

8.22.X1 Accepting Input and Modifying Large List Properties
Reason for Change: there is no appropriate test for modifying large list property values as required by DM-SP-VM-A.

Purpose: This test case verifies that the IUT is capable of accepting user input and using it to modify large list properties
where AddListElement and RemoveListElement will be required. It is a generic test used to test data-input requirements.

Configuration: For this test, the tester shall choose a list property, P1, from an object, O1. The TD shall be configured to not
support segmentation. The list property shall be configured with a value such that it cannot be read or written without the use
of ReadRange and AddListElement/RemoveListElement.

Notes to Tester: The value accepted by the [UT may differ from the value transmitted on the wire due to rounding, truncation,
formatting, language conversion, etc.

Notes to Tester: If the IUT has not already determined that the value cannot be transmitted using WriteProperty or
WritePropertyMultiple, the [UT may initiate a WriteProperty or WritePropertyMultiple. If this occurs, the IUT shall pass the
test only if it automatically falls back to using AddListElement and RemoveListElement upon receipt of the correct
BAChnetReject-PDU from the TD, indicating that the write request is too large.

Test Steps:
-- test adding elements into the list

1. MAKE (the IUT accept 1 or more new entries, {E1..En} for P1 from the user)
2. RECEIVE AddListElement-Request,

'Object Identifier' = Ol,
'Property Identifier' = P1
'List Of Elements' = (El, .., En)

3. TRANSMIT BACnet-SimpleACK-PDU

-- test removing elements from the list
4. MAKE (the IUT delete 1 or more entries, {E1..Ex} for P1 from the user)

© 2022 by BACnet International. All rights reserved. 336

BACnet Testing Laboratories - Specified Tests

5. RECEIVE RemoveListElement-Request,

'Object Identifier' = Ol,
'"Property Identifier' = P1
'List Of Elements' = (El, .., Ex)

6. TRANSMIT BACnet-SimpleACK-PDU

8.22.X4 Writing Array Properties as a Whole Array
Reason for Change: No test exists for this functionality. This test is not included in any SSPC proposal.

Purpose: This test verifies that the IUT is writing the entire array to the TD without the use of the array index.

Configuration Requirements: For this test, the tester shall choose a property, P, from an object, O;. The TD shall be
configured to not support execution of WritePropertyMultiple.

The WriteProperty request initiated by IUT shall contain array of elements in P;, which shall fit in the APDU and segment
limitations of the IUT.

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding, truncation,
formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that the TD does not support execution of WritePropertyMultiple, the
IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall pass the test only if it automatically falls back to using
WriteProperty upon receipt of the correct BACnetReject-PDU from the TD, indicating that WritePropertyMultiple is not
supported.

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in
the range 1-16, excluding 6.

Test Steps:

1. MAKE (the IUT accept a new value for P; including all elements of the array from the user)
2. RECEIVE WriteProperty-Request,

'Object Identifier' = O,
'Property Identifier' = Py,
'"Property Value' = (the value provided to the IUT for P;)

3. TRANSMIT BACnet-SimpleACK-PDU

8.24 DeviceCommunicationControl Service Initiation Tests

[This test is not used by BTL Test Package so we are removing it from BTL Specified Tests for 20.0.1]

© 2022 by BACnet International. All rights reserved. 337

BACnet Testing Laboratories - Specified Tests

8.24.2 Indefinite Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for an indefinite time duration and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
'Enable/Disable' = DISABLE,

'Password' = (a-password-of-atleast-S-charaeters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.3 Time Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for a specific time duration and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
'"Time Duration' = (any unsigned value > 0),
'Enable/Disable' = DISABLE,

'Password' = {a-password-ef-atleastS-charaeters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.4 Enable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should resume and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
'Enable/Disable' = ENABLE,

'Password' = (a-password-efatleastS-charaeters)-(a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.5 Enable, No Password
Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should resume and do not convey a password.

© 2022 by BACnet International. All rights reserved. 33 8

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
'Enable/Disable' = ENABLE,
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.6 Time Duration, Disable, No Password
Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for a specific time duration and do not convey a password. If the IUT does not support the “no password” option,
this test shall not be performed.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
'"Time Duration' =(any unsigned value > 0),
'Enable/Disable'= DISABLE

2. TRANSMIT BACnet-SimpleACK-PDU

[This test is not used by BTL Test Package so we are removing it from BTL Specified Tests for 20.0.1]
8.24.7 TimeD ion, Disable-Initiation, P !

8.27 ReinitializeDevice Service Initiation Tests

8.27.2 COLDSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a COLDSTART should be
performed and convey a password.

Test Steps:
1. RECEIVE ReinitializeDevice-Request,
'Reinitialized State of Device' = COLDSTART,

'"Password' =(a-passwerd-ofatleastS-charaeters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

© 2022 by BACnet International. All rights reserved. 339

BACnet Testing Laboratories - Specified Tests

8.27.4 WARMSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a WARMSTART should be
performed and convey a password.

Test Steps:

1. RECEIVE ReinitializeDevice-Request,

'Reinitialized State of Device' = WARMSTART,

'Password' =(a-password-ofatleastS-charaeters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.32 Who-Has Service Initiation Tests

8.32.1 Object Identifier Selection with no Device Instance Range

Reason for Change: The BACnet standard (per addendum 135-2012ar-5) now allows the IUT to send and receive a unicast
response.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object identifier form with no device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: If there is no vendor-defined observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST
SOURCE = IUT,
Who-Has-Request,

'Object Identifier' = Object! (any-objeetidentifier)

2. TRANSMIT
DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
SOURCE = TD,

I-Have-Request,
'Device Identifier' = (the TD’s Device object)
'Object Identifier' = Objectl

3 CHECK (for any vendor-defined observable actions)

8.32.2 Object Name Selection with no Device Instance Range

Reason for Change: The BACnet standard (per addendum 135-2012ar-5) now allows the IUT to send and receive a unicast
response.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object name form with no device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: If there is no vendor-defined observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
SOURCE = IUT,
Who-Has-Request,

© 2022 by BACnet International. All rights reserved. 340

BACnet Testing Laboratories - Specified Tests

'Object Name' = VI (any-CharaecterString)

2. TRANSMIT
DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
SOURCE =TD,

I-Have-Request,
'Device Identifier' = (the TD’s Device object)
'Object Name' = V1

3. CHECK (for any vendor-defined observable actions)

8.32.3 Object Identifier Selection with a Device Instance Range
Reason for Change: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and
16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1. The allowance for Unicast [-Have is added.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object identifier form with a device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: Device instance range should be selected to cover TD's device object identifier. If there is no vendor-defined
observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
SOURCE = IUT,

Who-Has-Request,
'Device Instance Range Low Limit' = (any integer X: +0 <= X <= "Device Instance Range High Limit'),
'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <=Y <=4,194,303),

'Object Identifier' = Object] (any-objectidentifier)

2. TRANSMIT
DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
SOURCE =TD,

I-Have-Request,
'Device Identifier' = (the TD’s Device object)
'Object Identifier' = Objectl

3. CHECK (for any vendor-defined observable actions)

8.32.4 Object Name Selection with a Device Instance Range

Reason for Change: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and
16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1. The allowance for Unicast I-Have is added.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object name form with a device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Notes to Tester: Device instance range should be selected to cover TD's device object identifier. If there is no vendor-defined
observable action, then test step 3 can be skipped.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
SOURCE = IUT,

Who-Has-Request,
'Device Instance Range Low Limit' = (any integer X: +0 <= X <= "Device Instance Range High Limit'),
'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <= Y <=4,194,303),

© 2022 by BACnet International. All rights reserved. 34 1

BACnet Testing Laboratories - Specified Tests

'Object Name' = VI (any-CharaecterString)

2. TRANSMIT
DESTINATION = IUT | LOCAL BROADCAST | GLOBAL BROADCAST
SOURCE =TD,

I-Have-Request,
'Device Identifier' = (the TD’s Device object)
'Object Name' = V1

3. CHECK (for any vendor-defined observable actions)

8.34 Who-Is Service Initiation Tests

8.34.2 Who-Is Request with a Device Instance Range

Reason for Change: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and
16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1.

Purpose: To verify that the [UT can initiate Who-Is service requests with a device instance range. If the IUT cannot be caused
to issue a Who-Is request of this form, then this test shall be omitted.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
SOURCE = IUT,

Who-Is-Request,
'Device Instance Range Low Limit' = (any integer X: +0 <= X <= "Device Instance Range High Limit'),
'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <=Y <=4,194,303)

8.X2 WriteGroup Service Initiation Tests
This clause defines the tests necessary to demonstrate support for initiating WriteGroup service requests.

BACnet Reference Clause: 15.11.

8.X2.1 Broadcasting to a Group of Channel Objects
Purpose: Verify that the IUT can initiate a WriteGroup request to an arbitrary group with an arbitrary channel number.

Test Concept: Make the IUT perform a WriteGroup request to a tester selected group and channel. Verify that the request is
generated.

Test Steps:

1. MAKE(the IUT initiate a WriteGroup request to group G and Channel C)
2. RECEIVE WriteGroup-Request
DESTINATION = GLOBAL BROADCAST | LOCAL BROADCAST |
REMOTE BROADCAST | TD,

'Group Number'= G,

'Write Priority' = (any valid value),

'Change List' = (a valid list of 1 or more changes which impact channel C),
'Inhibit Delay' = (absent or TRUE or FALSE)

© 2022 by BACnet International. All rights reserved. 342

BACnet Testing Laboratories - Specified Tests

8.X12 SubscribeCOVPropertyMultiple Service Initiation Tests
8.X12.1 Positive SubscribeCOVPropertyMultiple Service Initiation Tests

8.X12.1.1 Confirmed Notifications Subscription
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify the client can subscribe to confirmed notifications using the SubscribeCOVPropertyMultiple service.
Test Concept: The IUT is made to subscribe for confirmed notifications.
Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (any valid process identifier),
'Issue Confirmed Notifications' = TRUE,

'Lifetime' = L,

'Max Notification Delay' = (any valid notification delay),

'List of COV Subscription Specifications' = (any valid list of subscriptions)
3. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.2 Unconfirmed Notifications Subscription
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify the client can subscribe to unconfirmed notifications using the SubscribeCOVPropertyMultiple service.
Test Concept: The IUT is made to subscribe for unconfirmed notifications.
Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (any valid process identifier),
'Issue Confirmed Notifications' = FALSE,

'Lifetime' = L,

'Max Notification Delay' = (any valid notification delay),

'List of COV Subscription Specifications' = (any valid list of subscriptions)
3. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.3 Requests 8 Hour Lifetimes
Reason for Change: Added new test to support DS-COVM-A testing.
Purpose: To verify that the IUT is able to provide a lifetime which is less than or equal to 8 hours for any

SubscribeCOVPropertyMultiple request it generates.

Test Concept: The tester selects any of the possible COVM subscriptions that the IUT is able to generate and it is configured
to use a lifetime less than or equal to 8 hours. The IUT is made to send the subscription, and the lifetime is verified to be less
than or equal to 8 hours.

Test Steps:

1. MAKE (the IUT send the selected SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request,

'Subscriber Process Identifier' = (any valid process identifier),
'Issue Confirmed Notifications' = TRUE | FALSE,

'Lifetime' = (any value <= 28800),

'Max Notification Delay' = (any valid delay between 1 and 3600),

© 2022 by BACnet International. All rights reserved. 343

BACnet Testing Laboratories - Specified Tests

'List of COV Subscription Specifications' = (a valid list of COV Specifications)
3. TRANSMIT BACnet-SimpleACK-PDU

8.X12.1.4 Subscribe to Timestamped Notifications
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify the client can subscribe to timestamped notifications using the SubscribeCOVPropertyMultiple service.

Test Concept: A subscription for timestamped COVM notifications is established with Lifetime L for property P1 of Object
Ol. L shall be less than 8 hours but large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (any valid process identifier),
'Issue Confirmed Notifications' = TRUE | FALSE,

'Lifetime' = L,

'Max Notification Delay' = (any valid notification delay),

'List of COV Subscription Specifications' = (any valid list with at least 1 entry where 'Timestamped' is TRUE)
3. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.5 Subscribe to Two Properties in a Single Object
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify that the IUT can subscribe to 2 or more properties from a single object.
Test Concept: A subscription for COVM notifications is established for properties from a single object.
Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (any valid process identifier),
'Issue Confirmed Notifications' = TRUE | FALSE,

'Lifetime' = L,

'Max Notification Delay' = (any valid notification delay),

'List of COV Subscription Specifications' = (a valid list of 2 or more properties from a single object)
3. TRANSMIT BACnet-SimpleAck-PDU

8.X12.1.6 Subscribe to Properties in Multiple Objects Using a Single Request
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify the client can subscribe to properties from multiple objects.
Test Concept: A subscription for notifications is established for properties from 2 or more objects.
Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (PID: any valid process identifier),
'Issue Confirmed Notifications' = TRUE | FALSE,

'Lifetime' = L,

'Max Notification Delay' = (any valid notification delay),

'List of COV Subscription Specifications' = (PROPS: any valid list of properties from 2 or more objects)
3. TRANSMIT BACnet-SimpleAck-PDU

© 2022 by BACnet International. All rights reserved. 344

BACnet Testing Laboratories - Specified Tests

8.X12.1.7 Change of Value Multiple Notification
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify that the [UT accepts COVM notifications for properties which it subscribed to.

Test Concept: A subscription for COVM notifications is established, a notification is sent to the IUT, and the vendor defined
actions are verified.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (ID1: any valid process identifier),

'Issue Confirmed Notifications'= TRUE | FALSE,

'Lifetime' = (L: any valid lifetime),

'Max Notification Delay' = (any valid delay between 1 and 3600),

'List of COV Subscription Specifications' = (PROPS: any valid list of subscriptions)
3. TRANSMIT BACnet-SimpleACK-PDU
4. IF (the subscription was for confirmed notifications) THEN

TRANSMIT ConfirmedCOVNotificationMultiple-Request,

'Subscriber Process Identifier' = IDI,

'Initiating Device Identifier' = TD,
'Time Remaining' = (any value ~=L),
'"Timestamp' = (any valid value, or absent if subscribed to non-timestamped
notifications),
'List of COV Notifications' = (values appropriate to each entry in PROPS)
RECEIVE BACnet-SimpleACK-PDU

ELSE
TRANSMIT UnconfirmedCOVNotificationMultiple-Request,
'Subscriber Process Identifier' = IDI,

'Initiating Device Identifier'= TD,
'Time Remaining' = (any value ~=1L),
'"Timestamp' = (any valid value, or absent if subscribed to non-timestamped
notifications),
'List of COV Notifications' = (values appropriate to each entry in PROPS)
5. CHECK (verify that any appropriate functions defined by the manufacturer, such as displaying information on

a workstation screen are carried out)

8.X12.1.8 Canceling a Subscription
Reason for Change: Added new test to support DS-COVM-A testing.
Purpose: To verify the client can cancel a COVM subscription.

Test Concept: A subscription for COVM notifications is established with a lifetime L, which is long enough to complete the
test. The client is made to cancel the subscription by sending a SubscribeCOVPropertyMultiple request with Lifetime, and
Max Notification Delay absent.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (the process identifier used in step 1),
'Issue Confirmed Notifications' = TRUE | FALSE,
'Lifetime' = L,

© 2022 by BACnet International. All rights reserved. 345

BACnet Testing Laboratories - Specified Tests

'Max Notification Delay' = (any valid delay between 1 and 3600),
'List of COV Subscription Specifications' = (PROPS: a valid list of COV Subscription Specifications)
TRANSMIT BAChnet-SimpleAck-PDU
4. IF confirmed notifications were subscribed for THEN
TRANSMIT ConfirmedCOVNotificationMultiple-Request

W

'Subscriber Process Identifier' = PID,
'Initiating Device Identifier' = (TD's device identifier),
'"Time Remaining' = (avalue~=1L),
'"Timestamp' = (a valid value, or absent if Time Of Change was not requested
in the subscription)
'List of COV Notifications' = (a valid list containing an entry for each entry in PROPS)
RECEIVE BACnet-SimpleAck-PDU
ELSE
TRANSMIT UnconfirmedCOVNotificationMultiple-Request
'Subscriber Process Identifier' = PID,
'Initiating Device Identifier' = (TD's device identifier),
'Time Remaining' = (avalue ~=1L),
'"Timestamp' = (avalid value, or absent if Time Of Change was not requested
in the subscription)
'List of COV Notifications' = (a valid list containing an entry for each entry in PROPS)

9]

MAKE (the IUT cancel the subscription)
6. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (the process identifier used in step 2),
'Issue Confirmed Notifications' = (the same value used in step 2),

-- 'Lifetime' = (absent)

-- 'Max Notification Delay' = (absent)

'List of COV Subscription Specifications' = (PROPS, or an empty list)
7. TRANSMIT BACnet-SimpleAck-PDU

8.X12.2 Negative SubscribeCOVPropertyMultiple Service Initiation Tests

8.X12.2.1 Change of Value Multiple Notification Arrives After Subscription Has Expired
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify that an appropriate error is returned if a COVM notification arrives after the subscription time period has
expired.

