
BACnet is a registered trademark of ASHRAE.  ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards.  Compliance of listed products to the requirements of ASHRAE 
Standard 135 is the responsibility of BACnet International.  BTL is a registered trademark of BACnet International. 
 

 

 

 
 
 

BACnet TESTING LABORATORIES 
ADDENDA 

 
Addendum ay to 

BTL Test Package 16.1 
 

Revision 4 
Revised September 30, 2020 

 
 
 
 
 

Approved by the BTL Working Group on June 25, 2020. 
Approved by the BTL Working Group Voting Members on September 30, 2020. 

Published on October 1, 2020.



Addendum ay to BTL Test Package 16.1   

 1 

[This foreword and the “Overview” on the following pages are not part of this Test Package. They are 
merely informative and do not contain requirements necessary for conformance to the Test Package.] 

 
 

FOREWORD 
 
The purpose of this addendum is to present current changes being made to the BTL Test Package. These modifications are the 
result of change proposals made pursuant to the continuous maintenance procedures and of deliberations within the BTL-WG 
Committee. The changes are summarized below. 
 
BTL-16.1ay-1: SCHED-AVM-A and VM-A for Timer Test Changes - BTLWG-84 .............................................................. 2 
BTL-16.1ay-2: Add Timer Object Testing and CHANGE_OF_TIMER algorithm Testing - BTLWG-81 ............................... 7 
 
In the following document, language to be added to existing clauses within the BTL Test Package 16.1 is indicated through the 
use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain 
type is used throughout 
 
In contrast, changes to BTL Specified Tests also contain a yellow highlight to indicate the changes made by this addendum.  
When this addendum is applied, all highlighting will be removed.  Change markings on tests will remain to indicate the 
difference between the new test and an existing 135.1 test.  If a test being modified has never existed in 135.1, the applied result 
should not contain any change markings.  When this is the case, square brackets will be used to describe the changes required 
for this test. 
 
Each addendum can stand independently unless specifically noted via dependency within the addendum.  If multiple addenda 
change the same test or section, each future released addendum that changes the same test or section will note in square brackets 
whether or not those changes are reflected.  
 
 



Addendum ay to BTL Test Package 16.1   

 2 

BTL-16.1ay-1: SCHED-AVM-A and VM-A for Timer Test Changes - BTLWG-84 
 
Overview: 
 
The wording in SCHED-AVM-A and SCHED-VM-A is updated for the Timer object added in PR_17, and the long-
untouched Testing Hints in two existing Base Requirements Test Plan entries is replaced with Testing Directives instead, 
using wording similar to what was adopted on 07-Feb-2019 in the DS-V-A and DS-M-A. 
 
There are five existing Checklist line-items in SCHED-AVM-A all with Conditionality Code: R. The references to other 
BIBBs, as Verify SCHED-VM-A, and Verify DM-OCD-A by convention in BTL Checklist are always mentioned with a 
dedicated section, wherever that testing is applicable. But the testing which is located in the last two are here moved, along 
with the new tests, into Base Requirements and the extraneous final two Checklist line-items in SCHED-AVM-A with 
Conditionality Code: R, are removed. 
 
 
Changes: 
 

[In BTL Checklist, modify the SCHED-AVM-A entries as directed below.] 

Support 

Listing 

Option 

Scheduling - Advanced View Modify - A 
 R Base Requirements  
 R Supports SCHED-VM-A 
 R Supports DM-OCD-A 
 R Is able to read a Schedule object that is self-inconsistent with regard to the scheduled 

datatype, and modify it to be consistent 
 R Is able to change the datatype that a Schedule object schedules 

 
[In BTL Test Plan, Update the Test Directives and remove the Testing Hints as shown below] 
 
6.1 Scheduling - Advanced View and Modify - A 
6.1.1 Base Requirements 
Base requirements must be met by any IUT claiming conformance to this BIBB. 

135.1-2013 - 8.18.3 - Reading and Presenting Properties 
 Test Conditionality Must be executed. 
 Test Directives Repeat the test for each of the standard object types, except Timer 

object for devices claiming Protocol_Revision 16 and below, and 
associated properties specified in Table K-20 in the 135 standard.  
The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue 
tuples per day. The Calendar Date_List used in this test should contain 
32 calendar entries. 

 Testing Hints Verify for Weekly_Schedule, Exception_Schedule, Effective_Period , 
Date_List , Schedule_Default, List_Of_Object_Property_References, 
Priority_For_Writing, and Out_Of_Service properties. See Addendum 
L for requirements details. 
The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue 
tuples per day. The Calendar Date_List used in this test should contain 
32 calendar entries. 

135.1-2013 - 8.22.4 - Accepting Input and Modifying Properties 



Addendum ay to BTL Test Package 16.1   

 3 

 Test Conditionality Must be executed. 
 Test Directives Repeat the test for each of the standard object types, except Timer 

object for devices claiming Protocol_Revision 16 and below, and 
associated properties specified in Table K-20 in the 135 standard.  
The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue 
tuples per day. The Calendar Date_List used in this test should contain 
32 calendar entries. 

 Testing Hints Verify for Weekly_Schedule, Exception_Schedule, Effective_Period , 
Date_List , Schedule_Default, List_Of_Object_Property_References, 
Priority_For_Writing, and Out_Of_Service properties. See Addendum 
L for requirements details. 
The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue 
tuples per day. The Calendar Date_List used in this test should contain 
32 calendar entries. 

135.1-2013 - 13.10.6 - Modify a Self-inconsistent Schedule to be Consistent 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints The IUT is not required to present the self-inconsistent schedule, only 

that the IUT write out a consistent schedule after the modification. 
Ideally, the IUT should involve the user in the process of modifying 
the schedule to be consistent, presenting the full data of the schedule 
and allowing the user to edit the data to correct the inconsistencies. If 
the IUT modifies the schedule automatically to make it consistent, it 
should at least notify the user that the schedule has been modified. It 
is not acceptable for the IUT to modify the schedule without any 
indication to the user that this was done. 

135.1-2013 - 13.10.7 - Is able to change the datatype Change the Datatype that a Schedule Object 
Schedules object schedules 
 Test Conditionality Must be executed. 
 Test Directives Change the datatype of the Schedule to each schedule datatype 

required by the BIBB, as well as any additional which are supported 
by the IUT. 

 Testing Hints The tester should attempt to change the datatype of the Schedule to 
each schedule datatype supported by the IUT. 

BTL - 13.10.X8 - Modify a Self-inconsistent Timer to be Consistent 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints The IUT is not required to present the self-inconsistent timer, only 

that the IUT write out a consistent timer after the modification. 
Ideally, the IUT should involve the user in the process of modifying 
the timer to be consistent, presenting the full data of the timer and 
allowing the user to edit the data to correct the inconsistencies. If the 
IUT modifies the timer automatically to make it consistent, it should 
at least notify the user that the timer has been modified. It is not 
acceptable for the IUT to modify the timer without any indication to 
the user that this was done. 

BTL - 13.10.X9 - Change the Datatype that a Timer Object References 
 Test Conditionality Must be executed if the IUT claims Protocol_Revision 17 or higher. 
 Test Directives Change the datatype of the Timer to each timer datatype required by 

the BIBB, as well as any additional which are supported by the IUT. 
 Testing Hints  
 
[In BTL Test Plan, Remove sections 6.1.4 and 6.1.5 as shown below.] 



Addendum ay to BTL Test Package 16.1   

 4 

 
 
6.1.4  Is able to Read a Schedule Object that is Self-inconsistent with regard to the Scheduled Datatype, and Modify 
it to be Consistent 
The IUT is capable of modifying schedule objects that are self-inconsistent with regards to the scheduled datatype. 

135.1-2013 - 13.10.6 - Modify a Self-inconsistent Schedule to be Consistent 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints The IUT is not required to present the self-inconsistent schedule, only 

that the IUT write out a consistent schedule after the modification. 
Ideally, the IUT should involve the user in the process of modifying 
the schedule to be consistent, presenting the full data of the schedule 
and allowing the user to edit the data to correct the inconsistencies. If 
the IUT modifies the schedule automatically to make it consistent, it 
should at least notify the user that the schedule has been modified. It 
is not acceptable for the IUT to modify the schedule without any 
indication to the user that this was done. 

 
6.1.5  Is able to Change the Datatype that a of Schedule and Timer Objects Object Schedules 
The IUT supports the ability for the user to change the datatype of the schedule object. 

