
Addendum c to BTL Test Package 15.0

 1

[This foreword and the “Overview” on the following pages are not part of this Test Package. They are

merely informative and do not contain requirements necessary for conformance to the Test Package.]

FOREWORD

The purpose of this addendum is to present current changes being made to the BTL Test Package. These modifications are

the result of change proposals made pursuant to the continuous maintenance procedures and of deliberations within the BTL-

WG Committee. The changes are summarized below.

BTL-TP15.0c-1: Updated FAULT Algorithms (135-2016), this addendum replaces BTL-TP15.0a-1 [wID0166], pg 2.

In the following document, language to be added to existing clauses within the BTL Test Package 15.0 is indicated through

the use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added,

plain type is used throughout

In addition, changes to BTL Specified Tests also contain a yellow highlight to indicate the changes made by this addendum.

When this addendum is applied, all highlighting will be removed. Change markings on tests will remain to indicate the

difference between the new test and an existing 135.1 test. If a test being modified has never existed in 135.1, the applied

result should not contain any change markings. When this is the case, square brackets will be used to describe the changes

required for this test.

Each addendum can stand independently unless specifically noted via dependency within the addendum. If multiple addenda

change the same test or section, each future released addendum that changes the same test or section will note in square

brackets whether or not those changes are reflected.

Addendum c to BTL Test Package 15.0

 2

BTL-15.0c-1: Updated FAULT Algorithms

Overview:

Addendum 135-2010af-21 and af-32 at Protocol_Revision 13 added language and many new FAULT algorithms to all

objects that provide fault reporting, and to the Event Enrollment object.

Changes:

[In BTL Specified Tests, add these new tests]

8.5.X1 CHANGE_OF_RELIABILITY Tests

8.5.X1.1 CHANGE_OF_RELIABILITY with No Fault Algorithm

Purpose: To verify the correct operation of an object that supports first stage reliability evaluation and does not apply a

standardized fault algorithm.

Test Concept: Select an object, O1 that supports first stage reliability evaluation and does not apply a standardized fault

algorithm. Ensure that no other fault conditions exist for the object. Create a fault condition. Verify the transition to fault is

generated with Reliability set to R1. Remove the fault condition and verify the object transitions out of fault.

Test Configuration: O1 is configured to detect and report faults using unconfirmed event notifications. O1 is configured to

have no fault conditions present and the Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(O1 enter a fault condition)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = (R1 any valid BACnetReliability,

 (?, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

7. MAKE(O1clear the fault condition)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

Addendum c to BTL Test Package 15.0

 3

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (?, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

Notes to Tester: The mechanism to enter the NONE fault algorithm is a local matter.

8.5.X1.2 CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING Algorithm

Purpose: To verify the correct operation of the FAULT_CHARACTERSTRING fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_CHARACTERSTRING algorithm,

and no other fault conditions exist for the object. pMonitoredValue is changed to a fault string and back to a non-fault string.

It is verified that O1 generates the correct transitions.

Test Configuration: O1 is configured to detect and report faults, to have no fault conditions present, and to be in the

NORMAL state. FVSET is the set of character strings defined as fault values for O1. ONVSET is the set of character strings

defined as offnormal values for O1. FV1 contain a substring that exists in FVSET. If the empty string is included in the

FVSET, then FV1 should be the empty string. NFV1 is a string value that does not contain substrings from FVSET or

ONVSET.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

 MAKE (pMonitoredValue = FV1)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = (MULTI_STATE_FAULT,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MULTI_STATE_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NFV1

 ELSE

Addendum c to BTL Test Package 15.0

 4

 MAKE (pMonitoredValue = NFV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

Notes to Tester: Note that a string is considered a substring of itself. Values required and allowed for O1 are described in

standard 135 as "Properties Reported in CHANGE_OF_RELIABILITY Notifications" (Table 13-5 in 135-2016) along with

supporting paragraphs.