Test Concept: A subscription for COVM notifications is established and then cancelled or allowed to expire. A
ConfirmedCOV NotificationMultiple is then sent to the IUT to verify it returns either the appropriate error or a Simple-Ack.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVPropertyMultiple-Request),
2. RECEIVE SubscribeCOVPropertyMultiple-Request

'Subscriber Process Identifier' = (ID1: any valid process identifier),
'Issue Confirmed Notifications' = TRUE,

'Lifetime' = (L: any valid lifetime),

'Max Notification Delay' = (any valid notification delay),

'List of COV Subscription Specifications' = (PROPS: any valid list of COV subscriptions)
3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotificationMultiple-Request,

'Subscriber Process Identifier' = 1D1,

'Initiating Device Identifier' = TD,

'Time Remaining' = (avalue ~=1L),

'"Timestamp' = (any appropriate value or absent if it is not a timestamped subscription)

© 2022 by BACnet International. All rights reserved. 346

BACnet Testing Laboratories - Specified Tests

'List of COV Notifications' = (values appropriate to the properties in PROPS)
5. RECEIVE BACnet-SimpleACK-PDU
6. IF (the IUT can cancel the subscription) THEN

MAKE (the IUT cancel the subscription),

RECEIVE SubscribeCOVPropertyMultiple-Request,

'Subscriber Process Identifier' = 1D1,
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = (absent)
'Max Notification Delay' = (absent)

'List of COV Subscription Specifications' = (PROPS or an empty list)
ELSE
WAIT (2 * L seconds)
7. TRANSMIT ConfirmedCOVNotificationMultiple-Request,

'Subscriber Process Identifier' = IDI,
'Initiating Device Identifier' = TD,
'Time Remaining' = (avalue ~=1L),
'"Timestamp' = (any appropriate value or absent if it is not a timestamped subscription)
'List of COV Notifications' = (values appropriate to the properties in PROPS)
8. RECEIVE BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleAck-PDU)

8.X12.2.2 Unknown Subscription
Reason for Change: Added new test to support DS-COVM-A testing.

Purpose: To verify that an appropriate response is returned if a COVM notification arrives that contains arguments or
parameters which do not match any current subscriptions.

Test Concept: The TD sends a ConfirmedCOVNotificationMultiple-Request which does not correspond to any existing
subscriptions. Verify that the I[UT responds with either an error message or a Simple-ACK.

Configuration Requirements: At the start of the test, the [UT shall have no outstanding COVM subscriptions with TD using
process identifier ID2.

Test Steps:
1. TRANSMIT ConfirmedCOVNotificationMultiple-Request,
'Subscriber Process Identifier' = 1ID2,
'Initiating Device Identifier' = TD,
'Time Remaining' = (any valid value),
'List of COV Notifications' = (any valid list of property notifications)
2. RECEIVE
BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (UNKNOWN_SUBSCRIPTION) |

(BACnet-SimpleACK-PDU)

8.X33 AuditLogQuery Initiation Tests

8.X33.1 Reading a Range of Items Using Any Valid Query
Reason for Change: There is no test for this functionality.

© 2022 by BACnet International. All rights reserved. 347

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that the IUT can initiate one or more AuditLogQuery requests that access a tester-specified portion of an
audit log, using any valid range.

Test Concept: The TD contains an Audit Log object that has a logical set of log records, S1. The tester selects a portion of
S1 to be returned, and causes the IUT to request those records, using any valid range. The test then verifies that the [UT can
display the records in a manner consistent with those that the TD returns.

Configuration Requirements: The TD contains an audit log object, L1, which has a set of records, S1. The IUT is
configured to display the returned set of log records.

Test Steps:

1. MAKE (L1 contain the set of records S1)
2. MAKE (the IUT request a range of samples from L1) {
3. WHILE (not all records from the tester-selected range have been returned)
RECEIVE AuditLogQuery-Request,
'Audit Log' = (L1),
'Query Parameters' = (any valid query),
'Start at Sequence Number' = (an appropriate sequence number) -- or absent
'Requested Count' = (any valid range)
TRANSMIT AuditLogQuery-ACK,
'AuditLog' = (L1),
'Records' = (a set of records appropriate for this response),
'NoMoreltems' = (an appropriate value for this response)
H
4. CHECK (the records returned in step 3 include the tester-selected range)
5. MAKE (the IUT display the tester-selected range)
6. CHECK (the records displayed in step 5 are consistent with the records returned in step 3)

9. APPLICATION SERVICE EXECUTION TESTS

The test cases defined in this clause shall be used to verify that a BACnet device correctly implements the service procedure
for the specified application service. BACnet devices shall be tested for the proper execution of each application service for
which the PICS indicates execution is supported.

For each application service included in this clause several test cases are defined that collectively test the various options and
features defined for the service in the BACnet standard. A test case is a sequence of one or more messages that are exchanged
between the implementation under test (IUT) and the testing device (TD) in order to determine if a particular option or feature
is correctly implemented. Multiple test cases that have a similar or related purpose are collected into test groups.

Under some circumstances an [UT may be unable to demonstrate conformance to a particular test case because the test applies
to a feature that requires a particular BACnet object or optional property that is not supported in the IUT. For example, a
device may support the File Access services but restrict files to stream access only. Such a device would have no way to
demonstrate that it could implement the record access features of the File Access services. When this type of situation occurs
the TUT shall be considered to be in conformance with BACnet provided the PICS documentation clearly indicates the
restriction. Failure to document the restriction shall constitute nonconformance to the BACnet standard. All features and
optional parameters for BACnet application services shall be supported unless a conflict arises because of unsupported objects
or unsupported optional properties.

For each application service the tests are divided into two types, positive tests and negative tests. The positive tests verify
that the IUT can correctly handle cases where the service is expected to be successfully completed. The negative tests verify
correct handling for various error cases that may occur. Negative tests include inappropriate service parameters but they do
not include cases with encoding errors or otherwise malformed PDUs. Tests to ensure that the IUT can handle malformed
PDUs are defined in 13.4.

Many test cases allow flexibility in the value to be used in a service parameter. The tester is free to choose any value within
the constraints defined in the test case. The IUT shall be able to respond correctly to any valid selection the tester might make.

© 2022 by BACnet International. All rights reserved. 348

BACnet Testing Laboratories - Specified Tests

The EPICS is considered to be a definitive reference indicating the BACnet functionality supported and the configuration of

the object database Any dlscrepan(:les between the BACnet functlonahty er—th%va}u%eﬂafepemes—m—eh%ebjeet—dambas%as

EP—IGS—Def ned in the EPICS and the functzonallly demonstrated by the dewce durmg testmg Shall constitute a fallure For
example, it is considered a failure if a test step involves writing to a property and the EPICS indicates the property is writable
but the device returns an error indicating "write access denied'.

9.1 AcknowledgeAlarm Service Execution Tests

9.1.1 Positive AcknowledgeAlarm Service Execution Tests

9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of the 'Time of
Acknowledgment' Parameter

Reason For Change: Made changes to allow cases where only one Recipient List entry is supported. Made changes to include
non-supported transitions.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked Transitions status. The Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and ene-other-deviee all other recipients in the
Recipient List. The TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT
notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at-one object that can detect alarm conditions and send
confirmed notifications. The Acked Transitions property shall have the value B'111" indicating that all transitions have been
acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be recipients of the alarm
notification. DI is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT state)
depending on the event transition.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the [UT)
2. WAIT (pFimeDelayDI)
3. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'"Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (T1: any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = NORMAL (any appropriate event state),
'"To State' = (any appropriate nen-nermal-event state),
'Event Values' = (the values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,

© 2022 by BACnet International. All rights reserved. 349

BACnet Testing Laboratories - Specified Tests

ConfirmedEventNotification-Request,

"Process Identifier' = (the process identifier configured for this event),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object detecting the alarm),

'Time Stamp' = (the timestamp or sequence number received in step 3),
'Notification Class' = (the notification class configured for this event),

'Priority' = (the priority configured for this event),

'Event Type' = (any valid event type),

'Message Text' = (optional, any valid message text),

'Notify Type' = (the notify type configured for this event),

'AckRequired' = TRUE,

'From State' = NORMAL(any appropriate event state),

'"To State' = (any appropriate ren-nermal event state),

'Event Values' = (the values appropriate to the event type)

6. TRANSMIT BACnet-SimpleACK-PDU

7. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = FALSE—TFRUE;
FRYE)Y(appropriate bit FALSE, the others TRUE)

8. TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event
notification),

'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

'Event State Acknowledged' = (the state specified in the '"To State' parameter of the notification),

'"Time Stamp' = (the time stamp conveyed in the notification),

'"Time of Acknowledgment' = (the TD’s current time using a Time format)

9. RECEIVE BACnet-Simple-ACK-PDU
10. IF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object detecting the alarm),

'Time Stamp' = (any valid time stamp),

'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),

'Event Type' = (the event type included in step 3),

'Message Text' = (optional, any valid message text),

'Notify Type' = ACK_NOTIFICATION,

'"To State' = (the 'To State' used in step 3)

ELSE
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

"Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object detecting the alarm),

'Time Stamp' = (any valid time stamp),

'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),

'Event Type' = (the event type included in step 3),

'Message Text' = (optional, any valid message text),

"Notify Type' = ACK_NOTIFICATION

11. TRANSMIT BACnet-SimpleACK-PDU

12. IF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE
DESTINATION = (at least one device other than the TD),

© 2022 by BACnet International. All rights reserved. 3 50

BACnet Testing Laboratories - Specified Tests

SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (the timestamp or sequence number received in step 10),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (the event type included in step 3),
'Message Text' = (optional, any valid message text),
"Notify Type' = ACK_NOTIFICATION,
'"To State' = (the 'To State' used in step 3)
ELSE
BEFORE Notification Fail Time
RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'Time Stamp' = (the timestamp or sequence number received in step 10),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (the event type included in step 3),
'Message Text' = (optional, any valid message text),
"Notify Type' = ACK_NOTIFICATION

13. TRANSMIT BACnet-SimpleACK-PDU
14. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 12 shall be the same address used
in step 5. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol
revision 1. Implementations that precede this version will not include this parameter. When multiple event notifications are
expected for a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with
one recipient in the Recipient List property of the issuing Notification_class object, skip all steps related to receipt of the
second notification.

9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of the 'Time of
Acknowledgment' Parameter

Reason For Change: Made changes to include not supported transitions.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked Transitions status. The Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and one other device. The TD acknowledges the
alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm
has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked Transitions property shall have the value B'111' indicating that all transitions have
been acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be recipients of the
alarm notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT
state) depending on the event transition.

© 2022 by BACnet International. All rights reserved. 3 5 1

BACnet Testing Laboratories - Specified Tests

Notes to Tester: The destination address used for the acknowledgment notification in step 8 shall be the same address used
in step 3. The destination address used for the acknowledgment notification in step 9 shall be the same address used in step
4. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol revision
1. Implementations that precede this version will not include this parameter. When multiple event notifications are expected
for a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with one recipient
in the Recipient_List property of the issuing Notification_class object, omit steps 4 and 9.

Test Steps:
1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT (pFimeDelayDI)
3. BEFORE Notification Fail Time
RECEIVE,
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'Time Stamp' = (any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = NORMAL(any appropriate event state),
'"To State' = (any appropriate event state),
'Event Values' = (the values appropriate to the event type)
4. TIF (the notification in step 3 was not a broadcast) THEN
RECEIVE
DESTINATION = (a device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (the timestamp or sequence number received in step 3),
'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= (the notify type configured for this event),
'AckRequired' = TRUE,
'From State'= NORMAL(any appropriate event state),
'To State' = (any appropriate event state),
'Event Values' = (the values appropriate to the event type)
5. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions =
EALSETRUETFRYUEY (appropriate bit FALSE, the others TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
'Time Stamp'= (any valid time stamp),
'Acknowledgement Source' = (any valid value),
'"Time of Acknowledgment' = (the TD’s current time using a Time format)

© 2022 by BACnet International. All rights reserved. 3 52

BACnet Testing Laboratories - Specified Tests

7. RECEIVE BACnet-Simple-ACK-PDU
8. IF (Protocol Revision is present AND Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = 1IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'Time Stamp'= (any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type'= ACK NOTIFICATION,
'To State' = (the 'To State' used in step 3 or 4)
ELSE
BEFORE Notification Fail Time
RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (the current time or sequence number),
'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ACK NOTIFICATION
9. IF (the notification in step 8 was not broadcast) THEN
IF (Protocol Revision is present AND Protocol Revision > 1) THEN
RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'Time Stamp' = (the timestamp or sequence number from the notification in step 8),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type'= (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ACK_NOTIFICATION,
'"To State' = (the 'To State' used in step 3 or 4)
ELSE
RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),

© 2022 by BACnet International. All rights reserved. 3 53

BACnet Testing Laboratories - Specified Tests

'Time Stamp' = (the timestamp or sequence number from the notification in step 8),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ACK NOTIFICATION,
10. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE,TRUE,TRUE)

9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications

Reason For Change: Made changes to include not supported transitions.

Purpose: To verify the successful re-acknowledgment of an event signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked Transitions status.

Test Concept: An event is triggered and the IUT notifies the TD and one other device. The TD acknowledges the event and
verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all recipients that the event has been
acknowledged. The TD then acknowledges the event again, and the IUT again notifies all recipients. This behavior was not
defined before Protocol Revision 7 and so this test shall only be performed if Protocol Revision is present (i.e.,
Protocol Revision > 7).

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal
transitions and sends confirmed notifications. The Acked Transitions property shall have the value B'111', indicating that all
transitions have been acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be
recipients of the event notification. DI is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to
and from FAULT state) depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in steps 12 and 19 shall be the same
address used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits
them in is irrelevant. If the IUT can only be configured with one recipient in the Recipient List property of the issuing
Notification_class object, omit steps 5, 6, 12, 13, 19, and 20.

Test Steps:

1. MAKE (a change that triggers the detection of an event in the IUT)
2. WAIT (pFimeDBelayD]I)
3. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'"Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the event-initiating object),

'Time Stamp' = (T1: any valid time stamp),

'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),

'Event Type' = (E1: any valid event type),

'Message Text' = (optional, any valid message text),

"Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,

'From State' = NORMAL(any appropriate event state),

© 2022 by BACnet International. All rights reserved. 3 54

'To State' = (S1:

'Event Values' =

BACnet Testing Laboratories - Specified Tests

any appropriate effaermal-event state),
(the values appropriate to the event type)

4. TRANSMIT BACnet-SimpleACK-PDU

5.

6.
7.

RECEIVE
DESTINATION =
SOURCE = IUT,

(a device other than the TD),

ConfirmedEventNotification-Request,

'Process Identifier' =

(the process identifier configured for this event),

'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),

'Time Stamp' =
'Notification Class' =

(TD),
(the notification class configured for this event),

'Priority' = (the priority configured for this event),

'Event Type' =

(any valid event type),

'Message Text' = (optional, any valid message text),

"Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,

'From State' = NORMAL(any appropriate event state),
'"To State' = (any appropriate effnermal-event state),

'Event Values' =

(the values appropriate to the event type)

TRANSMIT BACnet-SimpleACK-PDU

VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (FAESESFRUETRUE)

(appropriate bit FALSE, the others TRUE)
TRANSMIT AcknowledgeAlarm-Request,

8.