135.1-2013 - 13.10.7 - Is able to change the datatype Change the Datatype that a Schedule Object 
Schedules object schedules 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints The tester should attempt to change the datatype of the Schedule to 

each schedule datatype supported by the IUT. 
 
 

6.1.3 Supports DM-OCD-A 

The IUT supports DM-OCD-A for the Timer, Calendar, and Schedule objects. 
 

Verify Checklist 
 Test 

Conditionality 
Must be executed. 

 Test Directives Verify the IUT claims support for the BIBB DM-OCD-A and that the 
Calendar, and Schedule objects can be created and deleted. If the IUT 
claims Protocol_Revision 17 or higher, verify that the creation and 
deletion of Timer objects is also claimed. 
 

 Testing Hints  
 
 
6.2 Scheduling - View and Modify - A 
6.2.1 Base Requirements 
Base requirements must be met by any IUT claiming conformance to this BIBB.  

135.1-2013 - 8.18.3 - Reading and Presenting Properties 
 Test Conditionality Must be executed unless the IUT also This test may be skipped if the IUT 

claims support for SCHED-AVM-A. 

 Test Directives Repeat the test for each of the standard object types,  defined in the 
claimed Protocol_Revision, and associated properties specified by 
SCHED-VM-A.  
The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue tuples 



Addendum ay to BTL Test Package 16.1   

 5 

per day. The Calendar Date_List used in this test should contain 32 
calendar entries. 

 Testing Hints Verify for Weekly_Schedule, Exception_Schedule, Effective_Period and 
Date_List properties. See Addendum L for requirements details. 

The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue tuples 
per day. The Calendar Date_List used in this test should contain 32 
calendar entries. 

135.1-2013 - 8.22.4 - Accepting Input and Modifying Properties 
 Test Conditionality Must be executed unless the IUT also This test may be skipped if the IUT 

claims support for SCHED-AVM-A. 

 Test Directives Repeat the test for each of the standard object types, defined in the 
claimed Protocol_Revision, and associated properties specified by 
SCHED-VM-A.  
The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue tuples 
per day. The Calendar Date_List used in this test should contain 32 
calendar entries. 

 Testing Hints Verify for Weekly_Schedule, Exception_Schedule, Effective_Period and 
Date_List properties. See Addendum L for requirements details. 

The reference schedule used during this test should include an 
Exception_Schedule that contains 255 entries and contain 12 
BACnetTimeValue tuples per entry. The reference schedule should also 
contain a Weekly_Schedule which contains 6 BACnetTimeValue tuples 
per day. The Calendar Date_List used in this test should contain 32 
calendar entries. 

 

[In BTL Specified Tests, add two tests 13.10.X8 and 13.10.X9] 

13.10.X8 Modify a Self-inconsistent Timer to be Consistent 

Purpose: Demonstrate that the IUT can read a Timer that is self-inconsistent with regard to datatype and modify it to be 
consistent.  This capability is required in order to be able to fix Timer objects that may be in a self-inconsistent state when the 
process of changing datatype in an earlier attempt, was interrupted.  

Test Configuration: A reference device contains any valid Timer object T that supports modifying the datatype. 

Test Steps:  

1. MAKE (the IUT modify T so that the datatype which State_Change_Values holds, and which 
List_Of_Object_Property_References values points to, is consistent)   

2. CHECK (Did the IUT write a consistent timer?)             

Notes to Tester:  A consistent timer is one that meets all of these criteria: 

1. All non-NULL values used in the State_Change_Values property shall be of the same datatype. 

2. All properties referenced by the List_Of_Object_Property_References are writable with that datatype.  

Until those conditions are met, the inconsistency can be detected by reading the Reliability property which will have the value 
CONFIGURATION_ERROR. 

 

13.10.X9 Change the Datatype that a Timer Object References 

Purpose: Verify that the IUT can alter the datatype of a Timer object.    



Addendum ay to BTL Test Package 16.1   

 6 

Test Configuration: A reference device contains any valid Timer object that supports modifying the datatype. 

Test Steps: 

1. MAKE (the  State_Change_Values have, and/or List_Of_Object_Property_References point to a scheduled datatype 
that is different)   

2. CHECK (Did the IUT write the modified properties correctly?)   

Notes to Tester:  It is acceptable that the IUT modify the Timer one property at a time, so there may be a time period when the 
Timer is in a self-inconsistent state during reconfiguration. 

 

 

  



Addendum ay to BTL Test Package 16.1   

 7 

BTL-16.1ay-2: Add Timer Object Testing and CHANGE_OF_TIMER algorithm Testing - BTLWG-81 
 
Overview: 
 
Testing for the Timer object added in PR_17 is added, and two BIBBs AE-N-I-B and AE-N-E-B are updated for the 
CHANGE_OF_TIMER algorithm associated with Timer object.  
 
Changes: 
 
[In Checklist, remove the reference by footnote to "Contact BTL for this algorithm." from the CHANGE_OF_TIMER entry] 
 

Support 

Listing 

Option 

Alarm and Event Management - Notification - Internal - B 
 R Base Requirements  
 … ... 
 C3,5,7 Implements the CHANGE_OF_TIMER algorithm 

1 Required if EventNotifications with service parameter AckRequired = True can be issued. 
2 At least one of these options must be supported to claim support for this BIBB. 
3 At least one of these options must be supported to claim support for this BIBB. It is recommended 
that a standard BACnet algorithm be used instead of a proprietary algorithm whenever possible. 
4 At least one of these options must be supported to claim support for this BIBB. The 
BACnetDateTime form of the timestamp is the recommended option. 
5 Contact BTL for interim tests for this algorithm. 
6 Protocol_Revision 16 or higher must be claimed. 
7 Protocol_Revision 17 or higher must be claimed. 
8 Protocol_Revision 18 or higher must be claimed. 

 
 
[In Checklist, remove the reference by footnote to "Contact BTL for this algorithm." from the CHANGE_OF_TIMER entry] 
 

Support 

Listing 

Option 

Alarm and Event Management - Notification - External - B 
 R Base Requirements  
 … ... 
 C1,2,4 Implements the CHANGE_OF_TIMER algorithm 

1 One of these options must be supported to claim support for this BIBB. It is recommended that a 
standard BACnet algorithm be used instead of a proprietary algorithm whenever possible. 
2 Contact BTL for interim tests for this algorithm. 
3 Protocol_Revision 16 or higher must be claimed. 
4 Protocol_Revision 17 or higher must be claimed. 
5 Protocol_Revision 18 or higher must be claimed. 

 
[In Checklist, completely replace existing Timer Object entry with the below entry.] 
 

Support 

Listing 

Option 

Timer Object 
 R Base Requirements  
 O Supports Writable Out_Of_Service Property 
 O Supports Writable Present_Value while Out_Of_Service is FALSE 
 O1 Supports Update_Time 



Addendum ay to BTL Test Package 16.1   

 8 

Support 

Listing 

Option 

 O Supports Expiration_Time 
 O Supports Default_Timeout 
 O Supports Priority_For_Writing 
 O Supports writable Priority_For_Writing and List_Of_Object_Property_References 
 O Can contain an Object with Reliability_Evaluation_Inhibit Property 

1 Required if the IUT supports intrinsic reporting for Timer object type. 
 
 
[In Checklist, completely replace existing Scheduling - Timer - Internal - B with below entry.] 
 

Support 

Listing 

Option 

Scheduling - Timer - Internal - B 
 R Base Requirements  
 R Supports writable Priority_For_Writing property 
 R Supports writable Default_Timeout property 

 
 
 
[In Checklist, completely replace the Scheduling - Timer - External - B entry with the below entry.] 
 

Support 

Listing 

Option 

Scheduling - Timer - External - B 
 R Base Requirements  
 R Supports SCHED-TMR-I-B 
 R Supports DS-WP-A 
 R Supports writable List_Of_Object_Property_References property 
 R Supports references to objects in external devices 

 
 
 
[In Test Plan, replace existing placeholder section 3.57 with the following.] 
 