8.5.X1.3 CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm

Purpose: To verify the correct operation of the FAULT_EXTENDED fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_EXTENDED algorithm, and either

pMonitoredValue is configured. Ensure that no other fault conditions exist for the object. In object O1, a condition is created

that is detected as a fault by the FAULT_EXTENDED algorithm configured. The fault condition is then removed. It is

verified that O1 generates the correct notifications.

Test Configuration: O1 is configured to detect and report faults. O1 is configured to have no fault conditions present, and has

an Event_State of NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (a fault condition exist)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = ((R1: any valid reliability value),

 (T, T, ?, ?),

Addendum c to BTL Test Package 15.0

 5

 (a vendor specified set of values)

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

7. MAKE (remove the fault condition)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (?, F, ?, ?),

 (a vendor specified set of values)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X1.4 CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm

Purpose: To verify the correct operation of the FAULT_LIFE_SAFETY fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_LIFE_SAFETY algorithm. Ensure

that no other fault conditions exist in the object. Set pMonitoredValue to FV1, a value which indicates a

FAULT_LIFE_SAFETY fault condition. Verify the correct transition is generated. The fault condition is removed by setting

pMonitoredValue to NV1, a value which indicates NO_FAULT_DETECTED and verify the correct transition is generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is initially

configured to have no fault conditions present, and has an Event_State of NORMAL. FV1 is a value for pMonitoredValue

which indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

 MAKE (pMonitoredValue = FV1)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

Addendum c to BTL Test Package 15.0

 6

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = (MULTI_STATE_FAULT,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MULTI_STATE_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NV1

 ELSE

 MAKE (pMonitoredValue = NV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X1.5 CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm

Purpose: To verify the correct operation of the FAULT_STATE fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_STATE algorithm. Ensure that no

other fault conditions exist in the object. Set pMonitoredValue to FV1, a value which indicates a FAULT_STATE fault

condition. Verify the correct transition is generated. The fault condition is removed by setting pMonitoredValue to NV1, a

value which indicates NO_FAULT_DETECTED and verify the correct transition is generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is initially

configured to have no fault conditions present, and an Event_State of NORMAL. FV1 is a value for pMonitoredValue which

indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

 MAKE (pMonitoredValue = FV1)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

Addendum c to BTL Test Package 15.0

 7

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = (MULTI_STATE_FAULT,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MULTI_STATE_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NV1

 ELSE

 MAKE (pMonitoredValue = NV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X1.6 CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm

Purpose: To verify the correct operation of the FAULT_STATUS_FLAGS fault algorithm.

Test Concept: Select a fault detecting object O1 which is configured to use the FAULT_STATUS_FLAGS algorithm. Ensure

that no other fault conditions exist for the object. Set pMonitoredValue to FV1, a value which indicates a

FAULT_STATUS_FLAGS fault condition. Verify the correct transition is generated. The fault condition is removed by

setting pMonitoredValue to NV1, a value which indicates NO_FAULT_DETECTED and verify the correct transition is

generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is initially

configured to have no fault conditions present, and Event_State is NORMAL. FV1 is a value for pMonitoredValue which

indicates a fault condition, and NV1 is a value for pMonitoredValue which does not indicate a fault condition.

Addendum c to BTL Test Package 15.0

 8

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = FV1

 ELSE

 MAKE (pMonitoredValue = FV1)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = (MEMBER_FAULT,

 (T, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = MEMBER_FAULT

6. VERIFY Event_State = FAULT

7. IF (pMonitoredValue is writable) THEN

 WRITE pMonitoredValue = NV1

 ELSE

 MAKE (pMonitoredValue = NV1)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X1.7 Event Enrollment Fault Condition Precedence Tests

8.5.X1.7.1 Internal Faults Take Precedence Over Monitored Object Faults

Addendum c to BTL Test Package 15.0

 9

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults

over faults in the monitored object.

