BACnet® TESTING LABORATORIES

Revision 15.0.final

SPECIFIED TESTS

Revised October 11, 2017

BACnet is a registered trademark of ASHRAE. ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed
products to the requirements of ASHRAE Standard 135 is the responsibility of BACnet International (BI). BTL is a registered trademark of BI.

BACnet Testing Laboratories - Specified Tests

Table of Contents

I 0 0TSSR 10
2 INterim Data LinNK Layer TESES.....cuviiiiieiieieieiestestestestesreseeseeseestesteseessesseeseeseesseseessessessessessesssessessessessens 11
2.2 MS/TP Data LiNK LAYET TESESviivviieiieeiieieseesie e stesteseeseeseesiestesreste e esaeeessesaessessesnessesnesnseseessessenns 11
2.2.18 Verify Tno_token W/ Serial ANAIYZENcoviviviieieice e nne s 11
2.2. X1 Data NOT FOI US TESL....cctieiiiieiie sttt ettt bttt sbe e sb et e s e sbeenbeesbeesneenneaneas 11
2.3 ARCNET (twisted pair bus) Data Link LaYer TESIScccueueririirieiiriereeie et 12
2.3.1 Verify the Failsafe Biasing with an OSCIIOSCOPE.........couriiiiriiiiiiiiece e 13
2.3.2 Verify the Basic Signal Duty Cycle with an OSCIIOSCOPEcccerveriiiieiieiiiiiesc e 13
3. X CommON 1aNQUAGE USEA 1N TESES......eviieiiteiieie ettt bttt e bbbttt see b e e 14
5. EPICS CONSISTENCY TESTS .. .ottt sttt sttt sttt sttt st sttt st se st st se st sseneatensens 14
AL o TTo ST U] o] T o A I £SO 15
7.1.1 Read SUPPOIt TESt PrOCEAUIEecueiererieeeie e sie e ste et este et stesra s e naesaestesbesresre e e enaeseensennesrens 15
7.1.2 NON-docuUMENtEd PrOPEITY TESt.....cviveeeeeiesiesiesieseereeeeee e ste e stesre s e e esaestestesresre s e eneeseeneeseeneens 16
7.1.X3 Verifying Property List against the EPICScccoeriiiiiine s 17
7.2 Write Support for Properties in Test Database.ccccvvviieierienein s 17
7.2.1 Functional Range Requirements for Property Valuesccccvoviveieicieiese s sese e 17
7.2.1.3 Octetstrings and CharaCterStriNgSooverueierirerieie et sbe e e e e 17
7.2.2 Write SUPPOIT TESE PrOCEAUIEoiveieiitieiiie ettt ettt nne e 17
7.2.3 REAU-0NIY PrOPEITY TESL.....eiuiiii ittt bbbttt st sb e bbbt et e e e nbe b b 18
7.2.X1 Date Pattern PropertieS TeST......ciiiicieieie sttt sttt saenne e 20
7.2.X2 Time Pattern PrOPErtieS TESEcoeiiiieieie ettt sttt ettt e e b b nae s 20
7.2.X3 DateTime Pattern PrOPErtieS TScucvueieierereseereeeeie e sie e stesreseeeeseeste e sresres e enaeseessesnesnens 21
7.2.X4 Date NON-Pattern Properties TESt......cuciuereierireseereeeeie e sie e stesreseeeeseesse e sressesseesseseesseseessens 21
7.2.X5 Time NON-Pattern Properties TeST.......cccieiiiiireieeieiee st e et sre e e e e saesnesne s 22
7.2.X6 DateTime NON-Pattern Properties TeSL........cccivviviiieiereere e e steseseeee e ste e sre e enae e seeseeseens 22
7.3 ODJECt FUNCLIONAIITY TESES ..vviuieiisieiie ettt st e e e et st e beaneere e e eneeseenrenee e 23
S T I o 0] 0T Y =T SRS 23
7.3.1.6 Minimum ON/OTF TIME TESES ...c.ueiieieiiieite sttt sttt see e 23
7.3.1.6.1 Override of MinimuM TIMEcoooiiiiiiiee e 23
7.3.1.6.2 Minimum Off Time - Writing at priorities numerically greater than 6................cccc...... 24
7.3.1.6.3 Minimum On Time - Writing at priorities numerically greater than 6c..cccccee.. 25
7.3.1.6.4 Minimum Off Time - Writing at priorities numerically lesser than 6...............ccccceeeee. 26
7.3.1.6.5 Minimum On Time - Writing at priorities numerically lesser than 6cccccoceeeeee. 27
7.3.1.6.6 Minimum_Off_Time - Clock is not affected by additional write operations.................. 27
7.3.1.6.7 Minimum_On_Time - Clock is not affected by additional write operations................... 28
7.3.1.6.8 Ensuring Minimum_Off_Time starts at transition to INACTIVEc..ccocevvvevvrnnnenn, 29
7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to0 ACTIVE.........ccccceevevvevererennnnenn, 30
7.3.1.6.10 Ensuring Minimum Times Are Not Effected By Time Changes..........ccccevvvvereriereenn 32

T.3.L1.7 COV TESES ..ttt ettt stttk h bbbt e e bt bbbt e e b bbbt e b e e nnenn e 33
7.3.1.7.X1 COV_Resubscription_INterval TeSL........cccooiriiiiiriiieieieee e 33
7.3.1.9 Binary Object Elapsed ACtiVe TimMe TeSES......cccuiiriiiiieie st 34
7.3.1.10 EVENE ENADIE TESES .viiiiiiieiic ettt s sttt e et e st e e be e beesteesneennas 36
7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMALccoeceevvrviirennnn, 36
7.3.1.10.2 Event_Enable Tests for TO_NORMAL only Algorithmsccccooriiininicicncnen 38
7.3.1.11 ACKEd _TranSitioNS TESESvieiveuereeieriesiesiesieeseeseesteseessessesseeseeseeseseessessessesseeseenseseessesses 40

7 T O B T A = o] I £ S 44
7.3.1.13.X1 Limit_Enable Test, LOWLIMItENGDIEccooviviiiiiecece e 48
7.3.1.13.X2 Limit_Enable Test, HighLimitEnable............cccocviiviiiiiiciec e 49

7.3.1. X4 EVENt_IMESSAgE TEXIS TOSES...uviiieriieieeriestiesieesieesieeseesseesneesseesteesssesseensesseesseesseesseesenssensnees 50
7.3.1.X5 Event_Message Texts Config TScocvivriviireiieicre st 52
7.3.1.X6 Event_Algorithm_INNIDIt TESESc.eiiiiiiiiiieieee e 53
7.3.1.X6.1 Event_Algorithm_INhibDit TSccooiiiiiiiiee e 53
7.3.1.X6.2 Event_Algorithm_Inhibit Summarization Test...........cooeieiineiiire e 54
7.3.1.X6.3 Event_Algorithm_Inhibit Acknowledgement Test..........cccooiiiiiniinieniiiiee e 55

BACnet Testing Laboratories - Specified Tests

7.3.1.X7 Event_Algorithm_INhibit Ref TeSIS......cccviiiiiieeice s 56
7.3.1.X7.1 Event_Algorithm_Inhibit Ref TeStccvcvveiiricice e 56
7.3.1.X7.2 Event_Algorithm_Inhibit Writable TeSt.........ccccviviirieiicercre e 56

7.3.1.X8 Reliability_Evaluation_INNibit TESScoiiiiiiiiiiee e 56
7.3.1.X8.1 Reliability_Evaluation_INNibit TeSt........ccciiiiiiii e 56
7.3.1.X8.2 Reliability_Evaluation_Inhibit Summarization TesSt.........cccocerviriniiniiniiiiiee e 57

7.3.1.X9 Event_Detection ENaDIe TeSIScciiiiciicie ettt 58
7.3.1.X9.1 Event_Detection_Enable Inhibits Event Generation............ccccooevveiieive e iecseceneenn, 58
7.3.1.X9.2 Event_Detection_Enable Inhibits FAULTcccooiiiiiiicc e 59

I @ o T S o LTt | o 1) £ PP SSN 60

7.3.2.4 AVeraging ODJECE TESES ...c.veiiiiieieeieiee et se et e e st e e ee st e tesneere e e e esaenrenrs 60
7.3.2.4.1 Reinitializing the SAMPIESccve i 60
7.3.2.4.2 Managing the Sample WINQOW.ccviviieieiirc e 61

7.3.2.9 ComMMANG OBJECE TESES....cuveviitirieieeieieee e ste e e e e e sre e sre s e e e e eesresresneeneeseeneeseenrenes 62
7.3.2.9.7 Write While In_Process is TRUE TESt.coueveiiriirirsieseeie e sie s 62

7.3.2.10 DEVICE ODJECT TOSES...eiueiueeteitiiteiie ettt sttt b ettt ettt b e bbbt et e e e e e e sbe e 63
7.3.2.10.1 Active_COV_Subscriptions SUDSCIHDECOV TEeSE.......cceiirieiirieie e 63
7.3.2.10.6 Successful Increment of the Database_Revision Property after Changing the
Object_Identifier Property of an ODJECLcoiiiiiiiie e 64
7.3.2.10.X2 Max_Segments_Accepted at least the minimum ..o 65

7.3.2.13 GIODAI GFOUP ..ttt bbbttt b e sb bbb et e b e e b e 65
7.3.2.13.X1 Global Group Present_Value, Out_Of Service and Status_Flags Test.................. 65
7.3.2.13.X2 Reliability MEMBER_FAULT TEStccctiiiiirieiiirieisie e 66
7.3.2.13.X3 Reliability COMMUNICATION_FAILURE TEeSt.....cccccvriiiiriiiniireisinieeseneenns 66
7.3.2.13.X4 Present_Value Tracking and Reliability Test........ccccceveririviiiinninnr e 67
7.3.2.13.X5 Present_Value TraCKing TeSt......ccuciuirueieriirerrsieseseeeeseesie e sresie e sreeseeseseesseseenns 67
7.3.2.13.X6 COVU_Period and COVU_RecCipient Zero TeSt........cccevererirerereeieieeie e 68

7.3.2.21 Notification Class ODJECT TESESccuuiiirieieriirierieeiie ettt bbb 68
7.3.2.21.3 RECIPIEBNT LISt TESES ..euiitiiiiie ettt bbbt b nee e 68
7.3.2.21.3.1 ValIUDAYS TESEviitiiuiiiieieie ettt sttt bbbt e b e e 68
7.3.2.21.3.2 FromTime and TOTIME TESE.....c.eiiririiiieie ettt e 70
7.3.2.21.3.3 IssueConfirmedNotifications TESt........cccooiiiiieiiriiieie e 71
7.3.2.21.3.4 TraNSITIONS TESE .e.veviitiieiiiteiieieste ettt b bbb nnenes 72
7.3.2.21.3.5 Recipient_List Property Supports Device Identifier Recipients Test...........c.co...... 74
7.3.2.21.3.6 Recipient_List Property Supports Network Address Recipients..........cccccovvvvveene. 75
7.3.2.21.3.X7 Recipient_List noN-VOIatility teStcccoiviiviiviieireercre e 75
7.3.2.21.3.X8 Read-only Recipient_List with internal Notification Forwarder objects................. 76
7.3.2.21.3.X9 Read-only Recipient_L.ist for external Notification Forwarder Objects................. 76

7.3.2.23 SChEAUIE ODJECE TESES....c.eiitiitiiteiie ettt sttt e e see b e 77
7.3.2.23.6 Weekly _Schedule ReStOration TeSt.........ccoiririiiiiniiieiereee e 77
7.3.2.23.10 Schedule Object Protocol_ReVvision 4 TeStSccccurerieieriineie e 78
7.3.2.23.10.3 Revision 4 Exception_Schedule Property TeStScccooerireienenieninieieee e 78
7.3.2.23.10.3.8 ReVvision 4 EVENt Priority TeST......cccociiiiiie e e 78

B I o @ o T B I S 79
O N o 01 (=Y V7 I T SR 79
7.3.2.24.13 LOG-STALUS TSt . euteiieeieeeierieesieesee e eee e s e steeste e e ste st e sraesraesaeesteeeesneesneesneenseenneenes 80
7.3.2.24.14 TiME_ChanQe TeSt....eivcieeeieriesesese et et et et ettt e e e et et st sresneere e e eneeseenrenee e 80
7.3.2.24.15 COV-Sampling VerifiCation TESt.......cccovveieririeiiesrsiese e 81
7.3.2.24.19 Trigger VerifiCation TeSE.........ccivvivireeeiece ettt 81
7.3.2.24.X8 ClOCK-AlIGNEA LOGGING -.nvintetiitirieitieieeieie ettt sttt s sne b e 82
7.3.2.24.X9 Logging INterval_OffSet..... ..ot e 82

7.3.2.X37 AcCUMUIALOr ODJECE TESES ...veiiciieiiie ettt 83
7.3.2.X37.1.1 Present_Value Remains IN-Range TeSt........ccooviiriririieieie e 83
7.3.2.X37.1.2 Prescale in ACCUMUIALON TESEocuiiiiieiiieeie e e e 83
7.3.2.X37.1.3 Logging_Record in ACCUMUIALON TESE........ooiiiiiriieeie e e 83
7.3.2.X37.1.4 Logging_Record in Accumulator RECOVERED TeSt.......ccccovvvivnveieerenereneneens 84

BACnet Testing Laboratories - Specified Tests

7.3.2.X37.1.5 Logging_Record in Accumulator STARTING TeSt.....cccvvviviivrviieiencre e 84
7.3.2.X37.1.6 Out_Of_Service ACCUMUIALOr TESE.......cceverererirese e 85
7.3.2.X37.1.7 Value_Set WITING TESL......cciiiieieeeeeeie et e ettt sne e 86
7.3.2.X37.1.8 Value_Before_Change WIting TeSt........cocoiiiiiiiiiiiieeee e 86
8 Application Service INItIAtION TESESeiiiiiiiie ettt see bbb 87
8.2 ConfirmedCOVNotification Service INItiation TeSES.......ccoeiiriiiiiieieeie e 87
8.2.1 Change of Value Notification from an Analog Input, Analog Output, ard-Analog Value, Large
Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property 87
8.2.2 Change of Value Notification from an Analog Input, Analog Output, ard Analog Value, Large
Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Propertycc.ccov.... 88
8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object
o e A L[I o (] 1T o YRS 89
8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object
Y LU S F 0 R o (0] 0= PSSR 91

8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value,
Life Safety Point, er Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date
Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object
PreSeNnt_ValUE PrOPEITY ...ttt ettt ettt b et et e b sbesbe s be et e e ne et e neesbe e e 92
8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life
Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date
Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object

Y LU S F 0 R (0] 01T PSSR 93
8.2.7 Change of Value Notification from Loop Object Present_Value Propertyccocceevevererinrnnnnns 94
8.2.8 Change of Value Notification from a Loop Object Status_Flags Propertyccccevveverenininnnnns 96
8.3 UnconfirmedCOVNotification Service INItIation TeSES........cooiiririiirinirenese e 97
8.3.1 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large
Analog Value, Integer Value, and Positive Integer Value Object Present_Value Property 97
8.3.2 Change of Value Notification from an Analog Input, Analog Output, ard Analog Value, Large
Analog Value, Integer Value, and Positive Integer Value Object Status_Flags Propertyc....... 97

8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value,
Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date
Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object

o e A L[I (] =T o YRS 98
8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value,
Life Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date
Pattern Value, DateTime Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object

Y LTSI F 0 TR (0] o= PSSR 98
8.3.X1 COVU_Recipients NOUFICAtIONSc.cceieiiieiicicice et sne s 98
8.3.X11 Unsubscribed COV Service INItiation TESEccuiiiiiiiriieie s 99
8.4 ConfirmedEventNotification Service INitiation TeSTS........cceiiriiiiiieiie e 99
8.4.X1 DOUBLE_OUT_OF_RANGE Tests (ConfirmedEventNotification)ccccooviiieiininnncns 99
8.4.X2 SIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)...........c.ccooeroniriciennnnenn 100
8.4.X3 UNSIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)ccccceeeienennnn 100
8.4.X4 CHANGE_OF _CHARACTERSTRING Tests (ConfirmedEventNoatification) 100
8.4.X5 Proprietary Algorithm Tests (ConfirmedEventNotifications)cccccvevvivviviivsinicre s 103
8.4.X6 Extended Algorithm Tests (ConfirmedEventNotifications)cccocevevievivviviivsencre e 103
8.4.X7 UNSIGNED_RANGE ConfirmedEventNotification TeSt.........cevververererinrinnreeeeeesese e 103
8.4.X8 CHANGE_OF _STATUS_FLAGS Test (ConfirmedEventNotification)..........cc.ccovveverernrnnnn. 106
8.5 UnconfirmedEventNotification Service INIitiation TeStS........covviriiiiriiiiises s 107
8.5.X1 DOUBLE_OUT_OF_RANGE Tests (UnconfirmedEventNotification)c.cccceeiiinnnnnn 107
8.5.X2 SIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)..........c.ccccceveiiiencnnnn 107
8.5.X3 UNSIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)ccccccoeerenene 108
8.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification) 108
8.5.X5 Proprietary Algorithm Tests (UnconfirmedEventNotifications)ccccocvieiininiiicicncienn 108
8.5.X6 Extended Algorithm Tests (UnconfirmedEventNotifications) ... 108
8.5.X8 CHANGE_OF _STATUS_FLAGS Test (UnconfirmedEventNotification)............cccccccevvvnnne. 109

BACnet Testing Laboratories - Specified Tests

8.11 SubscribeCOVProperty Service INitiation TeSIS......c.ccviverieiirire e 109
8.11.1 Confirmed Notifications SUDSCIIPLION........cccciiiiieiieieree e 109
8.11.2 Unconfirmed Notifications SUBSCHIPLION.........c.ccviiviiiiire e 110
8.11.3 Canceling @ SUDSCIIPLION ..ottt bbbt seesae b e 110
8.11.X1 Change of Value NOIICAtiION TESEScc.oiiiiiiiieiiiiee e e 111

8.11.X1.1 Change of Value NOtFICAtIONciiiiiiiiiiec e 111
8.11.X1.2 Change of Value Notifications with Invalid Process Identifier...........cccccoceiininnnnnn 111
8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired..........cccccoceeenee. 112
8.11.X1.4 Change of VValue Notifications with Invalid Monitored Object Identifier.................. 114
8.11.X1.5 Change of Value Natifications with Invalid Monitored property..........ccccccecevevrvrnnne 114
8.11.X4 Requests 8 HOUF LITELIMESccvivcieee st 115

8.20 ReadPropertyMultiple Service INItiation TeSEScccvciviverierirere e e 116

8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails..................... 116
8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service........... 116

8.21 ReadRange Service INItIation TESSvciviieiirirese ettt st e e seenrenes 116
8.21.1 Reading Values with no Specified RANQEcooiiiiiiie e 116
8.21.3 Reading a Range of Values by POSITIONccocoiiiiiiiii e 117
8.21.9 Presents Log Records Centaining-a-SpecHic-Datatype ... 117

8.22 WriteProperty Service INItIation TeSES.......coi i e 117
8.22.X4 Writing Array Properties as @ WhOI& AITAYccovoiiiiiiiieiceeeeee e 117

8.24 DeviceCommunicationControl Service INitiation TeSEScccoveiiriiiiieiere e 118
8.24.1 Indefinite Duration, Disable, NO PaSSWOIdcccooiviererinineninienese e 118
8.24.2 Indefinite Duration, Disable, PASSWOITcoovviiieiiiineice e 118
8.24.3 Time Duration, Disable, PaSSWOITccceiiiiiiineiee e 119
8.24.4 ENADIE, PASSWOIT......c.iiiiiiiieieiieice st sttt bbb e 119
8.245 ENADIE, NO PASSWOIGc.oiiiiiieieieiieee sttt ettt et 119
8.24.6 Time Duration, Disable, NO PaSSWOIQcc.cccuiiiriiiiiiesesie e 119
8.24.7 Time Duration, Disable-Initiation, PaSSWOrdcoceoiiiiiiiiiiinice e 120

8.27 ReinitializeDevice Service INItIation TESES.......ccuieiiiiiieie et 120
8.27.2 COLDSTART With @ PaSSWOIT......c..cciiuiiiiiiiiciieiee et 120
8.27.4 WARMSTART With @ PASSWOIQ.......cc.ciuiiiiiiiiciiiiee e 120

8.32 Who-Has Service INItIation TESESciiiiieieiesest et 121
8.32.3 Object Identifier Selection with a Device INStance RANGEccccvevevvererennrie e 121
8.32.4 Object Name Selection with a Device INStance RANQE..........ccvviveiereererene s 121

8.34 WhO-15 Service INItIAtioN TeSES.......ccuriiiirieiiirieiite ettt 121
8.34.2 Who-1s Request with a Device INStance RANGE........c.cvvreririiieieeieieere s 121

9 Application SErvice EXECULION TESS.....viiieieiiierisiesie st eee e eie e ste et sre e e ettt ae e enaeneeneeseeneenee e 122

9.1 AcknowledgeAlarm Service EXECULION TESES......cuiiviiiieiieieriesieseste s e e eee e esie e s sre e e e e e seenees 122

9.1.1 Positive AcknowledgeAlarm Service EXECULION TESEScoviieriririiiie e 122
9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time
Form of the 'Time of Acknowledgment' Parameter............ccco i 122
9.1.1.2 Successful Alarm Acknowledgment of Confirmed Event Notifications using the Sequence
Number Form of the "Time of Acknowledgment' Parameter...........cocoooeveiiiiniiniene s 125
9.1.1.3 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Date Time
Form of the 'Time of Acknowledgment' Parameter..........cccocvieiireireieieee e 125
9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time
Form of the 'Time of Acknowledgment' Parameter..........cccocviviireireeeieee e 126
9.1.1.5 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the
Sequence Number Form of the 'Time of Acknowledgment' Parameter..........ccccoovvvvevverecreiesennenns 128
9.1.1.6 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Date
Time Form of the "Time of Acknowledgment' Parameterccooveiieieieni i 128
9.1.1.8 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unknown
'‘Acknowledging Process ldentifier’ Parametercoooiiiiiiiiieiiee e 129
9.1.1.9 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an
Unknown 'Acknowledging Process Identifier Parameter............ccocooveiieieienenieneseeece e 131
9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications...................... 132

BACnet Testing Laboratories - Specified Tests

9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications.................. 135
9.1.1.X3 Successful Alarm Acknowledgment of Confirmed Event Notifications when 'To State' is
either High-Limit or Low-Limit, Revision 5 and higher onlycccocooiiiiviiie i 137
9.1.2 Negative AcknowledgeAlarm Service EXECULION TESES.......ciiiiriririiie e 137
9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the Time
SEAMP' 1S TOO Ol ...ttt ettt ee et et eb et aeene e e e b e neesbenee e 138
9.1.2.3 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Event
Object 1dentifier' IS TNVAIIHcooi e 140
9.1.2.4 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Event
State Acknowledged' IS INVAlIGccoiiiiiiiieecce e 141
9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the
Time Stamp' IS TOO Olocueiieieice ettt re e e b e e sre e e 141
9.1.2.6 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the
Referenced Object DOBS NOL EXIST.......ccvciiiiirerieiiiesreeeseee st e st e et sne e a e e e sre e e 144
9.1.2.7 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the
‘Event State Acknowledged' iS INVAIIAccccoiiiiiii e 144
9.1.X1 Unsupported Message Text Character Set AcknowledgeAlarm Test.........cccceviiiriiinieneneenn 145
9.2 ConfirmedCOVNotification Service EXECULION TESESccueiiiiieiiriesieie e 146
9.2.1 Positive ConfirmedCOV Notification Service EXeCUtion TeSES.......cccovrreieririeninisieie e 146
9.2.1.X4 Change of Value Notification from Proprietary ODJECtScocoviiiiiiiiniiiiicie e 146
9.2.2 Negative ConfirmedCOVNotification Service EXeCUtion TeStScccereieririeneniniice e 146
9.2.2.1 Change of Value Notification Arrives after Subscription has EXpired........c..ccccccevvvvrnrnnn 146
9.2.2.2 Change of Value Notifications with Invalid Process Identifierccccoovvvevercniicnnnnnnn, 147
9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier..............c.ccoe..... 148
9.3 UnconfirmedCOVNotification Service EXECULION TESEScviiriiiiiriiiiirieesenieesie s 148
9.3.X9 Change of Value Notification from Proprietary OBJectScccvveiveviriievrvir e 148
9.4 ConfirmedEventNotification Service EXECULION TESESccuiiuiiiiiiiiiiieie e 148
9.4.5 ConfirmedEventNotification Simple Presentation ... 148
9.4.6 ConfirmedEventNotification Full Presentation ... 149
9.4.X1 Unsupported Message Text Character Set ConfirmedEventNotificationTestccccoeeeee. 150
9.5 UnconfirmedEventNotification Service EXECULION TESEScc.oviiiiiriiieieieenie e 150
9.5.X1 Unsupported Message Text Character Set UnconfirmedEventNotificationTest 150
9.7 GetEnrollmentSummary Service EXECULION TESES......vciviveiereireresreseseeeeseesie e sre e seeseeseeee e seenees 151
9.7.1 Required GetEnrollmentSUMmMAry FIlTErScooviviiiieie e 151
9.7.1.1 Enrollment Summary wWith Zero SUMMATIEScccevviviieieieee e 151
9.7.2 User Selectable GetEnrollmentSummary FIltErS........c.cocvvviiiiiieie e 151
0.7.2.3 EVENE TYPE FIIEI .ot re e nr s 151
9.8 GetEventInformation Service EXECULION TESEScviiriiiiriiiiirieisie et 152
0.8.6 ChAINING TESE ...ttt b bbbt e bbb e bt bt et e e ebeeb e e be s bt et e eneeneennenbe b e 152
9.10 SubscribeCOV Service EXECULION TESESoiuiiirieriirieiieie ittt sttt sbe et sae e 153
9.10.1 Positive SubscribeCOV Service EXECULION TESES.......couerieiiririerceieeieee e 153
9.10.1.7 Finite Lifetime SUDSCIPLIONS........cciiiiiiiie e 153
9.10.1.X1 Ensuring 5 Concurrent COV SUDSCIIDEIScoiiiiiiieiiieie e 154
9.10.2 Negative SubscribeCOV Service EXECULION TESEScoverveieiireieeeereeeseesiese e ereeneeee e see e 156
9.10.2.1 The Monitored Object Does Not Support COV Notificationccoevvvvviveviereninrcennnienns 156
Reason For Change: Added configuration reqUIremMENtS.ccccvvviveeereereieesese s 156
9.10.2.X1 The Monitored Object DS NOt EXISt......ccccvivrirriieieiieie e se e 156
9.10.2.X2 There Is N0 Space FOr A SUBSCIIPLIONccoiiriirieeeeece e 157
9.10.2.X3 The Lifetime Parameter is Out 0f RANGE........cccvvviieiiiee e 157
9.10.3 ... 158
9.10.3.X1 Unsubscribed COVNotification EXeCULION TeSE.........ccciiirieiiiniie e 158
9.14 AddListElement Service EXECULION TSES........oiiieiirieiieieiiesie ettt st 159
9.14.2 Negative AddListElement Service EXECULION TESES......ccoierireriiinieee e 159
9.14.2.2 Adding a List Element With an Invalid Datatype..........cccccooeieiiniieiinereeeeece e 159
9.14.2.3 An AddListElement Failure Part Way Through a Listccccooeiiiiiiiiiiiiecie e 159
9.15 RemoveListElement Service EXECULION TESEScviviviiiiriiiiirieisiereeesie e 160

BACnet Testing Laboratories - Specified Tests

9.15.2 Negative RemoveListElement Service EXECULION TESESccvvvivevereererereseseseeeeie e e e 160
9.15.2.2 A RemoveL.istElement Failure Part Way Through a LiSt...........ccccoevvvviviiveiericneseseses 160
9.16 CreateObject Service EXECULION TESEScviieiiiiiesreeee et e e ste et a e ae e nrenns 161
9.16.1 Positive CreateObject Service EXECULION TESES.......cuiiiireieriirieieeiee e 161
9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values.............. 161
9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values....161
9.16.2 Negative CreateObject Service EXECULION TESEScuiiiieiiririeie e 161
9.16.2.1 Attempting to Create an Object That Does Not Have a Unique Object Identifier....... 161
9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial
WAIUBS ...t 162
9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in
the INIEIAT VAIUES. ... 163
9.16.2.6 Attempting to Create an Object with an instance of 4194303ccccceeevererevnnnnnns 164
9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object TYpe).....cccccvvvrvrenne. 164
9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier) 165
9.17 DeleteObject Service EXECULION TESESc.eiuiiuiiiirieitieieeieie ettt 165
9.17.2 Negative DeleteObject Service EXECULION TESEScviviiieiiiirieiieiie e 165
9.17.21 Attempting to Delete an Object That is Not Deletableccocoiiiiiiiiiniiincn 165
9.18 ReadProperty Service EXECULION TESEScueiuiiiirieriieieiieie sttt sttt st bt e e see s 166
9.18.1 Positive ReadProperty Service EXECULION TESES......cuirireieririeri et 166
9.18.1.2 Reading a Single Element 0f an AITaY ..ot 166
9.18.1.X1 Reading Properties Based 0N Data TYPE......cccevvrvrrieeieeiierieseeseseestesesseeseeseeseseesseseenns 166
9.18.1.X3 Respects max-segments-accepted bit Pattern...........cccveveieieiene s 166
9.20 ReadPropertyMultiple Service EXECULION TESESvcviiviieieiise e ste e eee et st 167
9.20.1 Positive ReadPropertyMultiple Service EXECULION TESESccvvviveiereieieesirre s 167
9.20.1.1 Reading a Single Property from a Single OBJeCt........cccovvevciiier e 167
9.20.1.2 Reading Multiple properties from a Single ODJeCtccoieiiiiiiiiie e 167
9.20.1.3 Reading a Single Property from Multiple ODJECES.........ccooiiiiiiiiiiiie e 168
9.20.1.4 Reading Multiple Properties from Multiple ObjectS.........ccooeiiiiiiieiiiiiieece e 168
9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error.........cccoeveierencnnnn 169
9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors.........ccoccecerenennene 169
9.20.1.7 Reading ALL PrOPEItIEScuoiuiiiiiteitieteiietie ettt ettt e e e e e 170
9.20.1.8 Reading OPTIONAL PrOPeItIES......cccviviveiereiiesiesiesiesteseeeesee e siesteste e e eneeseeseseesseseenns 170
9.20.1.9 Reading REQUIRED PrOPEItiES......cccviviveiereiriesiesirsiesieeeeieesieseesseseestessesseaseeseesseseessessesns 171
9.20.1.X1 Reading Properties Based 0N Data TYPE.......cccvvererrieeieeieerieseeseseestessesseeseeseesseseesseseenns 171
9.21 ReadRange Service EXECULION TESES.....uiiuirieiireresteseeeeieseeste e sre e e enee e et sre st e enaeseenseseeseenes 171
9.21.1 Positive ReadRange Service EXECULION TESESccvcveriererierisieseeeeseesie e st 171
9.21.1.X1 ReadRange Support for All List PrOPertiesc.ccoovivveivereroiiniese e sieseeeeseene e seesee s 171
9.21.2 Negative ReadRange Service EXECULION TESEScc.cieiirirereeieiiee st 172
9.21.21 Attempting to Read a Property That Does Not EXiSt.........cccocoviierenienininicieienenee 172
9.21.2.2 Attempting to Read a Property That iS ot & LiStccceoiiiniiiiiiireeiece e 173
9.21.2.3 Attempting to Read a non-Array Property with an Array INdeX........c.cccoeveierencnnenn 173
9.22 WriteProperty Service EXECULION TESEScuiiuiiiieiiieieiieie ettt 173
9.22.1 Positive WriteProperty Service EXECULION TESES.....cvcvuereierireseeeeiece e sie e 173
9.22.1.1 Writing a Single Element of @n AITAYccooiiiiiniiese e 173
9.22.1.2 Writing a Commandable Property Without a Prioritycccccvvviviieivsiniin e 174
9.22.1.3 Writing a Non-Commandable Property with a Prioritycccccocvivvvivviniinciencne e 174
9.22.1. X1 WIItING QN ATTAY SIZE ...cuveieriiiieiiestesteseeiese e et ste e sre e e e esee e tesbestestesneasee e enseseenseneenns 175
9.22.1.X2 Writing to Properties Based 0N Data TYPEccocvvvrvieeieeieie e sie e e e seesie s 175
9.22.2 Negative WriteProperty Service EXECULION TESEScceiveiiriiiiiiieieee e 176
9.22.2.1 Writing Non-Array Properties with an Array INAeXccocceoeieniieiinienieierece e 176
9.22.2.2 Writing Array Properties with an Array Index that is Out of Rangeccccceoeiiienenne 176
9.22.2.3 Writing with a Property Value Having the Wrong Datatype..........ccccooevereeieicnenenenene 177
9.22.2.4 Writing with a Property Value that is Out of Range..........ccceoiiiiiiiiiiiicc e 177
9.22.2.X1 Writing Non-Array Read-only Property with an Array INdeXc.coovvveiinenenenenienn 178
9.23 WritePropertyMultiple Service EXECULION TESES......vciviirrierieresiestesieseeee e seesre e e eee e e nees 178