3.57 Timer Object 
3.57.1 Base Requirements 
Base requirements must be met by any IUT that can contain Timer objects. 

BTL - 7.3.2.X57.1.1 - Timer State_Change_Values  
 Test Conditionality If the IUT does not support a State_Change_Values property in any 

Timer object, this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.2 - Timer Running then Expired  Test 
 Test Conditionality If the IUT does not support a writable Timer_Running in any Timer 

object, this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.5 - Restarting An Expired Timer 
 Test Conditionality If the IUT does not support a writable Timer_Running in any Timer 

object, this test shall be skipped. 



Addendum ay to BTL Test Package 16.1   

 9 

 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.6 - Already Running Timer restarted by writing the Present_Value 
 Test Conditionality If the IUT supports writable Present_Value in Timer object while 

Out_Of_Service is FALSE, there is no need to repeat this test. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.7 - Already Running Timer restarted with Default_Timeout 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.10 - Forcing Timer Expiration by writing Zero 
 Test Conditionality If Present_Value is never writable, this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.3 - Invalid Property Writing in a Timer 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.4 - Expired Timer Ignores Writing Zero 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.5 - Expired Timer Ignores Writing FALSE 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.6 - Idle Timer Ignores Writing Zero 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.7 - Idle Timer Ignores Writing FALSE 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.8 - Idle Timer Ignores Writing IDLE 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  

 
3.57.2 Supports Writable Out_Of_Service Property 
The Out_Of_Service property in Timer objects is writable. 

135.1-2013 - 7.3.1.1 - Writing Out_Of_Service, Status_Flags, and Reliability Test 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.4 - Running Timer by writing the Present_Value 
 Test Conditionality Must be executed. 
 Test Directives  
 Testing Hints If Present_Value is only writable while Out_Of_Service is TRUE, then 

the presence of Min_Pres_Value and Max_Pres_Value is optional. 
BTL - 7.3.2.X57.1.11 - Forcing Timer Expiration by writing FALSE 
 Test Conditionality If the IUT does not support a writable Timer_Running, this test shall be 

skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.12 - Forcing Timer Expiration by writing IDLE 



Addendum ay to BTL Test Package 16.1   

 10 

 Test Conditionality If the IUT does not support a writable Timer_State, this test shall be 
skipped. 

 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.13 - Resetting Timer by writing IDLE 
 Test Conditionality If the IUT does not support a writable Timer_State this test shall be 

skipped. 
 Test Directives  
 Testing Hints  

 
3.57.3 Supports Writable Present_Value while Out_Of_Service is FALSE 
The Present_Value property in a Timer object is writable while Out_Of_Service is FALSE. 

Verify EPICS 
 Test Conditionality Must be executed. 
 Test Directives Verify that Min_Pres_Value and Max_Pres_Value properties are 

present in the object. 
 Testing Hints  
BTL - 7.3.2.X57.1.4 - Running Timer by writing the Present_Value 
 Test Conditionality Must be executed. Note that this test is included in multiple Test Plan 

sections for the Timer object but it needs to only be executed once. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.6 - Already Running Timer restarted by writing the Present_Value 
 Test Conditionality Must be executed. Note that this test is included in multiple Test Plan 

sections for the Timer object but it needs to only be executed once. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.11 - Forcing Timer Expiration by writing FALSE 
 Test Conditionality Must be executed. Note that this test is included in multiple Test Plan 

sections for the Timer object but it needs to be only executed once. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.12 - Forcing Timer Expiration by writing IDLE 
 Test Conditionality Must be executed. Note that this test is included in multiple Test Plan 

sections for the Timer object but it needs to be only executed once. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.13 - Resetting Timer by writing IDLE 
 Test Conditionality Must be executed. Note that this test is included in multiple Test Plan 

sections for the Timer object but it needs to be only executed once. 
 Test Directives  
 Testing Hints  

 
3.57.4 Supports Update_Time 
The IUT supports the Update_Time property in a Timer object. 

Verify EPICS 
 Test Conditionality Must be executed. 
 Test Directives Verify that Local_Date and Local_Time properties are present in the 

Device object. 
 Testing Hints  

 
3.57.5 Supports Expiration_Time 
The IUT supports the Expiration_Time property in a Timer object. 

Verify EPICS 
 Test Conditionality Must be executed. 
 Test Directives Verify that Local_Date and Local_Time properties are present in the 

Device object. 
 Testing Hints  



Addendum ay to BTL Test Package 16.1   

 11 

BTL - 7.3.2.X57.1.14 - Timer Object Operation Unaffected by Changes to Local_Time and 
Local_Date 
 Test Conditionality Must be Executed. 
 Test Directives  
 Testing Hints  

 
3.57.6 Supports Default_Timeout 
The IUT supports the Default_Timeout property in a Timer object. 

BTL - 7.3.2.X57.1.3 - Default_Timeout Test 
 Test Conditionality If the IUT does not support a writable Timer_Running in any Timer 

object which contains a Default_Timeout, this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.5 - Restarting An Expired Timer 
 Test Conditionality If the IUT does not support a writable Timer_Running in any Timer 

object which contains a Default_Timeout, this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.7 - Already Running Timer restarted with Default_Timeout 
 Test Conditionality If the IUT does not support a writable Timer_Running in any Timer 

object which contains a Default_Timeout, this test shall be skipped. If 
every Timer only goes into RUNNING state with an Initial_Value equal 
to Default_Value, this test shall be skipped. 

 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.1.16 - Changing Default_Timeout Test 
 Test Conditionality If the IUT does not support a writable Timer_Running in any Timer 

object which contains a writable Default_Timeout, this test shall be 
skipped. 

 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.9 - Default_Timeout Written Outside Supported Range 
 Test Conditionality If Default_Timeout property is not writable in any Timer object, this test 

shall be skipped. 
 Test Directives  
 Testing Hints  

 
3.57.7 Supports Priority_For_Writing 
The IUT supports the Priority_For_Writing property in a Timer object. 

BTL - 7.3.2.X57.1.15 - Changes made by State_Change_Values are at Correct Priority 
 Test Conditionality If List_Of_Object_Property_References cannot reference a 

commandable property, this test shall be skipped. 
 Test Directives  
 Testing Hints  

 
3.57.8 Supports Writable Priority_For_Writing and List_Of_Object_Property_References 
The IUT supports writable Priority_For_Writing and List_Of_Object_Property_References properties in a Timer object. 

BTL - 7.3.2.X57.1.8 - Timer accepts all the required datatypes in an Internal Reference 
 Test Conditionality Must be executed. 
 Test Directives This test shall be executed with a Timer object that can be configured to 

monitor a property within the IUT. Repeat the test with the 
List_Of_Object_Property_References making its references to, and the 
State_Change_Values property containing non-NULL values of each of 
these datatypes: NULL, BOOLEAN, Unsigned, INTEGER, REAL, and 
ENUMERATED. Support for writing to properties with other datatypes 
is optional. 

 Testing Hints  
BTL - 7.3.2.X57.2.1 - Writing Timer with an Unsupported External Reference 



Addendum ay to BTL Test Package 16.1   

 12 

 Test Conditionality If the IUT claims support for SCHED-TMR-E-B, this test shall be 
skipped. 

 Test Directives  
 Testing Hints  
BTL - 7.3.2.X57.2.2 - Writing an Unsupported Datatype to State_Change_Values 
 Test Conditionality If there is no datatype which the IUT does not support, then this test 

shall be skipped. 
 Test Directives Write a value using a datatype which is not supported in the Timer 

instance. 
 Testing Hints  

 
3.57.9 Can Contain an Object with Reliability_Evaluation_Inhibit Property 
The IUT contains, or can be made to contain, a Reliability_Evaluation_Inhibit property in a Timer object that is configurable 
to a value of TRUE. 

BTL - 7.3.1.X8.1 - Reliability_Evaluation_Inhibit Test 
 Test Conditionality If no Timer object exists in the IUT for which fault conditions can be 

detected, then this test shall be skipped. 
 Test Directives  
 Testing Hints  
BTL - 7.3.1.X8.2 - Reliability_Evaluation_Inhibit Summarization Test 
 Test Conditionality If no Timer object exists in the IUT for which fault conditions can be 

detected and which supports intrinsic reporting, then this test shall be 
skipped. 

 Test Directives  
 Testing Hints  

 
 
[In Test Plan, in existing sections 5.2.41 add four new tests each.] 
 
5.2 Alarm and Event Management - Notification - Internal - B 
5.2.41 Implements the CHANGE_OF_TIMER Algorithm 
Contact the BTL for interim tests for this algorithm. The IUT contains, or can be made to contain, an object that can generate 
EventNotifications with an Event_Type of CHANGE_OF_TIMER. 