Test Concept: Select an Event Enrollment object EE1 which can detect internal faults and which monitors an object O1 that

can detect faults. Test that an internal unreliable operational fault takes precedence over a monitored object fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(a condition exist which will cause O1 to transition into fault)

4. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

5. VERIFY Event_State = FAULT

6. MAKE(a condition exist which will cause EE1 to transition into internal fault R1)

7. VERIFY pCurrentReliability = R1

8. MAKE(clear the condition that caused EE1 to enter into an internal fault)

9. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

10. MAKE(clear the condition that caused O1 to transition into fault)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

12. VERIFY Event_State = NORMAL

8.5.X1.7.2 Monitored Object Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to faults in the monitored object over

faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object EE1 which applies a fault algorithm and which monitors an object O1 that

can detect faults. Test that a monitored object fault takes precedence over a standard fault algorithm fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)

4. VERIFY pCurrentReliability = R1

5. VERIFY Event_State = FAULT

6. MAKE(a condition exist which will cause O1 to transition into fault)

7. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

8. MAKE(clear the condition that caused O1 to transition into fault)

9. VERIFY pCurrentReliability = R1

10. MAKE(clear the condition for the fault algorithm)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

12. VERIFY Event_State = NORMAL

8.5.X1.7.3 Internal Faults Take Precedence Over Fault Algorithms

Purpose: To verify that the Event Enrollment object’s fault detection gives precedence to internal unreliable operational faults

over faults detected by fault algorithm.

Test Concept: Select an Event Enrollment object EE1 which can detect internal faults and which applies a fault algorithm.

Test that an internal unreliable operational fault takes precedence over a standard fault algorithm fault.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

Addendum c to BTL Test Package 15.0

 10

2. VERIFY Event_State = NORMAL

3. MAKE(a condition that results in a fault due to a configured fault algorithm with a reliability value, R1)

4. VERIFY pCurrentReliability = R1

5. VERIFY Event_State = FAULT

6. MAKE(a condition exist which will cause EE1 to transition into internal fault R2, different from R1)

7. VERIFY pCurrentReliability = R2

8. MAKE(clear the condition that caused EE1 to enter into an internal fault)

9. VERIFY pCurrentReliability = R1

10. MAKE(clear the condition for the fault algorithm)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

12. VERIFY Event_State = NORMAL

8.5.X1.8 CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object Fault

Purpose: To verify the proper operation of the Event Enrollment object’s fault detection when the monitored object enters the

fault state.

Test Concept: Select an Event Enrollment object EE1 that monitors an object M1 that can transition into FAULT. Starting

with both objects in a NORMAL state, cause a condition which results in a fault in M1. Verify EE1 reports the fault. Clear

the condition and verify EE1 reports the return to NORMAL.

Test Configuration: EE1 is configured to process faults in M1 and to report those using unconfirmed event notifications. EE1

and M1 are each initially configured to have no fault conditions present, and Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (M1 enter any fault state)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = EE1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for EE1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = (MONITORED_OBJECT_FAULT,

 (T, T, ?, ?),

 M1,

 (optional, property value of M1),

 (optional, M1 Status_Flags, (?, T, ?, ?)),

 (0 or more other properties of M1)

)

5. VERIFY pCurrentReliability = MONITORED_OBJECT_FAULT

6. VERIFY Event_State = FAULT

7. MAKE (M1 clear fault state)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = EE1,

 'Time Stamp' = (the current local time or sequence number),

Addendum c to BTL Test Package 15.0

 11

 'Notification Class' = (the notification class configured for EE1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 M1,

 (optional, property value of M1),

 (optional, M1 Status_Flags, (?, F, ?, ?)),

 (0 or more other properties of M1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X1.9 CHANGE_OF_RELIABILITY of Event Enrollment Object Fault

Purpose: To verify the Event Enrollment object generates a fault event when the object enters into fault due to an internal

unreliable operation.

Test Concept: Select an Event Enrollment object EE1 that can be made to enter into fault due to an internal unreliable

operation. Starting EE1 in a NORMAL state, cause a condition which results in an internal fault. Verify that EE1 reports the

fault. Clear the condition and verify that EE1 reports the return to NORMAL.