Vi

BACnet Testing Laboratories - Specified Tests

9.23.1 Positive WritePropertyMultiple Service EXeCUION TESESccviveeeriereriennre e ereeeee e 178
9.23.1.1 Writing a Single Property to a Single ObJECt.........cccviviiveiiiece e 178
9.23.1.2 Writing Multiple properties to a Single ODbJECt..........ccvivvriieiieieier e 179
9.23.1.3 Writing a Single Property to Multiple ODBJECtScocoiiiiiiiiieieee e 180
9.23.1.4 Writing Multiple Properties to Multiple ODJECESccooiiiiiciii e 180
9.23.1. X4 WIItING 8N ATTAY SIZEueiuiiieiiie ittt et bbbt ee b b 181

9.23.2 Negative WritePropertyMultiple Service EXeCUtiON TeSES.......ccoveirierreieniie s 181
9.23.2.1 Writing Multiple Properties with a Property ACCESS EFTOr.........ccccvveiiieneeiniecnie e 181
9.23.2.2 Writing Multiple Properties with an Object ACCESS EFTOr.........ccoovieiiieneeieice e 182
9.23.2.3 Writing Multiple Properties with a Write ACCESS EITON.......cccvvvrvreirrieieeieneese e s 182
9.23.2.4 Writing Non-Array Properties with an Array INAeXccoevevereriviesesiesie e s 183
9.23.2.5 Writing Array Properties with an Array Index that is Out of Rangecccccevvvervvnnnnn 184
9.23.2.6 Writing with a Property Value Having the Wrong Datatype.........ccccceevvivriveeerecnerenenennns 184
9.23.2.7 Writing with a Property Value that is Out 0f RaNGe.........cccceveieriin i 185
9.23.2.X1 WritePropertyMultiple REJECE TESt......c.ccvervirereriir st 185

9.24 DeviceCommunicationControl Service EXECULION TESt.........cccviiiiriiiiieiere e 186

9.24.1 Positive DeviceCommunicationControl Service EXeCution TeStS.......ccccveverienerinienis e 186
9.24.1.5 Finite Time Duration Restored by ReinitializeDevViCe...........cccoeviiiiiiiniiiice e 186

9.24.2 Negative DeviceCommunicationControl Service EXeCUtion TeStScccovvrereniniecisienenienn 187
9.24.2.3 Restore by ReinitializeDevice with Invalid 'Reinitialized State of Device'....................... 187

9.27 ReinitializeDevice Service EXECULION TESESciiiiriiiieieiiesie ettt 187

9.27.2 Negative ReinitializeDevice Service EXECULION TESES.......cccvvvivrveieeriereresese e seeeee s 187
9.27.2.3 COLDSTART with Missing or Invalid PassWord...........ccccccvcerivrerrniesinerierecneseseeseens 187
9.27.2.4 WARMSTART with Missing or Invalid Password..........cccccccevvvieiennninsineerecne e 188

9.29 UnconfirmedTextMessage Service EXECULION TESES.......ccerirerieiereiieieseesesesre e seeee e seeseeneas 189

9.29.1 UnconfirmedTextMessage With NO Message Classcccvvvviveiiereneiennnie e 189

9.29.2 UnconfirmedTextMessage With an Unsigned Message Classcccoerererienininiecnsiienienien 189

9.29.3 UnconfirmedTextMessage With a CharacterString Message Classc.ccoovvriniiiciencnnenn 190

9.30 TimeSynchronization Service EXECULION TESES......cciiiiiriieiieie ettt 190

9.30.1 Positive TimeSynchronization Service EXECULION TESEScoviiiiiieeieieic e 190
9.30.1.1 TimeSynchronization Local BroadCast............ccccverireiininieie e 190
9.30.1.2 TimeSynchronization Directed t0 the TUT ...t 191

9.31 UTCTimeSynchronization Service EXECULION TESES.......cveiireieierisieeiesiesie e see e e eseeseesee e seenes 192

9.31.1 Positive UTCTimeSynchronization Service EXeCUtioN TeSESccvevverereririvsieeeieeseese e 192
9.31.1.1 UTCTimeSynchronization Local BroadCast............ccevivrerreerieienesesieseseeeeseesie e see e 192
9.31.1.2 UTCTimeSynchronization Directed t0 the IUTccocoveiieiveieiern e 193

9.32 WhO0-Has Service EXECULION TESES......ccviriirreriirrireririeriesre s 193

9.32.1 Execution of Who-Has Service Requests Originating from the Local Network 193
9.32.1.1 Object ID Version with NO DeVICE RANJEccccouiiiriiiiiiiieie e 193
9.32.1.2 Object Name Version wWith N0 DEVICE RANGEcccvreiiriiiiie e 194
9.32.1.3 Object ID Version with IUT Inside of the Device RaNGe.........cccoevierireniniiiice e 194
9.32.1.4 Object ID Version with IUT Outside of the Device RaNgeccccocevirereeieicnenene 195
9.32.1.5 Object Name Version with IUT Inside of the Device Range..........cocovvrereeieienenenenienn 195
9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range
... 196
9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range
... 196
9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device
T 1= S 197
9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device
RN .ttt bt bbbt oAbt oAb h e e b e e b e e be e Re b e e nhe e nhe e be et enee 197
9.32.1.11 Object Name Version, Directed to a Specific MAC AdAress.........ccocererieerenenenenienn 197

9.32.2 Execution of Who-Has Service Requests Originating from a Remote Network....................... 198
9.32.2.1 Object ID Version, Global Broadcast from a Remote Networkccoceeoeveiciencnnenn 198
9.32.2.2 Object ID Version, Remote BroadCastccceiiririiiniiieie e 198
9.32.2.X3 - Who-Has for Non-existent Object Nameccccccvivreiieeieienere e 199

vii

BACnet Testing Laboratories - Specified Tests

9.32.2.X5 Who-Has for Non-existent Object_Identifier..........cccceieveeiiiiniiic i 199
9.33 WhO-1S Service EXECULION TESESvcvirirririireriinieie s 200
9.33.1 Execution of Who-Is Service Requests Originating from the Local Network............c.cccceveuee. 200
9.33.1.3 Local Broadcast, Specific Device Inquiry with IUT Outside of the Device Range........... 200
10 Network Layer ProtOCOI TESESuiiiiieiieieie ettt sttt et b ettt see b e 200
10.1 Processing Application Layer Messages Originating from Remote Networks..........c.ccccceveiiiennne 200
10.2 Router FUNCLIONATILY TESESciuiitiitiitiiiieie ettt bbbttt st sb e b et n b b sne s 201
10.2.2 Processing Network LaYer IMESSAQESoouerueruireiieie e ste et sies e esee e sie st et ene e see e sne e 201
10.2.2.7.2 Unknown Network Layer MeSSage TYPEcververieierirerieeieeeeie et 201
10.2.X1 Initiates Network-Number-1S 0N SArtUPc.cveiveeerererese e 201
10.2.X2 Routers Execute What-1S-Network-NUMDETc.cooviiiiiriineseseeesnee e 202
10.6 NON-Router FUNCHIONAIILY TESES.....uviviieierieresiesiese e erie e ee sttt e sre st snesre s e enaesaenneseennens 202
10.6.3 1gNOre ROULET COMMEANGS.......ecvieerieeeieseesiestesiesreeeesseseestestesaesresseeseeseesseseessessesseesseeeseseessenses 202
10.7 ROULEr FUNCHIONAIILYecvvceieiesie ettt ettt e e sneste e e eneeeenneseennens 203
10.7.2 Router Binding via AppliCation Layer SEIVICEScucieivirereiesieieeiereesiestesresesseeseeseesseseeseeses 203
10.8 Virtual Routing FUNCLIONAIILY TESESeeuiiiiieiieiie et 205
10.8.3 ROULING OF UNICASE APDIUSuiitiiiiiiiie ettt ettt bbbt sae b e 206
10.8.3.1 Route Request Message from a Local Device to a Virtual Device and Route Response
Message from the Virtual Device to the LOCal DEVICE..........ccceiiiiiiiieieieese e 206
10.8.3.2 Route Request Message from a Virtual Device to a Local Device.........cccccceererenene 207
10.8.3.5 Unicast Messages That Should Not Be ROULEccceeiiieiiieniieiceeeece e 208
10.8.3.5.1 UNKNOWN NEIWOTKc.viviviiiriiiiircinesieeise s 208
10.8.4 Routing of Broadcast APDUS t0 Virtual DEVICES.........cccvivrviiveieriiniesiesieseseereeseenie e sseneas 208
10.8.4.7 Route Remote Broadcast Message from a Virtual Device to a Local Network........... 208
10.8.7 Multiple Devices on a Single Virtual NEtWOIKccccovvvrieiinienineerene s 209
10.8.7.4 Who-Is Specifying Unknown DevViCe IdSccccvvvreiveieieee e sese s 209
10.8.7.5 Who-Has Specifying Unknown Device 1dS..........ccoceriiiiiiiinieienc e 209
12 DATA LINK LAYER PROTOCOLS TESTS ..ottt 210
12.1 MS/TP State MACNINE TESES.eiuiiuiitiiieie ettt ettt sttt st b et sbesbe e et e e e nbesbesee s 210
12.1.3 MS/TP Data Link Layer Tests (AIEINALE)cceoiiiriiiieiire e 210
12.1.3.3 VEIITY Tirame_gap «+eeseeeeersisinimmsiiiiiiisisi bbb s 210
13 Special FUNCHIONAIILY TESES......iitiitiitiiieiieie ettt e bbb bbbt e b e e e e 210
IR TR =101 v L4 o o SRS 210
13.1.12.1 IUT Does Not Support Segmented RESPONSEcvervrrerieieerieieieseesiesesiesreseeee e seeseeens 210
13.8 Backup and ReStOre ProCeAUIE TESIS.....cueiuirerieriereieerieieeie e sre e sre e eeeesaesae e sresresneensesaesseseesnens 211
13.8.1 Backup and ReStore EXECULION TESEScivivviiriieieeeesesiesie e e e eseeseesee e sre s enae e seesneneas 211
13.8.1.1 Execution of Full Backup and Restore ProCeaUreccvvveeereereiesesie e seeeeie s 211
13.8.1.6 Ending Backup and Restore Procedures via TIMEOUL.........cccevurrerererinneseseee e see e 214
13.8.1.8 Attempting a Backup Procedure with an Invalid Password.............ccocooeviriniecnniencnnenn 215
13.8.1.9 Attempting a Restore Procedure with an Invalid Password.............ccocooeiininininiencnenn 216
13.8.1.11 Starting and Ending a Restore Procedure when a Password is not Required.................. 217
13.8.2 Backup and Restore INitiation TeSES.......cooiiiiiiiiiiee et e 217
13.8.2.1 Initiate @ FUll BaCKUP aNd RESLOTE..........coiiiiiiiiiiieie ettt e 217
13.X12.1 Reading with maximum-segments-accepted bit pattern B'000"...........ccccovvivevevieveneresinnn, 219
14.1 NON-BBMD B/IP DEVICEccuiiiiriiiirieiiisieieiesee et 219
14.1.7 Forwarded-NPDU (One-hop DiStribBution)ccccueiereiinivie e 219
14.1.8 Original-BroadCast-NPDUc.ccccoiurieiiriiesesesieeeseeste st a e sae e sre e sneesseseesesessseses 220
14.1.10 Forwarded-NPDU (Two-hop DiStribution)cccceeieiiriiieinseciece e 220
14.2 BBMD B/IP Device with a Server APPlICALIONcccoveviieiesiie e 221
14.2.1 Execute FOrwarded-NPDU....... ..ottt bbb sae b e 221
14.2.1.1 Execute Forwarded-NPDU (One-hop Distribution)ccccoiiiiiininieiisce e 221
14.2.1.2 Execute Forwarded-NPDU (Two-hop Distribution)............ccoeveiiiiniiiniiniice e 221
14.2.2 Execute Original-BroadCast-NPDUcccooiiiiiiiiiiereie e 222
14.2.2.1 Execute Original-Broadcast-NPDU (One-hop Distribution)ccccooereniniieiniencnenn 222
14.2.2.2 Execute Original-Broadcast-NPDU (Two-hop Distribution)cccccocviiiiininiencnenn 223

viii

BACnet Testing Laboratories - Specified Tests

14.3.3 Verify Broadcast Distribution Table Created from the Configuration Saved During the Previous
Session 224

14.7 Broadcast management (BBMD, Foreign Devices, Local Application)cccceuvvevveivererenieiinnnnns 225
14.7.1 Broadcast Message from Directly Connected IP SUDNEL..........cccoviiiiiiniiiiiiecieeee e 225
14.7.1.1 Broadcast Message from Directly Connected IP Subnet (One-hop Distribution) 225
14.7.1.2 Broadcast Message from Directly Connected IP Subnet (Two-hop Distribution)............. 226
14.7.2 Broadcast Message Forwarded by a Peer BBIMIDccccoiiiiiiiiciciene s 227
14.7.2.1 Broadcast Message Forwarded by a Peer BBMD (One-hop Distribution).............ccccc...... 227
14.7.2.2 Broadcast Message Forwarded by a Peer BBMD (Two-hop Distribution) 228
14.7.3 Broadcast Message from a FOreign DEVICEccvcveieeriire e seese et 229
14.7.3.1 Broadcast Message From a Foreign Device (One-hop Distribution)........c..ccoceevienennnne 229
14.7.3.2 Broadcast Message From a Foreign Device (Two-hop Distribution)ccccevevvrennne 230

BACnet Testing Laboratories - Specified Tests

1 Purpose

This document contains tests defined by the BTL that are not included in ANSI/ASHRAE Standard 135.1-2013 or are
modified versions of tests in 135.1. These tests are used by the BTL testing process and are referenced by the BTL Test
Plan document.

Most of the tests defined in this document will be submitted to SSPC 135. Those that are submitted will be removed from
future versions of this document as they are accepted/rejected by the SSPC 135 and 135.1 is updated.

Some of the tests are interim tests defined by the BTL because the test tools are not adequate for testing the particular
functionality. These tests will be removed once the tests in SSPC 135.1 can be implemented by the BTL. Examples of such
tests are the MS/TP tests.

For those tests that will be submitted to the SSPC 135, the test numbering is based on the humbers that the test would have
if they were included in 135.1.

10

BACnet Testing Laboratories - Specified Tests

2 Interim Data Link Layer Tests
2.2 MS/TP Data Link Layer Tests

2.2.18 Verify Tno_token w/ Serial Analyzer

Reason for Change: No test exists for this functionality.
Purpose: Verify that the IUT waits at least 500 before declaration of loss of token and start behaving as sole master

Test Concept: A network of two reference masters and IUT is constructed and all are turned on Once the network achieves
normal network operation, make one reference master (A) to send a Confirmed Request (Read Property or Read
Property Multiple) to the other reference master (B). B is powered off or removed from the network before sending the
reply. The network is monitored to verify that the IUT (C) does not take token in hand within 500 milliseconds.

Setup: The test starts with an MS/TP network comprised of two reference master devices and IUT that has achieved
normal network operation. Normal network operation should be verified using a serial analyzer. If the IUT does not
autobaud, then it shall be configured with the same baud rate of the operating network. The IUT shall be configured
with a valid MAC address (0-127) which is not in use by any of the other devices on the network and is less than the
Max_Master value in use by the reference masters. The IUT shall be configured with the same Max_Master in use by
the reference masters.

Test Steps:

=

VERIFY two reference masters (A & B) and IUT (C) achieved normal network operation

2. MAKE one reference master device (A) to send Confirmed request, either Read Property or Read Property Multiple to
other reference master device (B).

3. Power Off or remove the reference Master B from the network before sending the reply.

4. CHECK (verify with the serial analyzer that IUT does not take token in hand and start passing Poll For Master or pass
token within 500 millisecond)

5. Ifthe IUT does exhibit the behavior described in step4, fail the IUT.

2.2.X1 Data Not For Us Test
Reason for Change: Addendum 135-2008z.3 Modify MS/TP State Machine to Ignore Data Not For Us.

Purpose: Verify that the IUT properly skips the complete data portion of frames not intended for the IUT.

Test Concept: Send a BACnet Data Not Expecting Reply frame that contains the frame pre-amble octet sequence to an
address other that the IUT. Follow it immediately with a ReadProperty request for the IUT’s device object to ensure that the
IUT will correctly receive and process the ReadProperty request.

Test Steps:

1. TRANSMIT
Frame Type = BACnet Data Not Expecting Reply
Destination Address = (any Unicast address other than 1UT),
Length =7,
Data = (55 FF 05 FF 00 01 F5)
2. TRANSMIT ReadProperty-Request
‘Object Identifier’ = (device, 4194303),
‘Property Identifier’ = Object_Name
3. RECEIVE ReadProperty-Response
‘Object Identifier’ = (device, IUT),

11

BACnet Testing Laboratories - Specified Tests

‘Property Identifier’ = Object_Name,
‘Value’ = (any valid value)

2.3 ARCNET (twisted pair bus) Data Link Layer Tests

The ARCNET twisted pair bus is an alternate configuration of the standard ARCNET coax, and therefore, requires a
different setup of electronics and chipset configuration. These tests verify that the setup and configuration has been
followed in order to provide interoperability.

Since the TD is installed on the non-ARCNET side of a reference router, these tests do not cover strict conformance to the
ARCNET data link layer. The methodology is to install the IUT on an ARCNET network containing reference devices that
are known to conform to BACnet clause 8 using the twisted pair bus option and verify that the TD can exchange data with
the IUT. An oscilloscope will also be employed on the ARCNET network to verify that the IUT meets the duty cycle and
biasing requirements of the alternate ARCNET data link layer, as these items are critical to interoperability of ARCNET
twisted pair bus. An ARCNET packet sniffer is useful, but not required.

These tests require the use of a reference ARCNET twisted pair bus router and a reference ARCNET twisted pair bus
device. These devices will be selected from a pool of qualified devices that are to be submitted by members of the BMA.
The tester is free to select any of the qualified references devices to use during the test, and the identity of the reference
devices will not be published. The criteria for qualifying the reference devices is virtually identical to the test plans
referenced here, with the addition of a few tests for proper formation of the NPCI by the reference router.

General Test Setup:

Install a reference ARCNET twisted pair bus router at ARCNET node address <A>.
Install a reference ARCNET twisted pair bus device at node address <C>.
Install the IUT at node address .

TD

—

Reference I
Router

Node Address <A>

ARCNET twisted pair bus

uT Reference
Device
Node Address Node Address <C>

The ARCNET node addresses are not critical, but must be unique and not zero.

Recommended Test Tools:

ARCNET packet sniffer = Any ARCNET packet sniffer that meets the following requirements:
1. Each packet is time stamped with 1msec accuracy.
2. The packet sniffer can support the baud rates being tested.
3. Captured data can be saved and reloaded, including the time stamp information.
4. The packet sniffer is currently available for purchase.
Other desirable traits:
5. A BACnet aware packet sniffer to allow ARCNET packets to be decoded, either online or offline.
6. Export a captured session to a text file, including time stamp information. (This would provide the ability for
advanced analysis of the data, such as scanning the data for timing anomalies).

12

BACnet Testing Laboratories - Specified Tests

Oscilloscope = Agilent 54620 series or similar. This scope has a 2MB sample memory, which is useful for capturing data
for an extended time and then zooming in on the details after the capture is complete. It can also "layer" the samples using
32 levels of display intensity, which makes it easier to spot timing anomalies.

2.3.1 Verify the Failsafe Biasing with an Oscilloscope
Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: Verify that failsafe biasing (see ARCNET specification 11.4.2, Fail-safe Bias) is at least 200mV. A
maximum value is not specified, but the biasing should be such as to not excessively load the EIA-485 transceivers.
Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1) Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

Va-Vb / 0 Volts

Fail-Safe Bias
2) With an oscilloscope probe connected across the bus with the correct polarity, measure the Fail-Safe Bias.

3) Fail the IUT if the Fail-Safe Bias is not at least 200mV.

2.3.2 Verify the Basic Signal Duty Cycle with an Oscilloscope
Reason for Change: No test exists for this functionality. This test is included in CLB-015.

Test Concept: The ARCNET chipset has the option of supporting either coax (normal) or twisted pair (differential driver).

The differential driver mode utilizes a 50% duty cycle, while the normal method uses a 25% duty cycle for the bits on the

wire. Verify that the duty cycle is 50% for ARCNET twisted pair bus.

Setup: Run the IUT only on the ARCNET twisted pair bus network with proper termination.

Procedure:

1) Apply power to the IUT, and wait for the ARCNET twisted pair bus device to begin passing tokens.

2) With an oscilloscope probe connected across the bus with the correct polarity, measure the bit signal duty cycle (pulse
width divided by the interpulse period).

—»{ Pulse Width (¢——

Va-Vb 0 Volts

<«—— Interpulse Period —p

3) Fail the IUT if the duty cycle is not 50% (with allowance for acceptable jitter).

13

BACnet Testing Laboratories - Specified Tests

3.x Common language used in tests

‘any valid value’ - Any valid value refers to any value of the correct data type and within the vendor’s range specified for
the property this is applied to.

‘any appropriate password’ — Any password that meets the Configuration Requirements specified in the test or test section.
Passwords when required by the vendor are required to be no more than 20 characters.

5. EPICS CONSISTENCY TESTS
Reason for Change: Improved the language in this set of tests to clarify the exact requirement of the test.

These tests are static tests of the EPICS and do not involve interrogating the IUT. There are no Test Configuration or Test
Step sections with TCSL in these tests because the tests are static tests of the EPICS and not tests of the IUT itself.
Each implementation shall be tested to ensure consistency among interrelated data elements

These tests shall include:

(@ All object types required by the specified BIBBs shall be indicated as supported in the Standard Object Types
Supported section of the EPICS.

(b) A minimum of one instance of each object type required by the specified BIBBs shall be included in the test database.

(c) The Protocol_Object_Types_Supported property of the Device object in the test database shall indicate support for
each object type required by the supported BIBBs.

(d) All application services required by the supported BIBBs shall be indicated as supported in the BACnet Standard
Application Services Supported section of the EPICS with Initiate and Execute indicated as required by the supported
BIBBs.

(e) The Application—Services—SuppertedProtocol_Services_Supported property of the Device object in the test database
shall indicate support for each application service for which the supported BIBBs requires support for execution of the

service.

(f) The object types listed in the Standard Object Types Supported section of the EPICS shall have a one-to-one
correspondence with object types listed in the Protocol _Object Types Supported property of the Device object contained
in the test database.

(g) For each object type listed in the Standard Object Types Supported™ section of the EPICS there shall be at least one
object of that type in the test database. **

*An object type is supported if it can be made to exist in the IUT’s database.

**with the exception of the case where File objects are only present in the IUT during Backup and Restore. An object type
is supported if it can be made to exist in the IUT’s database.

(h) There shall be a one-to-one correspondence between the objects listed in the Object_List property of the Device
object and the objects included in the test database. The Object_List property and the test database shall both include all

14

BACnet Testing Laboratories - Specified Tests

proprietary objects. Properties of proprietary objects that are not required by BACnet Clause 23.4.3 need not be included in
the test database.

(i) For each object included in the test database, all required properties for that object as defined in Clause 12 of BACnet
shall be present. Standard properties which are not defined for the implemented Protocol_Revision shall not be present. In
addition, if any of the properties supported for an object require the conditional presence of other properties, their presence
shall be verified.

(j) For each property that is required to be writable, or conditionality writable, that property shall be marked as writable,
or conditionality writable, in the EPICS.

(k) The length of the Protocol Services Supported bitstring shall have the number of bits defined for
BACnetProtocolServicesSupported for the IUT's declared protocol revision.

() The length of the Protocol Object Types_Supported bitstring shall have the number of bits defined for
BACnetObjectTypesSupported for the IUT's declared protocol revision

(m) For each object included in the test database, any properties that are deprecated or removed shall not appear after
the Protocol_Revision in which the property was deprecated or removed.

(n) If the Protocol_Revision property is present in the Device object and its value is greater than or equal to 14, the
Property_List property of each object included in the test database shall have one entry for each property present including
non-standard properties with the exception of Object_Type, Object_Identifier, Object_ Name and Property_List

(o) If the Segmentation_Supported property in the Device object is SEGMENTED_BOTH or SEGMENTED_RECEIVE,
then the value of the Max_Segments_Accepted property of the Device object shall be greater than 1.

7 Object Support Tests

7.1.1 Read Support Test Procedure

Reason for Change: This test does not consider the IUT behavior in cases where a property either can not be read by
ReadProperty, and ReadPropertyMultiple services or whose response may be too long to return in the given APDU and
segment limitations of the IUT.

Purpose: To verify that all properties of all objects can be read using ReadProperty and ReadPropertyMultiple services.

Test Concept: The test is performed once using ReadProperty and once using ReadPropertyMultiple. When verifying array
properties, the whole array shall be read without using an array index, where possible.

Test Steps:

1. REPEAT X = (all objects in the IUT's database) DO {
REPEAT Y = (all properties in object X) DO {
IF (Y = property indicated as not accessible by ReadProperty Services) THEN
TRANSMIT ReadProperty-Request,
'Object Identifier' = X,
'Property Identifier' =Y
IF (Protocol_Revision >= 13) THEN
RECEIVE BACnet-Error PDU,
‘Error Class' = PROPERTY,
‘Error Code' = READ_ACCESS_DENIED

15

BACnet Testing Laboratories - Specified Tests

ELSE
RECEIVE BACnet-Error PDU,

‘Error Class' = OBJECT | PROPERTY,

'Error Code' = (any of the error codes for an OBJECT or PROPERTY class)

ELSE IF (Y = any property of type ARRAY and is too long to return given the
APDU and segmentation limitations of the IUT) THEN

TRANSMIT ReadProperty-Request,
'Object Identifier' = X,
'Property ldentifier' =Y

RECEIVE BACnet-Abort-PDU,
‘Server’ = TRUE,
‘Abort Reason' = SEGMENTATION_NOT_SUPPORTED |

BUFFER_OVERFLOW

TRANSMIT ReadProperty-Request,
'‘Object Identifier' = X,
'‘Property ldentifier' =Y,
‘Property Array Index' =0

RECEIVE ReadProperty-ACK,
‘Object Identifier' = X,
'‘Propertyldentifier' =Y,
‘Array Index' =0,
'‘Property Value' = (any value specified in the EPICS, P)

REPEAT Z = (each index 1 through P of the property Y) DO {
VERIFY (X), Y = (the value for index Z of this property Y in

the EPICS), ARRAY INDEX = Z

}
VERIFY (X), Y = (the value for this property specified in the EPICS)

ELSE

}
¥

Notes to Tester: For cases where the EPICS indicates that the value of a property is unspecified using the "?" symbol, any
value that is of the correct datatype shall be considered to be a match. When using the ReadPropertyMultiple service, a
received ReadPropertyMultiple-ACK containing the specified Error Class and Error Code shall also be considered a

Passing result.

Passing Result: Trying to read the Log_Buffer property of a Trend Log object by using BACnet ReadProperty and
ReadPropertyMultiple services may result in an Error-PDU with an error class of OBJECT or PROPERTY and an error
code of OTHER. Note, however, that while neither ASHRAE 135-2001 nor ASHRAE 135-2004 clearly define whether
OTHER represents a valid error code in this case, Addendum u to ANSI/ASHRAE 135-2008 clearly defined
READ_ACCESS_DENIED as the valid error code in this case.

7.1.2 Non-documented Property Test
Reason for Change: Revised test to exclude special property identifiers.

Purpose: To verify that all properties contained in every object are documented in the EPICS.

Test Concept: For each object in the EPICS database, attempt to read each standard property that the EPICS does not
document as being part of the object.

Test Steps:

1. REPEAT X = (a tester selected set of objects) DO {
REPEAT Y = (0 through 511 except 8 (all), 80 (optional) and 105 (required)) DO {
IF (the property Y is not in the EPICS for object X) THEN

16

BACnet Testing Laboratories - Specified Tests

TRANSMIT ReadProperty-Request,
'Object Identifier' = X,
'Property Identifier' = Y
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = UNKNOWN_PROPERTY

}
}
Notes to Tester: The objects selected by the tester should include one instance of each supported object type.

Where some instances of an object type differ in the set of supported properties, the allowable value ranges for a property,
or the writability of a property, then one instance of each variant of that object type should be selected.

7.1.X3 Verifying Property_List against the EPICS
Reason for Change: Addendum 135-2010a0-5.

Purpose: To verify the correct content of the Property_List using the properties in each object as claimed in the EPICS.

Test Concept: Match the properties in each object as claimed in the EPICS, against the content of each object’s
Property_List.

Test Conditionality: If Protocol_Revision is not present, or Protocol_Revision < 14, then this test shall be skipped.

Test Steps:

1. READ OL = Object_List

2. REPEAT (01, each object in the content of OL)

3. READ PL = Property_List, in the selected object instance O1

4. CHECK (that the property identifiers in the EPICS for O1 and those in the Property List property match, except as

specified in Notes to Tester)

Notes to Tester: Object_ Name (77), Object_Type (79), Object_ldentifier (75), and Property_List (371) will appear in the
EPICS, but shall not appear in the Property_List value. Any proprietary properties that are supported for the object-type
shall be in the Property_List. (see BACnet 15.7.3.1.2). The order in which property identifiers appear in the EPICS, is not
required to match the order that they appear in the Property_List value.

7.2 Write Support for Properties in Test Database

7.2.1 Functional Range Requirements for Property Values

7.2.1.3 Octetstrings and Characterstrings

Reason for Change: The description here did not account for the Object_Name property which must be of minimum length
of 1 not zero. Not in any SSPC proposal. Addendum 135-2008k-1 Add Support for UTF-8.

Properties with an octetstring or characterstring datatype shall be tested with a string of length-zerothe minimum supported
length, a string with the maximum supported length, and a string with some length between the two. The vendor shall
provide the actual value of the maximum length string in the EPICS. See 4.4.2.

When testing character string properties in a device that supports UTF-8 (Protocol_Revision >= 10), at least one of the
data values shall contain multi-byte characters.

7.2.2 Write Support Test Procedure
Reason for Change: 'Notes to Tester' is missing from the version in 135.1-2013.

17

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that all writable properties of all objects can be written to using BACnet WriteProperty and
WritePropertyMulitiple services. The test is performed once using WriteProperty and once using WritePropertyMultiple.
When writing to array properties, the whole array shall be written without using an array index, where possible.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
Test Steps:

1. REPEAT X = (all objects in the IUT's database) DO {
REPEAT Y = (all writable properties in object X) DO {
REPEAT Z = (all values meeting the functional range requirements of 7.2.1, and any additional
restrictions placed on the allowable property values by the vendor) DO {
WRITE (X), Y = Z,
VERIFY (X),Y=Z
}

}

Notes to Tester: An internal process may set the Present Value of some properties back to the default value after a
successful write, as in the case of a momentary pushbutton, or the Record_Count property. For properties that exhibit this
type of behavior, skip the VERIFY step.