BTL - 8.4.10.X1 - CHANGE_OF_TIMER ConfirmedEventNotification Test 
 Test Conditionality Must be executed. 
 Test Directives This test must be repeated once for each object type that is capable of 

generating event notifications with an Event_Type of 
CHANGE_OF_TIMER. 

 Testing Hints  
BTL - 8.4.10.X2 - CHANGE_OF_TIMER Offnormal-to-Offnormal ConfirmedEventNotification 
 Test Conditionality If pAlarmValues cannot be configured with two different values to 

which pMonitored will become equal, this test shall be skipped. 
 Test Directives This test must be repeated once for each object type that is capable of 

generating event notifications with an Event_Type of 
CHANGE_OF_TIMER. 

 Testing Hints  
BTL - 8.5.10.X1 - CHANGE_OF_TIMER UnconfirmedEventNotification Test 
 Test Conditionality Must be executed. 
 Test Directives This test must be repeated once for each object type that is capable of 

generating event notifications with an Event_Type of 
CHANGE_OF_TIMER. 

 Testing Hints  
BTL - 8.5.10.X2 - CHANGE_OF_TIMER Offnormal-to-Offnormal 
UnconfirmedEventNotification 
 Test Conditionality If pAlarmValues cannot be configured with two different values to 

which pMonitored will become equal, this test shall be skipped. 
 Test Directives This test must be repeated once for each object type that is capable of 

generating event notifications with an Event_Type of 
CHANGE_OF_TIMER. 



Addendum ay to BTL Test Package 16.1   

 13 

 Testing Hints  
 
[In Test Plan, in existing sections 5.3.30 add four new tests each.] 
 
5.3 Alarm and Event Management - Notification - External - B 
5.3.30 Implements the CHANGE_OF_TIMER Algorithm 
Contact the BTL for interim tests for this algorithm. The IUT contains, or can be made to contain, an object that can generate 
EventNotifications with an Event_Type of CHANGE_OF_TIMER. 

BTL - 8.4.10.X1 - CHANGE_OF_TIMER ConfirmedEventNotification Test 
 Test Conditionality Must be executed. 
 Test Directives This test shall be executed with an Event Enrollment object that is 

configured to monitor a property in a device other than the IUT. 
 Testing Hints  
BTL - 8.4.10.X2 - CHANGE_OF_TIMER Offnormal-to-Offnormal ConfirmedEventNotification 
 Test Conditionality If pAlarmValues cannot be configured with two different values to 

which pMonitored will become equal, this test shall be skipped. 
 Test Directives This test shall be executed with an Event Enrollment object that is 

configured to monitor a property in a device other than the IUT. 
 Testing Hints  
BTL - 8.5.10.X1 - CHANGE_OF_TIMER UnconfirmedEventNotification Test 
 Test Conditionality Must be executed. 
 Test Directives This test shall be executed with an Event Enrollment object that is 

configured to monitor a property in a device other than the IUT. 
 Testing Hints  
BTL - 8.5.10.X2 - CHANGE_OF_TIMER Offnormal-to-Offnormal 
UnconfirmedEventNotification 
 Test Conditionality If pAlarmValues cannot be configured with two different values to 

which pMonitored will become equal, this test shall be skipped. 
 Test Directives This test shall be executed with an Event Enrollment object that is 

configured to monitor a property in a device other than the IUT. 
 Testing Hints  

 
 
 [In Test Plan, replace existing placeholder sections 6.9 and 6.10 with the following.] 
 
6.9 Scheduling - Timer - Internal - B 
6.9.1 Base Requirements 
There are no Base Requirements for this BIBB.  
6.9.2 Supports Writable Priority_For_Writing Property 
The IUT supports a writable Priority_For_Writing property in Timer objects. 

Verify Checklist 
 Test Conditionality Must be executed. 
 Test Directives Verify the IUT claims support for Timer object option 'Supports 

Priority_For_Writing'. 
 Testing Hints  

 
6.9.3 Supports Writable Default_Timeout Property 
The IUT supports a writable Default_Timeout property in Timer objects. 

Verify Checklist 
 Test Conditionality Must be executed. 
 Test Directives Verify the IUT claims support for Timer object option 'Supports 

Default_Timeout'. 
 Testing Hints  

 
6.10 Scheduling - Timer - External - B 
6.10.1 Base Requirements 
There are no Base Requirements for this BIBB. 
 
6.10.2 Supports SCHED-TMR-I-B 



Addendum ay to BTL Test Package 16.1   

 14 

The IUT supports SCHED-TMR-I-B. 
Verify Checklist 
 Test Conditionality Must be executed. 
 Test Directives Verify that the IUT claims support for SCHED-TMR-I-B. 
 Testing Hints  

 
6.10.3 Supports DS-WP-A 
The IUT supports DS-WP-A. 

Verify Checklist 
 Test Conditionality Must be executed. 
 Test Directives Verify that the IUT claims support for DS-WP-A. 
 Testing Hints  

 
6.10.4 Supports Writable List_Of_Object_Property_References 
The IUT supports a writable List_Of_Object_Property_References property. 

Verify Checklist 
 Test Conditionality Must be executed. 
 Test Directives Verify the IUT claims support for Timer object option 'Supports  

writable Priority_For_Writing and 
List_Of_Object_Property_References' 

 Testing Hints  
 
6.10.5 Supports External Devices 
The IUT supports a non-empty List_Of_Object_Property_References property which can contain references to objects in 
external devices. 

BTL - 7.3.2.X57.1.9 - Timer supports writing an External Device 
 Test Conditionality Must be executed. 
 Test Directives This test shall be executed with a Timer object that is capable of being 

configured to monitor a property in a device other than the IUT. 
 Testing Hints  

  
 
[Add these entirely new tests to BTL Specified Tests.] 
 
7.3.2.X57.1.1 Timer State_Change_Values  
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify all State_Change_Values property transitions. 
 
Test Concept: Start this test in the IDLE state. Write Timer_Running and observe the object enter RUNNING state, and after 
time passes, observe it enters the EXPIRED state. Force it into the IDLE state. Write Timer_Running again observe it enter 
RUNNING state, then write Timer_Running again and observe it make the RUNNING_TO_RUNNING transition. Force it 
into the IDLE state again. Observe that per State_Change_Values transitions, all writes take place. 
 
Configuration Requirements: The State_Change_Values property, if present, holds a valid configuration. 
 
Test Steps: 
1. WRITE Timer_Running = TRUE 
2. CHECK (IUT exhibits any changes configured in IDLE_TO_RUNNING transition) 
3. READ RT = Present_Value 
4. WAIT RT 
5. CHECK (IUT exhibits any changes configured in RUNNING_TO_EXPIRED transition) 
6. WRITE Timer_State = IDLE 
7. CHECK (IUT exhibits any changes configured in EXPIRED_TO_IDLE transition) 
8. WRITE Timer_Running = TRUE 
9. CHECK (IUT exhibits any changes configured in IDLE_TO_RUNNING transition) 
10. BEFORE the timer expires 
 WRITE Timer_Running = TRUE 
11. CHECK (IUT exhibits any changes configured in RUNNING_TO_RUNNING transition) 



Addendum ay to BTL Test Package 16.1   

 15 

12. WRITE Timer_State = IDLE 
13. CHECK (IUT exhibits any changes configured in RUNNING_TO_IDLE transition) 
14. VERIFY Present_Value = 0 
 
7.3.2.X57.1.2 Timer Running then Expired Test 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify that Timer T1 when set to RUNNING, enters the EXPIRED state after the configured time. 
 
Test Concept: Start this test in the IDLE state. Write Timer_Running and observe it enter RUNNING state, with its current 
configuration. After time passes, observe it enters the EXPIRED state. Observe that specified properties take their required 
values. 
 
Configuration Requirements: T1 starts this test with the Timer_State equal to IDLE.    
 