Test Configuration: EE1 is configured to be able to enter a fault state and to report those using unconfirmed event

notifications. EE1 is initially configured to have no fault conditions present, and Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (EE1 enter any internal fault state)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = EE1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for EE1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = ((R1: any value other than

 MONITORED_OBJECT_FAULT

 and NO_FAULT_DETECTED),

 (T, T, ?, ?),

 (M1, any valid monitored object),

 (optional, property value of M1),

 (optional, M1 Status_Flags, (?, F, ?, ?)),

 (0 or more other properties of M1)

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

Addendum c to BTL Test Package 15.0

 12

7. MAKE (EE1 clear fault state)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = EE1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for EE1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 M1,

 (optional, property value of M1),

 (optional, M1 Status_Flags, (?, F, ?, ?)),

 (0 or more other properties of M1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

8.5.X1.10 After FAULT-to-NORMAL, Re-Notification of OFFNORMAL

Purpose: To verify that objects go to the NORMAL state after leaving the FAULT state, then transition to OFFNORMAL if

the condition still exists.

Test Concept: Select a fault detecting object O1 which is able to detect OFFNORMAL conditions. Make O1 transition to an

OFFNORMAL state and then transition to FAULT. Remove the condition causing the FAULT and verify O1 transitions

from FAULT to NORMAL, then verify that the object transitions from NORMAL to the original OFFNORMAL state.

Test Configuration: O1 is configured to detect and report unconfirmed events and faults. O1 is configured to have no fault

conditions present, and Event_State is OFFNORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE(O1transition to an off normal state)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = (ET1, any valid off normal event type),

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = OFFNORMAL,

 'Event Values' = (property-values appropriate for O1)

5. VERIFY Event_State = OFFNORMAL

6. MAKE(O1 enter a fault state)

Addendum c to BTL Test Package 15.0

 13

7. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = OFFNORMAL,

 'To State' = FAULT,

 'Event Values' = ((R1 any valid BACnetReliability),

 (?, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

8. MAKE(O1 clear the fault condition)

9. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (F, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

10. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request

 'Process Identifier' = (any valid process identifier),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = ET1,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = ALARM | EVENT,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = OFFNORMAL,

 'Event Values' = (property-values appropriate for O1)

11. VERIFY pCurrentReliability = NO_FAULT_DETECTED

12. VERIFY Event_State = OFFNORMAL

8.5.X1.11 CHANGE_OF_RELIABILITY with First Stage Object Fault

Purpose: To verify that fault conditions due to first stage faults are detected and reported.

Addendum c to BTL Test Package 15.0

 14

Test Concept: An object in the IUT, O1, which can detect at least one first stage fault is selected. One of O1’s detectable first

stage faults, R1, is selected for the test. O1 begins the test in the NORMAL state with pCurrentReliability equal to

NO_FAULT_DETECTED. The first stage fault condition, R1, is made to exist and it is verified that the pCurrentReliability

changes to R1. It is verified that O1 generates the appropriate event notification. The fault condition is removed, and it is

verified that the pCurrentReliability returns to NO_FAULT_DETECTED and the appropriate event notification message is

generated.

Test Configuration: O1 is configured to detect faults and to report those using unconfirmed event notifications. O1 is initially

configured to have no fault conditions present, and Event_State is NORMAL.