'Acknowledging Process Identifier' =

'Event Object Identifier' =

(the 'Event Object Identifier' from the event notification),

'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
'Time Stamp' = (any valid time stamp),

'Acknowledgment Source' = (any valid value)

'Time of Acknowledgment' = (any of the forms specified for this parameter)

9. RECEIVE BACnet-Simple-ACK-PDU
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =

(the process identifier configured for this event),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the event-initiating object),
'"Time Stamp' = (T+2: any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (ED),
'Message Text' = (optional, any valid message text),
"Notify Type' = ACK_NOTIFICATION,
'"To State' = (S1)
11. TRANSMIT BACnet-SimpleACK-PDU
12. RECEIVE
DESTINATION = (a device other than the TD),
SOURCE = IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =

(the process identifier configured for this event),

'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),

'"Time Stamp' =
'Notification Class' =

(T+2),
(the notification class configured for this event),

'Priority' = (the priority configured for this event),

'Event Type' =

(ED),

'Message Text' = (optional, any valid message text),

© 2022 by BACnet International. All rights reserved.

355

(the value of the 'Process Identifier' parameter in the event notification),

BACnet Testing Laboratories - Specified Tests

"Notify Type' = ACK_NOTIFICATION,

'"To State' = (S
13. TRANSMIT BACnet-SimpleACK-PDU
14. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE, TRUE, TRUE)
15. TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),

'Time Stamp' = (any valid time stamp),

'Acknowledgment Source' = (any valid value)

'"Time of Acknowledgment' = (any of the forms specified for this parameter)

16. RECEIVE BAChnet-SimpleACK-PDU
17. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'"Time Stamp' = (T23: any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (ED),
'Message Text' = (optional, any valid message text),
'Notify Type' = ACK_NOTIFICATION,
'"To State' = (S1)
18. TRANSMIT BACnet-SimpleACK-PDU
19. RECEIVE

DESTINATION = (at least one device other than the TD),

SOURCE = IUT,

ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'"Time Stamp' = (T23),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (ED),
'Message Text' = (optional, any valid message text),
'Notify Type' = ACK NOTIFICATION,
'To State' = (S1)

20. TRANSMIT BACnet-SimpleACK-PDU
21. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE, TRUE, TRUE)

9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications

Reason For Change: Made changes to include not supported transitions.

Purpose: To verify the successful re-acknowledgment of an event signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked Transitions status.

© 2022 by BACnet International. All rights reserved. 3 56

BACnet Testing Laboratories - Specified Tests

Test Concept: An event is triggered and the IUT notifies the TD and one other device. The TD acknowledges the event and
verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all recipients that the event has been
acknowledged. The TD then acknowledges the event again, and the IUT again notifies all recipients. This behavior was not
defined before Protocol Revision 7 and so this test shall only be performed if Protocol Revision is present (i.e.,
Protocol Revision > 7).

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal
transitions and sends unconfirmed notifications. The Acked Transitions property shall have the value B'111", indicating that
all transitions have been acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall
be recipients of the event notification. D/ is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions
to and from FAULT state) depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in steps 9 and 14 shall be the same address
used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is
irrelevant. If the IUT can only be configured with one recipient in the Recipient List property of the issuing Notification class
object, omit steps 4, 9, and 14.

Test Steps:

1. MAKE (a change that triggers the detection of an offnormal event in the IUT)
2. WAIT (pFimeDelayDI)
3. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,

'"Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'Time Stamp' = (T1: any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (E1: any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = NORMAL(any appropriate event state),
'"To State' = (S1: any appropriate effnermal-event state),
'Event Values' = (the values appropriate to the event type)
4. RECEIVE

DESTINATION = (at least one device other than the TD),

SOURCE = IUT,

UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'"Time Stamp' = (T1),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = NORMAL(any appropriate event state),
'"To State' = (any appropriate effnermal event state),
'Event Values' = (the values appropriate to the event type)

5. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = FALSE,—TFRUE;
FRYE)}(appropriate bit FALSE, the others TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,

© 2022 by BACnet International. All rights reserved. 3 57

7.
8.

9.

10.
11.

12.
13.

BACnet Testing Laboratories - Specified Tests

'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),

'Time Stamp' = (any valid time stamp),

'Acknowledgment Source' = (any valid value)

'Time of Acknowledgment' = (any of the forms specified for this parameter)

RECEIVE BACnet-Simple ACK-PDU
BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'"Time Stamp' = (T2: any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (ED),
'Message Text' = (optional, any valid message text),
"Notify Type' = ACK NOTIFICATION,
'"To State' = (S1)

RECEIVE

DESTINATION = (a device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'"Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'"Time Stamp' = (T2),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (ED),
'Message Text' = (optional, any valid message text),
'Notify Type' = ACK NOTIFICATION,
'"To State' = (S1)

VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE, TRUE, TRUE)
TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),

'"Time Stamp' = (the time stamp conveyed in the notification),

'Acknowledgment Source' = (any valid value)

'Time of Acknowledgment' = (any of the forms specified for this parameter)

RECEIVE BACnet-SimpleACK-PDU
BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,
'"Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'Time Stamp' = (T3: any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (ED),
'Message Text' = (optional, any valid message text),
'Notify Type' = ACK_NOTIFICATION,
'"To State' = (S1)

14. RECEIVE

DESTINATION = (a device other than the TD),

© 2022 by BACnet International. All rights reserved. 3 58

BACnet Testing Laboratories - Specified Tests

SOURCE = IUT,

UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
'"Time Stamp' = (T3),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event),
'Event Type' = (ED),
'Notify Type' = ACK_NOTIFICATION,
'"To State' = (S1)

15. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE, TRUE, TRUE)

9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Time Stamp' is Too Old

Reason For Change: Made changes to include not supported transitions.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the most
recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and one other device. The TD acknowledges the
alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not
notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper time stamp and
verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was
acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked Transitions property shall have the value B'111" indicating that all transitions have been
acknowledged. The TD and one other BACnet device, if the [UT supports multiple recipients, shall be recipients of the alarm
notification. D1 is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT state)
depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used
in step 3. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class
object, omit steps 5, 6, 15, and 16.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT (pFimeDelayDI)
3. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object detecting the alarm),

'"Time Stamp' = (T1: any valid time stamp),

'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),

'Event Type' = (E1: any valid event type),

'Message Type' = (optional, any valid message text),

© 2022 by BACnet International. All rights reserved. 3 59

BACnet Testing Laboratories - Specified Tests

"Notify Type' = (the notify type configured for the event),
'AckRequired' = TRUE,
'From State' = NORMAL (any appropriate event state),
'"To State' = (S1: any appropriate ren-nermal-event state),
'Event Values' = (the values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE

DESTINATION = (a device other than the TD),

SOURCE = IUT,

ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'Time Stamp' = (TD),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (E2: any valid event type),
'Message Type' = (optional, any valid message text),
'Notify Type' = (the notify type configured for the event),
'AckRequired' = TRUE,
'From State' = NORMAL (any appropriate event state),
'"To State' = (S2: any appropriate ren-nermal-event state),
'Event Values' = (the values appropriate to the event type)

6. TRANSMIT BACnet-SimpleACK-PDU
7. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions =

EALSETRUETRUE Y appropriate bit FALSE, the others TRUE)
8. TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
'Time Stamp' = (any valid time stamp),
'Acknowledgement Source' = (any valid value),
'"Time of Acknowledgment' = (the current time using a Time format)
9. RECEIVE BACnet-Error-PDU
Error Class = SERVICES,
Error Code = INVALID TIME STAMP

10. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (FALSE,TRUE,TRUE)
11. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (the process identifier configured for this event),
'Event Object Identifier' = (the "Event Object Identifier' from the event notification),
'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
'"Time Stamp' = (the time stamp conveyed in the notification),
'"Time of Acknowledgment' = (the current time using a Time format)
12. RECEIVE BACnet-Simple-ACK-PDU
13. IF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time

RECEIVE
ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),

'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),

'"Time Stamp' = (T2: any valid time stamp),

"Notification Class' = (the notification class configured for this event),
"Priority’ = (the priority configured for this event type),

'Event Type' = (any valid event type),

'Message Type' = (optional, any valid message text),

© 2022 by BACnet International. All rights reserved. 3 60

ELSE

BACnet Testing Laboratories - Specified Tests

"Notify Type' = ACK_NOTIFICATION,
'To State' = (S1 or S2)

BEFORE Notification Fail Time

RECEIVE
ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),

'"Time Stamp' = (T2: any valid time stamp),

'Notification Class' = (the notification class configured for this event),
'Priority’ = (the priority configured for this event type),

'Event Type' = (any valid event type),

'Message Type' = (optional, any valid message text),

"Notify Type' = ACK NOTIFICATION

14. TRANSMIT BACnet-SimpleACK-PDU
15. IF (Protocol Revision is present and Protocol Revision > 1) THEN
RECEIVE

ELSE

DESTINATION = (a device other than the TD),

SOURCE = IUT,

ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object detecting the alarm),

'"Time Stamp' = (T2),

'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),

'Event Type' = (any valid event type),

'Notify Type'= ACK NOTIFICATION,

'"To State' = (S1 or S2)

RECEIVE

DESTINATION = (a device other than the TD),

SOURCE = 1IUT,

ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object detecting the alarm),

'"Time Stamp' = (T2),

'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),

'Event Type'= (any valid event type),

'Message Type' = (optional, any valid message text),
'Notify Type'= ACK NOTIFICATION

16. TRANSMIT BACnet-SimpleACK-PDU
17. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE,TRUE,TRUE)

9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the 'Time Stamp' is Too

Ooud

© 2022 by BACnet International. All rights reserved. 3 6 1

BACnet Testing Laboratories - Specified Tests

Reason For Change: Made changes to include not supported transitions.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the most
recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and one other device. The TD acknowledges the
alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that the IUT does not
notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the proper time stamp and
verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients that the alarm was
acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and one other BACnet device, if the IUT supports multiple recipients, shall be recipients of the
alarm notification. D/ is either the pTimeDelay, or pTimeDelayNormal parameter, or 0 (for transitions to and from FAULT
state) depending on the event transition.

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used
in step 3. The destination address used for the acknowledgment notification in step 12 shall be the same address used in step
4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is irrelevant.
If the IUT can only be configured with one recipient in the Recipient List property of the issuing Notification class object,
omit steps 4 and 12.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT pFimeDelayD1
3. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (T1: any valid time stamp),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type' = (the notify type configured for the event),
'AckRequired' = TRUE,
'From State' = NORMAL(any appropriate event state),
'"To State' = (S1: any appropriate ren-nermal-event state),
'Event Values' = (the values appropriate to the event type)
4. IF (the notification in step 3 was not a broadcast) THEN
RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (T1),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type' = (the notify type configured for the event),

© 2022 by BACnet International. All rights reserved. 3 62

BACnet Testing Laboratories - Specified Tests

'AckRequired' = TRUE,

'From State' = NORMAL (any appropriate event state),
'"To State' = (S2: any appropriate ren-nermal-event state),
'Event Values' = (the values appropriate to the event type)

5. VERIFY (the 'Event Object Identifier from the event notification), Acked Transitions =
EALSETFRUETFRUE) (appropriate bit FALSE, the others TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
'"Time Stamp' = (a time stamp older than the one conveyed in the notification),
'Acknowledgement Source' = (any valid value),
'Time of Acknowledgment' = (the TD’s current time using a Time format)
7. RECEIVE BACnet-Error-PDU
Error Class = SERVICES,
Error Code = INVALID TIME STAMP
VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (FALSE,TRUE,TRUE)
9. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (the process identifier configured for this event),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
'Time Stamp' = (the time stamp conveyed in the notification),
'Acknowledgement Source' = (any valid value),
'"Time of Acknowledgment' = (the TD’s current time using a Time format)
10. RECEIVE BACnet-Simple-ACK-PDU
11. IF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = 1IUT,
UnconfirmedEventNotification-Request,
'"Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp'= (T2: any valid time stamp),
"Notification Class' = (the notification class configured for this event),
'Priority’' = (the priority configured for this event type),
'Event Type'= (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type'= ACK NOTIFICATION,
'"To State' = (S1 or S2)

®

ELSE
BEFORE Notification Fail Time
RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (T2: any valid time stamp),
"Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
'Notify Type' = ACK_NOTIFICATION

© 2022 by BACnet International. All rights reserved. 3 63

BACnet Testing Laboratories - Specified Tests

12. IF (the notification in step 11 was not broadcast) THEN
IF (Protocol Revision is present AND Protocol Revision > 1) THEN
RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (T2),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type'= ACK NOTIFICATION,
'To State' = (S1 or S2)
ELSE
RECEIVE

DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
'"Time Stamp' = (T2),
'Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Message Text' = (optional, any valid message text),
"Notify Type'= ACK NOTIFICATION

13. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (TRUE,TRUE,TRUE)

9.2 ConfirmedCOVNotification Service Execution Tests
9.2.1 Positive ConfirmedCOVNotification Service Execution Tests

9.2.1.1 Change of Value Notifications
Reason for Change: The existing test did not account for other properties which are expected for certain object types.

Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from object types that provide the
Present_Value and Status_Flags properties in COV notifications.

Test Concept: The IUT is made to subscribes for COV from an object of the type being tested. The TD then sends a COV
notification to the IUT and verifies that the IUT exhibits any actions identified by the vendor.

Test Steps:
1. RECEIVE SubscribeCOV,

© 2022 by BACnet International. All rights reserved. 3 64

BACnet Testing Laboratories - Specified Tests

'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X,

'Issue Confirmed Notifications ' = TRUE,

'Lifetime' = (a value greater than one minute)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 2),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X,

'"Time Remaining' = (the time remaining in the subscription),

'List of Values' = (Present_Value-and-, Status_Flags, and additional properties

appropriate to object type X)
4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.2.1.X4 Change of Value Notification from Proprietary Objects
This test has not been developed and shall be skipped.

9.2.1.XS5 ConfirmedCOVNotification from Access Door Object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the [UT can execute ConfirmedCOVNotification requests from Access Door objects.
Test Steps:

1. RECEIVE SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier value > 0),
'Monitored Object Identifier' = (any Access Door object, X),
'Issue Confirmed Notifications '= TRUE,
'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the process identifier used in step 1),
'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = X,
'"Time Remaining' = (the time remaining in the subscription),
'List of Values' = (the initial Present_Value, initial Status_Flags, and
Door_Alarm_State if X has a Door Alarm_State property)
4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.2.1.X6 ConfirmedCOVNotification from Access Point Object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can execute ConfirmedCOV Notification requests from Access Point objects.
Test Steps:

1. RECEIVE SubscribeCOV-Request,

© 2022 by BACnet International. All rights reserved. 3 65

BACnet Testing Laboratories - Specified Tests

'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
'Monitored Object Identifier' = (X: any Access Point object),

'Issue Confirmed Notifications '= TRUE,

'Lifetime' = (a value greater than one minute)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PI,

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X,

'"Time Remaining' = (the time remaining in the subscription),
'List of Values' = (any valid set of values)

4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.2.1.X7 ConfirmedCOVNotification from Credential Data Input Object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can execute ConfirmedCOVNotification requests from Credential Data Input objects.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
'Monitored Object Identifier' = (X: any Credential Data Input object),
'Issue Confirmed Notifications '= TRUE,
'Lifetime' = (a value greater than one minute)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier'= PI,

'Initiating Device Identifier' = TD,

'"Monitored Object Identifier' = X,

'Time Remaining' = (the time remaining in the subscription),
'List of Values' = (any valid set of values)

4. RECEIVE BACnet-SimpleACK-PDU
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.2.2 Negative ConfirmedCOVNotification Service Execution Tests

9.2.2.1 Change of Value Notification Arrives after Subscription has Expired
Reason for Change: Corrected tests per BTL-CR-0299 and added Configuration Requirements section.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has
expired.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with 'Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Test Steps:

1. RECEIVE SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier, P1),

© 2022 by BACnet International. All rights reserved. 3 66

BACnet Testing Laboratories - Specified Tests

'Monitored Object Identifier' = (any object X of a type that supports COV notification),
'Issue Confirmed Notifications ' = TRUE,
'Lifetime' = (a-valuenogreater-than-one-minuteany valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOV Notification-Request,

'Subscriber Process Identifier' = (theprocess-identifier-used-in-step1; Pl),

'Initiating Device Identifier' = 1D,

'"Monitored Object Identifier' = X,

'Time Remaining' = (any amount of time greater than (),
'List of Values' = (a list of values appropriate to object X)

4. TIF (the IUT can cancel the subscription) THEN
RECEIVE SubscribeCOV — Request,
'Subscriber Process Identifier' = (PI),
'"Monitored Object Identifier' = X
ELSE
MAKE (the IUT stop resubscribing, if it resubscribes automatically)
53. WAIT (a-valae-twe-times at least Lifetime, but sufficient to ensure the subscription has expired)
64. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the-proecess-identifierused-instep2P/),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X,

'Time Remaining' = (any amount of time greater than 0),
'List of Values' = (a list of values appropriate to object X)

75. TF (Protocol Revision is present and Protocol Revision >= 10) THEN
RECEIVE BACnet-Error-PDU,

'Error Class' = SERVICES,
'Error Code' = UNKNOWN_SUBSCRIPTION |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (any valid error code for class SERVICES) |

(BAChnet-SimpleACK-PDU)

9.2.2.2 Change of Value Notifications with Invalid Process Identifier
Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that
does not match any current subscriptions.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with 'Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Test Steps:
1. RECEIVE SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object X of a type that supports COV notification),
'Issue Confirmed Notifications ' = TRUE,
'Lifetime' = (a-valuene-greater-than-ene-minuteany valid Lifetime)

2. TRANSMIT BAChnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (a process identifier different from the one used in step 27),
'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = X,

© 2022 by BACnet International. All rights reserved. 3 67

BACnet Testing Laboratories - Specified Tests

'Time Remaining' = (any amount of time greater than 0),
'List of Values' = (a list of values appropriate to object X)

4. IF (Protocol Revision is present and Protocol Revision >= 10) THEN
RECEIVE BACnet-Error-PDU,

'Error Class' = SERVICES,

'Error Code' = UNKNOWN_SUBSCRIPTION |
(BACnet-SimpleACK-PDU)

ELSE

RECEIVE BACnet-Error-PDU,

'Error Class' = SERVICES,

'Error Code' = (any valid error code for class SERVICES) |
(BACnet-SimpleACK-PDU)

9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier
Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object identifier
that does not match any current subscriptions.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with 'Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Notes to Tester: If possible, select an object Y for which IUT supports COV Subscription.