Notes to Tester: When a property is currently not writable, the IUT shall return an Error-PDU with 'Error Class' =
PROPERTY and 'Error Code' = WRITE_ACCESS_DENIED.

7.2.3 Read-only Property Test

Reason for Change: This test is based on 135.1-2013 and corrects the use of the READ statement. Added 'Configuration
Requirements'.

Purpose: To verify that properties marked as read-only in the EPICS are in fact read-only.

Test Concept: To each read-only (not writable and not conditionally writable) property in the EPICS, write the value of the
property as read from the device and verify that an error is returned. Write another value that is within the acceptable range
for the datatype and verify that an error is returned. If the property is a list and the IUT supports AddListElement, attempt
to modify the property with AddListElement and verify that an error is returned.

Configuration Requirements: if the IUT does not support the WriteProperty service, then this test shall be skipped.

Test Steps:

1. REPEAT X = (atester selected set of objects) DO {
REPEAT Y = (all read-only properties in object X) DO {
IF (the property is not an array) THEN

EAD 7 =X

READ Z = (X), property Y
TRANSMIT WriteProperty-Request,
‘Object Identifier' = X
'Property Identifier' = Y,
'Property Value' = 4
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,
'Object Identifier' = X,

18

BACnet Testing Laboratories - Specified Tests

'Property Identifier' =
'Property Value' =

RECEIVE BACnet-Error-PDU,
Error Class =
Error Code =

Ya
(any value meeting the range requirements
of 7.2.1 except Z)

PROPERTY,
WRITE_ACCESS_DENIED

IF (the IUT supports AddListElement and the property is a list) THEN
TRANSMIT AddListElement-Request,

'Object Identifier' =
'Property Identifier' =
List of Elements' =

RECEIVE BACnet-Error-PDU,
Error Class =
Error Code =
ELSE
READ LEN = (X), Y, Array_Index =0
IF (LEN > 0)

READ Z = (X), Y, Array_Index=1

X,

Y,

(any elements value meeting the range requirements of 7.2.1
excluding those in Z)

PROPERTY,
WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,

'Object Identifier' = X,
'Property Identifier' = Y,
'Property Value' = Z,
‘Array Index’ = 1
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,

'Object Identifier' =
'Property Identifier' =
'Property Value' =

‘Array Index’ =
RECEIVE BACnet-Error-PDU,
Error Class =
Error Code =

X,

Y,

(any value meeting the range requirements
of 7.2.1 except Z)

PROPERTY,
WRITE_ACCESS_DENIED

IF (the IUT supports AddListElement and the property is an array of lists) THEN
TRANSMIT AddListElement-Request,

'Object Identifier' = X,
'Property Identifier' = Y,
‘Array Index' = 1

'List of Elements' =

(any elements value meeting the range
requirements of 7.2.1 excluding those in Z)

RECEIVE BACnet-Error-PDU,

Error Class =
Error Code =
ELSE

PROPERTY,
WRITE_ACCESS_DENIED

TRANSMIT WriteProperty-Request,

‘Object Identifier' = X
‘Property Identifier' = Y

19

BACnet Testing Laboratories - Specified Tests

'Property Value' = (any value meeting the range requirements
0f7.2.1)
RECEIVE BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = WRITE_ACCESS_DENIED

}

Notes to tester: When modifying a property, it is expected that an error class of PROPERTY with an error code of
WRITE_ACCESS_DENIED is returned but the IUT may instead return an error_class of PROPERTY with an error_code
of VALUE_OUT_OF RANGE, or an error_class of RESOURCES with an error_code of
NO_SPACE_TO_WRITE_PROPERTY. In the case that the property is an array, and it has no elements, then the IUT may
return and error class of PROPERTY and an error code of INVALID_ARRAY _INDEX. The objects selected by the tester
should include one instance of each supported object type. Where some instances of an object type differ in the set of
supported properties, the allowable value ranges for a property, or the writability of a property, then one instance of each
“flavor” of that object type should be selected.

7.2.X1 Date Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.
Addendum 135-2008h-8h-8 adds odd and even day support. Addendum 135-2008acac-1 clarifies when wildcards are
allowed in dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special date field values.

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property
accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. The value,
written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property is a
complex datatype, the other fields in the value shall be set within the range accepted by the IUT. The list of Specials comes
from the Chapter 21 Application Types section on Date.

Test Steps:
1. IF (Protocol_Revision is not present or Protocol_Revision < 4)
Specials = (year unspecified, month unspecified, day of month unspecified,
day of week unspecified)
ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)
Specials = (year unspecified, month unspecified, day of month unspecified,
day of week unspecified, odd months, even months, last day of month)
ELSE
Specials = (year unspecified, month unspecified, day of month unspecified,
day of week unspecified, odd months, even months, last day of month,
even days, odd days)
2. REPEAT SV = (each value in Specials) DO {
WRITE P1 = (D1 updated with the value SV)
VERIFY P1 = (D1 updated with the value SV)

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

7.2.X2 Time Pattern Properties Test

Reason for Change: Addendum 135-2008h.8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when
wildcards are allowed in dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special time field values.

20

BACnet Testing Laboratories - Specified Tests

Test Concept: The property being test, P1, is written with each of the special time field values to ensure that the property
accepts them. A time, T1, is selected which is within the time range that the IUT will accept for the property. The value,
written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property is a
complex datatype the other fields in the value shall be set within the range accepted by the 1UT.

Test Steps:
1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {
WRITE P1 = (T1 updated with the value SV)
VERIFY P1 = (T1 updated with the value SV)

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

7.2.X3 DateTime Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.
Addendum 135-2008h-8h-8 adds odd and even day support. Addendum 135-2008aeac-1 clarifies when wildcards are
allowed in dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested accepts special date and time field values.

Test Concept: The property being tested, P1, is written with each of the special date and time field values to ensure that the
property accepts them. A date, D1, is selected which is within the date range that the IUT will accept for the property. A
time, T1, is selected which is within the time range that the IUT will accept for the property. The value, written to the
property is the date D1 and time T1 with one of its fields replaced with one of the date or time special values. If the
property is a complex datatype which contains the BACnetDateTime, the other fields in the value shall be set within the
range accepted by the IUT. The list of DateSpecials comes from the Chapter 21 Application Types section on Date and the
list of TimeSpecials comes from the Chapter 21 Application Types section on Time.

Test Steps:

1. IF (Protocol_Revision is not present or Protocol_Revision < 4)
DateSpecials = (year unspecified, month unspecified, day of month unspecified,
day of week unspecified)
ELSE IF (Protocol_Revision >= 4 and Protocol_Revision < 10)
DateSpecials = (year unspecified, month unspecified, day of month unspecified,
day of week unspecified, odd months, even months, last day of month)
ELSE
DateSpecials = (year unspecified, month unspecified, day of month unspecified,
day of week unspecified, odd months, even months, last day of month,
even days, odd days)
TimeSpecials = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)
3. REPEAT SV = (each value in DateSpecials +TimeSpecials) DO {
WRITE P1 = (D1+T1 updated with the value SV)
VERIFY P1 = (D1+T1 updated with the value SV)

n

Notes to Tester: if P1 is an array, then an array index shall be provided in the WRITE and VERIFY operations.

7.2.X4 Date Non-Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.
Addendum 135-2008h-8h-8 adds odd and even day support. Addendum 135-2008acac-1 clarifies when wildcards are
allowed in dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special date field values.

21

BACnet Testing Laboratories - Specified Tests

Test Concept: The property being tested, P1, is written with each of the special date field values to ensure that the property
does not accept them. A date is selected which is within the date range that the IUT will accept for the property. The value,
V1, written to the property is the date D1 with one of its fields replaced with one of the date special values. If the property
is a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be
applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:
1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified,
day of week unspecified, odd months, even months, last day of month,
even days, odd days) DO {
TRANSMIT WriteProperty-Request

‘Object Identifier' = 01,

‘Property Identifier' = P1,

'Property Value' = (V1 updated with the special value SV)
RECEIVE BACnet-Error-PDU

‘Error Class’ = PROPERTY,

‘Error Code’ = VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X5 Time Non-Pattern Properties Test

Reason for Change: Addendum 135-2008acac-1 clarifies when wildcards are allowed in dates and times. Test does not
exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special time field values.

Test Concept: The property being tested, P1, is written with each of the special time field values to ensure that the property
does not accept them. A time is selected which is within the time range that the IUT will accept for the property. The value,
V1, written to the property is the time T1 with one of its fields replaced with one of the time special values. If the property
is a complex datatype, the other fields in the value shall be set within the range accepted by the IUT. This test shall only be
applied to devices claiming Protocol_Revision 11 or higher.

Test Steps:
1. REPEAT SV = (hour unspecified, minute unspecified, second unspecified, hundredths unspecified)
TRANSMIT WriteProperty-Request

‘Object Identifier' = 01,

'Property Identifier' = P1,

‘Property Value' = (V1 updated with the special value SV)
RECEIVE BACnet-Error-PDU

‘Error Class’ = PROPERTY,

‘Error Code’ = VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.

7.2.X6 DateTime Non-Pattern Properties Test

Reason for Change: Addendum 135-2001a-1 adds odd and even month support, and last-day-of-the-month special value.
Addendum 135-2008h-8 adds odd and even day support. Addendum 135-2008ac-1 clarifies when wildcards are allowed in
dates and times. Test does not exist in 135.1-2013.

Purpose: To verify that the property being tested does not accept special date field values.

Test Concept: The property being tested, Py, is written with each of the special datetime field values to ensure that the
property does not accept them. A datetime DT, is selected which is within the range that the IUT will accept for the
property. The value, V,, written to the property is the datetime DT, with one of its fields replaced with one of the date or
time special values. If the property is a complex datatype, the other fields in the value shall be set within the range accepted
by the IUT. This test shall only be applied to devices claiming Protocol_Revision 11 or higher.

22

BACnet Testing Laboratories - Specified Tests

Test Steps:
1. REPEAT SV = (year unspecified, month unspecified, day of month unspecified,
odd months, even months, last day of month, even days, odd days,
hour unspecified, minute unspecified, second unspecified, hundredths unspecified) DO {
TRANSMIT WriteProperty-Request

‘Object Identifier' = 04,

'Property Identifier' = P,

'Property Value' = (DT, updated with the special value SV)
RECEIVE BACnet-Error-PDU

‘Error Class’ = PROPERTY,

‘Error Code’ = VALUE_OUT_OF_RANGE

Notes to Tester: if P1 is an array, then an array index shall be provided in the TRANSMIT portion of step 1.
7.3 Object Functionality Tests

7.3.1 Property Tests

7.3.1.6 Minimum On/Off Time Tests

7.3.1.6.1 Override of Minimum Time

Reason for Change: The test was re-written to remove the dependence on the presence of the Minimum_Off Time
property. This test was renumbered from 7.3.1.6 to 7.3.1.6.1.

Dependencies: ReadProperty Service Execution Tests, 9.15; WriteProperty Service Execution Tests, 9.19.
BACnet Reference Clause: 19.

Purpose: To verify that higher priority commands override minimum on or off times. If neither minimum on time or
minimum off time is supported this test shall be omitted. This test applies to Binary Output and commandable Binary Value
objects.

Test Concept: The initial Present Value of the object tested is set to INACTIVE and it is controlled at a priority
numerically greater (lower priority) than 6. The object has been in this state long enough for any minimum off and/or
minimum on time to have expired. The Present_Value is written to with a value of ACTIVE at priority 7. The value of slot
6 of the Priority_Array is monitored to verify that it contains the value ACTIVE. Before the minimum on time expires the
Present_Value is written to with a value of INACTIVE and a priority numerically lower (higher priority) than 6. This
overrides the minimum on time and immediately initiates the minimum off time algorithm.

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority Array
numerically less than 7 have a value of NULL and no internal algorithms are issuing commands to this object at a priority
numerically lesser (higher priority) than the priority that is currently controlling Present_Value. Minimum_On_Time must
be configured with a large enough value to allow execution of all test steps before it expires.

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY =7

2. VERIFY Present_Value = ACTIVE

3. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6
4. BEFORE Minimum_On_Time

WRITE Present_Value = INACTIVE, PRIORITY = (any value numerically lower than 6 (higher priority))
5. VERIFY Present_Value = INACTIVE
6. VERIFY Priority_Array <> ACTIVE, ARRAY_INDEX =6

23

BACnet Testing Laboratories - Specified Tests

Notes to Tester: If minimum on time is not supported but minimum off time is supported, this test should be conducted by
using INACTIVE in steps 1, 2, 3 and 6 through-3 and ACTIVE in steps 4 threugh-—76 and 5, and by using the
Minimum_Off_Time in Step 4.

7.3.1.6.2 Minimum Off Time - Writing at priorities numerically greater than 6
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that commands written at a lower priority than 6 will not affect Present Value while
Minimum_Off_Time is in effect.

Test Concept: The initial Present_Value of the object tested is set to ACTIVE and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this state long enough for
any minimum on time to have expired. The Present_Value of the object is set to INACTIVE at a priority P9. Before
Minimum_Off_Time expires, Present_Value is written with values of ACTIVE and NULL at Priorities P9 and P7, where
P7 is a priority between P9 and 6. The Priority Array is monitored to verify that it contains the appropriate values and
Present_Value is monitored to verify that it does not change before Minimum_Off_Time expires.

Test Step(s) > StT"";tstOf 1-3 46 7-10 11-15 16
Present_Value Active Inactive Inactive Inactive Inactive Active
PA Index =6 Null Inactive Inactive Inactive Inactive <>Inactive
PA_Index = P7 Null Null Null Active Active Active
PA Index = P9 Null Inactive Null Null Active Active
Relinquish_Default | Active Active Active Active Active Active
Note: Bold font indicates the End of
change invoked by write operation Minimum_Off_Time Test

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority Array from P9
and higher (numerically lesser) have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_Off_Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

1. WRITE Present_Value = INACTIVE, PRIORITY = P9

2. VERIFY Present_Value = INACTIVE

3. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX =6
4. WRITE Present_Value = NULL, PRIORITY =P9

5. VERIFY Present_Value = INACTIVE

6. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX =6

--...(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY_INDEX =6 or PV)

7. WRITE Present_Value = ACTIVE, PRIORITY =P7 (6 < P7 < P9)

8. VERIFY Present_Value = INACTIVE

9. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = P7

10. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX =6

--...(Steps 7-10:Check that an ACTIVE value at P7 does not affect ARRAY_INDEX =6 or PV)

24

BACnet Testing Laboratories - Specified Tests

11. WRITE Present_Value = ACTIVE, PRIORITY =P9

12. VERIFY Present_Value = INACTIVE

13. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = P9

14. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX =6

--...(Steps 11-14:Check that an ACTIVE value at P9 does not affect ARRAY_INDEX =6 or PV)
15. WAIT (Minimum_Off_Time + Internal Processing Fail Time)

16. VERIFY Present_Value = ACTIVE

7.3.1.6.3 Minimum On Time - Writing at priorities numerically greater than 6
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that commands written at a lower priority than 6 will not affect Present Value while
Minimum_On_Time is in effect.

Test Concept: The initial Present Value of the object tested is set to INACTIVE and it is controlled by the
Relinquish_Default value or at a priority numerically greater (lower priority) than P9 (P9 > 7). The object has been in this
state long enough for any minimum off time to have expired. The Present_Value of the object tested is set to ACTIVE at a
priority P9. Before Minimum_On_Time expires, Present_Value is written with values of ACTIVE and NULL at Priorities
P9 and P7, where P7 is a priority between P9 and 6. The Priority_Array is monitored to verify that it contains the
appropriate values and Present_Value is monitored to verify that it does not change before Minimum_On_Time expires.

Test Step(s) > St?ggff 1-3 4-6 7-10 11-15 16
Present_Value Inactive Active Active Active Active Inactive
PA Index =6 Null Active Active Active Active <>Active
PA_Index = P7 Null Null Null Inactive Inactive Inactive
PA Index = P9 Null Active Null Null Inactive Inactive
Relinquish_Default | Inactive Inactive Inactive Inactive Inactive Inactive

Note: Bold font indicates the
change invoked by write
operation

End of
Test

Y

Minimum_On_Time

Configuration Requirements: The object to be tested shall be configured such that all slots from P9 and higher (humerically
lesser) in the Priority_Array have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_On_Time must be configured with a large enough value to allow execution of test steps 1-14 before it expires.

Test Steps:

WRITE Present_Value = ACTIVE, PRIORITY =P9
VERIFY Present_Value = ACTIVE
VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6
WRITE Present_Value = NULL, PRIORITY = P9
VERIFY Present_Value = ACTIVE
VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX =6
...(Steps 4-6:Check that a NULL value at P9 does not affect ARRAY _INDEX =6 or PV)
WRITE Present_Value = INACTIVE, PRIORITY = P7 (6 < P7 < P9)
VERIFY Present_Value = ACTIVE
VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = P7

RN S

© © ~

25

BACnet Testing Laboratories - Specified Tests

10. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX =6

--...(Steps 7-10:Check that an INACTIVE value at P7 does not affect ARRAY _INDEX = 6 or PV)
11. WRITE Present_Value = INACTIVE, PRIORITY =P9

12. VERIFY Present Value = ACTIVE

13. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = P9

14. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX =6

--...(Steps 11-14:Check that an INACTIVE value at P9 does not affect ARRAY_INDEX = 6 or PV)
15. WAIT (Minimum_On_Time + Internal Processing Fail Time)

16. VERIFY Present_Value = INACTIVE

7.3.1.6.4 Minimum Off Time - Writing at priorities numerically lesser than 6
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority
and minimum off time is in effect.

Test Concept: The initial Present_Value of the object tested is set to ACTIVE and it is controlled by the Relinquish_Default
value or at a priority numerically greater (lower priority) than 6. The object has been in this state long enough for any
minimum on time to have expired. The Present_ Value of the object tested is set to INACTIVE at a priority P5 (P5 < 6).
Before Minimum_Off_Time expires, Present_Value is written with values of NULL and ACTIVE and the Present_Value
and Priority_Array properties are observed for correct behavior.

Test Steps > Start of Test 1-3 4-7 8-11
Present Value Active Inactive Inactive Active
PA_Index = P5 Null Inactive Null Active
PA Index =6 Null Inactive Inactive <>Inactive
Relinquish_Default | Active | Active Active Active
Note: Bold font indicates the Y
change invoked by write operation Minimum Off Time

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array higher
(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_Off_Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present_Value = INACTIVE, PRIORITY =P5

2. VERIFY Present_Value = INACTIVE

3. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX =6
4. WRITE Present_Value = NULL, PRIORITY =P5

5. VERIFY Present_Value = INACTIVE

6. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX =6
7. VERIFY Priority_ Array = NULL, ARRAY_INDEX =P5
--...(Steps 4-7:Check that a NULL value at P5 will NOT change ARRAY_INDEX =6 or PV)
8. WRITE Present_Value = ACTIVE, PRIORITY = P5

9. VERIFY Present_Value = ACTIVE

10. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX = P5
11. VERIFY Priority_ Array <> INACTIVE, ARRAY_INDEX =6

26

BACnet Testing Laboratories - Specified Tests

--...(Steps 8-11:Check that an ACTIVE value at P5 will change ARRAY _INDEX = 6 and PV)

7.3.1.6.5 Minimum On Time - Writing at priorities numerically lesser than 6
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the value at priority 6 contains the appropriate value when commands are written at a higher priority
and minimum on time is in effect.

Test Concept: The initial Present Value of the object tested is set to INACTIVE and it is controlled by the
Relinquish_Default value or at a priority numerically greater (lower priority) than 6. The object has been in this state long
enough for any minimum off time to have expired. The Present_Value of the object tested is set to ACTIVE at a priority
P5 (P5 < 6). Before Minimum_On_Time expires, Present_Value is written with values of NULL and INACTIVE and the
Present_Value and Priority_Array properties are observed for correct behavior.

Test Steps > St?gtsff 1-3 47 8-11
Present_Value Inactive Active Active Inactive
PA_Index = P5 Null Active Null Inactive
PA Index =6 Null Active Active <>Active
Relinquish_Default | Inactive Inactive Inactive Inactive

N /

Note: Bold font indicates the
change invoked by write operation

N

Minimum_On_Time

Configuration Requirements: The object to be tested shall be configured such that all slots in the Priority_Array higher
(numerically lesser) than 6 have a value of NULL and no internal algorithms are issuing commands to this object.
Minimum_On_Time must be configured with a large enough value to allow execution of the test steps before it expires.

Test Steps:

1. WRITE Present_Value = ACTIVE, PRIORITY =P5

2. VERIFY Present_Value = ACTIVE

3. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6

4. WRITE Present_Value = NULL, PRIORITY =P5

5. VERIFY Present_Value = ACTIVE

6. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6

7. VERIFY Priority_ Array = NULL, ARRAY_INDEX = P5

--...(Steps 4-7:Check that a NULL value at P5 will NOT change ARRAY _INDEX =6 or PV)
8. WRITE Present_Value = INACTIVE, PRIORITY = P5

9. VERIFY Present_Value = INACTIVE

10. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = P5

11. VERIFY Priority_ Array <> ACTIVE, ARRAY_INDEX =6

--...(Steps 8-11:Check that an INACTIVE value at P5 will change ARRAY_INDEX = 6 and PV)

7.3.1.6.6 Minimum_Off_Time - Clock is not affected by additional write operations
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the Minimum_Off_Time timer is not affected by subsequent write operations that do not cause
present-value to change.

27

BACnet Testing Laboratories - Specified Tests

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present_Value of the object is written to INACTIVE at priority P8, such that present-value and
slot 6 in the priority-array change to INACTIVE. At time T1, which occurs before minimum off time expires, another
write request, at priority P9, with a value of INACTIVE, is executed by the device. After minimum off time expires but
before T1 + Minimum_Off_Time, slot 6 in the priority-array is checked to verify that it returned to NULL and was not
affected by the second request.

Test Step(s) > 1-2 3-4 5-8 9
Present Value Active Inactive Inactive Inactive
PA_Index = P6 Null Inactive Inactive Null
PA_Index = PX8 Null Inactive Inactive Inactive
PA_Index = P¥9 Null Null Inactive Inactive

N /)

Note: Bold font indicates the
change invoked by write operation

Y

Minimum Off Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and
slot 6 in the Priority_Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically) than
any other commanding priority.

Test Steps:

1. VERIFY Present_Value = ACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX =6

3. WRITE Present_Value = INACTIVE, PRIORITY =P8

4. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6
--...(Execute step 5 at time T1)

5. WRITE Present_Value = INACTIVE, PRIORITY = P¥9
--...(Execute steps 6 and 7 before Minimum_Off_Time expires)
6. VERIFY Present_Value = INACTIVE

7. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX =6
8. WAIT for Minimum_Off_Time to expire

--...(Execute step 9 before T1 + Minimum_Off_Time)

9. VERIFY Priority_ Array = NULL, ARRAY_INDEX =6

Notes to Tester: P8 and P9 may assume any value in the Priority_Array (except 6) and may be equal.

7.3.1.6.7 Minimum_On_Time - Clock is not affected by additional write operations
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the Minimum_On_Time timer is not affected by subsequent write operations that do not cause
present-value to change.

28

BACnet Testing Laboratories - Specified Tests

Test Concept: The initial Present_Value of the object being tested is set to INACTIVE and the value at slot 6 in the
priority-array has a value of NULL. Present Value of the object is written to ACTIVE, at priority P8, such that present-
value and slot 6 in the priority-array change to ACTIVE. At time T1, which occurs before minimum on time expires,
another write request, at priority P9, with a value of ACTIVE, is executed by the device. After minimum on time expires
but before T1 + Minimum_On_Time, Sslot 6 in the priority-array is checked to verify that it returned to NULL and was not
affected by the second request.

Test Step(s) = 1-2 3-4 5-8 9
Present_Value Inactive Active Active Active
PA_Index = P6 Null Active Active Null
PA_Index = P8 Null Active Active Active
PA_Index = P9 Null Null Active Active

N)

Note: Bold font indicates the
change invoked by write operation

e

Minimum On Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE
and slot 6 in the Priority_Array has a value of NULL. P8 and P9 are selected such that they are higher (lesser numerically)
than any other commanding priority.

Test Steps:

1. VERIFY Present_Value = INACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX =6
3. WRITE Present_Value = ACTIVE, PRIORITY =P8

4. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6
--...(Execute step 5 at time T1)

5. WRITE Present_Value = ACTIVE, PRIORITY = P9
--...(Execute steps 6 and 7 before Minimum_On_Time expires)
6. VERIFY Present_Value = ACTIVE

7. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6
8. WAIT for Minimum_On_Time to expire

--...(Execute step 9 before T1 + Minimum_On_Time)

9. VERIFY Priority_ Array = NULL, ARRAY_INDEX =6

Notes to Tester: P8 and P9 may assume any value in the Priority_Array (except 6) and may be equal.

7.3.1.6.8 Ensuring Minimum_Off_Time starts at transition to INACTIVE
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that Minimum_Off_Time does not start immediately after a write operation while Minimum_On_Time
is in effect and present-value is ACTIVE.

Test Concept: The initial Present Value of the object being tested is set to INACTIVE and the value at slot 6 in the
priority-array has a value of NULL. Present Value of the object is written to ACTIVE at P9, where P9 is a priority
between 7 and 16, such that present-value and slot 6 in the priority-array change to ACTIVE. Before Minimum_On_Time
expires, Present_Value is written to INACTIVE at P7, where P7 is a priority between 7 and P9, such that Present_Value

29

would change if Minimum_On_Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals

BACnet Testing Laboratories - Specified Tests

to ensure that it contains the appropriate value. Time references T1 and T2 are defined for this test as follows:
T1 = the time when the INACTIVE request is executed by the device + Minimum_Off_Time

T2 = the time when the ACTIVE request is executed by the device + Minimum_On_Time + Minimum_Off_Time

Test Steps > 1-2 3-5 6-9 10-11 12-13 14-15
Present_Value Inactive Active Active Inactive Inactive Inactive
PA Index =6 Null Active Active Inactive Inactive Null
PA_Index = P7 Null Null Inactive Inactive Inactive Inactive
PA_Index = P9 Active Active Active Active Active
Note: Bold font indicates the \ Y j

change invoked by write operation Minimum_On_Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to INACTIVE
and slot 6 in the Priority_Array has a value of NULL. The object being tested must also be configured with
Minimum_On_Time and Minimum_Off_Time values sufficiently large enough to allow execution of this test. If no object

exists with both Minimum_On_Time and Minimum_Off_Time properties, this test shall be skipped.

Test Steps:

1. VERIFY Present_Value = INACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX =6
3. WRITE Present_Value = ACTIVE, PRIORITY = P9

4. VERIFY Present_Value = ACTIVE

5. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6

--...(Execute steps 6 through 7 before Minimum_On_Time expires)
WRITE Present_Value = INACTIVE, PRIORITY = P7

7. VERIFY Present_Value = ACTIVE

8. VERIFY Priority_Array = ACTIVE, ARRAY_INDEX =6

9. WAIT for Minimum_On_Time to expire

--...(Execute steps 10 and 11 before T1)

10. VERIFY Present_Value = INACTIVE

11. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX = 6
--...(Execute step 12 between T1 and T2

12. VERIFY Present_Value = INACTIVE

13. VERIFY Priority_ Array = INACTIVE, ARRAY_INDEX =6
--..(Execute step 14 and 15 after T2)

14. VERIFY Present_Value = INACTIVE

15. VERIFY Priority_Array = NULL, ARRAY_INDEX =6

o

Notes to Tester: P9 and P7 may be equal.

7.3.1.6.9 Ensuring Minimum_On_Time starts at transition to ACTIVE
Reason for Change: This test is not specified in any SSPC proposal.

30

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that Minimum_On_Time does not start immediately after a write operation while Minimum_Off_Time
is in effect and present-value is INACTIVE.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present_Value of the object is written to INACTIVE at P9, where P9 is a priority between 7
and 16, such that present-value and slot 6 in the priority-array change to INACTIVE. Before Minimum_Off_Time expires,
Present_Value is written to ACTIVE at P7, where P7 is a priority between 7 and P9, such that Present_Value would change
if Minimum_Off_Time were not in effect. Slot 6 in the priority-array is monitored at specific time intervals to ensure that it
contains the appropriate value. Time references T1 and T2 are defined for this test as follows:

T1 = the time when the ACTIVE request is executed by the device + Minimum_On_Time

T2 = the time when the INACTIVE request is executed by the device + Minimum_Off_Time + Minimum_On_Time

Test Steps > 1-2 3-5 6-9 10-11 12-13 14-15
Present_Value Active Inactive Inactive Active Active Active
PA Index =6 Null Inactive Inactive Active Active Null
PA_Index = P7 Null Null Active Active Active Active
PA_Index = P9 Inactive | Inactive Inactive Inactive Inactive

Note: Bold font indicates the y T1 T2

change invoked by write operation .. .
geinv y Write operali Minimum_On_Time

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and
slot 6 in the Priority Array has a value of NULL. The object being tested must also be configured with
Minimum_On_Time and Minimum_Off_Time values sufficiently large enough to allow execution of this test. If no object
exists with both Minimum_On_Time and Minimum_Off_Time properties, this test shall be skipped.

Test Steps:

1. VERIFY Present_Value = ACTIVE

2. VERIFY Priority_ Array = NULL, ARRAY_INDEX =6

3. WRITE Present_Value = INACTIVE, PRIORITY = P9

4. VERIFY Present_Value = INACTIVE

5. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX = 6

--...(Execute steps 6 through 7 before Minimum_Off_Time expires)
WRITE Present_Value = ACTIVE, PRIORITY = P7

7. VERIFY Present_Value = INACTIVE

8. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX =6
9. WAIT for Minimum_Off_Time to expire

--...(Execute steps 10 and 11 before T1)

10. VERIFY Present_Value = ACTIVE

11. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX =6
--...(Execute step 12 between T1 and T2

12. VERIFY Present_Value = ACTIVE

13. VERIFY Priority_ Array = ACTIVE, ARRAY_INDEX = 6
--..(Execute step 14 and 15 after T2)

14. VERIFY Present_Value = ACTIVE

15. VERIFY Priority_Array = NULL, ARRAY_INDEX = 6

Sk

Notes to Tester: P9 and P7 may be equal.

31

BACnet Testing Laboratories - Specified Tests

7.3.1.6.10 Ensuring Minimum Times Are Not Effected By Time Changes
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that minimum times are not affected by changing the time in a device via TimeSynchronization or
UTCTimeSynchronization requests.

Test Concept: The initial Present_Value of the object being tested is set to ACTIVE and the value at slot 6 in the priority-
array has a value of NULL. Present_Value of the object is written to INACTIVE such that present-value and slot 6 in the
priority-array change to INACTIVE. Before Minimum_Off Time expires, the time is changed to a value T1 which is more
than Minimum_Off_Time in the future and Present_Value and Slot 6 in the priority-array are read to verify that they were
not affected by the time change. After Minimum_Off_Time expires, slot 6 in the priority-array is read again to verify that it
is no longer INACTIVE.

Configuration Requirements: The object to be tested shall be configured such that the present value is set to ACTIVE and
slot 6 in the Priority_Array has a value of NULL. If the IUT does not support TimeSynchronization or UTC-
TimeSynchronization, then this test shall be omitted.