Test Steps:

1. VERIFY pCurrentReliability = NO_FAULT_DETECTED

2. VERIFY Event_State = NORMAL

3. MAKE (pCurrentReliability = R1)

4. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

 'Process Identifier' = (any valid process ID),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = EVENT | ALARM,

 'AckRequired' = TRUE | FALSE,

 'From State' = NORMAL,

 'To State' = FAULT,

 'Event Values' = (R1,

 (?, T, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

5. VERIFY pCurrentReliability = R1

6. VERIFY Event_State = FAULT

7. MAKE (pCurrentReliability = NO_FAULT_DETECTED)

8. BEFORE Notification Fail Time

 RECEIVE UnconfirmedEventNotification-Request,

 'Process Identifier' = (any valid process ID),

 'Initiating Device Identifier' = IUT,

 'Event Object Identifier' = O1,

 'Time Stamp' = (the current local time or sequence number),

 'Notification Class' = (the notification class configured for O1),

 'Priority' = (the value configured for the transition),

 'Event Type' = CHANGE_OF_RELIABILITY,

 'Message Text' = (optional, any valid message text),

 'Notify Type' = EVENT | ALARM,

 'AckRequired' = TRUE | FALSE,

 'From State' = FAULT,

 'To State' = NORMAL,

 'Event Values' = (NO_FAULT_DETECTED,

 (?, F, ?, ?),

 (A list of valid values for properties required to be reported

 for O1, and 0 or more other properties of O1)

)

9. VERIFY pCurrentReliability = NO_FAULT_DETECTED

10. VERIFY Event_State = NORMAL

Addendum c to BTL Test Package 15.0

 15

[In BTL Test Plan, add the new section “Supports Event Reporting” to Global Group Object]

3.36.20 Supports Event Reporting

The IUT supports, or can be configured to support, event reporting in the Global Group Object.

Verify Checklist

 Test Method Manual

 Configuration

 Test Conditionality Must be executed.

 Test Directives Verify that the IUT claims support for AE-N-I-B or AE-N-E-B in the

Checklist with option " Implements the CHANGE_OF_RELIABILITY –

FAULT_STATUS_FLAGS Algorithm".

 Testing Hints

 Notes & Results

BTL - 8.5.X1.11 - CHANGE_OF_RELIABILITY with First Stage Object fault

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test Conditionality This test shall be executed if the object's Reliability property can be made

to equal COMMUNICATION_FAILURE otherwise this test shall be

skipped.

 Test Directives

 Testing Hints

 Notes & Results

[In BTL Test Plan, Append section 5.2.1 Base Requirements, AE-N-I-B]

BTL - 8.5.X1.10 - After FAULT-to-NORMAL, Re-Notification of OFFNORMAL

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT has no object in which CHANGE_OF_RELIABILITY is

implemented in an object that can be configured into an offnormal state,

this test shall be skipped.

 Test Directives The objects selected by the tester should include all variants that differ

in the set of supported alarming properties, or the writability of any of

those properties. At least one instance of each variant shall be selected.

 Testing Hints

 Notes & Results

[In BTL Test Plan, add tests to Alarm and Event - Notification - Internal - B Base Requirements, with Test Directives to

indicate selecting objects to which to apply the tests]

5.2.30 Implements the CHANGE_OF_RELIABILITY – No Fault Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.1 - CHANGE_OF_RELIABILITY with No Fault Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

Addendum c to BTL Test Package 15.0

 16

 Test Conditionality The IUT contains, or can be made to contain, an object that can generate

EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and which does not apply a

standardized fault algorithm.

 Test Directives Apply this test to all object types that support fault detection but do not

apply a standardized fault algorithm..

 Testing Hints

 Notes & Results

5.2.31 Implements the CHANGE_OF_RELIABILITY –

FAULT_CHARACTERSTRING Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.2 - CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING

Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test Conditionality Must be executed.

 Test Directives The objects selected by the tester should include all variants that differ

in the set of supported alarming properties, or the writability of any of

those properties. At least one instance of each variant shall be selected.

 Testing Hints

 Notes & Results

5.2.32 Implements the CHANGE_OF_RELIABILITY – FAULT_EXTENDED

Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.3 - CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test Conditionality Must be executed.

 Test Directives The objects selected by the tester should include all variants that differ

in the set of supported alarming properties, or the writability of any of

those properties. At least one instance of each variant shall be selected.

 Testing Hints

 Notes & Results

5.2.33 Implements the CHANGE_OF_RELIABILITY – FAULT_LIFE_SAFETY

Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.4 - CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

Must be executed.