Test Steps:
1. RECEIVE SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object X of a type that supports COV notification),
'Issue Confirmed Notifications '= TRUE,
'Lifetime' = (a-value-no-greaterthan-one-minuteany valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 21),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = (any object Y in the IUT supperting-COV-netification-cxcept X, and for which
1UT does not already have an active subscription),

'"Time Remaining' = (any amount of time greater than 0),

'List of Values' = (a list of values appropriate to object Y)

4. IF (Protocol Revision is present and Protocol Revision >= 10) THEN
RECEIVE BACnet-Error-PDU,

'Error Class' = SERVICES,
'Error Code' = UNKNOWN_SUBSCRIPTION |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

9.3 UnconfirmedCOVNotification Service Execution Tests

© 2022 by BACnet International. All rights reserved. 3 68

BACnet Testing Laboratories - Specified Tests

9.3.1.X6 UnconfirmedCOVNotification from Access Door Object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the [UT can execute UnconfirmedCOV Notification requests from Access Door objects.
Test Steps:

1. RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' = (any valid process identifier value > 0),

'Monitored Object Identifier' = (any Access Door object, X),

'Issue Confirmed Notifications '= FALSE,

'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X,

'"Time Remaining' = (the time remaining in the subscription),

'List of Values' = (the initial Present Value, initial Status_Flags, and

Door Alarm_State if X has a Door Alarm_State property)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.3.1.X7 UnconfirmedCOVNotification from Access Point Object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from Access Point objects.
Test Steps:

1. RECEIVE SubscribeCOV-Request,
'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
'Monitored Object Identifier' = (X: any Access Door object),
'Issue Confirmed Notifications '= FALSE,
'Lifetime' = (a value greater than one minute)
2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier'= PI,
'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = X,
'Time Remaining' = (the time remaining in the subscription),
'List of Values' = (any valid set of values)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.3.1.X8 UnconfirmedCOVNotification from Credential Data Input Object
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from Credential Data Input objects.
Test Steps:

1. RECEIVE SubscribeCOV-Request,

© 2022 by BACnet International. All rights reserved. 3 69

BACnet Testing Laboratories - Specified Tests

'Subscriber Process Identifier' = (PI: any valid process identifier value > 0),
'Monitored Object Identifier' = (X: any Access Door object),
'Issue Confirmed Notifications '= FALSE,
'Lifetime' = (a value greater than one minute)
2. TRANSMIT BAChnet-SimpleACK-PDU
3. TRANSMIT UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PI,
'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = X,
'"Time Remaining' = (the time remaining in the subscription),
'List of Values' = (any valid set of values)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.3.2 Change of Value Notifications
Reason for Change: The existing test did not account for other properties which are expected for certain object types.

Purpose: To verify that the IUT can execute UnconfirmedCOVNotification requests from objects that provide the
Present Value and Status Flags properties in COV notifications.

Test Concept: The IUT is made to subscribes for COV from an object of the type being tested. The TD then sends a COV
notification to the IUT and verifies that the IUT exhibits any actions identified by the vendor.

Test Steps:
1. RECEIVE SubscribeCOV,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X,
'Issue Confirmed Notifications '= FALSE,
'Lifetime' = (a value greater than 1 minute)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 2),

'Initiating Device Identifier' = TD,

'Monitored Object Identifier' = X,

'Time Remaining' = (the time remaining for the subscription),

'List of Values' = (Present_Value, and Status_Flags, and additional properties

appropriate to object type X)
4. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

9.3.X9 Change of Value Notification from Proprietary Objects
This test has not been developed and shall be skipped.

9.4 ConfirmedEventNotification Service Execution Tests

9.4.X2 Decoding BACnetPropertyStates in 'Event Values'

Reason for Change: Added in a test for receiving a BACnetPropertyStates value which is encoded using an extended-value.

Purpose: To verify that the IUT is correctly accepting 'Event Values' which contain BACnetPropertyStates values across the
full value range of context tags ensuring proper decoding of the various forms of the production.

© 2022 by BACnet International. All rights reserved. 370

BACnet Testing Laboratories - Specified Tests

Test Concept: Send 3 ConfirmedEventNotifications to the IUT conveying a CHANGE OF STATE event. After each
notification verify that the IUT accepts and processes the notification. The first notification is sent with a new-state, NS1,
having a context tag value in the range 0 .. 62. The second notification is sent with a new-state, NS2, having a context tag
value in the range 64 .. 253 (a vendor proprietary discrete datatype). The third notification is sent with a new-state, NS3,
having a context tag value 254 (a standard discrete datatype) or greater and encoded with a context tag of 63 (the extended-
value choice) using the special encoding rules defined in the comment at the end of the BACnetPropertyStates production in
clause 21.

Test Steps:

-- new-state with a tag value in the range 15 .. 62
1. TRANSMIT ConfirmedEventNotification-Request,

"Process Identifier' = (any valid process identifier),

'Initiating Device Identifier' = TD,

'Event Object Identifier' = (any valid value),

'Time Stamp' = (any valid time stamp),

'Notification Class' = (any valid value),

'Priority' = (any valid value),

'Event Type' = CHANGE OF STATE,

'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = (any valid normal or offnormal value),
'"To State' = (any valid normal or offnormal value),
'Event Values' = (NS1, (T,F,2,7))

2. RECEIVE BACnet-SimpleACK-PDU
3. CHECK (that the IUT has utilized the value conveyed, correctly decoded)

-- new-state with a tag value in the range 64 .. 253
4. TRANSMIT ConfirmedEventNotification-Request,

'"Process Identifier' = (any valid process identifier),
'[nitiating Device Identifier' = TD,

'Event Object Identifier' = (any valid value),

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (any valid value),

'Priority’ = (any valid value),

'Event Type' = CHANGE _OF STATE,

'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = (any valid normal or offnormal value),
'To State' = (any valid normal or offnormal value),
'Event Values' = (NS2, (T,F,2,7))

5. RECEIVE BACnet-SimpleACK-PDU
6. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
the event notification, if there are utilized the value conveyed, correctly decoded)

-- new-state with a tag value greater than 254,
7. TRANSMIT ConfirmedEventNotification-Request,

'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = TD,

'Event Object Identifier' = (any valid value),

'Time Stamp' = (any valid time stamp),
'Notification Class' = (any valid value),

'Priority' = (any valid value),

© 2022 by BACnet International. All rights reserved. 37 1

BACnet Testing Laboratories - Specified Tests

'Event Type' = CHANGE OF STATE,

'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = (any valid normal or offnormal value),
'To State' = (any valid normal or offnormal value),
'Event Values' = (NS3, (T,F,2,7))

8. RECEIVE BACnet-SimpleACK-PDU
9. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
the event notification, if there are any)

9.5 UnconfirmedEventNotification Service Execution Tests

9.5.X2 Decoding BACnetPropertyStates in 'Event Values'

Reason for Change: Added in a test for receiving a BACnetPropertyStates value which is encoded using an extended-value.

Purpose: To verify that the IUT is correctly accepting 'Event Values' which contain BACnetPropertyStates values across the
full value range of context tags ensuring proper decoding of the various forms of the production.

Test Concept: Send 3 UnconfirmedEventNotifications to the IUT conveying a CHANGE OF STATE event. After each
notification verify that the IUT accepts and processes the notification. The first notification is sent with a new-state, NS1,
having a context tag value in the range 0 .. 62. The second notification is sent with a new-state, NS2, having a context tag
value in the range 64 .. 253 (a vendor proprietary discrete datatype). The third notification is sent with a new-state, NS3,
having a context tag value 254 (a standard discrete datatype) or greater and encoded with a context tag of 63 (the extended-
value choice) using the special encoding rules defined in the comment at the end of the BACnetPropertyStates production in
clause 21.

Test Steps:

-- new-state with a tag value in the range 15 .. 62
1. TRANSMIT UnconfirmedEventNotification-Request,

'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = TD,

'Event Object Identifier' = (any valid value),

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (any valid value),

'Priority’ = (any valid value),

'Event Type' = CHANGE OF STATE,

'Message Text' = (optional, any valid message text),
"Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = (any valid normal or offnormal value),
'To State' = (any valid normal or offnormal value),
'Event Values' = (NSI1, (T,F,2,7))

2. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
the event notification, if there are any)

-- new-state with a tag value in the range 64 .. 253
3. TRANSMIT UnconfirmedEventNotification-Request,

'"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = TD,
'Event Object Identifier' = (any valid value),

© 2022 by BACnet International. All rights reserved. 372

BACnet Testing Laboratories - Specified Tests

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (any valid value),

'Priority’' = (any valid value),

'Event Type' = CHANGE_OF STATE,

'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = (any valid normal or offnormal value),
'To State' = (any valid normal or offnormal value),

'Event Values' = (NS2, (T,F,2,7))

4. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
the event notification, if there are any)

-- new-state with a tag value greater than 254,
5. TRANSMIT UnconfirmedEventNotification-Request,

"Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = TD,

'Event Object Identifier' = (any valid value),

'"Time Stamp' = (any valid time stamp),

'Notification Class' = (any valid value),

'Priority' = (any valid value),

'Event Type' = CHANGE_OF STATE,

'Message Text' = (optional, any valid message text),
'Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = (any valid normal or offnormal value),
'"To State' = (any valid normal or offnormal value),
'Event Values' = (NS3, (T,F,2,7))

9. CHECK (that the IUT has correctly decoded the value by examining exposed actions related to the receipt of
the event notification, if there are any)

9.9 LifeSafetyOperation Service Execution Test

9.9.1 Positive LifeSafetyOperation Execution Tests

9.9.1.1 Reset Single Object Execution Tests
991 R Sinole ObiectE ion T

Reason for Change: The test is written to not rely on Event State so it can be applied to objects which do not support event
reporting.

Purpose: To verify that the IUT correctly resets a latched life safety object when executing ean—eerreetly—exeecute a
LifeSafetyOperation service request te-a-single directed at the Life-Satety-Objeet-life safety object.

Test Concept: A Eife-Safety life safety object, which latches it's Present Value, is toggled between a NORMAL—and
OFENORMAL-state normal and non-normal BACnetLifeSafetyState. The STATYS object's Present_Value should latch in
the OFENORMAL non-normal state until the LifeSafetyOperation service request is transmitted executed. This is repeated

for each LifeSafetyOperation request type supported by the device. Fransmitted—Thistest-maybe-omitted-when-the-deviee
dees-netsuppertlatching:

© 2022 by BACnet International. All rights reserved. 373

BACnet Testing Laboratories - Specified Tests

Conﬁguratlon Requlrements

- The Llfe Safely object starts the test wzth its Present _ Value in a normal
state as interpreted by the life safety object. This test shall be skipped if the device does not support latching.

Test Steps:

1. REPEAT X = (All supported enumerations that reset the object) DO {

2 MAKE (the selected object enter enters a latched non-normal state where enumeration X will reset the object)
3. VERIFY Present Value = (S1: a non-NORMAL state)

4. VERIFY Tracking Value = S1

5 MAKE (Event-State =NORMALremove the non-normal condition)

6 VERIFY Present Value = S1

7 VERIFY Tracking Value = (S2: a NORMAL state)

—— H fenwmrerationvatbeerentesan-BEventState = FADET THEN
— CHECK(Event-State=FAULT)
—EISE

——— CHECK{(Event-State =OFENORMAL)

67. TRANSMIT LifeSatTetyOperation-Request,
'Requesting Process Identifier' = (any valid identifier),

'Requesting Source' = (any valid character string),
'Request' = X, tany—valid-EieSafetyOperationrequesty;
'Object Identifier' = (the selected object)

78. RECEIVE BAChnet-SimpleACK-PDU
88. VERIFY (Objeet; STFATYS Present_Value = S2 NORMAL)

9.9.1.2 Reset Multiple Object Execution Tests

Reason for Change: The test is generalized to work for any number of objects. The test is written to not rely on Event_State
so it can be applied to objects which do not support event reporting.

Purpose: To verify that the IUT correctly resets multiple latched life safety objects when executing ean-eerrecthy-exeeute a
LifeSafetyOperation service request to-multiple Life-Safety-objeets not directed at a specified life safety object.

Test Concept: Fwe Multiple Life Safety objects, O1 ... On, are toggled between a NORMAL-and-an- OFENORMALstate
normal and non-normal BACnetLifeSafetyState. The SFATYS objects’ Present Value properties should latch in the
OFEENORMAL non-normal state until the LifeSafetyOperation service request is transmitted executed. This is repeated for

each LifeSafetyOperation request type supported by the device. Fhis-test-maybe-omitted-whenthe-deviece-doesnotsuppert
latehing:

Conﬁguratlon Requlrements:

T he sze Safely objects start the

test Wzth thezr Present Value propertzes ina normal state as znterpreted by the llfe safety objects. This test shall be skipped
if the device does not support latching Life Safety objects. If the IUT supports a single latching life safety object, apply this
test to the single object.

Test Steps:

© 2022 by BACnet International. All rights reserved. 374

[N

objects)

3. REPEAT Oi = (each selected life safety object) {

BACnet Testing Laboratories - Specified Tests

REPEAT X = (All supported enumerations that reset the objects ebjeet) DO {
MAKE (the selected objects enter & latched non-normal state states where enumeration X will reset the

VERIFY Oi, Present Value = (Si: a non-normal value)
VERIFY Oi, Tracking Value = Si

}

b

VERIFY Oi, Present Value = Si
VERIFY Oi, Tracking Value = Tvi

———CHECK(Event——State =OEENORMAL)
6. TRANSMIT LifeSafetyOperation-Request,
'Requesting Process Identifier' = (any valid identifier),

'Requesting Source' =

'Request' =

X

7. RECEIVE BACnet-SimpleACK-PDU

F—VERHY (Objeeb-STATUS —NORMAL
8. REPEAT Oi = (each selected life safety object) {

VERIFY Oi, Present Value = Tvi

}
H

9.9.1.3 Silencing/Unsilencing Execution Tests

9.9.3 Silencing/UnsileneinsE on T

Purpose: To verify that the IUT can correctly execute a LifeSafetyOperation service request to silence and unsilence an

alarming device.

Test Concept: An audible device and/or visual device is attached to the IUT and is sounding/flashing, because a life safety
object has entered a non-normal state and the property Silenced is UNSILENCED. A LifeSafetyOperation service request is
transmitted to silence the sounder/strobe. Then, the life safety object remains in the non-normal state with Silenced equal to
SILENCED. A LifeSafetyOperation service request is transmitted to unsilence the sounder/strobe (reactivate it) and it is

verified that the object is unsilenced.

There are different allowable BACnetSilencedState values based on the silence operation performed and the setup of the IUT.