Test Steps: 
1. VERIFY Timer_State = IDLE 
2. WRITE Timer_Running = TRUE 
3. CHECK (IUT exhibits any changes configured in IDLE_TO_RUNNING transition) 
4. IF (Default_Timeout property is present in T1) THEN { 
 READ DV = Default_Timeout 
 VERIFY Initial_Timeout = DV 
 } 
5. VERIFY Timer_State = RUNNING 
6. READ RT = Present_Value 
7. WAIT RT 
8. CHECK (IUT exhibits any changes configured in RUNNING_TO_EXPIRED transition) 
9. VERIFY Timer_State = EXPIRED 
10. VERIFY Present_Value = 0 
11. VERIFY Last_State_Change = RUNNING_TO_EXPIRED 
12. IF (Update_Time property is present in T1) THEN { 
 READ UT = Update_Time 
 VERIFY UT ~= (the current date and time) 
 IF (Expiration_Time property is present in T1) THEN 
  VERIFY Expiration_Time = UT 
      } 
      ELSE IF (Expiration_Time property is present in T1) THEN 
 VERIFY Expiration_Time ~= (the current date and time) 
 
7.3.2.X57.1.3 Default_Timeout Test 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify that starting the Timer running via Timer_Running uses Default_Timeout. 
 
Test Concept: Start this test in the IDLE state. Default_Timeout is a valid non-zero value, different from the value which is 
Initial_Timeout at start of test. Write Timer_Running and observe the Timer enter RUNNING state. Observe that specified 
properties take their required values. 
 
Configuration Requirements: Timer starts this test with the Timer_State equal to IDLE. IUT is configured with Initial_Timeout 
and Default_Timeout being different. If this cannot be done, then this test shall be skipped. 
 
Test Steps: 
1. READ PrevIT = Initial_Timeout 
2. VERIFY Default_Timeout <> PrevIT 
3. WRITE Timer_Running = TRUE 
4. VERIFY Present_Value ~= Default_Timeout 
 
7.3.2.X57.1.4 Running Timer by writing the Present_Value 
Reason for Change: No test exists for this functionality. 
 



Addendum ay to BTL Test Package 16.1   

 16 

Purpose: Start or Restart the Timer by writing the Present_Value property. 
 
Test Concept: Start the Timer with a non-zero value PV1, written to the Present_Value property, and observe that the Timer 
counts down according to the new value written. 
 
Configuration Requirements: This test can start with T1 in any of the IDLE, EXPIRED, or RUNNING states.    
 
Test Steps: 
1. IF (Default_Timeout property is present in T1) THEN  
 READ DT = Default_Timeout 
2. READ PrevIT = Initial_Timeout 
3. WRITE Present_Value = (PV1, any valid non-zero value, sufficiently different from DT and PrevIT so that it is clear that 
countdown is according to the new value written) 
4. VERIFY Present_Value <= PV1 
 
7.3.2.X57.1.5 Restarting An Expired Timer 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify that writes to Timer_Running with TRUE while in the EXPIRED state are successful.    
 
Test Concept: Start this test with the Timer_State equal to EXPIRED. Write TRUE to Timer_Running.  
 
Configuration Requirements: T1 starts this test with the Timer_State equal to EXPIRED.    
 
Test Steps: 
1. VERIFY Timer_State = EXPIRED 
2. WRITE Timer_Running = TRUE 
3. VERIFY Timer_State = RUNNING 
 
7.3.2.X57.1.6 Already Running Timer restarted by writing the Present_Value 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify Timer can be restarted while running by writing Present_Value.    
 
Test Concept: Configure and run the Timer T1 as necessary to put it into RUNNING state.  Then write the Timer with a 
different non-zero value written to the Present_Value property and observe that specified properties take their required values 
and all configured State_Change_Values transitions if any, take place. The timer counts down and observe that it operates 
according to the new value written.  
 
Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.  If Present_Value is not writable, 
this test shall be skipped. 
 
Test Steps: 
1. VERIFY Timer_State = RUNNING 
2. WRITE Present_Value = (any valid non-zero value) 
3. CHECK (IUT exhibits any changes configured in RUNNING_TO_RUNNING transition) 
4. VERIFY Timer_Running = TRUE 
5. VERIFY Last_State_Change = RUNNING_TO_RUNNING 
 
7.3.2.X57.1.7 Already Running Timer restarted with Default_Timeout 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the success of writes to Timer_Running with TRUE while already in the RUNNING state.    
 
Test Concept: Configure and run the Timer T1 as necessary to put it into RUNNING state with an Initial_Value different from 
Default_Value.  Then write the Timer_Running property with TRUE, and observe that Present_Value restarts with the value 
from Default_Timeout. 
 



Addendum ay to BTL Test Package 16.1   

 17 

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING. In service of observing the change 
between step 3 and step 6, it is necessary that at the test start, the Timer went into RUNNING state with an Initial_Value 
different from Default_Value. 
 
Test Steps: 
1. VERIFY Timer_State = RUNNING 
2. READ DV = Default_Timeout 
3. VERIFY Initial_Timeout <> DV 
4. WRITE Timer_Running = TRUE 
5. CHECK (IUT exhibits any changes configured in RUNNING_TO_RUNNING transition) 
6. VERIFY Initial_Timeout = DV 
7. VERIFY Present_Value ~= DV 
8. VERIFY Timer_Running = TRUE 
9. VERIFY Last_State_Change = RUNNING_TO_RUNNING 
 
7.3.2.X57.1.8 Timer accepts all the required datatypes in an Internal Reference 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify that the IUT with a modifiable List_Of_Object_Property_References, accepts all the required datatypes. 
 
Test Concept: Verify in a Timer object, T1, that supports modification, the IUT allows altering the 
List_Of_Object_Property_References to refer to an object within the IUT.  Repeat for each of the datatypes required for Timers 
with writable List_Of_Object_Property_References. Also write State_Change_Values or its entries with values of that 
datatype. 
 
Test Steps: 
1. REPEAT (for all the required datatypes: values of type NULL, BOOLEAN, Unsigned, INTEGER, REAL, and 
ENUMERATED { 
 WRITE (the State_Change_Values and/or List_Of_Object_Property_References with that datatype, and which 
references an object within the IUT)   
} 
2. CHECK (Did the IUT accept the writes, and apply the modified values to properties correctly?)   
 
Notes to Tester:  It is required that the IUT allows modifying the Timer one property at a time. 
 
7.3.2.X57.1.9 Timer supports writing an External Device 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify that IUT allows its List_Of_Object_Property_References to refer to an external device.       
 
Test Concept: Verify in a Timer object T1 that supports modification, the IUT allows altering the 
List_Of_Object_Property_References to refer to an object in an external device. 
 
Configuration Requirements: If there is no Timer object in IUT which supports reference to an object in an external device, 
then this test shall be skipped. 
 
Test Steps: 
1. WRITE List_Of_Object_Property_References = (a value that is different, and which contains one or more references to 
objects which are in one or more external devices)   
2. VERIFY List_Of_Object_Property_References = (the value written) 
 
7.3.2.X57.1.10 Forcing Timer Expiration by writing Zero 
Reason for Change: No test exists for this functionality. 
 
Purpose: Interrupt the Timer while it is RUNNING, via a value of zero written to the Present_Value property. 
 
Test Concept: Configure and start the Timer T1 to operate according to its values. Then write a value of zero to the 
Present_Value property and observe that specified properties take their required values and that the State_Change_Values 
operations take place.  
 



Addendum ay to BTL Test Package 16.1   

 18 

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.    
 
Test Steps: 
1. VERIFY Timer_Running = TRUE 
2. VERIFY Timer_State = RUNNING 
3. WRITE Present_Value = 0 
4. CHECK (IUT exhibits any changes configured in FORCED_TO_EXPIRED transition) 
5. VERIFY Timer_State = EXPIRED 
6. VERIFY Last_State_Change = FORCED_TO_EXPIRED 
7. VERIFY Present_Value = 0 
8. IF (Update_Time property is present in T1) THEN { 
 READ UT = Update_Time 
 VERIFY UT ~= (the current date and time) 
 IF (Expiration_Time property is present in T1) THEN 
  VERIFY Expiration_Time = UT 
     } 
     ELSE IF (Expiration_Time property is present in T1) THEN 
 VERIFY Expiration_Time ~= (the current date and time) 
 
7.3.2.X57.1.11 Forcing Timer Expiration by writing FALSE 
Reason for Change: No test exists for this functionality. 
 
Purpose: Interrupt the Timer while it is RUNNING, via a value of FALSE written to the Timer_Running property. 
 
Test Concept: Configure and start Timer T1 to operate according to its values. Then write FALSE to Timer_Running and 
observe that specified properties take their required values and all configured State_Change_Values transitions if any, take 
place.  
 
Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.    
 
