
BTL-CRR-0352_13.8.1.1_restorerecordaccess - updated response Original 2014-02-22
Revisited 2021-11-12

1 of 5

Clarification Request

References: Add-BTL Test Package 12.0-g-v3.doc

BTL Specified Tests change 13.8.1.1

Date of BTL-WG Response: original response 2014-03-06
 Updated response 2021-12-09

Background:

13.8.1.1 Execution of Full Backup and Restore Procedure

Purpose: This test case verifies that the IUT can execute a full Backup and Restore
procedure.

Test Concept: This test takes the IUT through a successful Backup and then a successful
Restore procedure. The Database_Revision and Last_Restore_Time properties are noted
before the procedure begins for later comparison. The IUT is then commanded to enter
the Backup state; all the files are read, and the IUT is commanded to end the backup. If
the Database_Revision property can be changed by means other than the restore
procedure, it is modified and checked to ensure that it incremented correctly; then the
IUT is commanded to enter the Restore state. If the file objects do not exist on the IUT,
the TD will create them in the IUT. The files are then truncated to size 0, the file contents
are written to the IUT, and the IUT is commanded to end the restore. The
Database_Revision and Last_Restore_Time properties are checked to ensure that they
incremented or advanced correctly.

For IUTs that use Stream Access when performing the AtomicReadFile and
AtomicWriteFile services, a Maximum Requested Octet Count (MROC) and a Maximum
Write Data Length (MWDL) shall be calculated before starting the test. These values
shall be used during the test. MROC shall be 16 less than the minimum of the TD’s
Max_APDU_Length_Accepted and the IUT’s maximum transmittable APDU length.
MWDL shall be 21 less than the minimum of the TD’s maximum transmittable APDU
length and the IUT’s Max_APDU_Length_Accepted.

Test Steps:

1. READ DR1 = Database_Revision
2. READ LRT1 = Last_Restore_Time
3. READ OL1 = Object_List
4. REPEAT X = (1 through length of OL1) DO {

READ NAMES[X] = (OL1[X]), Object_Name
}

5. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
READ BPT = Backup_Preparation_Time

btl-crr-0352_13.8.1.1_restorerecordaccess - updated response .docx Original 2014-02-22
Revisited 2021-11-12

2 of 5

 READ RPT = Restore_Preparation_Time
 READ RCT = Restore_Completion_Time
 VERIFY Backup_And_Restore_State = IDLE

6. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialized State of Device’ = STARTBACKUP,
 ‘Password’ = (any valid password)

7. RECEIVE BACnet-Simple-ACK-PDU
8. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN

 WAIT BPT
 READ BRSTATE = Backup_And_Restore_State
 READ CF = Configuration_Files
 WHILE (BRSTATE = PREPARING_FOR_BACKUP) DO {

WAIT 1 second
READ BRSTATE = Backup_And_Restore_State
IF CF is an empty list THEN
 READ CF = Configuration_Files
IF CF is a non-empty list THEN
 READ X = (the file referenced by Configuration_Files[1]).Name

 }
 CHECK (BRSTATE = PERFORMING_A_BACKUP)

9. READ CF = Configuration_Files
10. CHECK (CF is a non-empty array of BACnetObjectIdentifiers referring to File
objects)
11. REPEAT X = (each entry in CF) DO {

READ Y = X, File_Access_Method
IF (Y = RECORD_ACCESS)

WHILE (the last read resulted in an Ack with 'End Of File' == FALSE) DO {
TRANSMIT AtomicReadFile-Request,

‘Object Identifier’ = X,
‘File Start Record’ = (the next unread record),
‘Requested Record Count’ = 1

RECEIVE AtomicReadFile-ACK,
'End Of File' = TRUE | FALSE,
‘File Start Record’ = Z,
‘Requested Record Count’ = 1
‘Returned Data’ = (File contents)

| Error-PDU -- only acceptable for the first record and only when
there are no records in the file

'Error Class' = SERVICES,
'Error Code' =

INVALID_FILE_START_POSITION
}

ELSE
WHILE (the last read did not indicate 'End Of File') DO {

TRANSMIT AtomicReadFile-Request,
‘Object Identifier’ = X,

btl-crr-0352_13.8.1.1_restorerecordaccess - updated response .docx Original 2014-02-22
Revisited 2021-11-12

3 of 5

 ‘File Start Position’ = (the next unread octet),
 ‘Requested Octet Count’ = MROC
 RECEIVE AtomicReadFile-ACK,
 'End Of File' = TRUE | FALSE,
 ‘File Start Position’ = (the next unread octet)
 ‘File Data’ = (File contents of length MROC if 'End Of
File' is FALSE
 or of length MROC or less if 'End Of File' is
TRUE)
 | Error-PDU -- only acceptable for the first record and only when
there are no records in the file
 'Error Class' = SERVICES,
 'Error Code' =
 INVALID_FILE_START_POSITION
 }
 }
12. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialize State Of Device’ = ENDBACKUP,
 ‘Password’ = (any valid password)
13. RECEIVE BACnet-Simple-ACK-PDU
14. VERIFY System_Status ! = BACKUP_IN_PROGRESS
15. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 VERIFY Backup_And_Restore_State = IDLE
16. IF (Database_Revision is changeable) THEN
 MAKE (the configuration in the IUT different, such that the Database_Revision
property increments)
 VERIFY Database_Revision <> DR1
 READ DR2 = Database_Revision
 CHECK (DR1 <> DR2)
17. TRANSMIT ReinitializeDevice-Request,
 ‘Reinitialize State Of Device’ = STARTRESTORE,
 ‘Password’ = (any valid password)
18. RECEIVE BACnet-Simple-ACK-PDU
19. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
 WAIT RPT
 READ BRSTATE = Backup_And_Restore_State
 WHILE (BRSTATE = PREPARING_FOR_RESTORE) DO {
 WAIT 1 second
 READ BRSTATE = Backup_And_Restore_State
 }
 CHECK (BRSTATE = PERFORMING_A_RESTORE)
20. READ OL2 = Object_List
21. REPEAT X = (entry in CF) DO {
 IF (X is not in OL2)
 TRANSMIT CreateObject-Request
 ‘Object Identifier’ = X