(any valid character string),

MAKE (Ewvent-State =NORMALremove the non-normal conditions for both objects)
5. REPEAT Oi = (each selected life safety object) {

In the below tables, N/A marks an operation that is inappropriate for the test with the corresponding IUT setup.

Only Sounder Attached
Silence Operation Allowable Silenced State Unsilenced Operation Allowable Silenced State
SILENCE ALL SILENCED, UNSILENCE UNSILENCED,
AUDIBLE SILENCED, proprietary
proprietary
SILENCE AUDIBLE | ALL SILENCED, UNSILENCE AUDIBLE | UNSILENCED,
AUDIBLE SILENCED, proprietary
proprietary
SILENCE_VISUAL N/A UNSILENCE VISUAL N/A

© 2022 by BACnet International. All rights reserved. 375

BACnet Testing Laboratories - Specified Tests

proprietary

Only Strobe Attached

Silence Operation Allowable Silenced State Unsilenced Operation Allowable Silenced State
SILENCE ALL SILENCED, UNSILENCE UNSILENCED,

VISUAL SILENCED, proprietary

proprietary
SILENCE AUDIBLE | N/A UNSILENCE AUDIBLE | N/A
SILENCE _VISUAL ALL SILENCED, UNSILENCE _VISUAL UNSILENCED,

VISUAL SILENCED, proprietary

Sounder An

d Strobe Attached

Silence Operation

Allowable Silenced State

Unsilenced Operation

Allowable Silenced State

(audible active, visual

SILENCE ALL SILENCED, UNSILENCE UNSILENCED,
proprietary proprietary
SILENCE AUDIBLE | AUDIBLE SILENCED, UNSILENCE AUDIBLE | SILENCED VISUAL,
proprietary (all silenced) proprietary
UNSILENCE AUDIBLE | UNSILENCED,
(audible silenced, visual | proprietary
active)
UNSILENCE AUDIBLE | N/A

silenced)

silenced)
SILENCE VISUAL VISUAL SILENCED, UNSILENCE VISUAL SILENCED AUDIBLE,

proprietary (all silenced) proprietary
UNSILENCE VISUAL N/A
(audible silenced, visual
active)
UNSILENCE VISUAL UNSILENCED,
(audible active, visual | proprietary

Configuration Requirements: The IUT must be fitted with needed audible and visual equipment.

Notes to Tester: Source object needs to get silence only for configured objects.

Test Steps:

1. REPEAT X = (All supported enumerations that silence the object) DO {

2. MAKE (the selected object enter a state where enumeration X will silence the sounder/strobecommence-alerts)
3. VERIFY Silenced = (Unsilenced or a proprietary value with a similar semantic)

S——MAKE-(Event—State =—NORMAL)
64. TRANSMIT LifeSafetyOperation-Request,

'Requesting Process Identifier' =
'Requesting Source' =

'Request' = X,
'Object Identifier' =
75. RECEIVE BAChnet-SimpleACK-PDU
86. CHECK (that the sounder/strobe is inactive)

© 2022 by BACnet International. All rights reserved.

376

(any valid identifier),
(any valid character string),

(absent or the selected object)

BACnet Testing Laboratories - Specified Tests

97. VERIFY Silenced = (an allowable silenced state based on the IUT setup and operation request X)
108. TRANSMIT LifeSafetyOperation-Request,
'Requesting Process Identifier' = (any valid identifier),

'Requesting Source' = (any valid character string),
'Request’ = (any valid LifeSafetyOperation request),
'Object Identifier' = (the selected object)
9. RECEIVE BACnet-SimpleACK-PDU
10. CHECK (the sounder / strobe active again, as appropriate to the operation)
11. VERIFY Silenced = (the appropriate state based on the operation and IUT condition)

9.9.2 Negative LifeSafetyOperation Execution Tests

9.9.2.1 LifeSafetyOperation for an Object Which Does Not Exist

Purpose: To verify that the IUT correctly responds when a LifeSafetyOperation targets a non-existent object.
Test Concept: Send a LifeSafetyOperation request to the IUT targeting an object that does not exist in the IUT.

Test Steps:

1. TRANSMIT LifeSafetyOperation-Request,

'Requesting Process Identifier' = (any valid value),

'Requesting Source' = (any valid value),

'Request' = (any valid LifeSafetyOperation request supported by the device),
'Object Identifier' = (any object not contained in the IUT's database)

2. RECEIVE BACnet-Error PDU,
'Error Class' = OBJECT,
'Error Code' = UNKNOWN_OBJECT'

9.9.2.2 LifeSafetyOperation which is Invalid given the Object's Current State

Purpose: To verify that the IUT correctly responds when a LifeSafetyOperation's Request value is invalid given the object's
current state.

Test Concept: Send a LifeSafetyOperation request, with a Request value that is not valid for the current state, to the IUT.
Configuration Requirements: The life safety object, O1, being tested is placed into a state where Request R, a valid

LifeSafetyOperation value which the life safety object would accept in other states, is currently invalid. If there is no such
state, request value pair that satisfies this requirement, this test shall be skipped.

Test Steps:
1. TRANSMIT LifeSafetyOperation-Request,
'Requesting Process Identifier' = (any valid value),
'Requesting Source' = (any valid value),
'Request' = (R: a request value which is invalid given the life safety object's
current state),
'Object Identifier' = Ol

2. RECEIVE BACnet-Error PDU,
'Error Class' = OBJECT,
'Error Code' = INVALID OPERATION IN THIS STATE

© 2022 by BACnet International. All rights reserved. 377

BACnet Testing Laboratories - Specified Tests

9.9.2.3 LifeSafetyOperation On An Object Which Does Not Support It

Purpose: To verify that the IUT correctly responds when a LifeSafetyOperation's is received that targets an object that does
not support it.

Test Concept: Send a LifeSafetyOperation request, with an Object Identifier referencing an object in the IUT which does not
support life safety operations.

Test Steps:
1. TRANSMIT LifeSafetyOperation-Request,
'Requesting Process Identifier' = (any valid value),
'Requesting Source' = (any valid value),
'Request' = (any valid value normally supported by the IUT),
'Object Identifier' = (an object in the IUT which does not support life safety operations)

2. RECEIVE BACnet-Error PDU,
'Error Class' = OBJECT,
'Error Code' = OPTIONAL FUNCTIONALITY NOT SUPPORTED

9.10 SubscribeCOYV Service Execution Tests

9.10.1 Positive SubscribeCOV Service Execution Tests

The purpose of this test group is to verify the correct execution of the SubscribeCOV service request under circumstances
where the service is expected to be successfully completed.

9.10.1.7 Finite Lifetime Subscriptions
Reason for change: Updates description of 'Time Remaining' and adds validation that this value counts down as expected.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription with a temporary
lifetime. Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by
the IUT.

1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object supporting COV notifications),
'Issue Confirmed Notifications'= TRUE | FALSE,
'Lifetime' = (a value between 60 seconds and 300 seconds)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' = (A value approximately equal to, but not greater than, the requested
subscription lifetime)
'List of Values' = (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU

ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = (the same object used in the subscription),

'Time Remaining' = (A value approximately equal to, but not greater than, the requested

© 2022 by BACnet International. All rights reserved. 378

BACnet Testing Laboratories - Specified Tests

subscription lifetime),
'List of Values' = (values appropriate to the object type of the monitored object)
4. MAKE (a change to the monitored object that shewld causes a COV notification)
5. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' = (TR: a value greater than 0 and less than or equal to the requested
subscription lifetime),
'List of Values' = (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU

ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = (the same object used in the subscription),

'"Time Remaining' = (TR: a value greater than 0 and less than or equal to the requested
subscription lifetime),

'List of Values' = (values appropriate to the object type of the monitored object

including the changed value of that triggered the notification)
WAIT (a time that should change the ‘Time Remaining’ and which is less than the lifetime of the subscription)
MAKE (a change to the monitored object that causes a COV notification)
8. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = IUT,

'"Monitored Object Identifier' = (the same object used in the subscription),

N

'Time Remaining' = (a value greater than 0 and less than the TR),
'List of Values' = (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU

ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOV Notification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = 1UT,

'"Monitored Object Identifier' = (the same object used in the subscription),

'Time Remaining' = (a value greater than 0 and less than TR),

'List of Values' = (values appropriate to the object type of the monitored object

including the changed value that triggered the notification)
79. WAIT (the lifetime of the subscription)
810.MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)
911.CHECK (verify that the IUT did not transmit a COV notification message)

9.10.1.8 Updating Existing Subscriptions

Reason for change: Modify the test case as per purpose, BACnet Clause 13.14.2, and updated the language as per BACnet
135.1: 6 Clause

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to update the lifetime of a subscription. Either
confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the [UT.

© 2022 by BACnet International. All rights reserved. 379

BACnet Testing Laboratories - Specified Tests

Test Concept: A subscription for COV notifications is made for 60 seconds. Before that subscription has expired a second
subscription is made for 300 seconds. When the notification is sent in response to the second subscription the lifetime is
checked to verify that it is greater than 60 but less than 300 seconds.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (PID1, any valid process identifier),
'Monitored Object Identifier' = (01, any object supporting COV notifications),
'Issue Confirmed Notifications' = TRUE | FALSE,
'Lifetime' = 60
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PID I {the-same-identifier used-in-the-subseription),
'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = O/ ¢thesame-objectused-inthe-subseription),
'"Time Remaining' = (60 or less than 60),
'List of Values' = (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU
ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PID I {the-same-identifier used-inthe-subseription),
'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = O/ ¢the-same-objectused-inthe-subseription),
'"Time Remaining' = (~60, but not greater than 60),
'List of Values' = (values appropriate to the object type of the monitored object)
4. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = PID I (any-valid-process-identifier),

'Monitored Object Identifier' = Ol{any-object-supporting-COV-netifications),
'Issue Confirmed Notifications' = TRUE | FALSE,

'Lifetime' = (7/, a value between 180 and 300 seconds)
5. RECEIVE BACnet-SimpleACK-PDU
6. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PID I {the-same-identifierused-in-the-subseription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = O/ ¢thesame-objectused-inthe-subseription),
'"Time Remaining' = (~T'1, but not greater than TItherequested-subseriptionlifetime),
'List of Values' = (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU
ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PID I {the-same-identifier used-inthe-subseription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = O/¢the-same-objectused-in-the-subseription),

'Time Remaining' = (~T'1, but not greater than TItherequested-subseriptionlifetime),
'List of Values' = (values appropriate to the object type of the monitored object)

© 2022 by BACnet International. All rights reserved. 3 80

BACnet Testing Laboratories - Specified Tests

9.10.1.X1 Ensuring S Concurrent COV Subscribers
Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can support 5 concurrent subscriptions.

Test Concept: Have the TD subscribe with 5 different process identifiers, V, through Vs, and then check to ensure that 5

notifications are sent when the monitored object changes.
Test Steps

1. REPEAT (X=Vito Vs) DO {
TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = X,
'"Monitored Object Identifier' = (any object supporting COV notifications),
'Issue Confirmed Notifications'= TRUE | FALSE,
'Lifetime' = (any valid value that will allow the subscription to outlast the test)
RECEIVE BACnet-SimpleACK-PDU
IF (if confirmed notifications were requested) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier'= X,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' = (any valid value),
'List of Values' = (the initial Present Value and initial Status Flags)
TRANSMIT BACnet-SimpleACK-PDU
ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = X,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' = (any valid value),
'List of Values' = (the initial Present Value and initial Status Flags)

2. MAKE (Present Value = any value that differs from "initial Present Value" such that a COV notification would be

generated)
3. REPEAT (X=V;to Vs) DO {
IF (if confirmed notifications were requested) THEN
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = X,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
‘Time Remaining' = (any valid value),
'List of Values' = (the new Present Value and Status Flags)
TRANSMIT BACnet-SimpleACK-PDU
ELSE
RECEIVE UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = X,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' = (any valid value),
'List of Values' = (the new Present Value and Status_Flags)

}

Passing Result: The notification in step 3 can be received in any order by the TD.

© 2022 by BACnet International. All rights reserved. 3 8 1

BACnet Testing Laboratories - Specified Tests

9.10.2 Negative SubscribeCOYV Service Execution Tests

9.10.2.1 The Monitored Object Does Not Support COV Notification
Reason For Change: Added configuration requirements.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored
object does not support COV notifications.

Configuration Requirements: This test shall only be executed if IUT contains objects which will not accept a COV
subscription. If every object in IUT will accept a COV subscription, then this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object that does not support COV notifications),
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = 60
2. IF (Protocol Revision is present and Protocol Revision > 10) THEN
RECEIVE BACnet-Error PDU,

'Error Class' = OBIJECT,
'Error Code' = OPTIONAL FUNCTIONALITY NOT_SUPPORTED
ELSE
RECEIVE
(BACnet-Error PDU,
'Error Class' = OBIJECT,
'Error Code' = OPTIONAL FUNCTIONALITY NOT_SUPPORTED) |
(BACnet-Error PDU,
'Error Class' = SERVICES,
'Error Code' = SERVICE_REQUEST DENIED | OTHER) |
(BACnet-Error PDU,
'Error Class' = PROPERTY,
'Error Code' = NOT_COV_PROPERTY)

9.10.2.X1 The Monitored Object Does Not Exist
Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the monitored
object does not exist.

Notes to tester: If the IUT is able to support objects other than those that currently exist, and none of those objects that
currently do not exist would support COV notification if they did, then the IUT may return an error code of
OPTIONAL FUNCTIONALITY NOT SUPPORTED instead of UNKNOWN_ OBJECT.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object of a type that supports COV and an instance which does not exist
in the IUT),
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = 60

2. IF (Protocol Revision is present and Protocol Revision >= 10) THEN
RECEIVE BAChnet-Error PDU,

© 2022 by BACnet International. All rights reserved. 3 82

BACnet Testing Laboratories - Specified Tests

'Error Class' = OBIJECT,
'Error Code' = UNKNOWN_OBJECT
ELSE
RECEIVE BACnet-Error PDU,
'Error Class' = SERVICES,
'Error Code' = SERVICE REQUEST DENIED | OTHER
| (BACnet-Error PDU,
'Error Class' = OBIJECT,
'Error Code' = UNKNOWN_OBIJECT)

9.10.2.X2 There Is No Space For A Subscription
Reason for Change: 135-2008h.5.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when there is no
space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out
of resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept
is less than 10000, then this test may be skipped.

Test Steps:
REPEAT PID = (1 through the maximum number of subscriptions the [UT can accept plus 1, or until the [UT returns

an Error-PDU) {
1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = PID,

'Monitored Object Identifier' = (any object of that supports COV),
'Issue Confirmed Notifications'= TRUE,

'Lifetime' = 6000

2. RECEIVE BACnet-SimpleACK-PDU |
(BACnet-Error-PDU,
'Error Class' = RESOURCES,
'Error Code' = NO_SPACE _TO_ADD_ LIST ELEMENT)
3. READ ACS = (Active_COV_Subscriptions)
4. IF (a BACnet-Simple-Ack was received in step 2) THEN
CHECK (that the subscription is in ACS)
ELSE
CHECK (that the subscription is not in ACS)

9.10.2.X3 The Lifetime Parameter is Out of Range

Reason for Change: 135-2008h.5. CR-0369 clarified that the testing shall only supply a 'Lifetime' parameter in the
SubscribeCOV-Request less than the maximum unsigned value supported.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the Lifetime
parameter is out of range.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object in the IUT that supports COV),

© 2022 by BACnet International. All rights reserved. 3 83

BACnet Testing Laboratories - Specified Tests

'Issue Confirmed Notifications' = TRUE,
'Lifetime' = (a value less than the maximum unsigned value supported by the IUT, but large enough to
produce a Result(-) result by the IUT)
2. IF (Protocol Revision is present and Protocol Revision >= 10) THEN
RECEIVE BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = VALUE OUT OF RANGE
ELSE
RECEIVE BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = VALUE OUT OF RANGE | SERVICE REQUEST DENIED | OTHER
| (RECEIVE BAChnet-Reject-PDU,
Reject Reason = PARAMETER OUT OF RANGE)

9.10.3 Positive Unsubscribed COVNotification Execution Tests

9.10.3.X1 Unsubscribed COVNotification Execution Test
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the IUT executes UnconfirmedCOV Notification service requests, with 'Process Identifier' equal to 0.

Test Concept: Using any received and supported unsubscribed UnconfirmedCOVNotification, observe the effect of its
execution.