Test Steps: 
1. VERIFY Timer_Running = TRUE 
2. VERIFY Timer_State = RUNNING 
3. WRITE Timer_Running = FALSE 
4. CHECK (IUT exhibits any changes configured in FORCED_TO_EXPIRED transition) 
5. VERIFY Timer_State = EXPIRED 
6. VERIFY Last_State_Change = FORCED_TO_EXPIRED 
7. IF (Update_Time property is present in T1) THEN { 
 READ UT = Update_Time 
 VERIFY UT ~= (the current date and time) 
 IF (Expiration_Time property is present in T1) THEN  
  VERIFY Expiration_Time = UT 
} 
    ELSE IF (Expiration_Time property is present in T1) THEN 
 VERIFY Expiration_Time ~= (the current date and time) 
 
7.3.2.X57.1.12 Forcing Timer Expiration by writing IDLE 
Reason for Change: No test exists for this functionality. 
 
Purpose: Interrupting the Timer while it is RUNNING, via a value of IDLE written to the Timer_State property. 
 
Test Concept: Configure and start the Timer T1 to operate according to its values. Then write IDLE to Timer_State and observe 
that specified properties take their required values and all configured State_Change_Values transitions if any, take place.  
 
Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING.    
 
Test Steps: 
1. VERIFY Timer_Running = TRUE 
2. VERIFY Timer_State = RUNNING 
3. WRITE Timer_State = IDLE 



Addendum ay to BTL Test Package 16.1   

 19 

4. CHECK (IUT exhibits any changes configured in RUNNING_TO_IDLE transition) 
5. VERIFY Timer_State = IDLE 
6. VERIFY Last_State_Change = RUNNING_TO_IDLE 
7. IF (Expiration_Time property is present in T1) THEN 
 VERIFY Expiration_Time = (the unspecified datetime value) 
8. IF (Update_Time property is present in T1) THEN 
 VERIFY Update_Time = (the current date and time) 
9. VERIFY Present_Value = 0 
 
7.3.2.X57.1.13 Resetting Timer by writing IDLE 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the correct behaviors when Timer_State is written from EXPIRED to IDLE value.    
 
Test Concept: Configure and run the Timer as necessary to put it into EXPIRED state. Then write IDLE to Timer_State and 
observe that specified properties take their required values and all configured State_Change_Values transitions if any, take 
place.  
 
Configuration Requirements: T1 starts this test with the Timer_State equal to EXPIRED.    
 
Test Steps: 
1. VERIFY Timer_State = EXPIRED 
2. WRITE Timer_State = IDLE 
3. CHECK (IUT exhibits any changes configured in EXPIRED_TO_IDLE transition) 
4. VERIFY Timer_State = IDLE 
4. VERIFY Timer_Running = FALSE 
5. VERIFY Last_State_Change = EXPIRED_TO_IDLE 
6. IF (Expiration_Time property is present in T1) THEN 
 VERIFY Expiration_Time = (the unspecified datetime value) 
7. IF (Update_Time property is present in T1) THEN 
 VERIFY Update_Time = (the current date and time) 
8. VERIFY Present_Value = 0 
 
7.3.2.X57.1.14 Timer Object Operation Unaffected by Changes to Local_Time and Local_Date 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify that Timer expiration is not affected by time changes. 
 
Test Concept: Configure and start the Timer T1 to operate according to its values. Then before the Timer expires, change 
Local_Date / Local_Time to a NewDate / NewTime in the past or future and observe that the length of time until Timer 
expiration is not affected, and that expiry still occurs at the time indicated in Present_Value.  
 

Configuration Requirements: T1 starts this test with the Timer_State equal to RUNNING. 

Test Steps: 
1. VERIFY Timer_Running = TRUE 
2. VERIFY Timer_State = RUNNING 
3. READ PV_beforeTimeChange = Present_Value 
4.  MAKE (Local_Date/ Local_Time = NewDate/ NewTime) 
4. VERIFY Present_Value ~= PV_beforeTimeChange, continuing its decreasing trend 
5. VERIFY Local_Date = NewDate 
6. VERIFY Local_Time ~= NewTime 
7. WAIT PV_beforeTimeChange 
8. VERIFY Present_Value = 0 
9. IF (Update_Time property is present in T1) THEN 
 VERIFY Update_Time ~= (the current date and time) 
10. IF (Expiration_Time property is present in T1) THEN 
 VERIFY Expiration_Time ~= (the current date and time) 
 



Addendum ay to BTL Test Package 16.1   

 20 

Hints to Tester: To ensure that testing would detect an implementation which prematurely expires when the Local_Time 
becomes a time that the Timer would not be RUNNING, select NewDate / NewTime which when converted to local date/time 
using UTC_Offset and Daylight_Saving_Status, is earlier or later than the window of time that the Timer would be RUNNING 
when it started. 
 
7.3.2.X57.1.15 Changes made by State_Change_Values are at Correct Priority 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify by changing the Priority_for_Writing property that subsequent State_Change_Values operations use the right 
Priority.  
 
Test Concept: Write Timer_Running and observe it enter RUNNING state, with its current configuration. After time passes, 
observe it enters the EXPIRED state. Observe that specified properties take their required values. 
 
Configuration Requirements: Start this test in the IDLE state. O1 P1 is any commandable property amongst the elements of 
List_Of_Object_Property_References. O1 should contain in its Priority_Array at the index which will change, a value which 
is different from the values in State_Change_Values, for the operations which will take place, for ease of ensuring that the 
Timer commanded the change. 

Test Steps: 
1. WRITE Priority_for_Writing = (any valid value, different from what it had) 
2. READ ValueItR = State_Change_Values, ARRAY INDEX = IDLE_TO_RUNNING 
3. WRITE Timer_Running = TRUE 
4. VERIFY Timer_State = RUNNING 
5. READ RT = Present_Value 
6. IF (ValueItR is a value other than no-value) THEN 
 VERIFY (O1), Priority_Array = ValueItR, ARRAY INDEX = Priority_for_Writing 
7. WAIT RT 
8. READ ValueRtE = State_Change_Values, ARRAY INDEX = RUNNING_TO_EXPIRED 
9. VERIFY Timer_State = EXPIRED 
10. IF (ValueRtE is a value other than no-value) THEN 
 VERIFY (O1), Priority_Array = ValueRtE, ARRAY INDEX = Priority_for_Writing 
 
7.3.2.X57.1.16 Changing Default_Timeout Test 
Reason for Change: No test exists for this functionality. 
 
Purpose: Reconfigure the Default_Timeout and see that governs the length the timer runs. 
 
Test Concept: Start this test in the IDLE state. Configure the Timer with an updated Default_Time and observe it operates 
according to the new value written. 
 
Configuration Requirements: T1 starts this test with the Timer_State equal to IDLE. 
 
Test Steps: 
1. READ IT = Initial_Timeout 
2. WRITE Default_Timeout = (any valid value, different from IT and different from what it had) 
3. WRITE Timer_Running = TRUE 
4. VERIFY Present_Value ~= Default_Timeout 
 
7.3.2.X57.2.1 Writing Timer with an Unsupported External Reference 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the correct Result(-) when List_Of_Object_Property_References does not support objects in an external device.    
 
Test Concept: Attempt writing List_Of_Object_Property_References of a Timer object T1 which does not support referring to 
an object in an external device. Verify the IUT returns the correct Result(-). 
 
Configuration Requirements: If the IUT supports referring to an object in an external device in all of its Timer objects, then 
this test shall be skipped. 
 
Test Steps: 



Addendum ay to BTL Test Package 16.1   

 21 

1. TRANSMIT WriteProperty-Request, 
 'Object Identifier' = T1 
 'Property Identifier' = List_Of_Object_Property_References  
 'Property Value' = (a value that is different, and which references an object in an external device)   
2. RECEIVE BACnet-Error-PDU, 
 'Error Class' = PROPERTY 
 'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED 
 
7.3.2.X57.2.2 Writing an Unsupported Datatype to State_Change_Values  
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the correct Result(-) when State_Change_Values is written with a datatype that instance does not support. 
 
Test Concept: Attempt writing State_Change_Values of a Timer object T1 with a datatype that instance does not support. 
Verify the IUT returns the correct Result(-). 
 
Configuration Requirements: The State_Change_Values property initially holds a valid configuration. 
 