Test Steps:
1. VERIFY Present_Value = ACTIVE
2. VERIFY Priority_ Array = NULL, ARRAY_INDEX =6
3. WRITE Present_Value = INACTIVE
4. VERIFY Present_Value = INACTIVE
5. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX =6
6. TRANSMIT
DA = GLOBAL BROADCAST,
SA=TD
BACnet-Unconfirmed-Request-PDU,
‘Service Choice’ = TimeSynchronization-Request,
Date = T1,
Time = T1
7. TRANSMIT
DA = GLOBAL BROADCAST,
SA=TD
BACnet-Unconfirmed-Request-PDU,
‘Service Choice’ = UTC-TimeSynchronization-Request,
Date = T1,
Time = T1

8. VERIFY Priority_Array = INACTIVE, ARRAY_INDEX =6
9. WAIT (the remainder of Minimum_Off_Time)
10. VERIFY Priority_Array <> INACTIVE, ARRAY_INDEX =6

Notes to Tester: The test above is written for Minimum_Off_Time. To execute this test for Minimum_On_Time, use
INACTIVE

32

BACnet Testing Laboratories - Specified Tests

7.3.1.7 COV Tests

7.3.1.7.X1 COV_Resubscription_Interval Test
Reason for Change: No existing test in the standard.

Dependencies: Confirmed Notifications Subscription, 8.10.1.
BACnet Reference Clause: 12.25.10 and 12.50.15.

Purpose: To verify that object O1 acquiring data via COV notification reissues its subscription at the interval set by
COV_Resubscription_Interval.

Test Concept: O1 is configured to acquire data from the TD by COV notification. The TD verifies the resubscription
interval.

Configuration RequirementsOL1 is configured to acquire data from TD by COV notification. Non-zero values shall be
chosen for COV_Resubscription_Interval in accordance with the range and resolution specified by the manufacturer for this
property.

Test Steps:

1. IF (the IUT uses SubscribeCOV) THEN
RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' = (SPI1, any value),
'‘Monitored Object Identifier' = (MOI1, the object to be monitored),
‘Issue Confirmed Notifications' = (ICN1 = TRUE | FALSE),
‘Lifetime' = (L1, any value >= COV_Resubscription_Interval)
ELSE
RECEIVE SubscribeCOVProperty-Request,
‘Subscriber Process Identifier' = (SPI1, any value),
'‘Monitored Object Identifier' = (MOI1, the object to be monitored),
‘Issue Confirmed Notifications' = (ICN1 = TRUE | FALSE),
‘Lifetime' = (L1, any value >= COV_Resubscription_lInterval),
'‘Monitored Property Identifier' = (MPI1, the property to be monitored),
'COV Increment' = (CI1, Client_COV_Increment -- optional)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = SPI1,

'Initiating Device Identifier' = TD,

'‘Monitored Object Identifier' = MOI1,

'Issue Confirmed Notifications' = ICN1,

‘Time Remaining' = (any value <= L1),

‘List of Values' = (appropriate BACnetPropertyValue(s))

4. RECEIVE BACnet-SimpleACK-PDU
5. BEFORE (the lesser of COV_Resubscription_Interval + Re-subscription Interval Tolerance and L1LifeTFime-from-step
1)
IF (the IUT uses SubscribeCOV)
RECEIVE SubscribeCOV-Request,

‘Subscriber Process Identifier' = SPI1,

'‘Monitored Object Identifier' = MOI1,

‘Issue Confirmed Notifications' = ICN1,

'Lifetime' = (L2, any value >= COV_Resubscription_Interval)

33

BACnet Testing Laboratories - Specified Tests

ELSE
RECEIVE SubscribeCOVProperty-Request,
‘Subscriber Process ldentifier' = SPI1,
'‘Monitored Object Identifier' = MOI1,
‘Issue Confirmed Notifications' = ICN1,
‘Lifetime' = (L2, any value >= COV_Resubscription_lInterval)
‘Monitored Property Identifier' = MPI1,
'‘COV Increment' = Ci1

6. TRANSMIT BACnet-SimpleACK-PDU
7. TRANSMIT ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = SPI1,

‘Initiating Device Identifier' = TD,

'‘Monitored Object Identifier' = MOI1,

‘Issue Confirmed Notifications' = ICN1,

‘Time Remaining' = (any value <= L2),

‘List of Values' = (appropriate BACnetPropertyValue(s))

8. RECEIVE BACnet-SimpleACK-PDU
9. WAIT (COV_Resubscription_Interval - Re-subscription Interval Tolerance)
10. BEFORE (2 * Re-subscription Interval Tolerance)
IF (the IUT uses SubscribeCOV)
RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' = SPI1,
'‘Monitored Object Identifier' = MOI1,
‘Issue Confirmed Notifications' = ICN1,
'Lifetime' = L1
ELSE
RECEIVE SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = SPI1,
'Monitored Object Identifier' = MOI1,
'Issue Confirmed Notifications' = ICN1,
‘Lifetime' = L1;
‘Monitored Property Identifier' = MPI1,
'COV Increment' = Cl1

11. TRANSMIT BACnet-SimpleACK-PDU

Passing Result: Where the Lifetime parameter of a SubscribeCOV request is less than COV_Resubscription_Interval +
Re-subscription Interval Tolerance, the IUT shall send the subsequent SubscribeCOV request within Lifetime seconds even
though this is a smaller time window than defined by the test. If the IUT does not meet this stricter time window, then the
IUT shall fail the test.

7.3.1.9 Binary Object Elapsed Active Time Tests
Reason for Change: Errors were pointed out via BTL-CR-0253.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.6.17, 12.6.18, 12.7.17, 12.7.18, 12.8.15, and 12.8.16.

Purpose: To verify that the properties of binary objects that collectively track active time function properly. If the
Elapsed Active_Time and Time_Of Active_Time_Reset properties are not supported then this test shall be omitted. This
test applies to Binary Input, Binary Output, and Binary Value objects.

Test Concept: The Present Value of the binary object being tested is set to INACTIVE. The Elapsed_Active_Time

property is checked to verify that it does not accumulate time while the object is in an INACTIVE state. The Present_Value
is then set to ACTIVE. The Elapsed_Active_Time property is checked to verify that it is accumulating time while the

34

BACnet Testing Laboratories - Specified Tests

object is in an ACTIVE state. The Present_Value is then set to INACTIVE and the Elapsed_Active_Time is reset. The

Time_Of_Active_Time_Reset property is checked to verify that it has been updated.

Configuration Requirements: The object being tested shall be configured such that the Present Value and

Elapsed_Active_Time properties are writable or another means of changing these properties shall be provided.
Test Steps:

1. IF (Present_Value is writable) THEN
WRITE Present_Value = INACTIVE
VERIFY Present_Value = INACTIVE

ELSE
MAKE (Present_Value = INACTIVE)
2. TRANSMIT ReadProperty-Request,

‘Object Identifier' = (the object being tested),
‘Property Identifier' = Elapsed_Active_Time
3. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the object being tested),
'Property Identifier' = Elapsed_Active_Time,
'Property Value' = (the elapsed active time, T apsep in Seconds)

4. WAIT (1 minute)
5. TRANSMIT ReadProperty-Request,

'Object Identifier' = (the object being tested),
'Property Identifier' = Elapsed_Active_Time

6. RECEIVE ReadProperty-ACK,
'Object Identifier' = (the object being tested),
'Property Identifier' = Elapsed_Active _Time,
‘Property Value' = (the same Tgapsep as Step 3)

7. IF (Present_Value is writable) THEN
WRITE Present_Value = ACTIVE
VERIFY Present Value = ACTIVE

ELSE
MAKE (Present_Value = ACTIVE)

WAIT (Internal Processing Fail Time + 30 seconds)

9. IF (Present_Value is writable) THEN

WRITE Present_Value = INACTIVE
VERIFY Present_Value = INACTIVE
ELSE
MAKE (Present_Value = INACTIVE)
10. TRANSMIT ReadProperty-Request,

®

‘Object Identifier' = (the object being tested),
'Property Identifier' = Elapsed_Active_Time
11. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the object being tested),
'Property Identifier' = Elapsed_Active_Time,
‘Property Value' = (T: (TeLapsep + 30) < T < (Terapsep + TimeX, where TimeX is the time between the
beginning of step 7 and this step30—+tnternal-Processing-Fail- Fime))
—— WRITE Present—Value =—INACHNVE
—— VERIFY Present-Valie = INACTI/E
—ELSE

12. IF (Elapsed_Active_Time is writable) THEN
WRITE Elapsed_Active_Time =0
VERIFY Elapsed_Active_Time =0

ELSE

35

BACnet Testing Laboratories - Specified Tests

MAKE (Elapsed_Active_Time = 0)
13. TRANSMIT ReadProperty-Request,

'Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Date
14. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local Date,
'Property Value' = (the current local date, D)
15. TRANSMIT ReadProperty-Request,
‘Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Time
16. RECEIVE ReadProperty-ACK,
'‘Object Identifier' = (the 1IUT's Device object),
'Property Identifier' = Local_Time,
'Property Value' = (the current local time, Ty oc)
17. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the object being tested),
'Property Identifier' = Time_Of Active_Time_Reset
18. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the object being tested),
'Property Identifier' = Present—ValueTime_Of Active_Time_Reset,
'Property Value' = (a date and time such that the date = D and the time is approximately T, oc)

7.3.1.10 Event_Enable Tests

7.3.1.10.1 Event_Enable Test for TO_OFFNORMAL and TO_NORMAL

Reason For Change: This test was modified to take into account the Feedback behavior that is required by the Output
objects.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation
Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.23, 12.2.24, 12.3.20, 12.5.22, 12.6.26, 12.7.24, 12.11.10, 12.14.18, 12.15.18, 12.16.33,
12.17.17,12.18.18, 12.19.18 and 12.23.23.

Purpose: To verify that notification messages are transmitted only if the bit in Event_Enable corresponding to the event
transition has a value of TRUE. This test applies to Event Enrollment objects and objects that support intrinsic reporting.

Test Concept: The IUT is configured such that the Event_Enable property indicates that some event transitions are to
trigger an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that
notification messages are transmitted only for those transitions for which the Event_Enable property has a value of TRUE.

Configuration Requirements: The Event_Enable property shall be configured with a value of TRUE for either the TO-
OFFNORMAL transition or the TO-NORMAL transition and the other event transition shall have a value of FALSE. If the
Event_Enable property is not configurable, follow the test steps as written and verify correct behavior for the value of the
Event_Enable property. For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE).
The referenced event-triggering property shall be set to a value that results in a NORMAL condition. If a Notification Class
object is being used to configure recipient information the value of the Transitions parameter for all recipients shall be
(TRUE, TRUE, TRUE).

In the test description below, "X" is used to designate the event-triggering property.
1. VERIFY Event_State = NORMAL
2. WAIT (Time_Delay + Notification Fail Time)

3. IF (Xis the Present_Value property in a Binary Output or Multi-state Output object) THEN
MAKE (the Feedback_Value property differe from the X property)

36

BACnet Testing Laboratories - Specified Tests

ELSE IF (X is writable) THEN
WRITE X = (a value that is OFFNORMAL)
ELSE
MAKE (X have a value that is OFFNORMAL)
4. WAIT (Time_Delay)
5. BEFORE Notification Fail Time
IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN
RECEIVE ConfirmedEventNotification-Request,

‘Process Identifier' = (any valid process ID),

‘Initiating Device Identifier' = [UT,

‘Event Object Identifier' = (the event-generating object configured for this test),
Time Stamp' = (the current local time),

‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
‘Event Type' = (any valid event type),

'Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

"To State' = OFFNORMAL,

‘Event Values' = (values appropriate to the event type)

ELSE
CHECK (verify that the IUT did not transmit an event notification message)
6. VERIFY Event_State = OFFNORMAL
7. IF (X is the Present_Value property in a Binary Output or Multi-state Output object) THEN
MAKE (the Feedback_Value property differe from the X property)
ELSE IF (X is writable) THEN
WRITE X = (a value that is NORMAL)
ELSE
MAKE (X have a value that is NORMAL)
WAIT (Time_Delay)
BEFORE Notification Fail Time
IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN
RECEIVE ConfirmedEventNotification-Request,

©

'Process Identifier' = (any valid process ID),

'Initiating Device Identifier' = [UT,

'Event Object Identifier' = (the event-generating object configured for this test),
Time Stamp' = (the current local time),

'Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the value configured to correspond to a TO-NORMAL transition),
‘Event Type' = (any valid event type),

'Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = OFFNORMAL,

‘To State' = NORMAL,

‘Event Values' = (values appropriate to the event type)

ELSE
CHECK (verify that the IUT did not transmit an event notification message)
10. VERIFY Event_State = NORMAL
11. IF (the event-triggering object can be placed into a fault condition) THEN {
MAKE (the event-triggering object change to a fault condition)
BEFORE Notification Fail Time
IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN

RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (any valid process ID),
‘Initiating Device ldentifier' = [UT,

37

BACnet Testing Laboratories - Specified Tests

'Event Object Identifier' = (the event-generating object configured for this test),

"Time Stamp' = (the current local time),

'Notification Class' = (the class corresponding to the object being tested),

‘Priority' = (the value configured to correspond to a TO-FAULT transition),
‘Event Type' = (any valid event type),

'Notify Type' = EVENT | ALARM,

'‘AckRequired’ = TRUE | FALSE,

'From State' = NORMAL,

"To State' = FAULT,

‘Event Values' = (values appropriate to the event type)

ELSE
CHECK (verify that the IUT did not transmit an event notification message)
VERIFY Event_State = FAULT

}

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service.
The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in
the notification messages.

7.3.1.10.2 Event_Enable Tests for TO_NORMAL only Algorithms

Reason For Change: There is an error pointed out by BTL-CR-0196, of not returning the TO_NORMAL bit of the
Event_Enable to TRUE in step 7.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation
Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that notification messages are transmitted only if the bit in Event_Enable corresponding to the event
transition has a value of TRUE. This test applies to objects that only support generation of TO_NORMAL transitions.

Test Concept: The IUT is configured such that the Event_Enable property indicates that some event transitions are to
trigger an event notification-and-some-are-not. Each event transition is triggered and the IUT is monitored to verify that
notification messages are transmitted only for those transitions for which the Event_Enable property has a value of TRUE.

Configuration Requirements: In the Notification Class object providing recipient information, the value of the Transitions
parameter for all recipients shall be (TRUE, TRUE, TRUE).

1. VERIFY Event_State = NORMAL
2. MAKE (the TO_NORMAL bit of the Event_Enable property equal to TRUE)
3. MAKE (a condition exist that would cause the object to generate a TO_NORMAL transition)
4. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNoatification-Request,
'Process ldentifier' = (any valid process ID),
‘Initiating Device ldentifier' = [UT,
‘Event Object Identifier' = (the event-generating object configured for this test),
‘Time Stamp' = (the current local time),
‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the value configured to correspond to a TO_NORMAL transition),
‘Event Type' = (any valid event type),
'Notify Type' = EVENT | ALARM,
'‘AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
"To State' = NORMAL,
‘Event Values' = (values appropriate to the event type)
5. TRANSMIT SimpleAck-PDU

38

BACnet Testing Laboratories - Specified Tests

6. VERIFY Event_State = NORMAL

7. IF (Event_Enable can be changed such that the TO_NORMAL transition is FALSE)
MAKE (the TO_NORMAL bit of the Event_Enable property equal to FALSE)
MAKE (a condition exist that would cause the object to generate a TO_NORMAL transition)
CHECK (verify that the IUT did not transmit an event notification message)
MAKE (the TO_NORMAL bit of the Event_Enable property equal to TRUE)
8. IF (the event-generating object can be placed into a fault condition) THEN

IF (Event_Enable can be modified) THEN

MAKE(Event_Enable TO_FAULT transition equal TRUE)
IF (Event_Enable TO_FAULT transition = TRUE) THEN
MAKE (the event-triggering object change to a fault condition)

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' =

'Initiating Device Identifier' =

‘Event Object Identifier' =

Time Stamp' =

'Notification Class' =

"Priority' =

‘Event Type' =

'Notify Type' =

'‘AckRequired' =

'From State' =

To State' =

‘Event Values' =
TRANSMIT SimpleAck-PDU

VERIFY Event_State = FAULT

(any valid process ID),
IUT,
(the event-generating object configured for this test),
(the current local time),
(the class corresponding to the object being tested),
(the value configured to correspond to a TO_FAULT transition),
(any valid event type),
EVENT | ALARM,
TRUE | FALSE,
NORMAL,
FAULT,
(values appropriate to the event type)

MAKE (the event-triggering object change to a normal condition)

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNoaotification-Request,

'Process Identifier' =

'Initiating Device Identifier' =

‘Event Object Identifier' =

"Time Stamp' =

‘Notification Class' =

"Priority' =

'‘Event Type' =

'Notify Type' =

'‘AckRequired' =

'From State' =

"To State' =

‘Event Values' =
TRANSMIT SimpleAck-PDU

9. IF (Event_Enable can be modified) THEN

(any valid process ID),
IUT,
(the event-generating object configured for this test),
(the current local time),
(the class corresponding to the object being tested),
(the value configured to correspond to a TO_NORMAL transition),
(any valid event type),
EVENT | ALARM,
TRUE | FALSE,
FAULT,
NORMAL,
(values appropriate to the event type)

MAKE (Event_Enable TO_FAULT transition equal FALSE)
10. IF (Event_Enable TO_FAULT transition = FALSE) THEN
MAKE (the event-triggering object change to a fault condition)

VERIFY Event_State = FAULT

CHECK (verify that the IUT did not transmit an event notification message)
MAKE (the event-triggering object change to a normal condition)

Notes to Tester: For objects that do not have a Time_Delay property, the Time_Delay value used in the test shall be 0. The
UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service, in which case the
TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent. The 'Message Text' parameter is omitted in the
test description because it is optional. The IUT may include this parameter in the notification messages.

39

BACnet Testing Laboratories - Specified Tests

7.3.1.11 Acked_Transitions Tests
Reason For Change: Corrected language of parameter descriptions.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation
Tests, 8.5; AcknowledgeAlarm Service Execution Tests, 9.1; ReadProperty Service Execution Tests, 9.18; WriteProperty
Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.1.28, 12.2.24, 12.3.25, 12.4.21, 12.6.23, 12.7.27, 12.8.25, 12.12.11, 12.15.20,
12.16.20,12.17.35, 12.18.18, 12.19.19, 12.20.19, 12.23.27 and 12.25.23.

Purpose: To verify that the Acked_Transitions property tracks whether or not an acknowledgment has been received for a
previously issued event notification. It also verifies the interrelationship between Status_Flags and Event_State. This test
applies to Event Enrollment objects and Accumulator, Analog Input, Analog Output, Analog Value, Binary Input, Binary
Output, Binary Value, Life Safety Point, Life Safety Zone, Loop, Multi-state Input, Multi-state Output, Multi-state Value,
Pulse Converter and Trend Log objects that support intrinsic reporting.

Test Concept: The IUT is configured such that the Event_Enable property indicates that all event transitions are to trigger
an event notification. The Acked_Transitions property shall have the value (TRUE, TRUE, TRUE) indicating that all
previous transitions have been acknowledged. Each event transition is triggered and the Acked_Transitions property is
monitored to verify that the appropriate bit is cleared when a notification message is transmitted and reset if an
acknowledgment is received.

Configuration Requirements: The Event Enable and Acked Transitions properties shall be configured with a value of
(TRUE, TRUE, TRUE). For analog objects the Limit_Enable property shall be configured with the value (TRUE, TRUE).
The referenced event-triggering property shall be set to a value that results in a NORMAL condition. The value of the
Transitions parameter for all recipients shall be (TRUE, TRUE, TRUE).

In the test description below, “X” is used to designate the event-triggering property.
Test Steps:

WAIT (Time_Delay + Notification Fail Time)
VERIFY Event_State = NORMAL
VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)
VERIFY Status_Flags = (FALSE, FALSE, ?, ?)
IF (X is writable) THEN

WRITE X = (a value that is OFFNORMAL)
ELSE

MAKE (X have a value that is OFFNORMAL)
6. WAIT (Time_Delay)
7. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

agrwnE

'Process Identifier' = (any valid process ID),

‘Initiating Device Identifier' = IUT,

‘Event Object Identifier' = (the event-generating object configured for this test),

Time Stamp' = (any valid time stamp),

‘Notification Class' = (the class corresponding to the object being tested),

‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL

transition),

'‘Event Type' = (any valid event type),

‘Notify Type' = (the notify type configured for this event),

'AckRequired' = TRUE,

'From State' = NORMAL,

"To State' = OFFNORMAL,

'Event Values' = (values appropriate to the event type)

8. TRANSMIT BACnet-SimpleACK-PDU

40

BACnet Testing Laboratories - Specified Tests

9. VERIFY Event_State = OFFNORMAL
10. VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)
11. VERIFY Status_Flags = (TRUE, FALSE, ?, ?
12. IF (X is writable) THEN

WRITE X = (a value that is NORMAL)

ELSE

MAKE (X have a value that is NORMAL)
13. WAIT (Time_Delay)
14. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process 1D),

‘Initiating Device ldentifier' = IUT,

‘Event Object Identifier' = (the event-generating object configured for this test),
Time Stamp' = (any valid time stamp),

‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the value configured to correspond to a TO-NORMAL transition),
'‘Event Type' = (any valid event type),

‘Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,

'From State' = OFNORMAL,

"To State' = NORMAL,

‘Event Values' = (values appropriate to the event type)

15. TRANSMIT BACnet-SimpleACK-PDU
16. VERIFY Event_State = NORMAL
17. VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)
18. VERIFY Status_Flags = (FALSE, FALSE, ?,?
19. IF (the event-triggering object can be placed into a fault condition) THEN
20. MAKE (the event-triggering object change to a fault condition)
21. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

‘Process Identifier' =
'Initiating Device Identifier' =
‘Event Object Identifier' =

(any valid process 1D),
IUT,
(the event-generating object configured for this test),

‘Time Stamp' = (any valid time stamp),

‘Notification Class' = (the class corresponding to the object being tested),

‘Priority' = (the value configured to correspond to a TO-FAULT transition),
'Event Type' = (any valid event type),

'‘Notify Type' = (the notify type configured for this event),

'‘AckRequired' = TRUE,

'From State' = NORMAL,

"To State' = FAULT,

‘Event Values' =

(values appropriate to the event type)

22. TRANSMIT BACnet-SimpleACK-PDU

23. VERIFY Event_State = FAULT

24, VERIFY Acked_Transitions = (FALSE, FALSE, FALSE)

25. VERIFY Status_Flags = (TRUE, TRUE, ?,?

26. MAKE (the event-triggering object change to a normal condition)
217. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
‘Initiating Device ldentifier' =
'Event Object Identifier' =

(any valid process ID),
1UT,
(the event-generating object configured for this test),

‘Time Stamp' = (any valid time stamp),

‘Notification Class' = (the class corresponding to the object being tested),

"Priority’ = (the value configured to correspond to a TO-NORMAL transition),
‘Event Type' = (any valid event type),

4

28.
29.
30.
3L
32.

33.
34.

35.
36.
. TRANSMIT AcknowledgeAlarm-Request,

37

38
39

BACnet Testing Laboratories - Specified Tests

'‘Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,

'From State' = FAULT,

"To State' = NORMAL,

'Event Values' = (values appropriate to the event type)

TRANSMIT BACnet-SimpleACK-PDU
VERIFY Event_State = NORMAL
VERIFY Acked_Transitions = (FALSE, FALSE, FALSE)
VERIFY Status_Flags = (FALSE, FALSE, ?, ?
TRANSMIT AcknowledgeAlarm-Request,
'‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' in step 21),

‘Event Object Identifier' = (the 'Event Object Identifier' in step 21),
'Event State Acknowledged' = FAULT,

Time Stamp' = (the 'Time Stamp' in step 21),

‘Time of Acknowledgment' = (the TD’s current time)

RECEIVE BACnet-SimpleACK-PDU
IF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the value of the 'Process Identifier' in step 21),

‘Initiating Device Identifier'= [UT,

‘Event Object Identifier' = (the 'Event Object Identifier' in step 21),

"Time Stamp' = (the current time or sequence numberTFime-Stamp-in-step-21),
'Notification Class' = (the 'Notification Class' in step 21),

"Priority’ = (the 'Priority" in step 21),

'Event Type' = (the 'Event Type' in step 21),

'Notify Type' = ACK_NOTIFICATION,

"To State' = FAULT

ELSE
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the value of the 'Process Identifier' in step 21),

‘Initiating Device ldentifier' = [UT,

‘Event Object Identifier' = (the 'Event Object Identifier' in step 21),

"Time Stamp' = (the current time or sequence numberTFime-Stamp-in-step-21),
'Notification Class' = (the 'Notification Class' in step 21),

"Priority’ = (the 'Priority" in step 21),

'Event Type' = (the 'Event Type' in step 21),

'Notify Type' = ACK_NOTIFICATION

TRANSMIT BACnet-SimpleACK-PDU
VERIFY Acked_Transitions = (FALSE, TRUE, FALSE)

'‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' in step 27),
'Event Object Identifier' = (the 'Event Obiject Identifier' in step 27),
‘Event State Acknowledged' = NORMAL,

Time Stamp' = (the 'Time Stamp' in step 27),

Time of Acknowledgment' = (the TD’s current time)

. RECEIVE BACnet-SimpleACK-PDU
. IF (Protocol_Revision is present and Protocol Revision > 1) THEN

BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the value of the 'Process Identifier' in step 27),
‘Initiating Device ldentifier' = IUT,

‘Event Object Identifier' = (the 'Event Object Identifier' in step 27),

‘Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the 'Notification Class' in step 27),

42

BACnet Testing Laboratories - Specified Tests

"Priority' = (the 'Priority" in step 27),
'Event Type' = (the 'Event Type' in step 27),
'Notify Type' = ACK_NOTIFICATION,

"To State' = NORMAL

ELSE
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the value of the 'Process Identifier' in step 27),
‘Initiating Device ldentifier' = IUT,
‘Event Object Identifier' = (the 'Event Object Identifier' in step 27),
Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the 'Notification Class' in step 27),
‘Priority’ = (the 'Priority" in step 27),
‘Event Type' = (the 'Event Type' in step 27),
'Notify Type' = ACK_NOTIFICATION

40. TRANSMIT BACnet-SimpleACK-PDU
41. VERIFY Acked_Transitions = (FALSE, TRUE, TRUE)
42. TRANSMIT AcknowledgeAlarm-Request,

'‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' in step 7),
'Event Object Identifier' = (the 'Event Object Identifier' in step 7),
‘Event State Acknowledged' = OFFNORMAL,

‘Time Stamp' = (the "Time Stamp' in step 7),

‘Time of Acknowledgment' = (the TD’s current time)

43. RECEIVE BACnet-SimpleACK-PDU
44. TF (Protocol Revision is present and Protocol Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (the value of the 'Process Identifier' in step 7),
‘Initiating Device ldentifier' = IUT,

‘Event Object Identifier' = (the 'Event Object Identifier' in step 7),

‘Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the "'Notification Class' in step 7),

"Priority' = (the "Priority" in step 7),

‘Event Type' = (the 'Event Type' in step 7),

'Notify Type' = ACK_NOTIFICATION,

"To State' = OFFNORMAL

ELSE
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the value of the 'Process Identifier' in step 7),

‘Initiating Device ldentifier' = IUT,

‘Event Object Identifier' = (the 'Event Object Identifier' in step 7eurrent-time-or-sequence
number),

"Time Stamp' = (the current time or sequence numberTFime-Stamp-in-step-7),

'Notification Class' = (the 'Notification Class' in step 7),

"Priority' = (the 'Priority" in step 7),

'Event Type' = (the 'Event Type' in step 7),

‘Notify Type' = ACK_NOTIFICATION

45. TRANSMIT BACnet-SimpleACK-PDU
46. VERIFY Acked_Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification

service. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this
parameter in the notification messages.

43

BACnet Testing Laboratories - Specified Tests

7.3.1.13 Limit_Enable Tests

ELSE

El SE
SIS

OUT OF RANGE

o

'Evvant Tuna'

LAYAALE A4 =71

ALARMM |_I:\II:|\IT

—
NIV V BTN
TRUEIEALSE

Vet T ypPe

'Notifv-Tvpa' —
NOHHY—-Ype

'AckRaauired"

LIRS =4 = B aaY =4 =1}

NORMAI

LAAANANT" A= LA~

LA A4 RYAAT SNy =

'Cram Stata' —
=Fomotate

'To Stata' —

o E=Hvi

HIGH | INMUT

44

oo tatc

ELSE

BACnet Testing Laboratories - Specified Tests

Cram Stata' — HIGH | IMIT
o otate FH ST =V

'"To State' — NORMAIL
ootate NGV YL

45

BACnet Testing Laboratories - Specified Tests

46

BACnet Testing Laboratories - Specified Tests

El SE
SIS

ELSE

El SE
IS

LALAALE A4 =71

T

OUT OF RANGE

T

'Evvant Tuna' —

Vet T ypPe

El SE
IS

LAYAALE A4 =71

T

OUT OF RANGE

T

'Evvant Tuna' —

Vet T ypPe

LOW L INMUT

=Ty

'Cram Stata' —

=LA AN B

NORMAI

T o otate

'"To Stata' —
+0—otate

TN TV Y

ELSE

47

BACnet Testing Laboratories - Specified Tests

7.3.1.13.X1 Limit_Enable Test, LowLimitEnable
Reason for Change: New test to reduce scope of original test and simplify.

Purpose: To verify that the LowLimitEnable flag in the Limit_Enable property correctly enables or disables reporting of out
of range events. This test applies to objects with a Limit_Enable property.

Test Concept: The LowLimitEnable flag is set to true in the Limit_Enable property and the event-triggering property is
manipulated to cause the low limit to be exceeded. This should generate an event notification and make Event_State =
Low_Limit. After the event-triggering property is returned to a normal value, the LowLimitEnable flag is the set to false
and the event-triggering property is again manipulated to exceed the low limit. No event notification should be observed
and the Event_State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit and pDeadband values such that
pLowLimit + pDeadband < pHighLimit and both the pLowLimit and pHighLimit values are within the valid range of
values for the event-triggering property. If the device cannot be configured with limit values that meet these conditions,
then this test shall be skipped. The Event Enable property shall be set to (TRUE, ?, TRUE) for this test. If the
Event_Enable property cannot be configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are
TRUE, this test shall be skipped.

Test Steps:

1. MAKE pLimitEnable = (TRUE, ?)
2. VERIFY pCurrentState = NORMAL
3. MAKE (pMonitoredValue a value less than pLowLimit)
4. WAIT (pTimeDelay)
5. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),

"Initiating Device ldentifier' = IUT,

‘Event Object Identifier' = (the object configured for this test),

‘Time Stamp' = (the current local time),

‘Notification Class' = (the class corresponding to the object being tested),

‘Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = OUT_OF_RANGE,

48

BACnet Testing Laboratories - Specified Tests

‘Notify Type' = ALARM | EVENT,

'‘AckRequired' = TRUE | FALSE,

'From State’ = NORMAL,

"To State' = LOW_LIMIT,

‘Event Values' = (values appropriate to the event type)

6. TRANSMIT SimpleAck-PDU
7. VERIFY pCurrentState = LOW_LIMIT
8. MAKE (pMonitoredValue a value that is between pLowLimit + pDeadband and pHighLimit)
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process ldentifier' = (any valid process ID),
‘Initiating Device ldentifier' = IUT,
‘Event Object Identifier' = (the object configured for this test),

Time Stamp' = (the current local time),

‘Notification Class' =(the class corresponding to the object being tested),

‘Priority' = (the value configured to correspond to a TO-NORMAL transition),
‘Event Type' = OUT_OF_RANGE,

‘Notify Type' = ALARM | EVENT,

'‘AckRequired' = TRUE | FALSE,

'From State' = LOW_LIMIT,

"To State' = NORMAL,

'Event Values' = (values appropriate to the event type)

11. TRANSMIT SimpleAck-PDU

12. MAKE pLimitEnable = (FALSE, ?)

13. VERIFY pCurrentState = NORMAL

14. MAKE (pMonitoredValue a value less than pLowLimit)

15. WAIT (pTimeDelay + Notification Fail Time)

16. CHECK (verify that no notification message was transmitted)
17. VERIFY pCurrentState = NORMAL

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service
in which case the TD shall skip all of the steps in which a SimpleACK-PDU is sent. The 'Message Text' parameter is
omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.13.X2 Limit_Enable Test, HighLimitEnable
Reason for Change: New test to reduce scope of original test and simplify.