Test Steps:
1. TRANSMIT UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = 0,

'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = (any object present in TD),
'Time Remaining' = 0,
'List of Values' = (any valid set of values)
2. CHECK (for any vendor-defined observable actions)

© 2022 by BACnet International. All rights reserved. 3 84

BACnet Testing Laboratories - Specified Tests

9.11 SubscribeCOVProperty Service Execution Tests

9.11.1 Positive SubscribeCOVProperty Service Execution Tests

9.11.1.1 Confirmed COV Notifications
Reason for Change: Remove the allowance for devices which do not support both confirmed and unconfirmed notifications.

Purpose: To verify that the IUT correctly responds to a SubscrrbeCOVProperty request to estabhsh a subscrlptron for
confirmed COV notifications. Ar+mn i ab-supp : with-a

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object supporting COV notifications),
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = (any value > O-if-automatic-cancelationissupported,-otherwise0),
'"Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time

——RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' = (any value > 0-if-automatie-cancelationis-suppeorted;-otherwise0),
'List of Values' = (values appropriate to the property subscribed to, and any other properties the IUT provides
with it, such as Status-Flags)

4. TRANSMIT BACnet-SimpleACK-PDU -

9.11.1.2 Unconfirmed COV Notifications
Reason for Change: Remove the allowance for devices which do not support both confirmed and unconfirmed notifications.

Purpose: To verify that the I[UT correctly responds to a SubscrlbeCOVProperty request to estabhsh a subscrlptlon for
Unconfirmed COV notifications.-A#n-implementa 3 3 W A

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object supporting COV notifications),
'Issue Confirmed Notifications' = FALSE,
'Lifetime' = (any value > O-if-automatic-cancelationissupported,-otherwise0),
'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time

RECEIVE BACnetUnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),

© 2022 by BACnet International. All rights reserved. 3 85

BACnet Testing Laboratories - Specified Tests

'Initiating Device Identifier' = [UT,

'Monitored Object Identifier' = (the same object used in the subscription),

'Time Remaining' = (any value > O-if-automatic-cancelationis-supported-otherwise 0),

'List of Values' = (values appropriate to the property subscribed to, and any other properties
the IUT provides with it, such as Status-Flags)

9.11.1.4 Canceling COV Subscriptions
Reason for Change: Added Configuration Requirements and check at end of test to remove the Notes to Tester requirement.

Dependencies: Indefinite lifetime COV subscriptions, 9.11.1.1.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to cancel a COV subscription. This
test cancels the subscription made in 9.11.1.1.

Configuration Requirements: This test should be executed after test 9.11.1.1, while the subscription created in that test still
exists in the IUT.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (the process identifier used in test 9.11.1.1),
'Monitored Object Identifier' = (the same object used in test 9.11.1.1),
'Monitored Property Identifier' = (the same property used in test 9.11.1.1)
2. RECEIVE BACnet-SimpleACK-PDU
3. WAIT Notification Fail Time
4. MAKE (a change to the monitored object that would cause a COV notification if there were an active
subscription)
5. CHECK(the IUT does not transmit a COV notification)

9.11.1.5 Canceling Expired or Non-Existing Subscriptions

Reason for change: Added missing verification that the IUT did not send a COV notification, and removed superfluous note
to tester.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to cancel a subscription that no longer
exists.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any unused process identifier or an identifier from a previously

terminated subscription),
'Monitored Object Identifier' = (any unused object or an object from a previously
terminated subscription),
'Monitored Property Identifier' = (any unused property or a property from a previously terminated
subscription)
2. RECEIVE BACnet-SimpleACK-PDU
3. WAIT Notification Fail Time

© 2022 by BACnet International. All rights reserved. 3 86

BACnet Testing Laboratories - Specified Tests

4. MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)
5. CHECK(the IUT did not issue a COV notification)

9.11.1.7 Finite Lifetime Subscriptions

Reason for change: Updates description of 'Time Remaining' and adds validation that this value counts down as expected.
Correcting the typo error at step 9 and updated the language as per BACnet 135.1.6 clause.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription with a
temporary lifetime. Either confirmed or unconfirmed notifications may be used, but at least one of these options must
besupported by the IUT.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (PID1, any valid process identifier),
'Monitored Object Identifier' = (O, any object supporting COV notifications),
'Issue Confirmed Notifications' = TRUE | FALSE,
'Lifetime' = (T, anya value between 60 seconds and 300 seconds),
'Monitored Property Identifier' = (P1, any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PID I ¢the-same-identifierused-in-the-subseription),
'Initiating Device Identifier' = [UT,
'Monitored Object Identifier' = O/ ¢the-same-objectused-inthe-subseription),

'Time Remaining' = (the-requested-subseriptiontifetime 4 value approximately equal to, but not greater
than T1),

'List of Values' = (values appropriate to the property subscribed to, and any other
properties the IUT provides with it, such as Status-Flags)
TRANSMIT BACnet-SimpleACK-PDU
ELSE
BEFORE Notification Fail Time
RECEIVE BACnetUnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PIDI¢the-same-identifier-used-in-the-subseription),
'Initiating Device Identifier' = [UT,
'Monitored Object Identifier' = O/¢the-same-objeet-used-in-the-subseription),

'Time Remaining' ~=f(the-requesteddifetime)-= (4 value approximately equal to , but no greater than T1),
'List of Values' = (values appropriate to the property subscribed to, and any other

properties the IUT provides with it, such as Status-Flags)
4. WAIT a period longer than the resolution of the IUT’s COV subscription lifetime timer
54. MAKE (a change to the monitored object that sheuld causes a COV notification)
5 BEEORE Netification EailTi
6. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PID¢the-same-identifierused-in-the-subseription),
'Initiating Device Identifier' = [UT,

'Monitored Object Identifier' = O/ {the-same-objectused-inthe-subseription),

'Time Remaining' = (72: a value greater than 0 and less than the requested subscription lifetime),
'List of Values' = (values appropriate to the property subscribed to, and any other
properties the IUT provides with it, such as Status-Flags)

© 2022 by BACnet International. All rights reserved. 3 87

BACnet Testing Laboratories - Specified Tests

TRANSMIT BAChnet-SimpleACK-PDU
ELSE
BEFORE Notification Fail Time
RECEIVE BACnetUnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PID I ¢the-same-identifierused-in-the subseription),

'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = O/¢the-same-objectused-in-the-subseription),
'Time Remaining' = (72: a value greater than 0 and less than the requested subscription
lifetime),
'List of Values' = (values appropriate to the object type of the monitored object
including the changed value that triggered the notification)
7. WAIT a period longer than the resolution of the IUT’s COV subscription lifetime timer
8. MAKE (a change to the monitored object that causes a COV notification)
9. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOV Notification-Request,
'Subscriber Process Identifier' = PID],
"Initiating Device Identifier' = IUT,
'"Monitored Object Identifier' = Ol,
'Time Remaining' = (a value greater than 0 and less than the T2),
'List of Values' = (values appropriate to the object type of the monitored object)
ELSE
BEFORE Notification Fail Time
RECEIVE BACnetUnconfirmedCOVNotification-Request,
'Subscriber Process ldentifier' = PIDI,
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = Ol,
'Time Remaining' = (a value greater than 0 and less than the T2),
'List of Values' = (values appropriate to the object type of the monitored object
including the changed value that triggered the notification)
610. WAIT (the lifetime of the subscription)
711. MAKE (a change to the monitored object that would cause a COV notification if there were an active subscription)
12. CHECK (verify that the IUT did not transmit a COV notification message)

9.11.1.8 Updating Existing Subscriptions

Reason for change: Modify the test case as per purpose, BACnet Clause 13.14.2, and updated the language as per BACnet
135.1: 6 Clause

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to update the lifetime of a subscription.
Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by the IUT.

Test Concept: A subscription for COV notifications is made for 60 seconds. Before that subscription has expired a second
subscription is made for 300 seconds. When the notification is sent in response to the second subscription, the lifetime is
checked to verify that it is greater than 60 but less than 300 seconds.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (PID1, any valid process identifier),
'Monitored Object Identifier' = (01, any object supporting COV notifications),
'Issue Confirmed Notifications' = TRUE | FALSE,

© 2022 by BACnet International. All rights reserved. 3 88

BACnet Testing Laboratories - Specified Tests

'Lifetime' = 60
'Monitored Property Identifier' = (P/, any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PID(the-same-identifier-used-in-the-subseription),
'Initiating Device Identifier' = [UT,
'Monitored Object Identifier' = O/ {the-same-objectused-inthe-subseription),
'"Time Remaining' = (60 or less than 60),
'List of Values' = (values appropnate to the object type and subscribed to property-ofthe-monitored-objeet
h o)

TRANSMIT BACnet SlmpleACK PDU
ELSE
BEFORE Notification Fail Time
RECEIVE BACnetUnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PID I ¢the-same-identifierused-in-the-subseription),
'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = O/ {the-same-objectused-inthe-subseription),
'Time Remaining' = (60 or less than 60),

'List of Values' = (values appropnate to the Obj ect type and subscribed to property-ofthe-monitored-objeet

4. TRANSMIT SubscnbeCOVProperty Request

'Subscriber Process Identifier' = PID I{any—valid-process-identifier),
'Monitored Object Identifier' = O1(any-objectsupporting- COV-netifications),
'Issue Confirmed Notifications' = TRUE | FALSE,
'Lifetime' = (T/, a value between 180 and 300 seconds)
'Monitored Property Identifier' = P/{any-valid-property-supperting-COV-netifications)
5. RECEIVE BAChnet-SimpleACK-PDU
6. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = PID I ¢the-same-identifierused-in-the-subseription),
'Initiating Device Identifier' = [UT,
'Monitored Object Identifier' = O/¢the-same-objeet-used-in-the-subseription),
'Time Remaining' = (~T1, but not greater than TItherequested-subseriptionlifetime),
’L1st of Values = (values approprlate to the object type and subscribed to property-ofthe-menitored-objeet

TRANSMIT BACnet SlmpleACK PDU
ELSE
BEFORE Notification Fail Time
RECEIVE BACnetUnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = PID I ¢the-same-identifierused-in-the subseription),
'Initiating Device Identifier' = [UT,
'Monitored Object Identifier' = O/ ¢thesame-object-used-inthe-subseription),
'"Time Remaining' = (~T'1, but not greater than TItherequested-subseriptionlifetime),
'List of Values' = (values appropriate to the object type and subscribed to property-ofthe-menitored-objeet

© 2022 by BACnet International. All rights reserved. 3 89

BACnet Testing Laboratories - Specified Tests

9.11.1.9 Client-Supplied COV Increment
Reason for Change: Modify the test to work with all numeric datatypes.

Purpose: To verify that the IUT correctly generates COV notifications when the client supplies the COV increment in the
SubscribeCOVProperty request. Either confirmed or unconfirmed notifications may be used but at least one of these options
must be supported by the IUT.

Test Concept: A subscription for COV notification is made for a property of numeric datatype-REAL. The subscription
request specifies a COV increment. The monitored property is changed by an amount less than the increment, and the TD
waits to ensure that the [UT does not generate a notification. The monitored property is changed by an amount slightly more
than is required to cause a COV notification, and the TD waits for the notification.

Fest-Configuration Requirements: If the property being subscribed to has a related COV_Increment property in the object,
then the value of the COV_Increment property should be significantly different than the COV increment provided in the
subscription service. In devices where the 'COV Increment' is always less than the minimal change that the monitored
property can make, skip steps 4 and 5.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object supporting COV notifications),

'Issue Confirmed Notifications'= TRUE | FALSE,
'Lifetime' = (any value that will ensure no re-subscription is required to complete the test),
'Monitored Property Identifier' = (any valid property supporting COV notifications),
'COV Increment' = (any valid increment value)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
IF (the subscription was for confirmed notifications) THEN
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = (the same object used in the subscription),

'Time Remaining' ~= (the requested lifetime),

'List of Values' = (values appropriate to the object type of the monitored object including

the value of monitored property)
TRANSMIT BAChnet-SimpleACK-PDU
ELSE
RECEIVE BACnetUnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' ~= (the requested lifetime),
'List of Values' = (values appropriate to the object type of the monitored object
including the value of monitored property)
MAKE (the monitored property change by less than the COV increment)
CHECK (werify-that the IUT did not transmit a notification message for the monitored property)
MAKE (the monitored property change by slightly more than COV Increment less the amount changed in step 54)
BEFORE Notification Fail Time
IF (the subscription was for confirmed notifications) THEN
RECEIVE BACnetConfirmedCOVNotification-Request,

Nk

'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = (the same object used in the subscription),
'"Time Remaining' = ?2,

© 2022 by BACnet International. All rights reserved. 390

BACnet Testing Laboratories - Specified Tests

'List of Values' = (values appropriate to the object type of the monitored object
including the changed value that triggered the notification)
TRANSMIT BACnet-SimpleACK-PDU

ELSE
RECEIVE BACnetUnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'"Time Remaining' = ?,
'List of Values' = (values appropriate to the object type of the monitored object

including the changed value that triggered the notification)

9.11.1.X10 Accepts SubscribeCOVProperty-Requests with 8 Hour Lifetimes
Reason for Change: No tests exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly accepts lifetimes of at least 8 hours.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object supporting COV notifications),
'Issue Confirmed Notifications' = TRUE | FALSE,
'Lifetime' = 28800

'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
IF (the subscription was for confirmed notifications) THEN
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),

'Time Remaining' ~= (the requested lifetime),
'List of Values' = (values appropriate to the object type of the monitored object including the value of
monitored property)
TRANSMIT BACnet-SimpleACK-PDU
ELSE
RECEIVE BACnetUnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = (the same object used in the subscription),
'Time Remaining' ~= (the requested lifetime),
'List of Values' = (values appropriate to the object type of the monitored object
including the value of monitored property)
4. TRANSMIT SubscribeCOVProperty-Request,

'Subscriber Process Identifier' = (the same identifier used in Step 1),
'Monitored Object Identifier' = (the same identifier used in the subscription),
'Monitored Property Identifier' = (the same object used in the subscription)

5. RECEIVE BACnet-SimpleACK-PDU

9.11.1.X11 Confirmed Change of Value Notification from Property Value
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

© 2022 by BACnet International. All rights reserved. 39 1

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that the IUT can initiate ConfirmedCOV Notification service requests conveying a change of the Property
Value.

Test Concept: A property subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value
less than 24 hours and large enough to complete the test. The Value of the monitored Property is changed, and a notification
shall be received. The subscribed property may be changed using the WriteProperty service or by another means. For
implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X
'Issue Confirmed Notifications' = TRUE,
'Lifetime' =L
'Monitored Property Identifier' =Y (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X
'"Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (values appropriate to the property subscribed to, and any other properties the IUT provides
with it, such as Status-Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. MAKE (a change to the monitored object PROPERTY that causes a COV notification)
6. BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (values appropriate to the property subscribed to, and any other properties the IUT provides
with it, such as Status-Flags)
7. TRANSMIT BACnet-SimpleACK-PDU
8. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (the same identifier used in Step 1),
'Monitored Object Identifier' = X
'Monitored Property Identifier' = Y
9. RECEIVE BACnet-SimpleACK-PDU

9.11.1.X12 Unconfirmed Change of Value Notification from Property Value
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Property Value.

Test Steps: The steps for this test case are identical to the test steps in 9.11.1.X11 except that the SubscribeCOVProperty
service request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the
ConfirmedCOVNotification requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the
unconfirmed services.

© 2022 by BACnet International. All rights reserved. 392

BACnet Testing Laboratories - Specified Tests

9.11.1.X21 Confirmed Change of Value Notification from Status_Flags Property
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags Property.

Test Concept: A property subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value
less than 24 hours and large enough to complete the test. . The Status_Flags property of the monitored object is then changed
and a notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service
or by another means. For some implementations writing to the Out Of Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out Of Service or change the Status_Flags by any other
means, this test shall be skipped.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = X
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = L
'Monitored Property Identifier' = Y (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (values appropriate to the property subscribed to and initial
Status_Flags)
4. TRANSMIT BAChnet-SimpleACK-PDU
5. MAKE (Status_Flags = any value that differs from "initial Status Flags")
6. BEFORE Notification Fail Time
RECEIVE BACnetConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = X
'Time Remaining' = (any value appropriate for the Lifetime selected),
'List of Values' = (initial values appropriate to the property subscribed to and new Status_Flags)
7. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (the same identifier used in Step 1),
'Monitored Object Identifier' = X
'Monitored Property Identifier' = Y
8. RECEIVE BACnet-SimpleACK-PDU

9.11.1.X22 Unconfirmed Change of Value Notification from Status_Flags Property
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT can initiate UnconfirmedCOVNotification service requests conveying a change of the
Status_Flags Property.