btl-crr-0352_13.8.1.1_restorerecordaccess - updated response .docx Original 2014-02-22
Revisited 2021-11-12

4 of 5

RECEIVE CreateObject-ACK
‘Object Identifier’ = X

READ FS = X, File_Size
IF (File_Size is not equal to the size of the backed up file)
 WRITE X, File_Size = 0
IF (Y = RECORD_ACCESS)

READ RC = X, Record_Count
 IF (RC is not equal to the number of records of the backed up file)

 WRITE X, Record_Count = 0
TRANSMIT AtomicWriteFile-Request

‘File Identifier’ = X
‘File Start Record’ = 0
‘Record Data’ = (file content for first record obtained in step 11)

RECEIVE AtomicWriteFile-ACK
‘File Start Record’ = 0

REPEAT REC = (each record in the backup of this file) {
TRANSMIT AtomicWriteFile-Request

‘File Identifier’ = X
‘File Start Record’ = -1
‘Record Count’ = 1
‘Record Data’ = REC

RECEIVE AtomicWriteFile-ACK
‘File Start Record’ = (the record number)

 }
ELSE

READ FS = X, File_Size
 IF (File_Size is not equal to the size of the backed up file)

 WRITE X, File_Size = 0
REPEAT Z = (0 through the file size, in increments of MWDL) DO {

TRANSMIT AtomicWriteFile-Request
‘File Identifier’ = X
‘File Start Position’ = Z
‘Record Data’ = (file contents obtained from the backup,

the number of octets
being the lesser of (file size - Z) and

MWDL)
RECEIVE AtomicWriteFile-ACK

‘File Start Position’ = Z
}

}
22. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN

VERIFY Backup_And_Restore_State = PERFORMING_A_RESTORE
23. TRANSMIT ReinitializeDevice-Request,

‘Reinitialize State Of Device’ = ENDRESTORE,
‘Password’ = (any valid password)

24. RECEIVE BACnet-Simple-ACK-PDU

btl-crr-0352_13.8.1.1_restorerecordaccess - updated response .docx Original 2014-02-22
Revisited 2021-11-12

5 of 5

25. IF (Protocol_Revision is present and Protocol_Revision ≥ 10) THEN
WAIT RCT
VERIFY Backup_And_Restore_State = IDLE

26. READ DR3 = Database_Revision
27. CHECK (DR3 <> DR1)
28. IF (Database_Revision was changed in step 16) THEN

CHECK (DR3 <> DR2)
29. VERIFY Last_Restore_Time > LRT1
30. READ OL3 = Object_List
31. CHECK (that OL1 and OL3 contain the same set of objects)
32. REPEAT X = (1 through length of OL1) DO {

VERIFY (OL1[X]), Object_Name = NAMES[X]
}

Problem:

in case of a file with record access the restore procedure as written tries to do the size
checking and resizing using the property File_Size as if it was stream access (marked in
red above). The correct method for files with record access should be to use the
Record_Count property in a similar way (added text marked in green).

Questions:

1. Should the test be changed as outlined above?

2. There is a create object request (marked in yellow). Especially in case a device has mixed
backup files, some with RECORD_ACCESS, some with STREAM_ACCESS it might be
necessary if the test employs initial parameters specifying the access method. Should the test be
allowed to use additional parameters?

Original Response:

"The suggested revision, when in RECORD_ACCESS to utilize Record_Count
rather than File_Size, is a beneficial change. It will be incorporated into a revised
test in the Test Plan.

The CreateObject request shall not provide initial values. The IUT has to be able to
accept the CreateObject request with no initial values, and itself produce the File
with the needed File_Access_Method. The Object_Identifier is provided in each
CreateObject request and that shall be enough information."

Updated Response:

Subsequent to the BTL-WG’s original ruling, the SSPC modified the standard to
clarify that both record and stream based files are to be cleared by writing to
File_Size. This change in the standard contradicts the original CR response for
question 1, and as such the proposed changes will not be applied to the test.

	13.8.1.1 Execution of Full Backup and Restore Procedure
	Purpose: This test case verifies that the IUT can execute a full Backup and Restore procedure.
	WAIT BPT
	READ BRSTATE = Backup_And_Restore_State
	CHECK (BRSTATE = PERFORMING_A_BACKUP)
	ELSE
	WHILE (the last read did not indicate 'End Of File') DO {
	WAIT RPT
	READ BRSTATE = Backup_And_Restore_State
	CHECK (BRSTATE = PERFORMING_A_RESTORE)
	WAIT RCT
	VERIFY Backup_And_Restore_State = IDLE
	CHECK (DR3 <> DR2)