Purpose: To verify that the HighLimitEnable flag in the Limit_Enable property correctly enables or disables reporting of
out of range events. This test applies to objects with a Limit_Enable property.

Test Concept: The HighLimitEnable flag is set to true in the Limit_Enable property and the event-triggering property is
manipulated to cause the high limit to be exceeded. This should generate an event notification and make Event_State =
High_Limit. After the event-triggering property is returned to a normal value, the HighLimitEnable flag is the set to false
and the event-triggering property is again manipulated to exceed the high limit. No event notification should be observed
and the Event_State must have a value of normal.

Configuration Requirements: Configure the object with pHighLimit, pLowLimit and pDeadband values such that
pHighLimit - pDeadband > pLowLimit and both the pLowLimit and pHighLimit values are within the valid range of values
for the event triggering property. If the device cannot be configured with limit values that meet these conditions, then this
test shall be skipped. The Event_Enable property shall be set to (TRUE, ?, TRUE) for this test. If the Event_Enable
property cannot be configured such that the TO-NORMAL and the TO-OFFNORMAL transitions are TRUE, this test shall
be skipped.

Test Steps:
1. MAKE pLimitEnable = (?, TRUE)

49

BACnet Testing Laboratories - Specified Tests

. VERIFY pCurrentState = NORMAL
. MAKE (pMonitoredValue a value that exceeds pHighLimit)
. WAIT (pTimeDelay)
. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device ldentifier' = IUT,
‘Event Object Identifier' = (the object configured for this test),

g~ owN

‘Time Stamp' = (the current local time),

‘Notification Class' = (the class corresponding to the object being tested),

‘Priority’ = (the value configured to correspond to a TO-OFFNORMAL transition),
‘Event Type' = OUT_OF_RANGE,

'Notify Type' = ALARM | EVENT,

'‘AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

To State' = HIGH_LIMIT,

'‘Event Values' = (values appropriate to the event type)

. TRANSMIT SimpleAck-PDU
. VERIFY pCurrentState = HIGH_LIMIT
. MAKE (pMonitoredValue a value that is between pLowLimit and pHighLimit - pDeadband)
. WAIT (pTimeDelayNormal)
0. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (any valid process ID),

‘Initiating Device Identifier' = IUT,

'Event Object Identifier' = (the object configured for this test),

= O o0~

Time Stamp' = (the current local time),

'‘Notification Class' =(the class corresponding to the object being tested),

"Priority' = (the value configured to correspond to a TO-NORMAL transition),
‘Event Type' = OUT_OF_RANGE,

'‘Notify Type' = ALARM | EVENT,

'AckRequired' = TRUE | FALSE,

'From State' = HIGH_LIMIT,

"To State' = NORMAL,

'Event Values' = (values appropriate to the event type)

11. TRANSMIT SimpleAck-PDU

12. MAKE pLimitEnable = (?, FALSE)

13. VERIFY pCurrentState = NORMAL

14. MAKE (pMonitoredValue a value that exceeds pHighLimit)
15. WAIT (pTimeDelay + Notification Fail Time)

16. CHECK (verify that no notification message was transmitted)
17. VERIFY pCurrentState = NORMAL

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service
in which case the TD shall skip all of the steps in which a SimpleACK-PDU is sent. The 'Message Text' parameter is
omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.1.X4 Event_Message_Texts Tests
Reason For Change: 135-2008z-1. This test does not exist in 135.1-2013.

Purpose: To verify that the value of the Event_ Message Texts property is updated when an object generates an event
notification.

50

BACnet Testing Laboratories - Specified Tests

Test Concept: Read the Event_Message Texts from the object. Transition the object through each event state which is
enabled in the object saving the Message Text parameter from the received notification. Verify that the
Event_Message Texts updates with the Event_Message_Texts value received from the notification.

Configuration Requirements: The IUT shall be configured with an event-generation object, O; which shall be in a
NORMAL Event_State at the beginning of the test. If the algorithm of the object does not support NORMAL to NORMAL
transitions, then the TO-OFFNORMAL bit of the Event_Enable shall be TRUE. If the IUT does not contain any objects
which can transition to any offnormal state, then this test shall be skipped.

In the test description below X, is used to designate the event-triggering property linked to O;.

Test Steps:

1. READ EMT = Event_Message_Texts

2. IF (Event_Enable is (TRUE, ?, ?)) THEN
3. IF (Xy is writable) THEN
WRITE X; = (a value that is offnormal)
ELSE
MAKE (X; a value that is offnormal)
4. WAIT (Time_Delay)
5. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNoatification-Request,
'Process Identifier' = (any valid process 1D),
'Initiating Device Identifier' = [UT,
'Event Object Identifier' = (0y),
"Time Stamp' = (the IUT’s local time),
‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the configured TO_OFFNORMAL priority),
'Event Type' = (any valid event type),
‘Notify Type' = Notify_Type,
'‘AckRequired' = (the configured value for the TO_OFFNORMAL transition),
'From State' = NORMAL,
"To State' = (any valid offnormal state),
‘Message Text’ = (M: any valid value placed into EMT[1]),
‘Event Values' = (values appropriate to the event type)
6. VERIFY Event_Message_Texts = EMT
7. IF (Event_Enable is (?, ?, TRUE)) THEN
8. IF (Xy is writable) THEN
WRITE X; = (a value that will result ina TO_NORMAL transition)
ELSE
MAKE (X; a value that will result in a TO_NORMAL transition)
9. WAIT (Time_Delay)
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNoatification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = [UT,
'Event Object Identifier' = (0y),
"Time Stamp' = (the IUT’s local time),
‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the configured TO_NORMAL priority),
'Event Type' = (any valid event type),
‘Notify Type' = Notify_Type,
'‘AckRequired' = (the configured value for the TO_NORMAL transition),
'From State' = (any valid value),
"To State' = NORMAL,

51

BACnet Testing Laboratories - Specified Tests

‘Message Text’ = (M: any valid value placed into EMTI[3]),
'Event Values' = (values appropriate to the event type)

11. VERIFY Event_Message_Texts = EMT

12.IF (Event_Enable is (?, TRUE, ?)) THEN

13. MAKE (O transition to a FAULT state)
14. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process 1D),
‘Initiating Device ldentifier' = IUT,
'Event Object Identifier' = (0y),
"Time Stamp' = (the IUT’s local time),
'Notification Class' = (the class corresponding to the object being tested),
"Priority' = (the configured TO_FAULT priority),
'Event Type' = (any valid event type),
'Notify Type' = Notify_Type,
'‘AckRequired' = (the configured value for the TO_FAULT transition),
'From State' = (any valid value),
"To State' = FAULT,
‘Message Text’ = (M: any valid value placed into EMTI2]),
'Event Values' = (values appropriate to the event type)
15. VERIFY Event_Message_Texts = EMT

7.3.1.X5 Event_Message_Texts_Config Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that the Message Text parameter of generated event notifications is controlled via the
Event_Message Texts Config property.

Test Concept: Select an object, O1, in the IUT that supports the Event_Message_Texts _Config property. Make O1 perform
each supported event transition (i.e. to-offnormal, to-normal and to-fault). Verify that the ‘Message Text’ parameter
matches the associated Event Message Texts_Config value. Note that due to the use of text substitution codes, the
resulting text might not be an exact match.

Configuration Requirements: Configure each entry in the Event Message Texts Config property of Object Ol to be
distinct, if possible. ES1 shall be the state to which O1 transitions. DELAY shall represent the time delay appropriate to the
transition being tested (i.e. Time_Delay for TO_OFFNORMAL, 0 for TO_FAULT and FAULT to NORMAL transitions,
and either Time_Delay or Time_Delay Normal for TO_NORMAL). ESINDEX shall be the array index associated with
ES1 (1 for offnormal states, 2 for FAULT, and 3 for NORMAL). The notification class for O1 is configured for
UnconfirmedEventNotification.

Test Steps:

1. MAKE ((a condition exist which will cause O1 to transition to ES1)

2. WAIT DELAY

3. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = 01,
‘Time Stamp' = (any valid timestamp),
‘Notification Class' = (the natification class configured for O1),
'Priority' = (any valid priority),
'Event Type' = (any standard event type),
'Message Text' = T1,
‘Notify Type' = ALARM | EVENT,
‘AckRequired' = TRUE | FALSE,
'From State’ = (any valid event state),

52

BACnet Testing Laboratories - Specified Tests

"To State' = ESI,

'Event Values' = (any values appropriate to the event type)
4. CHECK(T1 is equivalent to Event Message Texts_Config[ESINDEX] with any text substitutions as defined by the
vendor)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not
necessary to test both.

7.3.1.X6 Event_Algorithm_Inhibit Tests

7.3.1.X6.1 Event_Algorithm_Inhibit Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Event_Algorithm_Inhibit property in objects with intrinsic or algorithmic reporting controls
whether or not the event state detection algorithm is executed.

Test Concept: Select an event generating object, O1, which supports the Event_Algorithm_Inhibit property and does not
support the Event_Algorithm_Inhibit_Ref property. With Event_Algorithm_Inhibit set to FALSE, make a condition exist
that should result in an event transition to a normal or offnormal state. Verify that a transition occurs and that a notification
is generated. Set Event_Algorithm_Inhibit to TRUE. Verify that the object transitions to NORMAL, if not already in that
state. Make a condition exist that should result in an event transition if the object Event_Algorithm_Inhibit were FALSE. If
01 supports fault detection, make a fault condition exist and verify that object detects it and transitions to FAULT.

Configuration Requirements: O1 is configured to detect and report unconfirmed events, is in the NORMAL state and, if
supported, is configured to detect fault conditions.

Test Steps:
1. VERIFY Event_State = NORMAL
2. VERIFY Event_Algorithm_Inhibit = FALSE
3. MAKE (a condition exist which results in a transition of O1. If possible, 'To State' shall be an offnormal event
state)
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process Identifier' = (PID1: any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = 01,
‘Time Stamp' = (the current local time or sequence number),
‘Notification Class' = (the notification class configured for O1),
"Priority' = (the value configured for the transition),
'‘Event Type' = (ET1: any valid event type),
'‘Notify Type' = (value from the Notify_Type property configured for O1),
'Message Text' = (any valid message text),
'AckRequired’ = TRUE | FALSE,
'From State' = NORMAL,
"To State' = (ES1: any event state appropriate to the event type),
‘Event Values' = (any values appropriate to the event type)
5. WRITE Event_Algorithm_Inhibit = TRUE
6. IF (ES1 <> NORMAL) THEN

BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'Process ldentifier' = PID1,

‘Initiating Device Identifier' = [UT,

'Event Object Identifier' = 01,

‘Time Stamp' = (the current local time or sequence number),
'Notification Class' = (the notification class configured for O1),
"Priority' = (the value configured for the transition),

53

BACnet Testing Laboratories - Specified Tests

‘Event Type'
'‘Notify Type' =
'‘Message Text' =

ET1,
(value from the Notify_Type property configured for O1),
(any valid message text),

‘AckRequired' = TRUE | FALSE,
'From State' = ES1,
"To State' = NORMAL,
‘Event Values' = (any values appropriate to the event type)
7. VERIFY Event_State = NORMAL
8. MAKE (a condition exist which would result in a transition of O1 other than to FAULT, if

Event_Algorithm_Inhibit were FALSE.)
9 WAIT Notification Fail Time

10. CHECK (that the IUT did not send any event notifications other than to FAULT for O1)

11. VERIFY Event_State = NORMAL

12, IF (O1 supports fault detection) THEN
MAKE (a fault condition exist for O1)
BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' =
'Initiating Device ldentifier' =
'Event Object Identifier' =
Time Stamp' =
'Notification Class' =
‘Priority' =
‘Event Type' =
‘Notify Type' =
'‘Message Text' =
'‘AckRequired' =
'From State’ =
"To State' =
‘Event Values' =
MAKE (remove the fault condition)
BEFORE Notification Fail Time

PID1,

IUT,

01,

(the current local time or sequence number),

(the notification class configured for O1),

(the value configured for the transition),
CHANGE_OF_RELIABILITY,

(value from the Notify_Type property configured for O1),
(any valid message text),

TRUE | FALSE,

NORMAL,

FAULT,

(any values appropriate for CHANGE_OF_RELIABILITY)

RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' =
'Initiating Device Identifier' =
'Event Object Identifier' =
"Time Stamp' =
‘Notification Class' =
‘Priority' =

'‘Event Type' =

'Notify Type' =

'Message Text' =
'‘AckRequired’ =

'From State' =

To State' =

‘Event Values' =

PID1,

IUT,

01,

(the current local time or sequence number),

(the notification class configured for O1),

(the value configured for the transition),

CHANGE_OF RELIABILITY,

(value from the Notify_Type property configured for O1),
(any valid message text),

TRUE | FALSE,

FAULT,

NORMAL,

(any values appropriate for CHANGE_OF_RELIABILITY)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not

necessary to test both.

7.3.1.X6.2 Event_Algorithm_Inhibit Summarization Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that event generating objects are reported by summarization routines as needed even when the algorithm

has been inhibited.

54

BACnet Testing Laboratories - Specified Tests

Test Concept: Select an event generating object O1 which is configured for event reporting, which is configured to need
acknowledgement for either the TO_NORMAL or TO_OFFNORMAL transition. The TO_FAULT bit being FALSE in
Acked_Transitions is not suitable as the testable point in this test because Event Algorithm_Inhibit does not influence
detection and reporting of FAULT. Similarly, a transition from FAULT is not suitable for this test. Verify that the event is
reported when the device responds to a GetEventinformation request.

Configuration Requirements: O1 is configured such that it requires at least one of its transitions to require operator
acknowledgement. O1’s algorithm is inhibited. The number of event generating objects in the IUT that have an Event_State
other than NORMAL, or which have an Acked_Transitions other than (T, T, T); is such that they can all be reported in a
single GetEventinformation-ACK response.

Test Steps:

AT = READ Acked_Transitions

CHECK (AT <> (T, T, T))

VERIFY Acked_Transitions = (?, T, ?)

VERIFY Event_Algorthm_Inhibit = TRUE

TRANSMIT GetEventinformation

RECEIVE GetEventinformation-Ack,
‘List of Event Summaries' = (list of object identifiers which includes O1)
'‘More Events' = FALSE

arowpdpdOPE

7.3.1.X6.3 Event_Algorithm_Inhibit Acknowledgement Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that event generating objects can be acknowledged when the algorithm has been inhibited.

Test_Concept: Select an event generating object O1 which is configured for event reporting, which is configured to need
acknowledgement for at least one of its transitions, and its Acked_Transitions property is not (T, T, T). Verify that the IUT
accepts an acknowledgment for the transition that requires it. The TO_FAULT bit in Acked_Transitions is not suitable as
the testable point in this test because Event Algorithm_Inhibit does not influence detection and reporting of FAULT.
Similarly, a transition from FAULT is not suitable for this test.

Configuration Requirements: O1 is configured such that it requires at least one of its transitions to require operator
acknowledgement. O1’s algorithm is inhibited. The number of event generating objects in the IUT that have an Event_State
other than NORMAL, or which have an Acked_ Transitions other than (T, T, T) is such that they can all be reported in a
single GetEventinformation-ACK response. For this test, ES TO_ACK is the Event_State that is to be acknowledged,
TS_TO_ACK is the timestamp associated with that transition. The IUT is configured such that TD will receive a confirmed
notification when O1 transitions.

Test Steps:
1. AT = READ Acked_Transitions
2. CHECK(AT <> (T, T, T))
3. VERIFY Event_Algorthm_Inhibit = TRUE
4 TRANSMIT AcknowledgeAlarm
'‘Acknowledging Process Identifier' = (any valid value),
'Event Object Identifier' = 01,
'Event State Acknowledged' = ES TO_ACK,
"Time Stamp' = TS TO_ACK,
‘Time of Acknowledgment' = (the current timestamp)
5. RECEIVE BACnet-SimpleACK-PDU
6. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (the configured process ID),
'Initiating Device ldentifier' = IUT,

55

BACnet Testing Laboratories - Specified Tests

'Event Object Identifier' = (01),
"Time Stamp' = (the current local time or sequence number),
'Notification Class' = (the class configured for O1),
‘Priority' = (the value configured for the transition),
‘Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
"To State' = ES TO ACK
7. TRANSMIT BACnet-SimpleACK-PDU
8. AT2 = READ Acked_Transitions
9. CHECK(AT2 is equal to AT, except the bit associated with ES_TO_ACK is TRUE)

7.3.1.X7 Event_Algorithm_Inhibit_Ref Tests

7.3.1.X7.1 Event_Algorithm_Inhibit_Ref Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that the object referenced by Event_Algorithm_Inhibit_Ref controls Event_Algorithm_Inhibit and thus
whether or not the event state detection algorithm is executed.

Test Concept: Execute test 7.3.1.X2.1 against an object O2 which supports both Event_Algorithm_Inhibit_Ref and
Event_Algorithm_Inhibit and instead of writing Event_Algorithm_Inhibit, write the property referenced by
Event_Algorithm_Inhibit_Ref to change the value in the Event_Algorithm_Inhibit property.

Configuration Requirements: If the IUT has no object in which the Event_Algorithm_Inhibit_Ref property is absent or can

be made uninitialized, or has no object in which Event_Detection_Enable can be made TRUE, this test shall be skipped.

7.3.1.X7.2 Event_Algorithm_Inhibit Writable Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that if the Event_Algorithm_Inhibit_Ref property is absent or is uninitialized then the
Event_Algorithm_Inhibit property shall be writable.

Configuration Requirements: Select an event-initiating object, O1 in which Event_Algorithm_Inhibit Ref property is
absent or is uninitialized. If the IUT has no such object, this test shall be skipped.

Test Steps:
1. WRITE Event_Algorithm_Inhibit = TRUE
2. WRITE Event_Algorithm_Inhibit = FALSE

7.3.1.X8 Reliability_Evaluation_Inhibit Tests

7.3.1.X8.1 Reliability_Evaluation_Inhibit Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Reliability_Evaluation_Inhibit controls whether or not fault conditions are detected.

Test Concept: Select an event generating object, O1, which supports the Reliability Evaluation_Inhibit property. With
Reliability_Evaluation_Inhibit FALSE, make a fault condition exist. Verify that Reliability changes and that a notification
is generated. Set Reliability Evaluation_Inhibit to TRUE. Verify that the Reliability changes to NO_FAULT_DETECTED
and that a TO_NORMAL notification is generated. Remove the fault condition and ensure that no notification is generated.
Make a fault condition exist and verify that Reliability remains NO_FAULT_DETECTED, and that no notification is
generated.

56

BACnet Testing Laboratories - Specified Tests

Test Configuration: O1 is configured to detect and report unconfirmed events, is in the NORMAL state, and
Reliability_Evaluation_Inhibit equals FALSE, so that reliability evaluation for that object is configured to detect fault
conditions. If no object exists in the IUT for which fault conditions can be generated then this test shall be skipped.

Test Steps:
1. VERIFY Event_State = NORMAL
2. VERIFY Reliability = NO_FAULT_DETECTED
3. MAKE (a fault condition exist for O1)
4 BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process ldentifier' = (the value configured for the transition),
‘Initiating Device Identifier' = IUT,
‘Event Object Identifier' = O1,
Time Stamp' = (any valid timestamp),
‘Priority' = (any valid priority),
'Event Type' = CHANGE_OF_RELIABILITY,
‘Notify Type' = ALARM | EVENT,
'Message Text' = (any valid message text),
'‘AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
"To State' = FAULT,
'Event Values' = (any values appropriate to CHANGE_OF_RELIABILITY)
5. WRITE Reliability_Evaluation_Inhibit = TRUE
6. BEFORE Internal Processing Fail Time + Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process Identifier' = (the value configured for the transition),
‘Initiating Device ldentifier' = IUT,
‘Event Object Identifier' = O1,
‘Time Stamp' = (any valid timestamp),
"Priority' = (any valid priority),
‘Event Type' = CHANGE_OF_RELIABILITY,
'Notify Type' = ALARM | EVENT,
‘Message Text' = (any valid message text),
'‘AckRequired' = TRUE | FALSE,
'From State’ = FAULT,
‘To State' = NORMAL,
'Event Values' = (any values appropriate to CHANGE_OF_RELIABILITY)
7. VERIFY Reliability = NO_FAULT_DETECTED
8. VERIFY Event_State = NORMAL
9 MAKE (remove the fault condition)

10. WAIT Notification Fail Time

11. CHECK (that the IUT did not send any event notifications for O1)
12. MAKE (a fault condition exist for O1)

13. WAIT Notification Fail Time

14, VERIFY Reliability = NO_FAULT_DETECTED

15. VERIFY Event_State = NORMAL

16. CHECK (that the IUT did not send any event notifications for O1)

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not
necessary to test both.

7.3.1.X8.2 Reliability_Evaluation_Inhibit Summarization Test
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

57

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that event generating objects are reported by summarization routines as needed even when the reliability
evaluation has been inhibited.

Test_Concept: Select an event generating object O1 which is configured for event reporting, which is configured to require
acknowledgement for TO_FAULT transition, and its Acked_Transitions property is (T, F, T). Verify that the event is
reported when the device responds to a GetEventinformation request.

Configuration Requirements: O1 is configured such that it requires acknowledgement of the TO_FAULT transition, and the
Acked_Transitions is (T, F, T). O1’s Reliability Evaluation_Inhibit equals TRUE, so that reliability evaluation for that
object is inhibited. The number of event generating objects in the IUT that have an Event_State other than NORMAL, or
which have an Acked_Transitions other than (T, T, T) is such that they can all be reported in a single GetEventInformation-
ACK response.

Test Steps:

1. VERIFY Acked_Transitions = (T, F, T)

2. VERIFY Event_Algorithm_Inhibit = TRUE
3. TRANSMIT GetEventIinformation

4 RECEIVE GetEventinformation-Ack,

‘List of Event Summaries' = (list of object identifiers which includes O1)
'‘More Events' = FALSE

7.3.1.X9 Event_Detection_Enable Tests

7.3.1.X9.1 Event_Detection_Enable Inhibits Event Generation
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Event_Detection_Enable enables and disables event detection in objects which are configured for
event reporting.

Test Concept: Select an event generating object, O1 that is configured for event reporting. Make the object generate an
event, to an offnormal state if possible, so that if the object can have a non-normal state, it enters that state early in the test.
This will help detect incorrect implementations that initiate a TO_NORMAL transition when the algorithm is disabled. Set
the Event_Detection_Enable property to FALSE. Verify the Event State is NORMAL and the Acked_Transitions,
Event_Time_Stamps, and Event_Message_Texts are equal to their respective initial conditions, as mandated in the
standard. Repeat the process that made the object generate an event and observe that no notification messages are
transmitted.

Configuration Requirements: O1 is configured to detect and report unconfirmed events and requires acknowledgments for
all transitions. Event_Detection_Enable is equal to TRUE. DELAY shall represent the time delay appropriate to the
transition being tested (i.e. Time_Delay for TO_OFFNORMAL, 0 for TO_FAULT and FAULT to NORMAL transitions,
and either Time_Delay or Time_Delay Normal for TO_NORMAL). For this test, NO_TS equals a BACnetDateTime with
all unspecified values, a BACnet Time with all unspecified values, or a sequence number of 0.

Test Steps:
1. VERIFY Event_Detection_Enable = TRUE
2. MAKE (a condition exist which will cause O1 to transition, to an offnormal state if possible)
3. WAIT DELAY
4. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process ldentifier' = (any valid process identifier),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = 01,
Time Stamp' = (the current local time or sequence number),
'Notification Class' = (the notification class configured for O1),
"Priority' = (the value configured for the transition),

58

BACnet Testing Laboratories - Specified Tests

'Event Type' = (any valid event type),
'Notify Type' = (value from the Notify_Type property configured for O1),
'Message Text' = (any valid message text),
‘AckRequired' = TRUE,
'From State' = (any valid event state),
"To State' = (any event state appropriate to the event type),
‘Event Values' = (any values appropriate to the event type)
5. IF Event_Detection_Enable is writable THEN
WRITE Event_Detection_Enable = FALSE

ELSE
MAKE (Event_Detection_Enable to FALSE. This property is expected to be set during system configuration
and is not expected to change dynamically.)

6. WAIT DELAY + Notification Fail Time + Internal Processing Fail Time
7. CHECK (that the IUT did not send any further event notifications for O1)
8. VERIFY Event_State = NORMAL
9. VERIFY Acked_Transitions = (T,T,T)
10. VERIFY Event_Time_Stamps =[NO_TS,NO_TS,NO_TS]
11. IF the Event_Message_Texts property exists THEN
VERIFY Event_Message_Texts =[", ", "]
12. MAKE (a condition exist which would cause O1 to transition, if Event_Detection_Enable were TRUE)

13. WAIT DELAY + Notification Fail Time
14. CHECK (that the IUT did not send any event notifications for O1)
15. VERIFY Event_State = NORMAL
16. VERIFY Acked_Transitions = (T,T,T)
17. VERIFY Event_Time_Stamps = [NO_TS, NO_TS, NO_TS]
18. IF the Event_Message_Texts property exists THEN
VERIFY Event_Message_Texts =[", ", "]

Notes to Tester: This behavior can alternately be tested using the ConfirmedEventNotification service, but it is not
necessary to test both.

7.3.1.X9.2 Event_Detection_Enable Inhibits FAULT
Reason for Change: New functionality added with Addendum 135-2010af. This test does not exist in 135.1-2013.

Purpose: To verify that Event_Detection_Enable disables fault reporting.

Test Concept: When the event-state-detection process is disabled via the Event_Detection_Enable, both the event algorithm
and the Reliability value are ignored, and Event_State remains NORMAL. Select an event generating object, O1 that is
configured for event reporting and which can be made to go into FAULT. Set the Event_Detection_Enable property to
FALSE. Create a condition which would cause O1 to transition to FAULT, if Event_Detection_Enable were TRUE. Verify
the Event_State is NORMAL and the Acked_Transitions, Event_Time_Stamps, and Event_Message_Texts are equal to
their respective initial conditions, as mandated in the standard, and no notification messages are transmitted.

Configuration Requirements: O1 is an object capable of detecting and reporting an event for a FAULT condition, and the
Event_Detection_Enable can be set to FALSE. Reliability_Evaluation_Inhibit is equal to TRUE. For this test, NO_TS
equals a BACnetDateTime with all unspecified values, a BACnet Time with all unspecified values, or a sequence humber
of 0.

Test Steps:
1. VERIFY Event_Detection_Enable = FALSE
2. IF Reliability is writable THEN
3. WRITE Reliability = (any value other than NO_FAULT_DETECTED)
ELSE
4, MAKE (a condition exist which would cause O1 to transition to FAULT, if Event_Detection_Enable were
TRUE)
5. WAIT Notification Fail Time

59

BACnet Testing Laboratories - Specified Tests

CHECK (that the IUT did not send any event notifications due to this condition)
VERIFY Event_State = NORMAL

VERIFY Acked_Transitions = (T,T,T)

VERIFY Event_Time_Stamps = [NO_TS, NO_TS, NO_TS]

0. IF Event_Message_Texts property exists THEN

VERIFY Event_Message_Texts =[", ", "]

BoO©oo~N®

7.3.2 Object Specific Tests

7.3.2.4 Averaging Object Tests

An Averaging object provides a way to monitor the average, minimum, and maximum values attained by a sampled
property. The datatype of the sampled property can be BOOLEAN, INTEGER, Unsigned, Enumerated, or Real. The tests in
this clause shall be repeated once for each of these datatypes.

7.3.2.4.1 Reinitializing the Samples
Reason For Change: Per clarification BTL-CR-0309

Purpose: To verify that an Averaging object correctly resets the Attempted_Samples, Valid_Samples, Minimum_Value,
Average Value, and Maximum_Value when Attempted_Samples, Object Property Reference, Window_Interval, or
Window_Samples are changed.

Test Concept: The IUT is configured with an Averaging object that is actively monitoring some property value. The

sampling is reinitialized by writing to the Attempted_Samples, ObjectProperty—Reference,—Window_Interval,

Window_Samples, and Window—SamplesObject_Property_Reference in turn. After each reﬁitialization,—the—'FD—pauses—and
verifyies that new sampling has begun.

Configuration Requirements: The IUT shall be configured with an Averaging object that is actively monitoring some
property value. The sampling interval shall be long enough to permit the TD to verify that the sample is properly
reinitialized.

Test Steps:

[Renumber remaining steps to close the gaps for those which are now omitted.]

10 VERIFY-Average—Value = NaN;

12. WAIT (at least two sample times),

13. VERIFY Minimum_Value = (a value x: -INF < x < INF),

14. VERIFY Average Value = (a value = NaN),

15. VERIFY Maximum_Value = (a value x: Minimum_Value < x < INF),

16. VERIFY Attempted_Samples = (a value x > 2),

17. VERIFY Valid_Samples = (avalue x > 2),

18. WRITE Window_Interval = (any new value that will result in an appropriate sample time),
19— VERIFY-Attempted—_Samples=—0:

60

BACnet Testing Laboratories - Specified Tests

22 VERIFY Average—Value = NaN;

24. WAIT (at least two sample times),

25. VERIFY Minimum_Value = (a value x: -INF < x < INF),

26. VERIFY Average Value = (a value # NaN),

27. VERIFY Maximum_Value = (a value x: Minimum_Value < x < INF),

28. VERIFY Attempted_Samples = (a value x > 2),

29. VERIFY Valid_Samples = (a value x > 2),

30. WRITE Window_Samples = (any new value that will result in an appropriate sample time),
31 VERIFY Attempted-Samples =0;

36. IF (Object_ProBerty_Reference is writable) THEN {
WAIT (at least two sample times),

VERIFY Minimum_Value = (a value x: -INF < x < INF),

VERIFY Average Value = (a value # NaN),

VERIFY Maximum_Value = (a value x: Minimum_Value < x < INF),
VERIFY Attempted_Samples = (a value x > 2),

VERIFY Valid_Samples = (avalue x > 2),

WRITE Object_Property Reference = (any new value),
IF (Samples_are_taken_immediately) THEN {
VERIFY Attempted_Samples = 1,
VERIFY Minimum_Value = Average_Value,,
VERIFY Maximum_Value = Average_Value,
VERIFY Valid_Samples =1

ELSE
VERIFY Attempted_Samples= 0,
VERIFY Minimum_Value = INF,
VERIFY Maximum_Value = -INF,
VERIFY Average Value = NaN,
VERIFY Valid_Samples = 0

7.3.2.4.2 Managing the Sample Window
Reason For Change: Per clarification BTL-CR-0309

Purpose: To verify that an Averaging object correctly tracks the average, minimum, and maximum values attained in a
sample. This includes monitoring before and after the sampling window is full.

Test Concept: An Averaging object is configured to monitor a property that can be controlled manually by the testing agent
or by the TD. The TD initializes the sample and then monitors the Minimum_Value, Average Value, Maximum_Value,
Attempted _Samples, and Valid_Samples properties after each sampling interval to verify that their values are properly
tracking the monitored value. This requires the ability to manipulate the values of the monitored property value and a slow
enough sampling interval to permit the analysis. This continues until after the sample window is full. H-the HJF-doesnot

A

Configuration Requirements: The IUT shall be configured with an Averaging object used to monitor a property that can be
controlled by the testing agent or by the TD. The sampling interval shall be configured to allow time to change the
monitored property value and to determine if each of the properties Minimum_Value, Average_Value, Maximum_Value,
Attempted _Samples, and Valid_Samples correctly changes after each sample interval.

Test Steps:

61

BACnet Testing Laboratories - Specified Tests

1. WRITE Attempted_Samples= 05

2. READ StartingSample = Valid_Samples +1
#3. REPEAT X = (4StartingSample to Window_Samples + 5) DO {
WAIT (Window_Interval / Window_Samples)
IF (X < Window_Samples) THEN
VERIFY Attempted_Samples = X
ELSE
VERIFY Attempted_Samples = Window_Samples,
VERIFY Minimum_Value = (the minimum of the monitored values so far),
VERIFY Maximum_Value = (the maximum of the monitored values so far),
VERIFY Average_Value = (the average of the monitored values so far),
IF (X < Window_Samples) THEN
VERIFY Valid_Samples = X
ELSE
VERIFY Valid_Samples = Window_Samples

7.3.2.9 Command Object Tests

7.3.2.9.7 Write While In_Process is TRUE Test.
Reason for Change: Updated with new error codes for Protocol_Revision >= 10.