Test Steps: The steps for this test case are identical to the test steps in 9.11.1.X21 except that the SubscribeCOVProperty
service request in step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the

© 2022 by BACnet International. All rights reserved. 393

BACnet Testing Laboratories - Specified Tests

ConfirmedCOVNotification requests shall be UnconfirmedCOVNotification requests, and there is no acknowledgment of the
unconfirmed services. The MAC address used for the notification message shall be such that the TD is one of the recipients

9.11.2 Negative SubscribeCOVProperty Service Execution Tests

9.11.2.1 The Monitored Object Does Not Support COV Notification
Reason for Change: Added additional acceptable error responses.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored object does not support COV notifications.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object that does not support COV notifications),

'Issue Confirmed Notifications' = TRUE,
'Lifetime' = 60,
'Monitored Property Identifier' = (any property in the object)
2. IF (Protocol Revision < 15) THEN
RECEIVE
(BAChnet-Error-PDU,
'Error Class'= SERVICES,
'Error Code' = SERVICE_REQUEST DENIED | OTHER) |
(BACnet-Error-PDU,
'Error Class'= OBIJECT,
'Error Code' = OPTIONAL FUNCTIONALITY NOT SUPPORTED) |
(BACnet-Error-PDU,
'Error Class'= PROPERTY,
'Error Code' = NOT COV _PROPERTY)
ELSE
RECEIVE
(BACnet-Error-PDU,
'Error Class'= OBIJECT,
'Error Code' = OPTIONAL FUNCTIONALITY NOT_SUPPORTED) |
(BACnet-Error-PDU,
'Error Class'= PROPERTY,
'Error Code' = NOT _COV_PROPERTY)

9.11.2.2 The Monitored Property Does Not Support COV Notification
Reason for Change: Changed description of Monitored Property Identifier to be chosen for this test.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored object supports COV notifications but not on the requested property.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object that supports COV notifications),
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = 60,

© 2022 by BACnet International. All rights reserved. 394

BACnet Testing Laboratories - Specified Tests

'Monitored Property Identifier' = (any property of the chosen object that does not support COV notifications)
2. IF (Protocol Revision < 15) THEN
RECEIVE
(BACnet-Error-PDU,
'Error Class'= SERVICES,
'Error Code' = SERVICE REQUEST DENIED | OTHER) |
(BACnet-Error-PDU,
'Error Class'= PROPERTY,
'Error Code' = NOT_COV_PROPERTY)
ELSE
RECEIVE BACnet-Error-PDU,
'Error Class'= PROPERTY,
'Error Code'= NOT _COV_PROPERTY

9.11.2.X11 Monitored Object Does Not Exist

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored object does not exist.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object of a type that supports COV and an instance which does not exist in
the IUT),
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = 60

'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-Error-PDU,

'Error Class' = OBJECT,

'Error Code' = UNKNOWN_OBJECT

9.11.2.X12 Monitored Property Does Not Exist
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
monitored property does not exist.

Test Steps:
1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (object supporting COV notifications),
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = 60
'Monitored Property Identifier' = (any valid property supporting COV notifications which does not exist for

specified object)
2. RECEIVE BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' = UNKNOWN_ PROPERTY

9.11.2.X13 There Is No Space For Subscription
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

© 2022 by BACnet International. All rights reserved. 395

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when there
is no space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out
of resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept
is less than 10000, then this test may be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1, or until the IUT returns an
Error-PDU) {

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = PID,
'Monitored Object Identifier' = (object supporting COV notifications),
'Issue Confirmed Notifications' = TRUE,
'Lifetime' = 6000
'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. RECEIVE BACnet-SimpleACK-PDU
| (BACnet-Error-PDU,
'Error Class' = RESOURCES,
'Error Code' = NO_SPACE_TO_ADD_LIST ELEMENT)

9.11.2.X14 The Lifetime Parameter is Out of Range
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the IUT correctly responds to a SubscribeCOVProperty request to establish a subscription when the
Lifetime parameter is out of range.

Test Steps:

1. TRANSMIT SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (object supporting COV notifications),
'Issue Confirmed Notifications'= TRUE,
'Lifetime' = (a value larger than that supported by the IUT),
'Monitored Property Identifier' = (any valid property supporting COV notifications)
2. IF (Protocol Revision is present and Protocol Revision => 15) THEN
RECEIVE BACnet-Error-PDU,
'Error Class'= SERVICES,
'Error Code' = VALUE OUT OF RANGE
ELSE
RECEIVE BACnet-Error-PDU,
'Error Class' = SERVICES,
'Error Code' = VALUE_OUT _OF RANGE | SERVICE REQUEST DENIED | OTHER
| (RECEIVE BACnet-Reject-PDU,
Reject Reason = PARAMETER OUT OF RANGE)

© 2022 by BACnet International. All rights reserved. 396

BACnet Testing Laboratories - Specified Tests

9.12 Atomic ReadFile Service Execution Tests

9.12.1 Positive AtomicReadFile Service Execution Tests

9.12.1.2.1 Reading an Entire Stream-Based File

Reason for Change: Change to allow testing of files larger than that which can be returned in a single request.
Purpose: To verify that the IUT correctly responds to a request to read an entire file.

Test Concept: The test consists of reading the contents of the file using a sequence of AtomicReadFile requests and verifying
that the appropriate known file data is returned.

Configuration Requirements: The AtomicReadFile service execution tests require that the TD has knowledge of the exact
contents of a known file F1. The test procedures assume that the IUT is already configured with the known file data provided
by the manufacturer. In the test procedures "X" will designate the File object identifier and Z the 'File Start Position’
initialized at "0". When performing the AtomicReadFile services, a Maximum Requested Octet Count (MROC) shall be
calculated before starting the test. These values shall be used during the test. MROC shall be 16 less than the minimum of
the TD's Max APDU Length_Accepted and the IUT s maximum transmittable APDU length.

Test Steps:

1. VERIFY File Access Method = STREAM ACCESS
2. WHILE (the last read resulted in an Ack with 'End Of File' == FALSE) DO {
TRANSMIT AtomicReadFile-Request,
'Object Identifier' = X,
'File Start Position' = Z (the next unread octet),
'Requested Octet Count' = MROC
RECEIVE AtomicReadFile-ACK,

'End Of File' = TRUE | FALSE,
'File Start Position' = Z
'File Data' = (the known contents of the test file of length MROC if 'End Of File' is

FALSE or of length MROC or less if 'End Of File' is TRUE)

/
3. CHECK((that the returned file data is F1)

9.13 AtomicWriteFile Service Execution Tests

9.13.1 Positive AtomicWriteFile Service Execution Tests

9.13.1.2.1 Writing an Entire Stream-Based File

Reason for Change: Allow the entire file content to be written in all cases.

Purpose: To verify that the IUT correctly responds to a request to write an entire file.

© 2022 by BACnet International. All rights reserved. 397

BACnet Testing Laboratories - Specified Tests

Test Concept: The tests consist of modifying the contents of the files using the AtomicWriteFile service and verifying that the
appropriate changes to the file data took place

Configuration Requirements: The—test-data—shall-contain—atleast-as—manyoectets—as—the—initial dataforthefile—The

manufacturer shall provide appropriate test data to write to these files or sufficient information to permit the tester to
construct the test data. The file objects shall be configured with initial data that differs from the test data. In the test procedures
"X" will designate the File object identifier and Z the File Start Position' initialized at "1" at the beginning. When performing
the AtomicWriteFile services, a Maximum Write Data Length (MWDL) shall be calculated before starting the test. These
values shall be used during the test. MWDL shall be 21 less than the minimum of the TD's maximum transmittable APDU
length and the IUT's Max APDU Length Accepted.

Test Steps:

0 ERIE 2 N mhe R o
1. VERIFY Read Only = FALSE
2. WRITE Archive = TRUE
3
4

VERIFY File Access Method = STREAM ACCESS
IF (File_Size is not equal to the size of the test file) THEN
WRITE File Size = 0
5. REPEAT Z = (0 through the file size, in increments of MWDL) DO {
TRANSMIT AtomicWriteFile-Request
'File Identifier' = X
'File Start Position' = Z

'File Data' = (file contents, the number of octets being the lesser of (file size - Z) and MWDL)
RECEIVE AtomicWriteFile-ACK
'File Start Position' = VA
/
6. VERIFY File Size = (file size of the test data)
7. VERIFY Modification_Date = (the current date and time)
8. VERIFY ARCHIVE = FALSE

© 2022 by BACnet International. All rights reserved. 398

BACnet Testing Laboratories - Specified Tests

9.13.1.2.3 Appending Data to the End of a File

Reason for Change: Added configuration requirements, fixed purpose, and removed reliance on AtomicReadFile within the
test steps.

Purpose: To verify that the IUT correctly responds to a request to write to the end of a file. H-the FUT-dees-notsupportiies

Ot oG Pt P S O

Configuration Requirements: The manufacturer shall provide appropriate test data to write to these files or sufficient
information to permit the tester to construct the test data. The file objects shall be configured with initial data that differs
from the test data. In the test procedures "X" will designate the File object identifier and. When performing the
AtomicWriteFile services, a Maximum Write Data Length (MWDL) shall be calculated before starting the test. These values
shall be used during the test. MWDL shall be 21 less than the minimum of the TD’s maximum transmittable APDU length
and the IUT’s Max APDU Length Accepted.

Test Steps:
1. TRANSMIT ReadProperty-Request,
'Object Identifier' = S,
'Property Identifier' = File Size
2. RECEIVE ReadProperty-ACK,
'Object Identifier' = S,
'Property Identifier' = File Size,
'Property Value' = (the current size in octets, designated "InitialNumOctets" below)
'Fileldentifi S5

3. TRANSMIT AtomicWriteFile-Request,
'File Identifier' = S,
'File Start Position' = -1,
'File Data' = (the test data, the number of octets being the lesser of (file size - Z) and
MWDL)
4. RECEIVE AtomicWriteFile-ACK,
'File Start Position' = InitialNumOctets,

FT—IFRANSMIT-AtomieReadFile-Request;

5. VERIFY (R), Modification_Date = (the current date and time)
6. VERIFY (R), ARCHIVE = FALSE
7. VERIFY (R), File Size = (the number of octets in the test data + InitialNumOctets)

© 2022 by BACnet International. All rights reserved. 399

BACnet Testing Laboratories - Specified Tests

9.14 AddListElement Service Execution Tests

9.14.2 Negative AddListElement Service Execution Tests

9.14.2.2 Adding a List Element With an Invalid Datatype

Reason for change: Added the additional error conditions that are now accepted. Added 'Note to Tester' that was missing in
135.1-2013.

Purpose: To verify the ability of the IUT to correctly respond to an AddListElement service request to add an element with
an invalid datatype to a list.

Notes to Tester: value selected for step 1 is 'inappropriate’, not a value which is 'allowed' but not supported by this instance
of the property. lLe. it is not one of the datatypes that would ever be supported by an instance of this property in this object
type. DATATYPE NOT SUPPPORTED is only correct when the datatype requested is supported, for example in a CHOICE,
by this property in this object type, but not supported by this instance of the property.

Test Steps:
1. TRANSMIT AddListElement-Request,
'Object Identifier' = L,
'Property Identifier' = ListProp,
'List of Elements' = (a single element with a datatype inappropriate for this property)
2. RECEIVE AddListElement-Error,
'Error Class' = PROPERTY,
'Error Code' = INVALID DATATYPE,
'First Failed Element'= 1|
(BACnet-Reject-PDU
Reject Reason = INVALID PARAMETER DATATYPE) |
(BACnet-Reject-PDU
Reject Reason = INVALID TAG)

9.14.2.3 An AddListElement Failure Part Way Through a List
Reason For Change: Updated test to include additional error codes. Added 'Notes to Tester' which was missing in 135.1-
2013.

Purpose: To verify the ability of the IUT to respond to an AddListElement service request to add multiple elements to a list
where one of the elements cannot be added. Upon failure, the AddListElement service should leave the list unchanged.

Notes to Tester: value selected for step 3 is 'inappropriate’, not a value which is 'allowed' but not supported by this instance
of the property. Le. it is not one of the datatypes that would ever be supported by an instance of this property in this object
type. DATATYPE NOT SUPPPORTED is only correct when the datatype requested is supported, for example in a CHOICE,
by this property in this object type, but not supported by this instance of the property.

Test Steps:

1. READ InitialList = (L), ListProp2
2. TRANSMIT AddListElement-Request,

'Object Identifier' = L,
'Property Identifier' = ListProp
'List of Elements' = (two or more elements to be added to the list with the second element

having an inappropriate datatype)
3. IF (Protocol Revision is present and Protocol Revision >= 7) THEN
RECEIVE AddListElement-Error,

© 2022 by BACnet International. All rights reserved. 400

BACnet Testing Laboratories - Specified Tests

'Error Class' = PROPERTY,
'Error Code' = INVALID DATATYPE,
'First Failed Element' = 2

| (RECEIVE BACnet-Reject-PDU,
Reject Reason = INVALID TAG | INVALID PARAMETER DATA TYPE)

ELSE

RECEIVE AddListElement-Error,
'Error Class' = SERVICES,
'Error Code' = INVALID PARAMETER DATATYPE
'First Failed Element'= 2

| (AddListElement-Error,
'Error Clas's = PROPERTY,
'Error Code' = INVALID DATATYPE)
'First Failed Element' = 2

| (BACnet-Reject-PDU,
Reject Reason = INVALID TAG | INVALID PARAMETER DATA_TYPE)

4. VERIFY (L), ListProp = InitialList

9.15 RemoveListElement Service Execution Tests
9.15.2 Negative RemoveListElement Service Execution Tests

9.15.2.2 A RemoveListElement Failure Part Way Through a List
Reason For Change: The test specified an incorrect error code. .

Purpose: To verify the ability of the IUT to respond to a RemoveListElement service request to remove multiple elements
from a list where one of the elements cannot be removed. Upon failure, the RemoveListElement service should leave the list
unchanged.

Test Steps:

1. READ InitialList = (L), ListProp
2. TRANSMIT RemoveListElement-Request,
'Object Identifier' = L,
'"Property Identifier' = ListProp
'List of Elements' = (one element from InitialList, followed by an element of the correct
datatype that is not in InitialList, followed by one or more elements from
InitialList)
3. If (Protocol Revision is present and Protocol Revision >=7) THEN
RECEIVE RemoveListElement-Error,

'Error Class' = PROPERTY SERVICES,
'Error Code' = BVAED- DATA+TYPELIST ELEMENT NOT FOUND
'First Failed Element' = 2

ELSE
RECEIVE RemoveListElement-Error
——Error Class=——SERVICES | PROPERTY;

ErrorCode—= OTHE
=HFoT-0ac O

TOT TIEIx

4. VERIFY (L), ListProp = InitialList

© 2022 by BACnet International. All rights reserved. 40 1

BACnet Testing Laboratories - Specified Tests

9.16 CreateObject Service Execution Tests
9.16.1 Positive CreateObject Service Execution Tests

9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values

Reason For Change: Added clarification that the IUT can place a restriction on the instance used. This correction is not in
any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object
specifier.

Test Steps:

1. TRANSMIT CreateObject-Request,

'Object Specifier' = (any unique object identifier of a type that is creatable and an

instance number that is creatable)

2. RECEIVE CreateObject-ACK,

'Object Identifier' = (the object identifier specified in step 1)
3. VERIFY (the object identifier of the newly created object),

(any required property of the specified object) = (any value of the correct datatype for the specified

property)

4. VERIFY (the IUT's Device object), Object List = (any object list containing the newly created object)

9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values

Reason For Change: Added clarification that the IUT can place restrictions on the instance and initial values allowed for
creation. This change is not in any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object
specifier and a list of initial property values is provided.