Test Steps: 
1. TRANSMIT WriteProperty-Request, 
 'Object Identifier' = T1 
 'Property Identifier' = State_Change_Values  
 'Property Value' = (a value which contains a datatype that T1 does not support)   
2. RECEIVE BACnet-Error-PDU, 
 'Error Class' = PROPERTY 
 'Error Code' = DATATYPE_NOT_SUPPORTED 
 
7.3.2.X57.2.3 Invalid Property Writing in a Timer 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the correct Result(-) when Timer_State or Present_Value is written with an invalid value.    
 
Test Concept: Attempt writing of a Timer object T1 with a value outside the supported range and not zero being written to the 
Present_Value property, or a value of other than IDLE written to the Timer_State property. Verify the IUT returns the correct 
Result(-). 
 
Configuration Requirements: The State_Change_Values property, if present, holds a valid configuration. 
 
Test Steps: 
1. TRANSMIT WriteProperty-Request, 
 'Object Identifier' = T1 
 'Property Identifier' = Present_Value  
 'Property Value' = (a value that is outside the supported range and not zero)   
2. RECEIVE BACnet-Error-PDU, 
 'Error Class' = PROPERTY 
 'Error Code' = VALUE_OUT_OF_RANGE 
3. TRANSMIT WriteProperty-Request, 
 'Object Identifier' = T1 
 'Property Identifier' = Timer_State  
 'Property Value' = (a value other than IDLE)   
4. RECEIVE BACnet-Error-PDU, 
 'Error Class' = PROPERTY 
 'Error Code' = VALUE_OUT_OF_RANGE 
 
7.3.2.X57.2.4 Expired Timer Ignores Writing Zero 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the success of writes to Present_Value of a Timer with an expiration value while in the EXPIRED state.    
 



Addendum ay to BTL Test Package 16.1   

 22 

Test Concept: With a Timer object in the EXPIRED state, write 0 to Present_Value and verify that the object remains in the 
EXPIRED state.  
 
Configuration Requirements: The Timer object starts the test with Timer_State equal to EXPIRED.    
 
Test Steps: 
1. VERIFY Timer_State = EXPIRED 
2. WRITE Present_Value = 0 
3. VERIFY Timer_State = EXPIRED 
 
7.3.2.X57.2.5 Expired Timer Ignores Writing FALSE 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the success of writes to Timer_Running property of a Timer with an expiration value while in the EXPIRED 
state.    
 
Test Concept: With a Timer object in the EXPIRED state, write FALSE to Timer_Running and verify that the object remains 
in the EXPIRED state. 
 
Configuration Requirements: The Timer starts this test with Timer_State equal to EXPIRED.    
 
Test Steps: 
1. VERIFY Timer_State = EXPIRED 
2. WRITE Timer_Running = FALSE 
3. VERIFY Timer_State = EXPIRED 
 
 
7.3.2.X57.2.6 Idle Timer Ignores Writing Zero 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the success of writes to Present_Value of a Timer with an expiration value while in the IDLE state.    
 
Test Concept: With a Timer object in the IDLE state, write 0 to Present_Value and verify that the object remains in the IDLE 
state. 
 
Configuration Requirements: The Timer starts this test with Timer_State equal to IDLE.    
 
Test Steps: 
1. VERIFY Timer_State = IDLE 
2. WRITE Present_Value = 0 
3. VERIFY Timer_State = IDLE 
 
7.3.2.X57.2.7 Idle Timer Ignores Writing FALSE 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the success of writes to Timer_Running property of a Timer with an expiration value while already in the IDLE 
state. 
 
Test Concept: With a Timer object in the IDLE state, write FALSE to Timer_Running and verify that the object remains in the 
IDLE state. 
 
Configuration Requirements: The Timer starts this test with Timer_State equal to IDLE. 
 
Test Steps: 
1. VERIFY Timer_State = IDLE 
2. WRITE Timer_Running = FALSE 
3. VERIFY Timer_State = IDLE 
 
7.3.2.X57.2.8 Idle Timer Ignores Writing IDLE 
Reason for Change: No test exists for this functionality. 



Addendum ay to BTL Test Package 16.1   

 23 

 
Purpose: Verify the success of writes to Timer_State of a Timer with the reset value while already in the IDLE state. 
 
Test Concept: With a Timer object in the IDLE state, write IDLE to Timer_State and verify that the object remains in the IDLE 
state. 
 
Configuration Requirements: The Timer starts this test with Timer_State equal to IDLE. 
 
Test Steps: 
1. VERIFY Timer_State = IDLE 
2. WRITE Timer_State = IDLE 
3. VERIFY Timer_State = IDLE 
 
7.3.2.X57.2.9 Default_Timeout Written Outside Supported Range 
Reason for Change: No test exists for this functionality. 
 
Purpose: Verify the correct Result(-) when Default_Timeout is written with an invalid value.    
 
Test Concept: Attempt writing Timer object T1 with a value outside the supported range to the Default_Timeout property. 
Verify the IUT returns the correct Result(-). 
 
Configuration Requirements: If Default_Timeout is not present or is not writable, this test shall be skipped. 
 
Test Steps: 
1. TRANSMIT WriteProperty-Request, 
 'Object Identifier' = T1 
 'Property Identifier' = Default_Timeout  
 'Property Value' = (a value lower than Min_Pres_Value)   
2. RECEIVE BACnet-Error-PDU, 
 'Error Class' = PROPERTY 
 'Error Code' = VALUE_OUT_OF_RANGE 
3. TRANSMIT WriteProperty-Request, 
 'Object Identifier' = T1 
 'Property Identifier' = Default_Timeout  
 'Property Value' = (a value higher than Max_Pres_Value)   
4. RECEIVE BACnet-Error-PDU, 
 'Error Class' = PROPERTY 
 'Error Code' = VALUE_OUT_OF_RANGE 
 
 
8.4.10.X1 CHANGE_OF_TIMER ConfirmedEventNotification Test 
Reason for Change: New algorithm for Protocol_Revision 17. 
 
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm. This test applies to objects that support 
an Event_Type of CHANGE_OF_TIMER. 
 
Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed, typically by putting the 
Timer into operation where it conducts its usual operations, such that pMonitoredValue becomes equal to any of the values 
contained in pAlarmValues. After pTimeDelay time later in that same value, the object shall enter the OFFNORMAL state and 
transmit an event notification message. The pMonitoredValue is then changed such it is no longer equal to any of the values 
contained in pAlarmValues. After pTimeDelayNormal time later in that same value, the object shall enter the NORMAL state 
and transmit an event notification message. 
 
Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the 
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the 
configured Notification Class shall have a value of TRUE. The Recipient_List of the configured Notification Class shall contain 
recipients. The event-generating object shall be in a NORMAL state at the start of the test. 
 
Test Steps: 
1. VERIFY Event_State = NORMAL 



Addendum ay to BTL Test Package 16.1   

 24 

2. MAKE (pMonitoredValue equal to any of the values contained in pAlarmValues) 
3. WAIT (pTimeDelay) 
4. BEFORE Notification Fail Time 
  RECEIVE ConfirmedEventNotification-Request, 
   'Process Identifier' =  (any valid process ID), 
   'Initiating Device Identifier' = IUT, 
   'Event Object Identifier' = O1, 
   'Time Stamp' =  (the current local datetime or time or sequence number), 
   'Notification Class' =  (the notification class configured for O1), 
   'Priority' =   (the value configured in transition), 
   'Event Type' =  CHANGE_OF_TIMER, 
   'Message Text' =  (optional, any valid message text),  
   'Notify Type' =  EVENT | ALARM, 
   'AckRequired' =  TRUE | FALSE, 
   'From State' =  NORMAL, 
   'To State' =   OFFNORMAL, 
   'Event Values' =  pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential 
optional notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, 
if one is available) 
 
5. TRANSMIT BACnet-SimpleACK-PDU 
6. VERIFY Status_Flags = {TRUE, FALSE, ?, ?} 
7. VERIFY Event_State = OFFNORMAL 
8. MAKE (pMonitoredValue <> any of the values contained in pAlarmValues) 
9. WAIT (pTimeDelayNormal) 
10. BEFORE Notification Fail Time 
  RECEIVE ConfirmedEventNotification-Request, 
   'Process Identifier' =  (any valid process ID), 
   'Initiating Device Identifier' = IUT, 
   'Event Object Identifier' = O1 
   'Time Stamp' =  (the current local datetime or time or sequence number), 
   'Notification Class' =  (the notification class configured for O1), 
   'Priority' =   (the value configured in transition), 
   'Event Type' =  CHANGE_OF_TIMER, 
   'Message Text' =  (optional, any valid message text), 
   'Notify Type' =  EVENT | ALARM, 
   'AckRequired' =  TRUE | FALSE, 
   'From State' =  OFFNORMAL, 
   'To State' =   NORMAL, 
   'Event Values' =  pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential 
optional notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, 
if one is available) 
11. TRANSMIT BACnet-SimpleACK-PDU 
12. VERIFY Status_Flags = {FALSE, FALSE, ?, ?} 
13. VERIFY Event_State = NORMAL 
 
 
8.4.10.X2 CHANGE_OF_TIMER Offnormal-to-Offnormal ConfirmedEventNotification 
Reason for Change: New algorithm for Protocol_Revision 17, which specifies there is a transition when the object is already 
OFFNORMAL, and the new state is also one of the pAlarmValues. 
 