Purpose: To verify that an action list continues to completion if a second action list is commanded while In_Process is

TRUE and that the second action list is not executed.

Test Concept: The IUT is configured with two action lists that include a sequence of externally visible outputs with post
delays for each action. The TD triggers the first action list. The external outputs are observed in order to trigger the second
action list during the post delay of the first list. The TD triggers the second action list. The external outputs are observed to
verify that the second action list is not executed. If the IUT does not support Post Delay, then this test shall be omitted. If

the IUT does not support action list configuration, then this test shall be omitted.

Configuration Requirements: The IUT shall be configured with a Command object having two distinct action lists, X and
Y, that include writing to a sequence of externally visible outputs. There shall be a post delay between writes to the
externally visible outputs that is long enough for the tester to observe the delay (This ensures In_Process remains TRUE

long enough to command the second action list).
Test Steps:

1. WRITE Present_Value = X
2.
WRITE Present_Value = Y
3. IF (Protocol_Revision exists and Protocol_Revision >= 10) THEN
RECEIVE BACnet-Error-PDU

Error Class = OBJECT,
Error Code = BUSY
ELSE
RECEIVE (BACnet-Error PDU
Error Class = OBJECT,
Error Code = BUSY)

62

BACnet Testing Laboratories - Specified Tests

I
(BACnet- Error-PDU

Error Class =
Error Code =

SERVICES,
SERVICE_REQUEST_DENIED | OTHER)

4. CHECK (that the externally visible actions of X took place)

5. CHECK (that the externally visible actions of Y did not take place)
6. VERIFY In_Process = FALSE,

7. VERIFY All_Writes_Successful = TRUE

7.3.2.10 Device Object Tests

These are the tests for the Device object. Other tests for functionality of the Device object are covered by tests for the
application service or special functionality to which they correspond.

7.3.2.10.1 Active_COV_Subscriptions SubscribeCOV Test

Reason for Change: Reprinted here to show all the steps. Steps 15-21 were left out of the 135.1-2013 publication.

Purpose: This test case verifies that the IUT correctly updates the Active_ COV_Subscriptions property when COV

subscriptions are created, cancelled and timed-out using SubscribeCOV.

Configuration Requirements: In this test, the tester shall choose three standard objects, O3, O,, and Os, for which the device
supports SubscribeCOV. O,, O,, and O are not required to refer to different objects. The tester shall also choose three non-
zero unique process identifiers, Py, P,, and P3, and three non-zero lifetimes Ly, L, and L. Lifetime L; shall be long enough
to allow the initial part of the test to run through to step 14. Lifetimes L, and L3 shall be long enough for the whole test to

be completed without expiring.

The IUT shall start the test with no entries in its Active_COV_Subscriptions property.

Test Steps:

1.

N

o~

~

TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' =
'‘Monitored Object Identifier' =
‘Issue Confirmed Notifications' =
‘Lifetime' =

RECEIVE BACnet-SimpleACK-PDU

BEFORE Notification Fail Time

Py,

Oy,
TRUE,
Ly

RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' =
'Initiating Device Identifier' =
'Monitored Object Identifier' =
‘Time Remaining' =
‘List of Values' =
TRANSMIT BACnet-SimpleACK-PDU
VERIFY Active_COV_Subscriptions =

TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' =
'Monitored Object Identifier' =
'Issue Confirmed Notifications' =
‘Lifetime' =

RECEIVE BACnet-SimpleACK-PDU

BEFORE Notification Fail Time

Py,

IUT,

Oy,

(a value approximately equal to L;),

(values appropriate to the object type of the monitored object)

{{{TD, P}, {O,, Present_Value }, TRUE, (a value less than L;),
(a valid Increment if the property is REAL) }}

P2,

0O,
FALSE,
Lo

RECEIVE UnconfirmedCOV Notification-Request,

'‘Subscriber Process Identifier' =

P25

63

BACnet Testing Laboratories - Specified Tests

'Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = 0y,
"Time Remaining' = (a value approximately equal to L,),
‘List of Values' = (values appropriate to the object type of the monitored object)
9. VERIFY Active_COV_Subscriptions = {{{TD, P}, {O,, Present_Value}, TRUE, (a value less than L,),

(a valid Increment if the property is REAL) },
{{TD, P,}, {O,, Present_Value}, FALSE, (a value less than L,),
(a valid Increment if the property is REAL) }}
10. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = Ps,
'Monitored Object Identifier' = O3,
‘Issue Confirmed Notifications' = FALSE,
‘Lifetime' = Ls

11. RECEIVE BACnet-SimpleACK-PDU
12. BEFORE Notification Fail Time
RECEIVE UnconfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = P,

'Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = Os,

‘Time Remaining' = (a value approximately equal to Ls),

‘List of Values' = (values appropriate to the object type of the monitored object)
13. VERIFY Active_COV_Subscriptions = {{{TD, P.}, {O4, Present_Value}, TRUE, (a value less than L,),

(avalid Increment if the property is REAL)},
{{TD, P,}, {O,, Present_Value}, FALSE, (a value less than L,),
(avalid Increment if the property is REAL)},
{{TD, P3}, {Os, Present_Value}, FALSE, (a value less than Lj),
(a valid Increment if the property is REAL)}}
14. WAIT L; + the IUT's timer granularity
15. VERIFY Active_COV_Subscriptions = {{{TD, P 2}, {O 2, Present_Value}, FALSE, (a value less than L 2),
(a valid Increment if the property is REAL)},
{{TD, P 3}, {O 3, Present_Value}, FALSE, (a value less than L 3),
(a valid Increment if the property is REAL)}}
16. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = P 3,
'Monitored Object Identifier' = O 3
17. RECEIVE BACnet-SimpleACK-PDU
18. VERIFY Active_COV_Subscriptions = {{{TD, P 2}, {O 2, Present_Value}, FALSE, (a value less than L 2),
(a valid Increment if the property is REAL) }}
19. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = P 2,
'Monitored Object Identifier' = O 2
20. RECEIVE BACnet-SimpleACK-PDU
21. VERIFY Active_CQOV_Subscriptions = { }

7.3.2.10.6 Successful Increment of the Database_Revision Property after Changing the Object_ldentifier Property
of an Object

Reason for change: To correct a cut&paste&forgot-to-revise typo in the Test Concept.

Purpose: To verify that the Database_Revision property of the Device object increments after changing the

Object_ldentifier property of an object. If the Object_Identifier property of an object cannot be changed, this test shall be
omitted.

Test Concept: The Database_Revision property of the Device object is read. An object's rameObject_ldentifier property is
changed. The Database_Revision property of the Device object is read again to verify that it incremented.

64

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: none.

Test Steps:
1. TRANSMIT ReadProperty-Request,
‘Object Identifier' = (the Device object),
'Property Identifier' = Database_Revision
2. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the Device object),
‘Property Identifier' = Database_Revision,
'Property Value' = (any value = initial value)
3. MAKE (the Object_ldentifier property of an object change)
4. TRANSMIT ReadProperty-Request,
'‘Object Identifier' = (the Device object),
‘Property Identifier' = Database_Revision
5. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the Device object),
‘Property Identifier' = Database_Revision,
'Property Value' = (greater than initial value)

7.3.2.10.X2 Max_Segments_Accepted at least the minimum
Reason for Change: There is no SSPC proposal for this change.

Purpose: To verify that the IUT implements the Max_Segments_Accepted property value when it does support
segmentation.

Configuration Requirements: If the IUT cannot be configured to support segmentation, then this test shall be skipped.
Test Steps:

1. VERIFY (Max_Segments_Accepted > 1)

7.3.2.13 Global Group

7.3.2.13.X1 Global Group Present_Value, Out_Of_Service and Status_Flags Test
Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: This test verifies the interrelationship between the Present Value, Out_Of Service and Status_Flags properties of
a Global Group object.

Test Concept: Verify the Present_Value stops updating when Out_Of Service is TRUE.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members property
containing a member M1 at index N1 that has a value that can be changed. W1 is the maximum time it takes for the Global
Group to receive an update from M1.

Test Steps:

1. MAKE (Out_Of_Service = TRUE)
2. VERIFY Out_Of Service = TRUE

65

BACnet Testing Laboratories - Specified Tests

VERIFY Status_Flags = {?, ?, FALSE, TRUE}

X1 = READ Present_Value, ARRAY_INDEX = N1
MAKE (M1 value change)

WAIT (W1)

X2 = READ Present_Value, ARRAY_INDEX = N1
VERIFY X1 = X2

N ORAW

7.3.2.13.X2 Reliability MEMBER_FAULT Test
Reason for Change: New Tests for Global Group object type.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: This test case verifies the FAULT flag of the Member_Status_Flags is TRUE and the Reliability property is equal
to MEMBER_FAULT when a member of the Group_Members property goes into FAULT.

Test Concept: Force a member of the Group_Members property to enter a Fault condition and verify the
Member_Status_Flags FAULT flag equals TRUE and Reliability equals MEMBER_FAULT.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members property
containing a member M1 at index N1 that has a value that can be made to indicate a fault condition (see Notes To Tester).
The Out_Of Service property of the Global Group object must remain FALSE throughout the test. W1 is the maximum
time it takes for the Global Group to receive an update from M1.

Test Steps:

1. MAKE (M1 Status_Flags = {?, TRUE, ?, ?})

2. WAIT (W1)

3. VERIFY Member_Status_Flags = {?, TRUE, ?, ?
4. VERIFY Reliability = MEMBER_FAULT

Notes to Tester: Member_Status Flags FAULT flag will the TRUE and the Reliability property will change to
MEMBER_FAULT when a member of the Group_Members property goes into fault.

7.3.2.13.X3 Reliability COMMUNICATION_FAILURE Test
Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: This test case verifies that the Member_Status Flags FAULT flag will remain FALSE while the Reliability
property is COMMUNICATION_FAILURE.

Test Concept: Force a member of the Group_Members property to stop communicating and verify the Reliability property
equals COMMUNICATION_FAILURE and the Member_Status_Flags FAULT flag remains FALSE.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members containing
a member M1 at index N1that can be made to discontinue communications and also respond with an error such as

OBJECT/UNKNOWN_OBJECT. (See Notes To Tester). The Out_Of Service property of the Global Group object must
remain FALSE throughout the test. W1 is the maximum time it takes for the Global Group to receive an update from M1.

Test Steps:

66

BACnet Testing Laboratories - Specified Tests

MAKE (M1 fail (communications or error))

WAIT (W1)

VERIFY Reliability = COMMUNICATION_FAILURE
VERIFY Member_Status_Flags = {?, FALSE, ?, ?

el A

Notes to Tester: Reliability will change to COMMUNICATION_FAILURE when a member is no longer able to
communicate its Status_Flags property. This can occur when the device goes offline or the object is deleted within the
device.

7.3.2.13.X4 Present_Value Tracking and Reliability Test
Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18

Purpose: This test verifies that the Global Group object continues to update its Present_Value independent of the state of
the Reliability property.

Test Concept: While the Reliability property is not NO_FAULT_DETECTED verify the Present_Value continues to
update.

Configuration Requirements: The IUT shall be configured with a Global Group object with its Reliability not equal to
NO_FAULT_DETECTED and a Group_Members member M1 at index N1 that can be changed. W1 is the maximum time
it takes for the Global Group to receive an update from M1.

VERIFY Reliability <> NO_FAULT_DETECTED
MAKE (M1 = X1)

WAIT (W1)

X2 = READ Present_Value, ARRAY_INDEX = N1
VERIFY X1 = X2

agrwnpE

Note to Tester: Reliability will change to COMMUNICATION_FAILURE when a member is no longer able to
communicate its Status_Flags property. This can occur when the device goes offline or the object is deleted within the
device. Also, the Reliability property will change to MEMBER_FAULT when a member of the Group_Members property
goes into fault.

7.3.2.13.X5 Present_Value Tracking Test
Reason for Change: New Tests for Global Group object type.

Dependencies: ReadProperty Service Execution Tests, 9.18
Purpose: This test verifies that the Global Group object tracks the value of the monitored properties value and data type.

Test Concept: Make a member of the Group_Members property change value and verify the Present Value updates to
match that value.

Configuration Requirements: The IUT shall be configured with a Global Group object with the Group_Members containing
a member M1 at index N1 of the specified data type that can be changed. W1 is the maximum time it takes for the Global
Group to receive an update from M1.

MAKE (M1 = X1)

WAIT (W1)

X2 = READ Present_Value, ARRAY_INDEX = N1
VERIFY X1 = X2

i N

67

BACnet Testing Laboratories - Specified Tests

7.3.2.13.X6

COVU_Period and COVU_Recipient Zero Test

Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that object O1 does not initiate UnconfirmedCOV Notification service requests when COVU_Period is

zero or COVU_Recipient contains an empty list.

Test Concept: Configure O1 to produce unsubscribed UnconfirmedCOV Notifications, set COVU_Period to zero and and
attempt to produce unsubscribed UnconfirmedCOV Notifications. Repeat with COVU_Recipients containing an empty list.

Test Steps:
1. MAKE (O1 issue an unsubscribed UnconfirmedCOV Notification)
2. BEFORE Notification Fail Time
RECEIVE UnconfirmedCOV Notification-Request,
DESTINATION = (any valid address),
‘Subscriber Process Identifier'= 0,
‘Initiating Device Identifier' = IUT,
‘Monitored Object Identifier' = 01,
‘Time Remaining' = 0,
‘List of Values' = (any valid set of values)
3. MAKE (COVU_Period = 0)
4. MAKE (01 issue an unsubscribed UnconfirmedCOV Notification)
5. WAIT Notification Fail Time times 2
6. CHECK (Verify that O1 has not transmitted an UnconfirmedCOV Notification-Request.)
7. MAKE (COVU_Period <> 0)
8. MAKE (O1 issue an unsubscribed UnconfirmedCOV Notification)
9. BEFORE Notification Fail Time

RECEIVE UnconfirmedCOVNotification-Request,

DESTINATION =
‘Subscriber Process Identifier' =
'Initiating Device Identifier' =
'‘Monitored Object Identifier' =
"Time Remaining' =
‘List of Values' =

10. MAKE (COVU_Recipient an empty list)

(any valid address),

0,

IUT,

01,

0,

(any valid set of values)

11. MAKE (O1 issue an unsubscribed UnconfirmedCOVNotification)

12. WAIT Notification Fail Time times 2

13. CHECK (Verify that O1 has not transmitted an UnconfirmedCOV Notification-Request.)

7.3.2.21 Notification Class Object Tests

This section was renumbered in 135.1-2007 to 7.3.2.21. This was section 7.3.2.20 in 135.1-2003.

7.3.2.21.3 Recipient_L.ist Tests

7.3.2.21.3.1 ValidDays Test

Reason for Change: Updated Test Concept to include changes from 135-2010af.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation
Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22; TimeSynchronization
Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

68

BACnet Testing Laboratories - Specified Tests

BACnet Reference Clause: 12.21.8.

Purpose: To verify the operation of the Valid Days parameter of a BACnetDestination as used in the Recipient_List
property of the Notification Class object.

Test Concept: The TD will select one instance of the Notification Class object and one instance of an event-generating
object that is linked to it. The Recipient_List of the Notification Class object shall contain a single recipient with the Valid
Days parameter configured so that at least one day is TRUE and at least one day is FALSE. The properties of the event-
generating object will be manipulated to cause the Event_State to change from NORMAL to OFFNORMAL. The tester
verifies that if the local date is one of the valid days a notification message is transmitted and the if local date is not a valid
day then no notification message is transmitted. For devices of protocol revision 13 or higher that implement a read-only
Recipient_List property for all instances of Notification Class objects and are exclusively configured for all days (Valid
Days set to all Days), this test shall be omitted. For devices of protocol revision 13 or higher that implement a writeable
Recipient_List property for all instances of Notification Class objects, and exclusively accept all days as the only permitted
configuration, this test shall be omitted.

Configuration Requirements: The IUT shall be configured with one or more instance of the Notification Class object and at
least one event-generating object that is linked to the Notification Class object. The event-generating object may be any
object that supports intrinsic reporting or it may be an Event Enrollment object. The event-generating object shall have the
Event_Enable property configured to transmit notification messages for all event transitions. The event-generating object
shall be configured to be in a NORMAL event state at the start of the test. The Notification Class object shall be configured
with a single recipient in the Recipient_List. The Valid Days parameter shall be configured so that at least one day of the
week has a value of TRUE and at least one day of the week has a value of FALSE. The Transitions parameter shall be
configured for the recipient to receive notifications for all event transitions.

In the test description below, “X” is used to designate the event-triggering property.
Test Steps:

1. (TRANSMIT TimeSynchronization-Request,
‘Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that
corresponds to one of the valid days)) |
(TRANSMIT UTCTimeSynchronization-Request,
‘Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that
corresponds to one of the valid days, converted to UTC)) |
MAKE (the local date and time = (any time within the window defined by From Time and To Time in the
BACnetDestination that corresponds to one of the valid days))
WAIT (Time_Delay + Notification Fail Time)
VERIFY Event_State = NORMAL
4. IF (X is writable) THEN
WRITE X = (a value that is OFFNORMAL)

wn

ELSE
MAKE (X have a value that is OFFNORMAL)

5. WAIT (Time_Delay)
6. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process ldentifier' = (any valid process ID),
'Initiating Device ldentifier' = [UT,
‘Event Object Identifier' = (the event-generating object configured for this test),
Time Stamp' = (the current local time),
‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
‘Event Type' = (any valid event type),
'Notify Type' = EVENT | ALARM,
'‘AckRequired' = TRUE | FALSE,

69

BACnet Testing Laboratories - Specified Tests

'From State' = NORMAL,
"To State' = OFFNORMAL,
'Event Values' = (values appropriate to the event type)

7. TRANSMIT BACnet-SimpleACK-PDU
VERIFY Event_State = OFFNORMAL
9. (TRANSMIT TimeSynchronization-Request,
‘Time' = (any time within the window defined by From Time and To time in the BACnet Destination that
corresponds to one of the invalid days)) |
(TRANSMIT UTCTimeSynchronization-Request,
Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that
corresponds to one of the invalid days, converted to UTC)) |
MAKE (the local date and time = (any time within the window defined by From Time and To Time in the
BACnetDestination that corresponds to one of the invalid days))
10. IF (X is writable) THEN
WRITE X = (a value that is NORMAL)
ELSE
MAKE (X have a value that is NORMAL)
11. WAIT (Time_Delay + Notification Fail Time)
12. CHECK (verify that no notification message was transmitted)

2

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service,
in which case the TD shall skip all of the steps in which a BACnet-SimpleACK-PDU is sent. The 'Message Text' parameter is
omitted in the test description because it is optional. The IUT may include this parameter in the notification messages.

7.3.2.21.3.2 FromTime and ToTime Test
Reason for Change: Incorporated changes from Addendum 135-2010af.

Dependencies: ValidDays Test, 7.3.2.21.3.1; ConfirmedEventNotification Service Initiation Tests, 8.4;
UnconfirmedEventNotification Service Initiation Tests, 8.5; ReadProperty Service Execution Tests, 9.18;
TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.21.8.

Purpose: To verify the operation of the From Time and To Time parameters of a BACnetDestination as used in the
Recipient_List property of the Notification Class object.

Test Concept: The case where the local date and time fall within the window defined by the From Time and To Time
parameters is covered by the ValidDays test in 7.3.2.21.3.1. This test uses the same IUT configuration and sets the local
time to a value that is one of the ValidDays but outside of the window defined by the From Time and To Time parameters.
The objective is to verify that an event notification message is not transmitted when the event is triggered. For devices of
protocol revision 13 or higher that implement a read-only Recipient_List property for all instances of Notification Class
objects and are exclusively configured for all times (From Time set to 00:00:00.0, To_Time set to 23:59:59.90), this test
shall be omitted. For devices of protocol revision 13 or higher that implement a writeable Notification Class
Recipient_List property for all instances of Notification Class objects, and exclusively accept all times as the only permitted
configuration, this test shall be omitted.

Configuration Requirements: The configuration requirements are identical to the requirements in 7.3.2.21.3.1.
Test Steps:
1. (TRANSMIT TimeSynchronization-Request,
‘Time' = (any time outside the window defined by From Time and To Time in the BACnet Destination that

corresponds to one of the valid days)) |
(TRANSMIT UTCTimeSynchronization-Request,

70

BACnet Testing Laboratories - Specified Tests

‘Time' = (any time within the window defined by From Time and To Time in the BACnet Destination that
corresponds to one of the valid days, converted to UTC)) |
MAKE (the local date and time = (any time outside the window defined by From Time and To Time in the
BACnetDestination that corresponds to one of the valid days))
WAIT (Time_Delay + Notification Fail Time)
VERIFY Event_State = NORMAL
IF (X is writable) THEN
WRITE X = (a value that is OFFNORMAL)
ELSE
MAKE (X have a value that is OFFNORMAL)
5. WAIT (Time_Delay + Notification Fail Time)
6. CHECK (verify that no notification message was transmitted)

pownn

7.3.2.21.3.3 IssueConfirmedNotifications Test
Reason for Change: Updates per Addendum 135-2010af.

Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation
Tests, 8.5; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.21.8.

Purpose: To verify that ConfirmedEventNotification messages are used if the Issue Confirmed Notifications parameter has
the value TRUE and UnconfirmedEventNotification messages are used if the value is FALSE. If the IUT does not support
both confirmed and unconfirmed event notifications this test may be omitted. For devices of protocol revision 13 or higher
that implement a read-only Recipient_List property for all instances of Notification Class objects, and there is a value of
FALSE for the IssueConfirmedNotifications component in all instances, this test shall be omitted.

Configuration Requirements: The IUT shall be configured with two or more instances of the Notification Class object and
event-generating objects that are linked to the Notification Class objects. The event-generating objects may be objects that
support intrinsic reporting or they may be Event Enrollment objects. The event-generating objects shall have the
Event_Enable property configured to transmit notification messages for all event transitions. The event-generating objects
shall be configured to be in a NORMAL event state at the start of the test. One Notification Class object, Ny, shall be
configured with Issue Confirmed Notifications equal to TRUE. The other Notification Class object, N,, shall be configured
with Issue Confirmed Notifications equal to FALSE. The Valid Days parameter shall be configured so that at least one day
of the week has a value of TRUE. The Transitions parameter shall be configured for the recipient to receive notifications
for all event transitions. The local date and time shall be configured to be within the window defined by From Time and To
Time on one of the ValidDays.

In the test description below "X;" and "X," are used to designate the event-triggering property linked to Notification objects
"N;" and "N," respectively.

Test Steps:

1. VERIFY (the event-generating object linked to N,), Event_State = NORMAL
2. VERIFY (the event-generating object linked to N,), Event_State = NORMAL
3. WAIT (Time_Delay + Notification Fail Time)

4. IF (Xy is writable) THEN

WRITE X; = (a value that is OFFNORMAL)
ELSE
MAKE (X; a value that is OFFNORMAL)
5. WAIT (Time_Delay)
6. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = [UT,

71

BACnet Testing Laboratories - Specified Tests

'Event Object Identifier' = (the event-generating object linked to N,),

"Time Stamp' = (the current local time),

'Notification Class' = (the class corresponding to the object being tested),

‘Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = (any valid event type),

'Notify Type' = EVENT | ALARM,

'‘AckRequired’ = TRUE | FALSE,

'From State' = NORMAL,

"To State' = OFFNORMAL,

‘Event Values' = (values appropriate to the event type)

7. IF (X, is writable) THEN
WRITE X, = (a value that is OFFNORMAL)
ELSE
MAKE (X, a value that is OFFNORMAL)
8. WAIT (Time_Delay)
9. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),

‘Initiating Device ldentifier' = [UT,

'Event Object Identifier' = (the event-generating object linked to Ny),

"Time Stamp' = (the current local time),

'Notification Class' = (the class corresponding to the object being tested),
"Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = (any valid event type),

'Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

"To State' = OFFNORMAL,

'Event Values' = (values appropriate to the event type)

Notes to Tester: If the Recipient_List is writable and the Issue Confirmed Notifications can be changed then this test can be
performed using only one Notification Class object by writing to the Recipient_List in order to change between confirmed
and unconfirmed notifications. The 'Message Text' parameter is omitted in the test description because it is optional. The IUT
may include this parameter in the notification messages.

7.3.2.21.3.4 Transitions Test

Reason for change: Incorporated changes for addendum 135-2010af.
Dependencies: ConfirmedEventNotification Service Initiation Tests, 8.4; UnconfirmedEventNotification Service Initiation
Tests, 8.5; ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clause: 12.21.8.

Purpose: To verify that notification messages are transmitted only if the bit in the Transitions parameter corresponding to
the event transition is set.

Test Concept: The IUT is configured such that the Transitions parameter indicates that some event transitions are to trigger
an event notification and some are not. Each event transition is triggered and the IUT is monitored to verify that notification
messages are transmitted only for those transitions for which the Transitions parameter has a value of TRUE. For devices
of protocol revision 13 or higher that implement a read-only Recipient_List property for all instances of Notification Class
objects and are exclusively configured for all transitions (all bits in Transitions set to TRUE), this test shall be omitted.

For devices of protocol revision 13 or higher that implement a writeable Notification Class Recipient_List property for all
instances of Notification Class objects, and exclusively accept all transitions as the only permitted configuration, this test
shall be omitted.

72

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT shall be configured with one or more instance of the Notification Class object and at
least one event-generating object that is linked to the Notification Class object. The event-generating object may be any
object that supports intrinsic reporting or it may be an Event Enrollment object. The event-generating object shall have the
Event_Enable property configured to transmit notification messages for all event transitions. The event-generating object
shall be configured to be in a NORMAL event state at the start of the test. The Notification Class object shall be configured
with a single recipient in the Recipient_List. The Transitions parameter shall be configured with a value of TRUE for either
the TO-OFFNORMAL transition or the TO-NORMAL transition and the other event transition shall have a value of
FALSE. The local time shall be configured such that it represents one of the valid days in the window specified by From
Time and To Time.

In the test description below, “X” is used to designate the event-triggering property.

1. VERIFY Event_State = NORMAL
2. WAIT (Time_Delay + Notification Fail Time)
3. IF (X'is writable) THEN

WRITE X = (a value that is OFFNORMAL)
ELSE

MAKE (X have a value that is OFFNORMAL)
WAIT (Time_Delay)
5. BEFORE Notification Fail Time

IF (the Transitions bit corresponding to the TO-OFFNORMAL transition is TRUE) THEN
RECEIVE ConfirmedEventNotification-Request,

e

'Process ldentifier' = (any valid process ID),

‘Initiating Device Identifier' = [UT,

‘Event Object Identifier' = (the event-generating object configured for this test),
‘Time Stamp' = (the current local time),

‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),
'Event Type' = (any valid event type),

'Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

"To State' = OFFNORMAL,

‘Event Values' = (values appropriate to the event type)

ELSE
CHECK (verify that the IUT did not transmit an event notification message)
VERIFY Event_State = OFFNORMAL
IF (X is writable) THEN
WRITE X = (a value that is NORMAL)
ELSE
MAKE (X have a value that is NORMAL)
8. WAIT (Time_Delay)
9. BEFORE Noatification Fail Time
IF (the Transitions bit corresponding to the TO-NORMAL transition is TRUE) THEN
RECEIVE ConfirmedEventNotification-Request,

~No

'Process Identifier' = (any valid process ID),

'Initiating Device ldentifier' = IUT,

'Event Object Identifier' = (the event-generating object configured for this test),

‘Time Stamp' = (the current local time),

‘Notification Class' = (the class corresponding to the object being tested),

‘Priority' = (the value configured to correspond to a TO-NORMAL transition),
‘Event Type' = (any valid event type),

‘Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = OFFNORMAL,

73

BACnet Testing Laboratories - Specified Tests

‘To State' = NORMAL,
'Event Values' = (values appropriate to the event type)
ELSE
CHECK (verify that the IUT did not transmit an event notification message)
10. VERIFY Event_State = NORMAL
11. IF (the event-triggering object can be placed into a fault condition) THEN {
MAKE (the event-triggering object change to a fault condition)
BEFORE Notification Fail Time
IF (the Transitions bit corresponding to the TO-FAULT transition is TRUE) THEN
RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (any valid process ID),

‘Initiating Device Identifier' = [UT,

‘Event Object Identifier' = (the event-generating object configured for this test),
Time Stamp' = (the current local time),

‘Notification Class' = (the class corresponding to the object being tested),
‘Priority' = (the value configured to correspond to a TO-FAULT transition),
'Event Type' = (any valid event type),

'Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

"To State' = FAULT,

‘Event Values' = (values appropriate to the event type)

ELSE
CHECK (verify that the IUT did not transmit an event notification message)
VERIFY Event_State = FAULT

¥

Notes to Tester: The UnconfirmedEventNotification service may be substituted for the ConfirmedEventNotification service.
The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include this parameter in
the notification messages.

7.3.2.21.35 Recipient_L.ist Property Supports Device Identifier Recipients Test
Reason for Change: Changes per Addendum 135-2010af.

Purpose: To verify that the Recipient_List property of the Notification Class object supports the device form of the
Recipient component and that the IUT is able to associate a MAC address with the Device Identifier. The intent is to ensure
that the IUT is able to locate the specified alarm recipient and send notification to the specified recipient. This test shall be
run if the IUT’s Notification Class object’s Recipient_List property supports the BACnet object identifier form of
BACnetRecipient.

Test Concept: The tester shall select a single event-generating object E in the IUT that references Notification Class object
N. The tester shall add an entry into the Recipient_List of the associated Notification Class object that specifies a Device
Identifier, D, for a device that the IUT is not already aware of. The TD, acting as device D, shall be located on a different
network than the IUT to ensure that the IUT is capable of binding to recipients located on any network. For devices of
protocol revision 13 or higher that implement a read-only Recipient_List property for all instances of Notification Class
objects and there is an address form of the Recipient component in all instances, this test shall be omitted.

Configuration Requirements: The TD shall be configured so that it does not execute WhoHas.

Test Steps:

1. WRITE N.RecipientList = ({all days, all times, D, any process ID, FALSE, all transitions})

2. MAKE (the event generating object, E, transition)

3. BEFORE Noatification Fail Time plus the amount of time the IUT takes to perform device discovery

RECEIVE UnconfirmedEventNotification-Request,

74

BACnet Testing Laboratories - Specified Tests

'Process Identifier' =
'Initiating Device Identifier' =
‘Event Object Identifier' =
‘Time Stamp' =
‘Notification Class' =
‘Priority’ =

‘Event Type' =

‘Notify Type' =
'‘AckRequired’ =

'From State' =

To State' =

‘Event Values' =

(the valid process ID from step 1),
IUT,

E,

(any valid time stamp),

(N's instance),

(any valid priority),

(any valid event type),

ALARM | EVENT,

TRUE | FALSE,

(any valid event state),

(any valid event state),

(values appropriate to the event type)

Notes to Tester: The IUT is expected to initiate one or more range-restricted Whols requests after the modification of the
Recipient_List but before the sending of the notification. The IUT might also need to perform other network discovery
operations. Given that there are multiple approaches to the use of Whols for device discovery, the test only focuses on the
IUT’s ability to find device D and not on the specifics or timing of the Whols requests.

7.3.2.21.3.6 Recipient_L.ist Property Supports Network Address Recipients
Reason for Change: Changes per Addendum 135-2010af.

Purpose: To verify that the Recipient_List property of the Notification Class object supports the address form of the
Recipient component. The intent is to ensure that the IUT is able to send notifications to the specified recipient.

Test Concept: The tester shall select a single event-generating object E in the IUT that references Notification Class object
N. The tester shall add an entry into the Recipient_List of the associated Notification Class object that specifies a
BACnetAddress A, where A is a unicast or is a local, remote, or global broadcast address. For devices of protocol revision
13 or higher that implement a read-only Recipient_List property for all instances of Notification Class objects and there is
a Device Identifier form of the Recipient component in all instances, this test shall be skipped.