Test Steps:

1. TRANSMIT CreateObject-Request,
'Object Specifier' = (any unique object identifier of a type that is creatable and an
instance number that is creatable)
'List Of Initial Values'= (a list of one or more properties and their initial values, that the IUT will
accept)

2. RECEIVE CreateObject-ACK,
'Object Identifier' = (the object identifier specified in step 1)
3. REPEAT X = (properties initialized in the CreateObject-Request) DO {
VERIFY (the object identifier for the newly created object),
X = (the value specified in the 'List Of Initial Values' parameter of the CreateObject-Request)

}
4. VERIFY (the IUT's Device object), Object List = (any object list containing the newly created object)

9.16.2 Negative CreateObject Service Execution Tests

The purpose of this test group is to verify correct execution of the CreateObject service requests under circumstances where
the service is expected to fail.

9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values
Reason for Change: Added Test Concept and Configuration Requirements.

© 2022 by BACnet International. All rights reserved. 402

Purpose: To verify the correct execution of the CreateObject service request when an object type is used as the object specifier

BACnet Testing Laboratories - Specified Tests

and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and the 'List Of Initial Values' parameter
containing a value which is out of range. The TD then attempts to create an object with a value of an inappropriate datatype
in the 'List Of Initial Values' parameter. The selected datatype is not compliant with the property definition given by the

BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property
definition, but which is not supported for P1 by the IUT. For instance, Schedule Default which is defined to be of Any
primitive datatype, would not be used in this test along with BitString datatype, even where the IUT's Schedule object cannot

be configured for scheduling BitString values.

Test Steps:

1.

READ X1 = Object_List

2. TRANSMIT CreateObject-Request,

'Object FypeSpecifier' = (any creatable object type),
'List Of Initial Values'= (a list of one or more properties and their initial values, that the [UT will
accept initial values for, with one of the values being out of range)
IF (Protocol Revision is present and Protocol Revision > 4) THEN
RECEIVE CreateObject-Error-PBY,

'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)
ELSE
RECEIVE CreateObject-Error,
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE |
OTHER
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)

CHECK(Verify that the new object was not created)

TRANSMIT CreateObject-Request,
'Object FypeSpecifier' = (object type of step 2),
'List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
accept initial values for, with one of the values being an inappropriate datatype)

IF (Protocol Revision is present and Protocol Revision > 4) THEN

RECEIVE
CreateObject-Error,

'Error Class' = PROPERTY,

'Error Code' = INVALID DATATYPE

'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value) |
(BACnet-Reject-PDU

Reject Reason = INVALID PARAMETER DATATYPE | INVALID TAG)

ELSE

RECEIVE CreateObject-Error,

'Error Class' = PROPERTY,

'Error Code' = VALUE OUT OF RANGE |INVALID DATATYPE |

OTHER

'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value) |
(BACnet-Reject-PDU

Reject Reason = INVALID PARAMETER DATATYPE | INVALID TAG)

READ X2 = Object_List
CHECK (X1=X2)

© 2022 by BACnet International. All rights reserved. 403

BACnet Testing Laboratories - Specified Tests

9.16.2.5 Attempting to Create an Object with an Object Identifier and an Error in the Initial Values

0 16 cate an-Obie h an Ohie ar Obie

Reason for Change:Added Test Concept and Configuration Requirements to clarify usage.

Purpose: To verify the correct execution of the CreateObject service request when an object identifier is used as the object
specifier and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and the 'List Of Initial Values' parameter
containing a value which is out of range. The TD then attempts to create an object with a value of an inappropriate datatype
in the 'List Of Initial Values' parameter. The selected datatype is not compliant with the property definition given by the
BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property
definition, but which is not supported for Pl by the IUT. For instance, Schedule Default which is defined to be of Any
primitive datatype, would not be used in this test along with BitString datatype, even where the IUT's Schedule object cannot
be configured for scheduling BitString values.

Test Steps:

1. TRANSMIT CreateObject-Request,
'Object HdentifierSpecifier' = (any unique object identifier of a type that is creatable and an
instance number that is creatable),
'List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
accept initial values for, with one of the values being out of range)
2. IF (Protocol Revision is present and Protocol Revision > 4) THEN
RECEIVE CreateObject-Error-PBY,

'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)
ELSE
RECEIVE CreateObject-Error,
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE | OTHER
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)

3. CHECK(Verify that the new object was not created)
4. TRANSMIT CreateObject-Request,
'Object Specifier' = (object identifier from step 1),
'List Of Initial Values' = (a list of tweone or more properties and their initial values, that the
IUT will accept initial values for, with one of the values being an
inappropriate datatype)
5. IF (Protocol Revision is present and Protocol Revision >4) THEN

RECEIVE
CreateObject-Error,
'Error Class' = PROPERTY,
'Error Code' = INVALID DATATYPE
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value) |
(BACnet-Reject-PDU
Reject Reason = INVALID PARAMETER DATATYPE) |
(BACnet-Reject-PDU
Reject Reason = INVALID TAG)
ELSE
RECEIVE
CreateObject-Error,
'Error Class' = PROPERTY,
'Error Code' = VALUE OUT OF RANGE | INVALID DATATYPE | OTHER
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offendingvalue) |

© 2022 by BACnet International. All rights reserved. 404

BACnet Testing Laboratories - Specified Tests

(BACnet-Reject-PDU
Reject Reason = INVALID PARAMETER DATATYPE | INVALID TAG)
6. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the 'Object Identifier' used in step 1),
'Property Identifier' = Object Name
7. IF (Protocol Revision is present and Protocol Revision > 4) THEN
RECEIVE BACnet-Error-PDU,
'Error Class' = OBIJECT,
'Error Code' = UNKNOWN_OBJECT
ELSE
RECEIVE BACnet-Error-PDU
'Error Class' = OBIJECT,
'Error Code' = UNKNOWN OBJECT | NO _OBJECTS OF SPECIFIED TYPE | OTHER

[This test is not used by BTL Test Package so we are removing it from BTL Specified Tests for 20.0.1]
0.16.2.6 A . c Obi ” . £ 4194303

9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type)
Reason for Change: Addendum 135-2008u-2

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys
an object type that is not supported in the TUT.

Test Steps:

1. TRANSMIT CreateObject-Request,
'Object Specifier' = (any unsupported object type)
2. IF (Protocol Revision >= 10) THEN
RECEIVE CreateObject-Error,
'Error Class' = OBJECT,
'Error Code' = UNSUPPORTED OBJECT TYPE
'First Failed Element Number' = 0.

ELSE
RECEIVE CreateObject-Error,
'Error Class' = (any valid error class),
'Error Code' = (any valid error code)

‘First Failed Element Number’ = 0
3. VERIFY (the IUT's Device object),
Object_List = (any object list that does not contain the object specified in step 1)

© 2022 by BACnet International. All rights reserved. 405

BACnet Testing Laboratories - Specified Tests

9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier)
Reason for Change: Addendum 135-2008u-2

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys
an object identifier for an object type that is not supported in the IUT.

Notes to Tester: If the IUT limits the instances that can be created, this shall be taken into account when selecting an object
identifier in step 1.

Test Steps:

1. TRANSMIT CreateObject-Request,

'Object Specifier' = (any object identifier having an unsupported object type)
2. IF (Protocol Revision >= 10) THEN

RECEIVE CreateObject-Error,

'Error Class' = OBIJECT,
'Error Code' = UNSUPPORTED OBJECT TYPE
'First Failed Element Number'= 0
ELSE
RECEIVE CreateObject-Error,
'Error Class' = (any valid error class),
'Error Code' = (any valid error code)

‘First Failed Element Number’ = 0
3. VERIFY (the IUT's Device object),
Object List= (any object list that does not contain the object specified in step 1)

9.17 DeleteObject Service Execution Tests
9.17.2 Negative DeleteObject Service Execution Tests

9.17.2.1 Attempting to Delete an Object That is Not Deletable
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct response to an attempt to delete an object that is not deletable.
Configuration Requirements: The IUT shall be configured with an object X that cannot be deleted.

Test Steps:
1. READ VI = Object_Name
2. TRANSMIT DeleteObject-Request,
'Object Identifier' = X
3. RECEIVE BACnet-Error-PDU,
'Error Class' = OBJECT,
'Error Code' = OBJECT DELETION NOT PERMITTED

4. VERIFY (X), Object Name = V1 {the-ObjeetName-specified-in-the EPICS)
5. VERIFY (X), Object_List = (any object list that contains X)

© 2022 by BACnet International. All rights reserved. 406

BACnet Testing Laboratories - Specified Tests

9.18 ReadProperty Service Execution Tests
9.18.1 Positive ReadProperty Service Execution Tests

9.18.1.2 Reading a Single Element of an Array
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute ReadProperty service requests when the requested property is an array and a
single element of the array is requested.

Test Steps:

1. READV = (Device, X), Object List ARRAY INDEX=1
2. CHECK (Vis of type object-identifier)
F—VERIEY-(DevieeX):

9.18.1.X1 Reading Properties Based on Data Type

Reason for Change: A general ReadProperty test is not supplied by 135.1 that can be used in a variety of situations. The BTL-
WG has kept this test to ensure that all data types are tested. Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of
the supported base data types.

Test Concept: This test is repeated once for each base data type that the IUT supports. For each execution of the test a property,
P1, shall be selected that is of the data type being tested and the object containing P1 is designated Objectl in the test
description.

Test Steps:
1. READ V = (Objectl), P1
2. CHECK (V returns any valid value of the correct data type for property P1)

9.18.1.X3 Respects max-segments-accepted bit pattern
Reason for Change: There is no SSPC proposal for this change.

Purpose: To verify that the IUT abides by the 'max-segments-accepted' parameter, when the size of the response does require
segmentation.

Configuration Requirements: Use a very small 50 octet 'max-APDU-length-accepted' size in the request. The BACnet-
Confirmed-Request-PDU shall be one where the response size will exceed 2 times 'max-APDU-length-accepted' and so
require at least three segments. If the largest response that the IUT can return is 100 or fewer octets, then this test shall be
skipped.

Test Steps:

1. TRANSMIT BACnet-Confirmed-Request-PDU,
'segmented-response-accepted' = TRUE
'max-segments-accepted’ = 2

2. RECEIVE BACnet-Abort-PDU,

'Abort Reason' = BUFFER_ OVERFLOW

© 2022 by BACnet International. All rights reserved. 407

BACnet Testing Laboratories - Specified Tests

Hints to Tester: An attempt to read the whole Object List might suffice. Or a ReadRange or ReadPropertyMultiple or
AtomicReadFile request, if any of those services are executed.

9.18.1.X4 Reading Array Properties at different Array Indexes
Reason for Change: No test exists for this functionality.

Purpose: This test verifies the IUT can execute ReadProperty service requests on a single element in an array property.

Test Concept: This test will execute a ReadProperty service request to read a single element from the selected property by
specifying the array-index in the request.. Another request is made to read an element of an array where the array index is out
of range.

Configuration Requirement: O1 is any object in the IUT database having array property P1 having size X.

Test Steps:

1. VERIFY P1 =X, ARRAY INDEX =0
2. IF (X>0) THEN
READ V =P1, ARRAY INDEX =1
CHECK (V is any valid value of the correct data type for property P1)
READ V = P1, Array Index =X
CHECK (V is any valid value of the correct data type for property P1)
3. TRANSMIT ReadProperty-Request,
'Object Identifier' = O1,
'Property Identifier' = P1
'Property Array Index' = (X+1)
4. RECEIVE BACnet-Error-PDU,
'Error Class' = PROPERTY,
'Error Code' =INVALID ARRAY INDEX

9.18.1.X5 ReadProperty of the Network Port Object using the Unknown Instance
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: Verify that the IUT selects the correct object when a Network Port is read using the special object instance 4194303.

Test Concept: Execute a ReadProperty service request specifying ‘Object Identifier’ = (Network Port, 4194303). Verify that
the responding BACnet-user selects the local Network Port object representing the network port through which the request
was received.

Configuration Requirements: Let X be the instance number of the Network Port object associated with the network port
through which the TD will communicate with the IUT.

Test Steps:

1. TRANSMIT ReadProperty-Request,
'Object Identifier' = (Network Port, 4194303),
'Property Identifier' = Object-Identifier
2. RECEIVE ReadProperty-ACK,
'Object Identifier' = (Network Port, X),
'Property Identifier' = Object-Identifier,
'Property Value'= (Network Port, X)
3. REPEAT P = (each property in the specified Network Port object) {
TRANSMIT ReadProperty-Request through the same port as above,
'Object Identifier' = (Network Port, 4194303),

© 2022 by BACnet International. All rights reserved. 408

BACnet Testing Laboratories - Specified Tests

'"Property Identifier' = P
RECEIVE ReadProperty-ACK,
'Object Identifier' = (Network Port, X),
'Property Identifier' = P
'Property Value'= V
VERIFY (Network Port, X),P=V

9.18.1.X8 ReadProperty Service when Non-BACnet Device Offline
Reason for Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: To verify that the ReadProperty service executes successfully when a non-BACnet device is offline.

Test Concept: Objectl is an object which contains information from a non-BACnet device. The non-BACnet device is verified
to be online and recognized by the IUT. It is then made to go offline, and the IUT is made to recognize that the device is
offline. A property, P1, from Object]l which contains a dynamic value derived from the data in the non-BACnet device is
read from the IUT.

Test Steps:

1. CHECK (any vendor-specified indication, that the non-BACnet device is online)
2. MAKE (the non-BACnet device go offline)

3. MAKE (the IUT notice that the non-BACnet device is offline)

4. TRANSMIT ReadProperty Request,

'Object Identifier' = Objectl,
'Property Identifier' = P1
5. RECEIVE ReadProperty-ACK,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (V, any valid value)

9.18.2 Negative ReadProperty Service Execution Tests

9.18.2.3 Reading an Unknown Object

Reason for Change: More specific test for a non-existing object that is of a type supported by the IUT or an object that is of
a type not supported by the IUT.

Purpose: To verify that the IUT can execute ReadProperty service requests under circumstances where the requested object
does not exist.

Test Concept: Fhe et a A h e e n-the-deviee: The TD first attempts to read
from a non-existent object of a type Supporled by the IUT) he returned error class/code is verified to be
OBJECT/UNKNOWN_OBJECT. The TD then attempts to read from a non-existent object of a type which is not supported
by the IUT. The returned error class/code is verified to be OBJECT/UNKNOWN _OBJECT or
OBJECT/UNSUPPORTED OBJECT TYPE.

Test Steps:
1. TRANSMIT ReadProperty-Request,

'Object Identifier' = (any non-existent object, which is of a type supported by the IUTany-standard-ebjeet-not
contained-inthe JUT's-database),

'Property Identifier' = (any property defined for the specified object)

© 2022 by BACnet International. All rights reserved. 409

BACnet Testing Laboratories - Specified Tests

2. RECEIVE BACnet-Error-PDU,
Error Class = OBJECT,
Error Code = UNKNOWN OBJECT
3. TRANSMIT ReadProperty-Request,
'Object Identifier' = (any object of a type not supported by the IUT),
'"Property Identifier' = (any property defined for the specified object)
4. RECEIVE BACnet-Error-PDU,
Error Class = OBJECT,
Error Code = UNSUPPORTED OBJECT TYPE | UNKNOWN_OBJECT

9.20 ReadPropertyMultiple Service Execution Tests
9.20.1 Positive ReadPropertyMultiple Service Execution Tests

9.20.1.1 Reading a Single Property from a Single Object
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read a single property from a single object.

Test Concept: A single supported property is read from the Device object. The property is selected by the TD and is designated
as P1 in the test description.

Test Steps:
1. TRANSMIT ReadPropertyMultiple-Request,
'Object Identifier' = Objectl | Object2,
'"Property Identifier' = P1
2. RECEIVE ReadPropertyMultiple-ACK,
'Object Identifier' = (the object selected in step 1),
'Property Identifier' = P1,
'Property Value' = (any valid valuethe-vatae-of P1-specifiedinthe EPICS)

9.20.1.2 Reading Multiple properties from a Single Object
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read multiple properties from a single object.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
'Object Identifier' = Object! | Object 2,
'"Property Identifier' = P1,
'Property Identifier' = P2
-- ... (Two properties are required but more may be selected.)
2. RECEIVE ReadPropertyMultiple-ACK,
'Object Identifier' = (the object selected in step 1),
'Property Identifier' = P1,
'Property Value' = (any valid value for Plthe-value-ofPlspeeified-in-the ERPICS),
'Property Identifier' = P2,

'"Property Value' = (any valid value for P2the-~value-efP2-speeified-inthe EPICS)
-- ... (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.3 Reading a Single Property from Multiple Objects
Reason for Change: Modified test to remove dependency on EPICS values.

© 2022 by BACnet Internati