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm when pUpdateTime changes while the 
object is already OFFNORMAL, and the new state is also one of the pAlarmValues. This test applies to objects that support an 
Event_Type of CHANGE_OF_TIMER. 
 
Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed multiple times, typically 
by putting the Timer into operation where it conducts its usual operations, such that at multiple points the pMonitoredValue 
equal to any of the values contained in pAlarmValues. After the object enters the OFFNORMAL state and transmits a first 
event notification message, when pMonitoredValue changes but is again equal to any of the values contained in pAlarmValues, 
it is observed to transmit another event notification message. Finally the pMonitoredValue becomes a value that is not equal to 



Addendum ay to BTL Test Package 16.1   

 25 

any of the values contained in pAlarmValues. After pTimeDelayNormal time holding at that value, the object shall enter the 
NORMAL state and transmit an event notification message.  
 
Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the 
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the 
configured Notification Class shall have a value of TRUE. The Recipient_List of the configured Notification Class shall contain 
recipients. The event-generating object shall be in a NORMAL state at the start of the test. If the pAlarmValues cannot be 
configured with two different values to which pMonitored will become equal, then this test shall be skipped. 
 
Test Steps: 
1. VERIFY Event_State = NORMAL 
2. MAKE (pMonitoredValue equal to any of the values contained in pAlarmValues) 
3. WAIT (pTimeDelay) 
4. BEFORE Notification Fail Time 
  RECEIVE ConfirmedEventNotification-Request, 
   'Process Identifier' =  (any valid process ID), 
   'Initiating Device Identifier' = IUT, 
   'Event Object Identifier' = O1, 
   'Time Stamp' =  (the current local datetime or time or sequence number), 
   'Notification Class' =  (the notification class configured for O1), 
   'Priority' =   (the value configured in transition), 
   'Event Type' =  CHANGE_OF_TIMER, 
   'Message Text' =  (optional, any valid message text), 
   'Notify Type' =  EVENT | ALARM, 
   'AckRequired' =  TRUE | FALSE, 
   'From State' =  NORMAL, 
   'To State' =   OFFNORMAL, 
   'Event Values' =  pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential 
optional notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, 
if one is available) 
 
5. TRANSMIT BACnet-SimpleACK-PDU 
6. VERIFY Status_Flags = {TRUE, FALSE, ?, ?} 
7. VERIFY Event_State = OFFNORMAL 
8. MAKE (pUpdateTime change, usually by pMonitoredValue becoming a different value, but ensure it is again equal to any 
of the values contained in pAlarmValues) 
9. BEFORE Notification Fail Time -- Note: no pTimeDelay here 
  RECEIVE ConfirmedEventNotification-Request, 
   'Process Identifier' =  (any valid process ID), 
   'Initiating Device Identifier' = IUT, 
   'Event Object Identifier' = O1, 
   'Time Stamp' =  (the current local datetime or time or sequence number), 
   'Notification Class' =  (the notification class configured for O1), 
   'Priority' =   (the value configured in transition), 
   'Event Type' =  CHANGE_OF_TIMER, 
   'Message Text' =  (optional, any valid message text), 
   'Notify Type' =  EVENT | ALARM, 
   'AckRequired' =  TRUE | FALSE, 
   'From State' =  OFFNORMAL, 
   'To State' =   OFFNORMAL, 
   'Event Values' =  pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential 
optional notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, 
if one is available) 
 
10. TRANSMIT BACnet-SimpleACK-PDU 
11. VERIFY Status_Flags = {TRUE, FALSE, ?, ?} 
12. VERIFY Event_State = OFFNORMAL 
13. MAKE (pMonitoredValue <> any of the values contained in pAlarmValues) 
14. WAIT (pTimeDelayNormal) 
15. BEFORE Notification Fail Time 



Addendum ay to BTL Test Package 16.1   

 26 

  RECEIVE ConfirmedEventNotification-Request, 
   'Process Identifier' =  (any valid process ID), 
   'Initiating Device Identifier' = IUT, 
   'Event Object Identifier' = O1 
   'Time Stamp' =  (the current local datetime or time or sequence number), 
   'Notification Class' =  (the notification class configured for O1), 
   'Priority' =   (the value configured in transition), 
   'Event Type' =  CHANGE_OF_TIMER, 
   'Message Text' =  (optional, any valid message text), 
   'Notify Type' =  EVENT | ALARM, 
   'AckRequired' =  TRUE | FALSE, 
   'From State' =  OFFNORMAL, 
   'To State' =   NORMAL, 
   'Event Values' =  pMonitoredValue, pStatusFlags, pUpdateTime, (there are also three potential 
optional notification parameters: pLastStateChange, if one is available, pInitialTimeout, if one is available, pExpirationTime, 
if one is available) 
16. TRANSMIT BACnet-SimpleACK-PDU 
17. VERIFY Status_Flags = {FALSE, FALSE, ?, ?} 
18. VERIFY Event_State = NORMAL 
 
 
8.5.10.X1 CHANGE_OF_TIMER UnconfirmedEventNotification Test 
Reason for Change: New algorithm for Protocol_Revision 17. 
 
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm. This test applies to objects that support 
an Event_Type of CHANGE_OF_TIMER. 
 
Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the 
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the 
configured Notification Class shall have a value of FALSE. The event-generating object shall be in a NORMAL state at the 
start of the test. 
 
Test Steps: The test steps for this test case are identical to the test steps in 8.4.10.X11 except that the 
ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge receiving 
the notifications. 
 
Notes to Tester: The passing results for this test case are identical to the ones in 8.4.10.X11 except that the event notifications 
shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall be 
either a broadcast that reaches the local network of the TD or the MAC address of the TD. 
 
8.5.10.X2 - CHANGE_OF_TIMER Offnormal-to-Offnormal UnconfirmedEventNotification Test 
Reason for Change: New algorithm for Protocol_Revision 17. 
 
Purpose: To verify the correct operation of the CHANGE_OF_TIMER event algorithm. This test applies to objects that support 
an Event_Type of CHANGE_OF_TIMER. 
 
Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed multiple times, typically 
by putting the Timer into operation where it conducts its usual operations, such that at multiple points the pMonitoredValue is 
equal to any of the values contained in pAlarmValues. After the object enters the OFFNORMAL state and transmits a first 
event notification message, when pMonitoredValue changes but is again equal to any of the values contained in pAlarmValues, 
it is observed to transmit another event notification message. Finally the pMonitoredValue becomes a value that is not equal to 
any of the values contained in pAlarmValues. After pTimeDelayNormal time holding at that value, the object shall enter the 
NORMAL state and transmit an event notification message.  
 
Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the 
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the 
configured Notification Class shall have a value of FALSE. The Recipient_List of the configured Notification Class shall 
contain recipients. The event-generating object shall be in a NORMAL state at the start of the test. If the pAlarmValues cannot 
be configured with two different values to which pMonitored will become equal, then this test shall be skipped. 
 



Addendum ay to BTL Test Package 16.1   

 27 

Test Steps: The test steps for this test case are identical to the test steps in 8.4.10.X2 except that the ConfirmedEventNotification 
requests are UnconfirmedEventNotification requests and the TD does not acknowledge receiving the notifications. 
 
Notes to Tester: The passing results for this test case are identical to the ones in 8.4.10.X2 except that the event notifications 
shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall be 
either a broadcast that reaches the local network of the TD or the MAC address of the TD. 
 
 