 Test Directives The objects selected by the tester should include all variants that differ

in the set of supported alarming properties, or the writability of any of

Addendum c to BTL Test Package 15.0

 17

those properties. At least one instance of each variant shall be selected.

 Testing Hints

 Notes & Results

5.2.34 Implements the CHANGE_OF_RELIABILITY – FAULT_STATE

Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.5 - CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

Must be executed.

 Test Directives The objects selected by the tester should include all variants that differ

in the set of supported alarming properties, or the writability of any of

those properties. At least one instance of each variant shall be selected.

 Testing Hints

 Notes & Results

5.2.35 Implements the CHANGE_OF_RELIABILITY –

FAULT_STATUS_FLAGS Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.6 - CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

Must be executed..

 Test Directives The objects selected by the tester should include all variants that differ

in the set of supported alarming properties, or the writability of any of

those properties. At least one instance of each variant shall be selected.

 Testing Hints

 Notes & Results

5.2.36 Supports CHANGE_OF_RELIABILITY in the Event Enrollment Object
The IUT contains, or can be made to contain, an Event Enrollment object that can generate EventNotifications with an

Event_Type of CHANGE_OF_RELIABILITY.

BTL - 8.5.X1.7.1 - Internal Faults Take Precedence Over Monitored Object Faults

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT does not support an Event Enrollment object which can

detect internal faults and monitor an object which detects faults, then

this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.7.2 - Monitored Object Faults Take Precedence Over Fault Algorithms

 Test Method Manual

 Configuration As per BTL Specified Tests.

Addendum c to BTL Test Package 15.0

 18

 Test

Conditionality

If the IUT does not support an Event Enrollment object which monitors

an object which detects faults and which applies a fault algorithm, then

this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.7.3 - Internal Faults Take Precedence Over Fault Algorithms

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT does not support an Event Enrollment object which can

detect internal faults and which applies a fault algorithm, then this test

shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.8 - CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object

Fault

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT has no Event Enrollment object where the Monitored_Object

that can transition to fault, this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.9 - CHANGE_OF_RELIABILITY of Event Enrollment Object Fault

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT has no Event Enrollment object that detects an internal

unreliable operational fault, this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

[In BTL Test Plan, Append section 5.3.1 Base Requirements, AE-N-E-B]

BTL - 8.5.X1.10 - After FAULT-to-NORMAL, Re-Notification of OFFNORMAL

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT has no object in which CHANGE_OF_RELIABILITY is

implemented and which can be configured into an offnormal state, this

test shall be skipped.

 Test Directives The objects selected by the tester should include all variants that differ

in the set of supported alarming properties, or the writability of any of

those properties. At least one instance of each variant shall be selected.

 Testing Hints

 Notes & Results

[In BTL Test Plan, add tests to Alarm and Event - Notification - External - B Base Requirements, with Test Directives to

indicate selecting objects to which to apply the tests]

Addendum c to BTL Test Package 15.0

 19

5.3.22 Implements the CHANGE_OF_RELIABILITY – No Fault Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.1 - CHANGE_OF_RELIABILITY with No Fault Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test Conditionality The IUT contains, or can be made to contain, an object that can generate

EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and which does not apply a

standardized fault algorithm.

 Test Directives Apply this test to all object types that support fault detection but do not

apply a standardized fault algorithm..

 Testing Hints

 Notes & Results

5.3.23 Implements the CHANGE_OF_RELIABILITY –

FAULT_CHARACTERSTRING Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.2 - CHANGE_OF_RELIABILITY with the FAULT_CHARACTERSTRING

Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test Conditionality Must be executed.

 Test Directives Repeat the test for each object type that support this fault algorithm,

 Testing Hints

 Notes & Results

5.3.24 Implements the CHANGE_OF_RELIABILITY – FAULT_EXTENDED

Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.3 - CHANGE_OF_RELIABILITY with the FAULT_EXTENDED Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test Conditionality Must be executed..