Test Steps:
1. WRITE N.RecipientList = ({all days, all times, A, any process ID, FALSE, all transitions})
2. MAKE (the event generating object, E, transition)
3. BEFORE Notification Fail Time
RECEIVE

DESTINATION = A,

UnconfirmedEventNotification-Request,

'Process Identifier' = (the valid process ID from step 1),

'Initiating Device Identifier' = IUT,

'Event Object Identifier' = E,

‘Time Stamp' = (the current local time),

'Notification Class' = (N's instance),

‘Priority' = (any valid priority),

‘Event Type' = (any valid event type),

'Notify Type' = ALARM | EVENT,

‘AckRequired' = TRUE | FALSE,

'From State' = (any valid event state),

‘To State' = (any valid event state),

'Event Values' = (values appropriate to the event type)
7.3.2.21.3.X7 Recipient_List non-volatility test

Reason for Change: New test per Addendum 135-2010af.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

75

BACnet Testing Laboratories - Specified Tests

BACnet Reference Clauses: 12.21.8

Purpose: This test case verifies that a Notification Class object Recipient_List is maintained through a power failure and
device restart.

Test Concept: Write the Recipient_List of a Notification Class object and restart the IUT device by issuing a
ReinitializeDevice - WARMSTART service request and by temporarily removing power. When the device has resumed
operation after each restart, verify that the Recipient_List contains the values that were written. This test is only applied to
IUT devices that have writable Notification Class object Recipient_L.ist properties. If the device only accepts
Recipient_List values that include Valid Days = (1, 1, 1, 1, 1, 1, 1), From Time = 00:00:00.00, To Time = 23:59:59.99, and
Transitions = (True, True, True), then those values shall be used in this test. If the IUT accepts Recipient_L.ist sizes greater
than one, then at least two different BACnetDestination values shall be written in the list. If the device does not support
ReinitializeDevice WARMSTART, then only the removal of power will be tested.

Configuration Requirements: If the Recipient_List of a Notification Class object is read-only in all instances, this test shall
be skipped.

Test Steps:

1. MAKE (Recipient_List consist of entries at least one of which is different from what it has)
2. IF (ReinitializeDevice is supported) THEN
{ TRANSMIT ReinitializeDevice-Request
Reinitialized State of Device = WARMSTART
Password = (any valid password)
RECEIVE BACnet-Simple-ACK-PDU
CHECK (Did the IUT perform a WARMSTART reboot?)
VERIFY RecipientList = (the entries with which it was configured)
}
MAKE (the IUT power cycle to reinitialize)
4. VERIFY RecipientList = (the entries with which it was configured)

w

7.3.2.21.3.X8 Read-only Recipient_L.ist with internal Notification Forwarder objects
Reason for Change: New test per Addendum 135-2010af.

Purpose: This test case verifies that a read-only Notification Class object Recipient_List is configured with the only content
designed for internal Notification Forwarder objects.

Test Concept: This test is only applied to IUT devices that have read-only Notification Class object Recipient_List
properties and are capable of containing a Notification Forwarder object. The Notification Class Recipient_List is read and
checked to insure all entries in the Recipient_L.ist refer to the local device.

Test Steps:

1. READ RL = Recipient_List
2. CHECK (All Recipients in RL are equal to 1UT)

[Add new test into BTL Specified Tests.]

7.3.2.21.3.X9 Read-only Recipient_List for external Notification Forwarder Objects
Reason for Change: New test per Addendum 135-2010af.

76

BACnet Testing Laboratories - Specified Tests

Purpose: This test case verifies that a read-only Notification Class object Recipient_List is configured with the content
designed for external Notification Forwarder objects.

Test Concept: Read the Recipient_List of the Notification Class objects and check that the length is 1, the Recipient is local
broadcast, VValid Days are all days, From Time and To Time are the entire day, Process Identifier is 0, Issue Confirmed
Notifications parameter is False and Transitions is set to all transitions. This test is only applied to IUT devices that have
read-only Notification Class object Recipient_List properties, and which do not contain internal Notification Forwarder
objects.

Test Steps:
1. VERIFY Recipient_List={ (1,1,1,1,1,1,1)--Valid Days
00:00:00.0 --From Time
23:59:59.99 --To Time
(BACnetAddress: network-number = 0, zero length mac-address)
0 --Process Identifier
False --Issue Confirmed Notifications

(True, True, True) --Transitions

7.3.2.23 Schedule Object Tests
This section was renumbered in 135.1-2007 to 7.3.2.23. The old reference was 7.3.2.22

7.3.2.23.6 Weekly_Schedule Restoration Test

Reason for Change: Corrected the Configuration Requirements to allow the test to be executed on devices greater than or
equal to Protocol_Revision 4.

Dependencies: ReadProperty Service Execution Tests, 9.18; ReinitializeDevice Service Execution Tests, 9.27;
TimeSynchronization Service Execution Tests, 9.30; UTCTimeSynchronization Service Execution Tests, 9.31.

BACnet Reference Clause: 12.24.4, 12.24.7, 12.24.9.
Purpose: To verify the restoration behavior in a Weekly Schedule.

Test Concept: The IUT is configured with a Schedule object containing a Weekly Schedule with a BACnetDailySchedule
that has multiple BACnetTimeValue entries that do not include the time 00:00. There shall be no Exception_Schedule that
overrides this Weekly Schedule during the date and time used for this test. The local date and time are changed to a value
between 00:00 and the first entry in the BACnetDailySchedule. Present_Value is read to verify that it contains the
Schedule_Default value, or Vs for implementations with a Protocol_Revision less than 4. The IUT is reset and the
Present_Value is checked again to verify that it contains the Schedule_Default value, or V4 for implementations with a
Protocol_Revision less than 4.

Configuration Requirements: The IUT shall be configured with a Schedule object that contains a Weekly _Schedule that has
more than one scheduled write operation for a particular day. None of the write operations shall be scheduled for time 00:00
and there shall be no higher priority coincident BACnetSpecialEvents. In the test description D, represents a time between
00:00 and the time of the first scheduled write operation in the BACnhetDailySchedule. V. represents the value that is

scheduled to be written |n the Iast BACnetTlmeVaIue palr for the day Ihrs—test—shau4}et—be—pe#enqqed—+f—the

Test Steps:

1. (TRANSMIT TimeSynchronization-Request, 'Time' = D;) |
(TRANSMIT UTCTimeSynchronization-Request 'Time' = D,) |
MAKE (the local date and time = D)

7

BACnet Testing Laboratories - Specified Tests

2. WAIT Schedule Evaluation Fail Time
3. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN
VERIFY Present_Value = Schedule_Default
ELSE
VERIFY Present_Value = Vg
4. IF (ReinitializeDevice execution is supported) THEN
TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device' =
'Password' =
RECEIVE BACnet-Simple-ACK-PDU
ELSE
MAKE (the IUT reinitialize)
5. CHECK (Did the IUT perform a WARMSTART reboot?)
WAIT Schedule Evaluation Fail Time
7. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN
VERIFY Present_Value = Schedule_Default
ELSE
VERIFY Present_Value = V

WARMSTART,

ISk

7.3.2.23.10 Schedule Object Protocol_Revision 4 Tests

7.3.2.23.10.3 Revision 4 Exception_Schedule Property Tests

Reason for Change: No tests existed for revision 4 functionality. The change is in SED-006.

7.3.2.23.10.3.8 Revision 4 Event Priority Test
Reason for Change: Added 'Notes to Tester' for clarity.

(any valid password)

Dependencies: ReadProperty Service Execution Tests, 9.18; TimeSynchronization Service Execution Tests, 9.30.

BACnet Reference Clause: 12.24.8.

Purpose: To verify that a BACnetSpecialEvent of a higher priority takes precedence over one of lower priority when both

are active at the same time, and that it relinquishes to the lower priority.

Configuration Requirements: The IUT shall be configured with a Schedule object containing two or more
BACnetSpecialEvents, all active on the same date, with different eventPriority values (if possible, all 16 priority levels
should be represented), and with overlapping BACnetTimeValue entries distributed thus: the entry with the lowest priority
shall have the earliest time-value pair (D;) with a non-NULL value, and the last time-value pair (Dy) with a NULL value;
the next higher priority shall have a time-value pair D, occurring after D; with a different non-NULL value, and a time-
value pair Dy.; with a NULL value and occurring before Dy; and so on. The result is that the time-value pairs shall be
ordered chronologically thus: D,, D,, D3, ..., Dy, Dy An example of such a configuration testing five priority levels is

shown in Table 7-11.

Table 7-11. Example of event and value prioritization

Event Time:
Priority: D, D, D3 D, Ds D¢ D, Dg Dy
1 - - - - Vs NULL - - -
2 - - - V. - - NULL - -
3 - - Vs - - - - NULL -
4 - VA - - - - - - NULL
5 vV, - ; ; ; ; ; ; :

78

BACnet Testing Laboratories - Specified Tests

| Present Value: |V, V, V2 V, Vs V, V2 V, Vv, |

Note: Each event priority in the table above represents 1 BACnetSpecialEvent. The BACnetSpecialEvent should contain
the time value pairs listed in the table (Dx, Vx). There should be only 1 BACnetSpecialEvent per priority for this test.

Test Steps:

1. REPEAT D = (the times in the configured time-value pairs with non-NULL values) DO
2. (TRANSMIT TimeSynchronization-Request, 'Time' = D)
| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC)
| MAKE (the local date and time = D)
3. WAIT Schedule Evaluation Fail Time
4. VERIFY Present_Value = (the value corresponding to the time D)
5. REPEAT D = (the times in the configured time-value pairs with NULL values,
except the final DN) DO
6. (TRANSMIT TimeSynchronization-Request, Time' = D)
| (TRANSMIT UTCTimeSynchronization-Request, 'Time' = D converted to UTC)
| MAKE (the local date and time = D)
7. WAIT Schedule Evaluation Fail Time
8. VERIFY Present_Value = (the non-NULL value corresponding to the priority lower than that
associated with D)

Notes to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in
the range 1-16, excluding 6. The Priority parameter for WriteProperty-Request may be left out if the target property is a
standard property of a standard object for which commandability is not an option.

7.3.2.24 Log Object Tests
This section was renumbered in 135.1-2007 to 7.3.2.24. The old section number was 7.3.2.23.

7.3.2.24.4 Log_Interval Test
Reason for Change: The Configuration Requirements are enhanced, and a Notes to Tester is added.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

Purpose: To verify that the logging period is controlled by Log_Interval.

Test Concept: The logging object is configured to acquire data by polling. Polling is done at two different intervals,
defined by Log_Interval, with about 10 records acquired at each rate. The timestamps of the records are inspected to verify
the polling rate.

Configuration Requirements: Start Time, if present, shall be configured with a date and time preceding the beginning of
the test. Stop_Time, if present shall be configured with the latest possible date and time, in order that it occur after the end
of the test. Stop_When_Full, if configurable, shall be set to FALSE. Enable shall be set to TRUE. Logging_Type is not
equal to TRIGGERED. Non-zero values shall be chosen for Log_lInterval in accordance with the range and resolution
specified by the manufacturer for this property.

Test Steps:

1. WRITE Log_Interval = (some non-zero value)

79

BACnet Testing Laboratories - Specified Tests

2. WRITE Record_Count=0

3. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)

4. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 1)
5. WRITE Log_Interval = (a hon-zero value different from the one written in step 1)

6. WRITE Record Count=0

7. WAIT (Internal Processing Fail Time + 10* Log_Interval hundredths-seconds)

8. VERIFY (Log_Buffer record timestamp intervals, on average, are as written in step 5)

Notes to tester: The step 1 write of Logging_Interval to a non-zero value will make a change in Logging_Type from COV to
POLLED, if Logging_Type was initially COV.

7.3.2.24.13 Log-Status Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive
approach.

Dependencies: ReadRange Service Execution Tests, 9.21; WriteProperty Service Execution Tests, 9.18.
BACnet Reference Clause: 12.23.14.
Purpose: To verify proper logging of log-disabled and buffer-purged events.

Test Concept: The buffer is cleared. Then the Enable property is changed and it is verified that the Record_Count property
is changed and it is verified that the status entry is made correctly in the Log_Buffer. The Record_Count is also set to zero
while the Enable property is FALSE and it is verified that the buffer-purged event is recorded into the Log_Buffer.

Test Configuration: The logging object is configured to acquire data by whatever means available. Configure the logging
such that the entire test may be run without the trend buffer overflowing.

Test Steps:
1. WRITE Enable = FALSE
2. WRITE Record_Count=0
3. VERIFY (Log_Buffer contains 1 entries, and it is the buffer-purged event)
4. WRITE Enable = TRUE
5. WRITE Enable = FALSE
6. VERIFY (Record_Count => 3 and the first entry is the buffer-purged event, the second entry is

the log-enable TRUE event and the last entry is the log-enable FALSE event)

Notes to Tester: When the IUT's Protocol_Revision < 7, the length of BACnetLogStatus shall be 2; otherwise, it shall be 3.

7.3.2.24.14 Time_Change Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive
approach. Addendum 135-2008x-2 Clarify Trend Log Time Stamp.

Purpose: To verify proper logging of time-change events in the log buffer

Test Concept: Change the clock in the device and verify that a record is logged indicating the number of seconds that the

clock changed by-er-indicating-zero-if-unknown. This test shall be skipped if the device does not support the Local_Time
property in the device object or there is no way to change the time in the device.

Configuration Requirements: The log object is configured to acquire data by whatever means available. Fhe-Log—Buffer
should-be-cleared-such-that-the Record—Count-is-0--Configure the logging such that the entire test may be run without the
trend buffer overflowing.

Test Steps:

1. WRITE Enable = FALSE
2. WRITE Record_Count=0
3. VERIFY (Log_Buffer contains 1 entry, and it is the buffer-purged event)

80

BACnet Testing Laboratories - Specified Tests

4. TRANSMIT ReadProperty-Request,
‘Object Identifier’ = (device that contains log object)
‘Property Identifier’ = Local_Time
5. RECEIVE ReadProperty-Ack,
‘Object Identifier’ = (device that contains log object)
‘Property Identifier’ = Local_Time
‘Property Value’ = (currentTime)
6. WRITE Enable = TRUE
7. MAKE (the time change on the device by a reasonable amount (deltaTime); change by one hour or
more)
8. WRITE Enable = FALSE
9. VERIFY Record_Count=>4
10. CHECK (Log_Buffer contains a log-status entry of time-change)
11. VERIFY (time-change value ~= deltaTime)
12. VERIFY TimeStamp on the time-change entry ~= (currentTime + deltaTime)

7.3.2.24.15 COV-Sampling Verification Test

Reason for Change: The test here supercedes the version in 135.1-2013, with a completely different, less prescriptive
approach. The Test Concept is simplified. The Configuration Requirements are enhanced.

Purpose: To verify logged samples are based on COV rather than by interval.

Test Concept: The trend log is configured to log based on COV increment. Logging is enabled. After a period of time the
buffer is checked to verify the data in the buffer is based on the COV values and not on the set interval.

Configuration Requirements: The IUT shall be configured such that the monitored object has COV configured or the
Client_COV_Increment shall be configured or it is not monitoring a REAL property. The Logging_Type shall not have a
value of TRIGGERED.

Test Steps:

WRITE Enable = FALSE

WRITE Record_Count =0

WRITE Log_Interval =

WRITE Enable = TRUE

MAKE (monitored property change its value)
WAIT (60 seconds)

MAKE (monitored property change its value)
WAIT (190 seconds)

MAKE (monitored property change its value)
10 WAIT (40 seconds)

11. CHECK (Log_Buffer contains 3 or 4 data entries, and time between each sample is not equal)

©oOo~NoOA~WNE

7.3.2.24.19 Trigger Verification Test

Reason for Change: This test has been included in 135.1-2013, but is here with a correction to the typo in Record_Count,
with the steps renumbered to be consecutive, , with the distinct ‘Result Flags’ in the final record as noted in CR-0259, the
REPEAT loop should be one fewer, and the appropriate fields present in ReadRange-Request and ReadRange-ACK are
based upon Record_Count, not Total_Record_Count, since this is a request byPosition as noted by CR-0282.

Purpose: To verify logged samples are based on the triggered Logging_Type.

Test Concept: The log, O; is configured to log based on TRIGGERED. Logging is enabled. After a period of time the
buffer is checked to verify the data in the buffer is based on triggered values.

Configuration Requirements: The IUT shall be configured such that the monitored object’s Logging_Type is set to
TRIGGERED.

81

BACnet Testing Laboratories - Specified Tests
Test Steps:

WRITE Enable = FALSE
WRITE Record_Count=0
WRITE Enable = TRUE
WAIT (10 seconds)

WRITE Trigger = TRUE
WAIT (20 seconds)

WRITE Trigger = TRUE
WAIT (40 seconds)

9. WRITE Trigger = TRUE

10. WAIT (30 seconds)

11. WRITE Enable = FALSE
12 VERIFY-RecordCount =6
12. READ N = Record_Count
13. REPEAT X = (1 through 34)
TRANSMIT ReadRange-Request

N~ WNE

‘Object Identifier’ = 04,
‘Property Identifier’ = Log_Buffer,
‘Reference Index’ = N-4+X,
‘Count’ = 1
RECEIVE ReadRangeAckReadRange-ACK
‘Object Identifier’ = 0Oy,
‘Property Identifier’ = Log_Buffer,
‘Result Flags’ = (2False, 2False, False),
‘Item Count’ = 1,
‘Item Data’ = {(one data record storing the timestamp in TS[X])>)
14. TRANSMIT ReadRange-Request
‘Object Identifier’ = 04,
‘Property ldentifier’ = Log_Buffer,
‘Reference Index’ = N,
‘Count’ = 1
RECEIVE ReadRange-ACKek
‘Object Identifier’ = 01,
‘Property Identifier’ = Log_Buffer,
‘Result Flags’” = (False, True, False),
‘Item Count’ = 1,
‘Item Data’ = (one data record storing the timestamp in TS[4])
14, CHECK({TS[3}-TS[2}~=10-seconds)
15 CHECK{TS[4}-TS[3}~=20-seconds)
16 CHECK({TS[5}-TS[4}~=40-seconds)
17 CHECK({TS[6}-TS[5}~=30-seconds)

15. CHECK(TS[2] - TS[1] ~= 20 seconds)
16. CHECK(TS[3] - TS[2] ~= 40 seconds)
17. CHECK(TS[4] - TS[3] ~= 30 seconds)

7.3.2.24.X8 Clock-Aligned Logging
Test yet to be defined.

7.3.2.24.X9 Logging Interval_Offset
Test yet to be defined.

82

BACnet Testing Laboratories - Specified Tests

7.3.2.X37 Accumulator Object Tests

7.3.2.X37.1.1 Present_Value Remains In-Range Test

Reason for Change: New test for Accumulator object.
Purpose: To verify the correct wrapping operation of the Accumulator Present_Value.

Test Concept: The IUT shall be configured with a Max_Pres_Value which is attainable, within reasonable testing time,
after Present_Value is preset to a value slightly less than that, then incremented. The Present_Value shall remain in range
from one to Max_Pres_Value, by wrapping back to 1 when it would exceed Max_Pres_Value.

Test Steps:

1. IF (Value_Set is writable) THEN
WRITE Value_Set = (a value slightly less than Max_Pres_Value)
ELSE
MAKE (Present_Value equal a value slightly less than Max_Pres_Value)
2. MAKE (the Accumulator increase its Present_Value until it rolls over Max_Pres_Value)
3. CHECK (Present_Value < Max_Pres_Value)

7.3.2.X37.1.2 Prescale in Accumulator Test

Reason for Change: New test for Accumulator object.
Purpose: To verify the correct effect of Prescale on the increment of the Present_Value in Accumulator.

Test Concept: The IUT shall be configured with a Prescale whose effect when incrementing Present_Value is testable.
Three readings of the Present_Value are observed, then the math is checked to ensure that it increments at the rate expected
given Prescale.

Configuration Requirements: If there is no Prescale property present in any Accumulator object, then this test shall be
skipped.

Test Steps:

1. IF (Value_Set is writable) THEN

WRITE Value_Set = (any valid value V;)
ELSE

MAKE (Present_Value equal any valid value V,)
MAKE (the Accumulator increase its Present_Value)
READ V, = Present_Value)
READ V; = Present_Value)
5. IF (the Accumulator is stopped) THEN
CHECK (V3 = V, = Prescale-multiplier * pulse-count of signals generated by the measuring instrument) / Prescale-
moduloDivide + V;)

ELSE

CHECK (V1 < V, <V,)

o

7.3.2.X37.1.3 Logging_Record in Accumulator Test

Reason for Change: New test for Accumulator object.
Purpose: To verify the correct values represented in Logging_Record of Accumulator.

Test Concept: Two readings of the Logging_Object acquiring the Logging_Record are performed, PVprior being the value

from the first, and Present_Value matching what is observed in the second Logging_Record. Then all fields are checked to
ensure these match the values expected.

83

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT shall be configured so that Logging_Record capture is testable. If there is no
Logging_Record property present in any Accumulator object, then this test shall be skipped.

Test Steps:

1. MAKE (the Logging_Object acquire the Logging_Record)

2. Pvprjor = present-value parameter in the Logging_Record

3. MAKE (the Logging_Object acquire another Logging_Record)
4. CHECK (Logging_Record list of values are:

timestamp: the local date and time,
present-value: Present_Value,
accumulated-value: Present_Value - Pvprior,

accumulated-status: NORMAL)

7.3.2.X37.1.4 Logging_Record in Accumulator RECOVERED Test
Reason for Change: New test for Accumulator object.

Purpose: To verify the correct values represented in Logging_Record of Accumulator after one or more writes to
Value_Before_Change or Value_Set.

Test Concept: The effect of the Logging_Object acquiring the Logging_Record is checked to ensure that after one or more
writes to Value_Before_Change or Value_Set, it matches the values expected.

Configuration Requirements: The IUT shall be configured so that Logging_Record capture is testable. If there is no
Logging_Record property present in any Accumulator object, or if neither Value Before_Change nor Value Set is
writable in an object which does have a Logging_Record property, then this test shall be skipped.

Test Steps:

MAKE (the Logging_Object acquire the Logging_Record)
PVprior = present-value parameter in the Logging_Record

WRITE (either Value_Before_Change or Value_Set in the object that contains Logging_Record)
MAKE (the Logging_Obiject acquire another Logging_Record)
CHECK (Logging_Record list of values are:
timestamp: the local date and time,
present-value: Present_Value,
accumulated-value: (Present_Value - Value_Set) +
(Value_Before_Change - PVprior):

ogrw pE

accumulated-status: RECOVERED)

7.3.2.X37.1.5 Logging_Record in Accumulator STARTING Test
Reason for Change: New test for Accumulator object.

Purpose: To verify the correct values represented in Logging_Record of Accumulator when no data has been acquired since
startup by the object identified by Logging_Object.

Test Concept: The Logging_Record is observed when no data has been acquired by the object identified by
Logging_Object, to ensure that it matches the values expected.

84

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT shall be in a state when no data has been acquired since startup by the object
identified by Logging_Obiject. If there is no Logging_Record property present in any Accumulator object, then this test
shall be skipped.

Test Steps:

1. CHECK (Logging_Record list of values are:
timestamp: unspecified,
present-value: Present_Value,
accumulated-value: 0,
accumulated-status: STARTING)

3. MAKE (the Logging_Object acquire the Logging_Record)

4. CHECK (Logging_Record list of values are:
timestamp: the local date and time,
present-value: Present_Value,
accumulated-value: same as present-value,
accumulated-status: STARTING)

7.3.2.X37.1.6 Out_Of_Service Accumulator Test
Reason for Change: New test for Accumulator object.

Purpose: This test case verifies that Present Value, Pulse_Rate, and the Reliability property are writable when
Out_Of Service is TRUE.

Test Concept: Select one instance of each appropriate object type and test it as described. Verify the interrelationship
between the Out_Of_Service, Status_Flags, and Reliability properties. If the Qut_Of Service property of the object under
test is not writable, and the value of the property cannot be changed by other means, then this test shall be omitted. If the
Reliability property is not supported then step 5 shall be omitted.

Test Steps:

1. IF (Out_Of_Service is writable) THEN
WRITE Out_Of_Service = TRUE
ELSE
MAKE (Out_Of_Service TRUE)
VERIFY Out_Of_Service = TRUE
VERIFY Status_Flags = (?, FALSE, ?, TRUE)
4. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
WRITE Present_Value = X
VERIFY Present_Value = X

wnN

}
5. IF (Reliability is present and writable) THEN
REPEAT X = (all values of the Reliability enumeration appropriate to the object type except
NO_FAULT_DETECTED) DO {

WRITE Reliability = X
VERIFY Reliability = X
VERIFY Status_Flags = (TRUE, TRUE, ?, TRUE)
WRITE Reliability = NO_FAULT_DETECTED
VERIFY Reliability = NO_FAULT_DETECTED
VERIFY Status_Flags = (?, FALSE, ?, TRUE)

6. REPEAT X = (all values meeting the functional range requirements of 7.2.1) DO {
WRITE Pulse_Rate = X
VERIFY Pulse_Rate = X

¥
7. IF (Out_Of _Service is writable) THEN

85

BACnet Testing Laboratories - Specified Tests

WRITE Out_Of Service = FALSE
ELSE
MAKE (Out_Of_Service FALSE)
8. VERIFY Out_Of Service = FALSE
9. VERIFY Status_Flags = (?, ?, ?, FALSE)

7.3.2.X37.1.7 Value_Set Writing Test
Reason for Change: New test for Accumulator object.

Purpose: Verifying that writes to the Value_Set are reflected atomically into the object's properties.

Test Concept: Writing the Value_Set shall be reflected atomically in the Value_Set and Present_Value properties, while the
old Present_Value is stored into the VValue_Before_Change property, and the Value_Change_Time shall update.

Test Steps:

READ OldV = Present_Value

WRITE Value_Set = (NewV, any valid value)

VERIFY Value_Set = NewV

VERIFY Present_Value = NewV

VERIFY Value_Before_Change = OldV

VERIFY Value_Change_Time = (approximately the current local time)

ocoupwdE

7.3.2.X37.1.8 Value_Before_Change Writing Test
Reason for Change: New test for Accumulator object.

Purpose: To verify the correct atomic operations of writing the Accumulator Value_Before_Change.

Test Concept: Write the Value_Before_Change and verify that it is reflected atomically in the Value_Before Change
property, while the old Present_Value is stored into the Value_Set property, and the Value_Change_Time shall update.

Test Steps:

READ OldV = Present_Value

WRITE Value_Before_Change = (NewV, any valid value)

VERIFY Value_Before_Change = NewV

VERIFY Value_Set = OldV

VERIFY Value_Change_Time = (approximately the current local time)

aogrwdE

86

BACnet Testing Laboratories - Specified Tests

8 Application Service Initiation Tests
8.2 ConfirmedCOVNotification Service Initiation Tests

8.2.1 Change of Value Notification from an Analog Input, Analog Output, ard-Analog Value, Large Analog Value,
Integer Value, and Positive Integer Value Object Present_Value Property

Reason for Change: Add more primitive value objects. Updated description of the 'List of Values' to improve readability.
Updated 'Configuration Requirements'.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and
Positive Integer Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less
than the COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an
amount greater than the COV increment and a notification shall be received. The Present_Value may be changed using the
WriteProperty service or by another means such as changing the input signal represented by an Analog Input object. For
some implementations it may be necessary to write to the Out_Of Service property first to accomplish this task. For
implementations where it is not possible to write to these properties at all the vendor shall provide an alternative trigger
mechanism to accomplish this task. All of these methods are equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of Service property shall have a value of FALSE.
Select an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment
or which has a writable Out_Of Service.

Test Steps:
REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value, Large

Analog Value, Integer Value, and Positive Integer Value) DO {
1. TRANSMIT SubscribeCOV-Request,

‘Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = X,

‘Issue Confirmed Notifications' = TRUE,

‘Lifetime' = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),
'Initiating Device Identifier' = IUT,
'‘Monitored Object Identifier' = X,
‘Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,
‘Object Identifier' = X,
'Property Identifier' = COV_Increment
6. RECEIVE BACnet-ComplexACK-PDU,
'‘Object Identifier' = X,
'Property Identifier' = COV_Increment,
'Property Value' = (a value "increment" that will be used below)

87

BACnet Testing Laboratories - Specified Tests

7. IF (Out_Of Service is writable) THEN
WRITE X, Out_Of_Service = TRUE

BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device ldentifier'= 1UT,

‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

"List of Values' = (ReportedPV =any-value-appropriatefor the current Present_Value, and

new Status_Flags)

TRANSMIT BACnet-SimpleACK-PDU
8. IF (Present_Value is now writable) THEN

WRITE X, Present Value = (any value that differs from—initial-Present—alue” ReportedPV by less than
"increment")

ELSE

MAKE (Present Value = any value that differs from “initialPresent\alue™ ReportedPV by less than
"increment")
9. WAIT Notification Fail Time
10. CHECK (verify that no COV notification was transmitted)
11. IF (Present_Value is now writable) THEN

WRITE X, Present_Value = (any value that differs from “initial-Present\alue™ ReportedPV by an amount greater
than "increment")
— RECEINVE BAChHet-SimpleACK-PBUY

ELSE

MAKE (Present_Value = any value that differs from “initial-Present\alue™ ReportedPV by an amount greater
than "increment")
12. BEFORE NotificationFailTime

RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),
"List of Values' = (the new Present_Value and new Status_Flags)

13. TRANSMIT BACnet-SimpleACK-PDU

14. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (the same value used in step 1),
‘Monitored Object Identifier' = X

15. RECEIVE BACnet-SimpleACK-PDU

16. IF (Out_Of Service is writable) THEN
WRITE X, Out_Of_Service = FALSE

—RECENE BACHet-SimpleACK-PBUY

8.2.2 Change of Value Notification from an Analog Input, Analog Output, and Analog Value, Large Analog Value,
Integer Value, and Positive Integer Value Object Status_Flags Property

Reason for Change: Add more primitive value objects. Updated 'Configuration Requirements’. Removed extraneous
SimpleACKs after WRITE statements. Updated descriptive text for 'List of Value' property.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and
Positive Integer Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than

24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status-Flags property can be changed by using the WriteProperty service or

88

BACnet Testing Laboratories - Specified Tests

by another means. For some implementations writing to the Out_Of Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of Service or change the Status Flags by any
other means, this test shall be skipped

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.
Select an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment
or which has a writable Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Analog Input, Analog Output, and Analog Value, Large
Analog Value, Integer Value, and Positive Integer Value) DO {

1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'‘Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,

‘Lifetime' = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (the initial Present_Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU

5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from initial Status_Flags) |
MAKE (Status_Flags = any value that differs from initial Status_Flags)
——RECENE BACnhet-SimpleACK-PDU
7. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (the-initialthe current Present_Value and new Status_Flags)

8. TRANSMIT BACnet-SimpleACK-PDU

9. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (the same value used in step 1),
'‘Monitored Object Identifier' = X

10. RECEIVE BACnet-SimpleACK-PDU

11. IF (Out_Of Service was changed in step 5) THEN
WRITE X, Out_Of_Service = FALSE

——RECEIE BACHet-SimpleACK-PBUY

8.2.3 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Present_Value
Property

Reason for Change: Updated the 'Configuration Requirements'. Removed extraneous Simple ACKs that appear after
WRITE statements. Modified descriptive text for 'List of Values' properties.