 Test Directives Repeat the test for each object type that support this fault algorithm,

 Testing Hints

 Notes & Results

5.3.25 Implements the CHANGE_OF_RELIABILITY – FAULT_LIFE_SAFETY

Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.4 - CHANGE_OF_RELIABILITY with the FAULT_LIFE_SAFETY Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

Addendum c to BTL Test Package 15.0

 20

 Test

Conditionality

Must be executed.

 Test Directives Repeat the test for each object type that support this fault algorithm,

 Testing Hints

 Notes & Results

5.3.26 Implements the CHANGE_OF_RELIABILITY – FAULT_STATE

Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.5 - CHANGE_OF_RELIABILITY with the FAULT_STATE Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

Must be executed.

 Test Directives Repeat the test for each object type that support this fault algorithm,

 Testing Hints

 Notes & Results

5.3.27 Implements the CHANGE_OF_RELIABILITY –

FAULT_STATUS_FLAGS Algorithm
The IUT contains, or can be made to contain, an object that can generate EventNotifications with an Event_Type of

CHANGE_OF_RELIABILITY and supports the specified algorithm.

BTL - 8.5.X1.6 - CHANGE_OF_RELIABILITY with the FAULT_STATUS_FLAGS Algorithm

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

Must be executed.

 Test Directives Repeat the test for each object type that support this fault algorithm,

 Testing Hints

 Notes & Results

5.3.28 Supports CHANGE_OF_RELIABILITY in the Event Enrollment Object
The IUT contains, or can be made to contain, an Event Enrollment object that can generate EventNotifications with an

Event_Type of CHANGE_OF_RELIABILITY.

BTL - 8.5.X1.7.1 - Internal Faults Take Precedence Over Monitored Object Faults

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT does not support an Event Enrollment object which can

detect internal faults and monitor an object which detects faults, then

this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.7.2 - Monitored Object Faults Take Precedence Over Fault Algorithms

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test If the IUT does not support an Event Enrollment object which monitors

Addendum c to BTL Test Package 15.0

 21

Conditionality an object which detects faults and which applies a fault algorithm, then

this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.7.3 - Internal Faults Take Precedence Over Fault Algorithms

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT does not support an Event Enrollment object which can

detect internal faults and which applies a fault algorithm, then this test

shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.8 - CHANGE_OF_RELIABILITY of Event Enrollment Object, Monitored Object

Fault

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT has no Event Enrollment object where the Monitored_Object

that can transition to fault, this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

BTL - 8.5.X1.9 - CHANGE_OF_RELIABILITY of Event Enrollment Object Fault

 Test Method Manual

 Configuration As per BTL Specified Tests.

 Test

Conditionality

If the IUT has no Event Enrollment object that detects an internal

unreliable operational fault, this test shall be skipped.

 Test Directives

 Testing Hints

 Notes & Results

[In BTL Checklist, add new sections as shown here in italics]

S
u

p
p

o
rt

L
istin

g

Option

Alarm and Event - Notification - Internal - B

 . . .

 O Implements intrinsic alarming in an Integer object

 C3 Implements the CHANGE_OF_RELIABILITY – No Fault Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_CHARACTERSTRING Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_EXTENDED Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_LIFE_SAFETY Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_STATE Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_STATUS_FLAGS Algorithm

 C3 Supports CHANGE_OF_RELIABILITY in the Event Enrollment Object

 . . .

Addendum c to BTL Test Package 15.0

 22

S
u

p
p

o
rt

L
istin

g

Option

Alarm and Event - Notification - External - B

 . . .

 C1 Implements the UNSIGNED_RANGE algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – No Fault Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_CHARACTERSTRING Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_EXTENDED Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_LIFE_SAFETY Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_STATE Algorithm

 C3 Implements the CHANGE_OF_RELIABILITY – FAULT_STATUS_FLAGS Algorithm

 C3 Supports CHANGE_OF_RELIABILITY in the Event Enrollment Object

 . . .

Global Group Object

 …

 O Supports Event Reporting