89

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Binary Input, Binary Output, and Binary Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present_Value of the monitored object is changed and a notification
shall be received. The Present_Value may be changed using the WriteProperty service or by another means such as
changing the input signal represented by a Binary Input object. For some implementations it may be necessary to write to
the Out_Of_Service property first to accomplish this task. For implementations where it is not possible to write to these
properties at all the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are
equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of Service property shall have a value of FALSE.
Select an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment
or which has a writable Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO {

1. TRANSMIT SubscribeCOV-Request,

‘Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'‘Monitored Object Identifier' = X,

‘Issue Confirmed Notifications' = TRUE,

‘Lifetime' = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = X,

"Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (the initial Present_Value and initial Status_Flags)

e

TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of_Service is writable) THEN
WRITE X, Out_Of_Service = TRUE
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = 1UT,

'‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (the—initialReportedPV = the current Present Value, and—new

Status_Flags)
TRANSMIT BACnet-SimpleACK-PDU
6. IF (Present_Value is now writable) THEN
WRITE X, Present_Value = (any value that differs from “initial-Present—\alue™ ReportedPV)
ELSE
MAKE (Present_Value = any value that differs from “initial-Present\alue™ ReportedPV)
7. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

90

BACnet Testing Laboratories - Specified Tests

"List of Values' = (the new Present_Value and new Status_Flags)

8. TRANSMIT BACnet-SimpleACK-PDU
9. TRANSMIT SubscribeCOV-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

'‘Monitored Object Identifier' = X
10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of_Service is writable) THEN

WRITE X, Out_Of Service = FALSE

—RECENE BACHet-SimpleACK-PBUY

8.2.4 Change of Value Notification from a Binary Input, Binary Output, and Binary Value Object Status_Flags
Property

Reason for Change: Updated 'Test Concept' to include case if finite lifetime is not supported. Updated 'Configuration
Requirements'.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Binary Input, Binary Output, and Binary Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. Removed extraneous
SimpleACKs after WRITE statements. The Status Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status-_Flags property can be changed by using the WriteProperty service or
by another means. For some implementations writing to the Out_Of Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of Service or change the Status_Flags by any
other means, this test shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE.
Select an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment
or which has a writable Out_Of_Service.

Test Steps:
REPEAT X = (one supported object of each type from the set Binary Input, Binary Output, and Binary Value) DO {

1. TRANSMIT SubscribeCOV-Request,

‘Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'‘Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,

‘Lifetime' = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device Identifier' = IUT,

‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (the initial Present_Value and initial Status_Flags)

4. TRANSMIT BACnet-SimpleACK-PDU
5. WRITE X, Out_Of Service = TRUE | WRITE X, Status_Flags = (a value that differs from initial Status_Flags) |
MAKE (Status_Flags = any value that differs from initial Status_Flags)
——RECENE BACnhet-SimpleACK-PDU
46. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),
'Initiating Device Identifier' = IUT,

91

BACnet Testing Laboratories - Specified Tests

'Monitored Object Identifier' = X,
"Time Remaining' = (any value appropriate for the Lifetime selected),
"List of Values' = (the-initialthe current Present_Value, and new Status_Flags)

87. TRANSMIT BACnet-SimpleACK-PDU

98. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (the same value used in step 1),
'‘Monitored Object Identifier' = X

109.RECEIVE BACnet-SimpleACK-PDU

1110 IF (Out_Of Service was changed in step 5) THEN
WRITE X, Out_Of Service = FALSE

——RECENE BACHet-SimpleACK-PBUY

8.2.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety
Point, er Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime
Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

Reason for Change: Added more primitive value objects. Updated text for 'List of Values'. Updated 'Configuration
Requirements’. Removed extraneous SimpleACKs after WRITE statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone,
CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,
Time Value, or Time Pattern Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present Value of the monitored object is changed and a notification
shall be received. The Present_Value may be changed using the WriteProperty service or by another means such as
changing the input signal represented by the object. For some implementations it may be necessary to write to the
Out_Of Service property first to accomplish this task. For implementations where it is not possible to write to these
properties at all, the vendor shall provide an alternative trigger mechanism to accomplish this task. All of these methods are
equally acceptable.

Configuration Requirements: At the beginning of the test, the Out_Of Service property shall have a value of FALSE.
Select an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment
or which has a writable Out_Of_Service.

Test Steps:

REPEAT X = (one supported object of each type from the set Multi-state Input, Multi-state Output, Multi-state Value, Life
Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime

Value, DateTime Pattern Value, Time Value, or Time Pattern Value) DO {

1. TRANSMIT SubscribeCOV-Request,

'Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'Monitored Object Identifier' = X,

'Issue Confirmed Notifications' = TRUE,

‘Lifetime' = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device Identifier' = IUT,

‘Monitored Object Identifier' = X,

Time Remaining' = (any value appropriate for the Lifetime selected),

92

BACnet Testing Laboratories - Specified Tests

"List of Values' = (the initial Present_Value and initial Status_Flags)
4. TRANSMIT BACnet-SimpleACK-PDU
5. IF (Out_Of Service is writable) THEN

WRITE X, Out_Of _Service = TRUE

BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device Identifier' = 1UT,

'‘Monitored Object Identifier' = X,

"Time Remaining' = (any value appropriate for the Lifetime selected),

"List of Values' = (the—initialReportedPV = the current Present Value, and the new

Status_Flags)
TRANSMIT BACnet-SimpleACK-PDU
6. IF (Present_Value is now writable) THEN
WRITE X, Present_Value = (any value that differs from “initialvalue“ReportedPV)
ELSE
MAKE (Present_Value = any value that differs from “initialvalue“ReportedPV)
7. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),
"List of Values' = (the new Present_Value and new Status_Flags)

8. TRANSMIT BACnet-SimpleACK-PDU

9. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (the same value used in step 1),
‘Monitored Object Identifier' = X

10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of_Service is writable) THEN
WRITE X, Out_Of_Service = FALSE

——RECEIE BACHet-SimpleACK-PBU

8.2.6 Change of Value Notification from a Multi-state Input, Multi-state Output Multi-state Value, Life Safety Point,
and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value,
DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

Reason for Change: Added more primitive value objects. Updated Configuration Requirements. Modified text for ‘List of
Values' in step 7. Removed extraneous SimpleACKs after WRITE statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone,
CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,
Time Value, or Time Pattern Value objects.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status—Flags property can be changed by using the WriteProperty service or
by another means. For some implementations writing to the Out_Of Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of Service or change the Status Flags by any
other means, this test shall be skipped.

Configuration Requirements: At the beginning of the test, the Out_Of Service property shall have a value of FALSE.
Select an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment
or which has a writable Out_Of_Service.

93

BACnet Testing Laboratories - Specified Tests

Test Steps:

REPEAT X = (one supported object of each type from the set Multi-state input, Multi-state Output, Multi-state Value, Life
Safety Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime
Value, DateTime Pattern Value, Time Value, or Time Pattern Value) DO {

1. TRANSMIT SubscribeCOV-Request,

‘Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'‘Monitored Object Identifier' = X,

‘Issue Confirmed Notifications' = TRUE,

‘Lifetime’ = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device Identifier' = IUT,

‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (the initial Present_Value and initial Status_Flags)

&

TRANSMIT BACnet-SimpleACK-PDU

5. WRITE X, Out_Of_Service = TRUE | WRITE X, Status_Flags = (a value that differs from initial Status_Flags) |
MAKE (Status_Flags = any value that differs from initial Status_Flags)
——RECENE BAGChet-SimpleACK-PBU

7. BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = X,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (the-initialthe current Present_Value, and new Status_Flags)

8. TRANSMIT BACnet-SimpleACK-PDU

9. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = X

10. RECEIVE BACnet-SimpleACK-PDU

11. IF (Out_Of Service was changed in step 5) THEN
WRITE X, Out_Of Service = FALSE

RECENE BACHet-SimpleACK-PDU

8.2.7 Change of Value Notification from Loop Object Present_Value Property

Reason for Change: Added 'Configuration Requirements’. Corrected object reference in step 11. Updated wording for 'List
of Values' properties. Removed extraneous SimpleACKs after WRITE statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Present_Value property of a loop object.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Present_Value of the monitored object is changed by an amount less
than the COV increment and it is verified that no COV notification is received. The Present_Value is then changed by an
amount greater than the COV increment and a notification shall be received.

94

BACnet Testing Laboratories - Specified Tests

The Present_Value may be changed by placing the Loop Out_Of Service and writing directly to the Present_Value. For
implementations where this option is not possible an alternative trigger mechanism shall be provided to accomplish this
task, such as changing the Setpoint or the Setpoint_Reference. All of these methods are equally acceptable.

The object identifier of the Loop object being tested is designated as O1 in the test steps below.
Configuration Requirements: At the beginning of the test, the Out_Of_Service property shall have a value of FALSE. Select

an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment or
which has a writable Out_Of Service.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (any value > 0 chosen by the TD),
‘Monitored Object Identifier' = 01,
'Issue Confirmed Notifications' = TRUE,
‘Lifetime' = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

‘Initiating Device ldentifier' = IUT,

'‘Monitored Object Identifier' = 01,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (the initial Present_Value, initial Status_Flags, initial Setpoint, and

initial Controlled_Variable_Value)

4. TRANSMIT BACnet-SimpleACK-PDU
5. TRANSMIT ReadProperty-Request,
'Object Identifier' = 01,
'Property Identifier' = COV_Increment
6. RECEIVE BACnet-ComplexACK-PDU,
'Object Identifier' = 01,
'Property Identifier' = COV_Increment,
'Property Value' = (a value "increment" that will be used below)

7. IF (Out_Of_Service is writable) THEN
WRITE 01, Out_Of_Service = TRUE
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier'= IUT,

'‘Monitored Object Identifier'= 01,

Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (the-initialReportedPV = the current Present_Value, new Status_Flags;
initialcurrent Setpoint, and initialcurrent Controlled_Variable_Value)
8. TRANSMIT BACnet-SimpleACK-PDU

9. IF (Present_Value is now writable) THEN

WRITE O1, Present_Value = (any value that differs from “initialPresent-\alue™ ReportedPV by less than
"increment")

ELSE

MAKE (Present Value = any value that differs from “initialPresent\alue™ ReportedPV by less than
"increment")
10. WAIT Notification Fail Time
11. CHECK (verify that no COV notification was transmitted)
12. IF (Present_Value is now writable) THEN

95

BACnet Testing Laboratories - Specified Tests

WRITE 01, Present_Value = (any value that differs from “initia-Present—alue“ReportedPV by an amount
greater than "increment")
——RECEIVE BACnet-SimpleACK-PDU
ELSE

MAKE (Present_Value = any value that differs from “initial-Present-\alue“ReportedPV by an amount greater
than "increment")
13. BEFORE Notification Fail Time

RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = 01,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

"List of Values' = (the new Present_Value, new Status_Flags,-itialcurrent Setpoint, and

initiak-currentControlled_Variable_Value)

14, TRANSMIT BACnet-SimpleACK-PDU

15. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (the same value used in step 1),
'‘Monitored Object Identifier' = 01

16. RECEIVE BACnet-SimpleACK-PDU

17. IF (Out_Of_Service is writable) THEN
WRITE £01, Out_Of_Service = FALSE

——RECEIE BACHet-SimpleACK-PBU

8.2.8 Change of Value Notification from a Loop Object Status_Flags Property

Reason for Change: Updated the 'Configuration Requirements' to clarify the restrictions on the object selected. Updated
descriptions in 'List of Values' property. Fixed object reference in step 11. Removed extraneous SimpleACKs after WRITE
statements.

Purpose: To verify that the IUT can initiate ConfirmedCOVNotification service requests conveying a change of the
Status_Flags property of a Loop object.

Test Concept: A subscription for COV natifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test. The Status_Flags property of the monitored object is then changed and a
notification shall be received. The value of the Status_-Flags property can be changed by using the WriteProperty service or
by another means. For some implementations writing to the Out_Of Service property will accomplish this task. For
implementations where it is not possible to write to Status_Flags or Out_Of Service or change the Status Flags by any
other means, this test shall be skipped.

The object identifier of the Loop object being tested is designated as O1 in the test steps below.

Configuration Requirements: At the beginning of the test, the Out_Of Service property shall have a value of FALSE.
Select an object where Present_Value is not expected to change outside the tester's control by more than COV_Increment
or which has a writable Out_Of_Service.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (any value > 0 chosen by the TD),
'‘Monitored Object Identifier' = 01,
'Issue Confirmed Notifications' = TRUE,
‘Lifetime' = L

N

RECEIVE BACnet-SimpleACK-PDU
3. BEFORE Notification Fail Time
RECEIVE ConfirmedCOV Notification-Request,

96

BACnet Testing Laboratories - Specified Tests

'Subscriber Process Identifier' = (the same value used in step 1),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = 01,

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (the initial Present_Value, initial Status_Flags, initial Setpoint, and

initial Controlled_Variable_Value)
4. TRANSMIT BACnet-SimpleACK-PDU
5. WRITE O1, Out_Of _Service = TRUE | WRITE O1, Status_Flags = (a value that differs from initial Status_Flags) |
MAKE (Status_Flags = any value that differs from initial Status_Flags)
——RECENE BAGChet-SimpleACK-PBU
7. BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same value used in step 1),
‘Initiating Device Identifier' = IUT,
'‘Monitored Object Identifier' = 01,
‘Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (the—initialthe current Present_Value, new Status Flags, initialcurrent
Setpoint, and initial current Controlled_Variable_Value)
8. TRANSMIT BACnet-SimpleACK-PDU
9. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (the same value used in step 1),
'Monitored Object Identifier' = 01

10. RECEIVE BACnet-SimpleACK-PDU
11. IF (Out_Of Service was changed in step 5) THEN
WRITE £01, Out_Of_Service = FALSE

——RECENE BACHet-SimpleACK-PBY

8.3 UnconfirmedCOV Notification Service Initiation Tests

8.3.1 Change of Value Notification from an Analog Input, Analog Output, anrd Analog Value, Large Analog Value,
Integer Value, and Positive Integer Value Object Present_Value Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOV Notification service requests conveying a change of the
Present_Value property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and
Positive Integer Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.1 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNatification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.2 Change of Value Notification from an Analog Input, Analog Output, ard Analog Value, Large Analog Value,
Integer Value, and Positive Integer Value Object Status_Flags Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.
Purpose: To verify that the IUT can initiate UnconfirmedCOV Notification service requests conveying a change of the

Status_Flags property of Analog Input, Analog Output, and Analog Value, Large Analog Value, Integer Value, and
Positive Integer Value objects.

97

BACnet Testing Laboratories - Specified Tests

Test Steps: The steps for this test case are identical to the test steps in 8.2.2 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNatification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.5 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety
Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime
Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Present_Value Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOV Notification service requests conveying a change of the
Present_Value property of Multi-state Input, Multi-state Output, Multi-state Value, Life Safety Point, and Life Safety Zone,
CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,
Time Value, or Time Pattern Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.5 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNatification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.6 Change of Value Notification from a Multi-state Input, Multi-state Output, Multi-state Value, Life Safety
Point, and Life Safety Zone, CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime
Value, DateTime Pattern Value, Time Value, or Time Pattern Value Object Status_Flags Property

Reason for Change: Addendum 135-2008w-1 Add more primitive value objects.

Purpose: To verify that the IUT can initiate UnconfirmedCOV Notification service requests conveying a change of the
Status_Flags property of Multi-state Input, Multi-state Output, Multi-state VValue, Life Safety Point, and Life Safety Zone,
CharacterString Value, OctetString Value, Date Value, Date Pattern Value, DateTime Value, DateTime Pattern Value,
Time Value, or Time Pattern Value objects.

Test Steps: The steps for this test case are identical to the test steps in 8.2.6 except that the SubscribeCOV service request in
step 1 shall have a value of FALSE for the 'Issue Confirmed Notifications' parameter, all of the ConfirmedCOVNotification
requests shall be UnconfirmedCOV Notification requests, and there is no acknowledgment of the unconfirmed services. The
MAC address used for the notification message shall be such that the TD is one of the recipients.

8.3.X1 COVU_Recipients Notifications
Reason for Change: No existing test in the standard.

Purpose: To verify that the IUT initiates UnconfirmedCOVNotification service requests to each entry in its
COVU_Recipients property based on COVU_Period.

Test Concept: The IUT contains a Global Group object, O1, that is configured to periodically send
UnconfirmedCOV Notification using COVU_Period and COVU_Recipients. The TD checks for these notifications.

Configuration Requirements: COVU_Recipients property shall be non-empty and contain at least one device and one
address based recipient. The COVU_Period shall be non-zero.

Test Steps:
1. REPEAT X = (each entry in the COVU_Recipients) DO {

BEFORE COVU_Period + Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

98

BACnet Testing Laboratories - Specified Tests

DESTINATION =

‘Subscriber Process Identifier' =
'Initiating Device Identifier' =
'‘Monitored Object Identifier' =
‘Time Remaining' =

‘List of Values' =

}
READ T1 = Local_Time

n

X,

0,

IUT,

01,

0,

(Member_Status_Flags,
Elements of Present_Value)

3. REPEAT X = (each entry in the COVU_Recipients) DO {
BEFORE COVU_Period + Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

DESTINATION = X,
‘Subscriber Process Identifier' = 0,
‘Initiating Device Identifier' = IUT,
'Monitored Object Identifier' = 01,
‘Time Remaining' = 0

(Member_Status_Flags,
Elements of Present_Value)

‘List of Values' =

}
4. READ T2 = Local_Time
5. CHECK (T2-T1~= COVU_Period)

Note to tester: The test shall pass regardless of the order in which the IUT generates the UnconfirmedCOVNotification-
Requests in each step.

8.3.X11 Unsubscribed COV Service Initiation Test
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the IUT initiates UnconfirmedCOV Notification service requests.

Test Concept: Configure one or more objects in IUT to produce unsubscribed UnconfirmedCOVNotifications.

Test Steps:
1. MAKE (the IUT issue an unsubscribed UnconfirmedCOV Notification)
2. BEFORE Notification Fail Time
RECEIVE UnconfirmedCOV Notification-Request,
DESTINATION = (any valid address),
'Subscriber Process Identifier'= 0,
'Initiating Device Identifier' = IUT,
'‘Monitored Object Identifier' = (any object present in 1UT),

‘Time Remaining' = 0,
‘List of Values' = (any valid set of values)

8.4 ConfirmedEventNotification Service Initiation Tests

Reason for Change: This test was incorrect when used to test an Event Enroliment Object. This change is not included in
any SSPC proposal.

8.4.X1 DOUBLE_OUT_OF_RANGE Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

99

BACnet Testing Laboratories - Specified Tests

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the DOUBLE_OUT_OF_RANGE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of DOUBLE_OUT_OF_RANGE and to object types that generate this event type
intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is DOUBLE_OUT_OF RANGE instead of
OUT_OF_RANGE.

8.4.X2 SIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the SIGNED_OUT_OF_RANGE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of SIGNED_OUT_OF_RANGE and to object types that generate this event type
intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event Type is SIGNED_OUT_OF_RANGE instead of
OUT_OF _RANGE.

8.4.X3 UNSIGNED_OUT_OF_RANGE Tests (ConfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.8.

Purpose: To verify the correct operation of the UNSIGNED_OUT_OF RANGE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of UNSIGNED_OUT_OF RANGE and to object types that generate this event
type intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event Type is UNSIGNED_OUT_OF RANGE instead of
OUT_OF_RANGE.

8.4.X4 CHANGE_OF_CHARACTERSTRING Tests (ConfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 10.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_CHARACTERSTRING event algorithm. This test applies to
Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting
for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present Value (referenced property) is changed to a
value that is one of the values designated in List Of Values. After the time delay expires the object should enter the
OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed
to a different value in the List_Of_ Values. After the time delay expires the object should enter the OFFNORMAL state and
transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding
to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification
message. The transition to and from FAULT is also tested.

100

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a
value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if
possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested
Present_Value should be replaced by the appropriate property reference.

Test Steps:

1. VERIFY Event_State = NORMAL

2. IF (the object, or referenced object, if using Event Enrollment, has a non-empty Alarm_Values property) THEN
3. IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Alarm_Values)

ELSE

MAKE (Present_Value have a value x: x = one of the Alarm_Values)
4. WAIT (Time_Delay)
5. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (any valid process ID),

‘Initiating Device Identifier' = [UT,

‘Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object
being tested),

‘Time Stamp' = (Toffnormal: the current local time),

‘Notification Class' = (the configured notification class),

'Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),

‘Event Type' = CHANGE_OF_CHARACTERSTRING,

‘Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

'To State' = OFFNORMAL,

'‘Event Values' = Present_Value, Status_Flags
6. TRANSMIT BACnet-SimpleACK-PDU
7. IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?

8. VERIFY Event_State = OFFNORMAL
9. VERIFY Event_Time_Stamps = (Toffnormal, *, *)

10. IF (the object, or referenced object, if using Event Enrollment, has a Alarm_Values property with more than 1 entry)
THEN

11. IF (Present_Value is writable) THEN
WRITE Present_Value = (a value x: x = one of the Alarm_Values not used in prior steps)
ELSE

MAKE (Present_Value have a value x: x = one of the Alarm_Values not used in prior steps)
12. WAIT (Time_Delay)

13. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),

‘Initiating Device Identifier' = [UT,

‘Event Object Identifier' = (the intrinsic reporting object being tested or the Event Enrollment object
being tested),

‘Time Stamp' = (Toffnormal: the current local time),

‘Notification Class' = (the configured notification class),

"Priority' = (the value configured to correspond to a TO-OFFNORMAL transition),

101

BACnet Testing Laboratories - Specified Tests

‘Event Type' = CHANGE_OF_CHARACTERSTRING,
‘Notify Type' = EVENT | ALARM,
'‘AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
‘To State' = OFFNORMAL,
‘Event Values' = Present_Value, Status_Flags
14. TRANSMIT BACnet-SimpleACK-PDU
15. IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, FALSE,?,?
16. VERIFY Event_State = OFFNORMAL
17. VERIFY Event_Time_Stamps = (Toffnormal, *, *)
18. IF (the object, or referenced object, if using Event Enrollment, has a non-empty Alarm_Values property) THEN

19. IF (Present_Value is writable) THEN
WRITE Present_Value = (a value x: x corresponds to a NORMAL state)
ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)
20. WAIT (Time_Delay)

21. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNoatification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = IUT,
'‘Event Object Identifier' = (the intrinsic reporting object being tested or the object referenced by the
Event Enrollment object being tested),
‘Time Stamp' = (Tnormal: the current local time),
‘Notification Class' = (the configured notification class),
‘Priority' = (the value configured to correspond to a TO-NORMAL transition),
'‘Event Type' = CHANGE_OF_CHARACTERSTRING,
‘Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State’ = OFFNORMAL,
"To State' = NORMAL,
'Event Values' = Present_Value, Status_Flags
22. TRANSMIT BACnet-SimpleACK-PDU
23. IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?,?
24, VERIFY Event_State = NORMAL
25. VERIFY Event_Time_Stamps = (Toffnormal, *, Tnormal)
26. IF (the object, or referenced object, if testing Event Enroliment, is configured with a non-empty Fault_Values property)
THEN
27. IF (Present_Value is writable) THEN

WRITE Present_Value = (a value x: x = one of the Fault_Values)

ELSE

MAKE (Present_Value have a value x: x = one of the Fault_Values)
28. WAIT (Time_Delay)
29. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (any valid process ID),

‘Initiating Device ldentifier' = [UT,

‘Event Object Identifier' = (the intrinsic reporting object being tested),

‘Time Stamp' = (Tfault: the current local time),

‘Notification Class' = (the configured notification class),

‘Priority' = (the value configured to correspond to a TO-FAULT transition),
'Event Type' = CHANGE_OF_CHARACTERSTRING,

‘Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

102

BACnet Testing Laboratories - Specified Tests

‘To State' = FAULT,

'Event Values' = Present_Value, Status_Flags
30. TRANSMIT BACnet-SimpleACK-PDU
31. IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (TRUE, TRUE, ?,?
32. VERIFY Event_State = FAULT
33. VERIFY Event_Time_Stamps = (Toffnormal,, Tfault, Tnormal)
34. VERIFY Reliability = MULTI_STATE_FAULT

35. IF (Present_Value is writable) THEN
WRITE Present_Value = (a value x: x corresponds to a NORMAL state)
ELSE

MAKE (Present_Value have a value x: x corresponds to a NORMAL state)
36. WAIT (Time_Delay)
37. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (any valid process ID),
'Initiating Device Identifier' = [UT,
'Event Object Identifier' = (the intrinsic reporting object being tested),
‘Time Stamp' = (Tfault: the current local time),
‘Notification Class' = (the configured notification class),
'Priority' = (the value configured to correspond to a TO-NORMAL transition),
'Event Type' = CHANGE_OF _CHARACTERSTRING,
'Notify Type' = EVENT | ALARM,
'AckRequired' = TRUE | FALSE,
'From State' = FAULT,
"To State' = NORMAL,
'Event Values' = Present_Value, Status_Flags

38. TRANSMIT BACnet-SimpleACK-PDU

39. IF (the object being tested is NOT an Event Enrollment object) THEN

VERIFY Status_Flags = (FALSE, FALSE, ?, ?
40. VERIFY Event_State = NORMAL
41. VERIFY Event_Time_Stamps = (Toffnormal, Tfault, Tnormal)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include
this parameter in the notification messages. The time stamps indicated by "*" can have a value that indicates an unspecified
time or a time that precedes the timestamp of the first received notification.

8.4.X5 Proprietary Algorithm Tests (ConfirmedEventNotifications)
This test has not be developed and shall be skipped.

8.4.X6 Extended Algorithm Tests (ConfirmedEventNotifications)
This test has not be developed and shall be skipped.

8.4.X7 UNSIGNED_RANGE ConfirmedEventNotification Test
Reason for Change: New algorithm test.

Purpose: To verify the correct operation of the UNSIGNED_RANGE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of UNSIGNED_RANGE and to object types that generate this event type
intrinsically.

Test Concept: This test is the same as 8.4.6 except that the Event_Type is UNSIGNED_RANGE instead of
OUT_OF_RANGE, and there is no Deadband. If the pMonitoredValue property is not under the tester's control in IUT,
then pHighLimit and/or pLowLimit are modified to generate Event notifications. The object begins the test in a NORMAL
state. The pMonitoredValue is raised to a value that is above the high limit. After the time delay expires the object should

103

BACnet Testing Laboratories - Specified Tests

enter the HIGH_LIMIT state and transmit an event notification message. The pMonitoredValue is lowered to a value that is
below the high limit. After the time delay expires the object should enter the NORMAL state and issue an event
notification. The same process is repeated to test the low limit.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the
TO_OFFNORMAL and TO_NORMAL transitions, if possible. pLimitEnable property shall have a value of TRUE for both
HighLimit and LowLimit events, if possible. The 'Issue Confirmed Notifications' parameter in the Recipient_List of the
configured Notification Class shall have a value of TRUE. The Recipient_List of the configured Notification Class shall
contain recipients, thus ensuring that notifications are emitted. The event-generating objects shall be in a NORMAL state at
the start of the test.

Test Steps:

1. VERIFY pCurrentState = NORMAL
2. IF (pMonitoredValue is writable) THEN

WRITE pMonitoredValue = (a value x: (x > pHighLimit))
ELSE

MAKE (pMonitoredValue have a value x: (x > pHighLimit))
WAIT (pTimeDelay)
4. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

w

'Process ldentifier' = (any valid process ID),

‘Initiating Device Identifier' = [UT,

‘Event Object Identifier' = (the object being tested),

‘Time Stamp' = (Toffnormal: the current local time),
‘Notification Class' = (the configured notification class),

‘Priority' = (the value configured to correspond to a TO_OFFNORMAL transition),
'Event Type' = UNSIGNED_RANGE,

‘Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

‘To State' = HIGH_LIMIT,

‘Event Values' = pMonitoredValue, pStatusFlags, pHighLimit

o

TRANSMIT BACnet-SimpleACK-PDU
6. IF (the object being tested is not an Event Enroliment object OR
(Protocol_Revision is present AND Protocol_Revision > 13)) THEN
VERIFY pStatusFlags = (TRUE, FALSE, ?, ?
7. VERIFY pCurrentState = HIGH_LIMIT
8. IF (Protocol_Revision is present AND Protocol_Revision > 1) THEN
VERIFY Event_Time_Stamps = (Toffnormal, *, *)
9. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value x; (pLowLimit < x < pHighLimit))
ELSE
MAKE (pMonitoredValue have a value x: (pLowLimit < x < pHighLimit))
10. WAIT (pTimeDelayNormal)
11. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any valid process ID),

‘Initiating Device ldentifier' = IUT,

'Event Object Identifier' = (the object being tested),

"Time Stamp' = (Tnormal: the current local time),

'Notification Class' = (the configured notification class),

‘Priority' = (the value configured to correspond to a TO_NORMAL transition),
'Event Type' = UNSIGNED_RANGE,

'Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

104

BACnet Testing Laboratories - Specified Tests

'From State' = HIGH_LIMIT,
"To State' = NORMAL,
'Event Values' = pMonitoredValue, pStatusFlags, pHighLimit

12. TRANSMIT BACnet-SimpleACK-PDU
13. IF (the object being tested is not an Event Enrollment object OR
(Protocol_Revision is present AND Protocol_Revision > 13)) THEN
VERIFY pStatusFlags = (FALSE, FALSE, ?, ?
14. VERIFY pCurrentState = NORMAL
15. IF (Protocol_Revision is present AND Protocol_Revision > 1) THEN
VERIFY Event_Time_Stamps = (Toffnormal, *, Tnormal)
16. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value x: (x < pLowLimit))
ELSE
MAKE (pMonitoredValue have a value x: (x < pLowLimit))
17. WAIT (pTimeDelay)
18. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' = (any valid process ID),

'Initiating Device ldentifier' = 1UT,

'‘Event Object Identifier' = (the object being tested),

‘Time Stamp' = (Tlowlimit: the current local time),
'‘Notification Class' = (the configured notification class),

"Priority' = (the value configured to correspond to a TO_OFFNORMAL transition),
'‘Event Type' = UNSIGNED_RANGE,

'Notify Type' = EVENT | ALARM,

'AckRequired' = TRUE | FALSE,

'From State' = NORMAL,

"To State' = LOW_LIMIT,

'Event Values' = pMonitoredValue, pStatusFlags, pLowLimit

19. TRANSMIT BACnet-SimpleACK-PDU
20. IF (the object being tested is not an Event Enrollment object OR
(Protocol_Revision is present AND Protocol_Revision > 13)) THEN
VERIFY pStatusFlags = (TRUE, FALSE, ?, ?
21. VERIFY pCurrentState = LOW_LIMIT
22. IF (Protocol_Revision is present AND Protocol_Revision > 1) THEN
VERIFY Event_Time_Stamps = (Tlowlimit, *, Tnormal)
23. IF (pMonitoredValue is writable) THEN
WRITE pMonitoredValue = (a value x: (Low_Limit < x < High_Limit))
ELSE
MAKE (pMonitoredValue have a value x: (Low_Limit < x < High_Limit))
24. WAIT (pTimeDelayNormal)
25. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNoatification-Request,

'Process Identifier' = (any valid process ID),

‘Initiating Device Identifier' = [UT,

‘Event Object Identifier' = (the object being tested),

‘Time Stamp' = (Tlowtonormal: the current local time),
‘Notification Class' = (the configured notification class),

‘Priority’ = (the value configured to correspond to a TO_NORMAL transition),
‘Event Type' = UNSIGNED_RANGE,

'Notify Type' = EVENT | ALARM,

'‘AckRequired' = TRUE | FALSE,

'From State' = LOW_LIMIT,

"To State' = NORMAL,

‘Event Values' = pMonitoredValue, pStatusFlags, pLowLimit

26. TRANSMIT BACnet-SimpleACK-PDU

105

BACnet Testing Laboratories - Specified Tests

27. IF (the object being tested is not an Event Enrollment object OR
(Protocol_Revision is present AND Protocol_Revision > 13)) THEN
VERIFY pStatusFlags = (FALSE, FALSE, ?, ?)
28. VERIFY pCurrentState = NORMAL
29. IF (Protocol_Revision is present AND Protocol_Revision > 1) THEN
VERIFY Event_Time_Stamps = (Tlowlimit, *, Tlowtonormal)

Notes to Tester: The 'Message Text' parameter is omitted in the test description because it is optional. The IUT may include
this parameter in the notification messages. The time stamps indicated by "*" can have a value that indicates an unspecified
time or a time that precedes the timestamp of the first received notification.

8.4.X8 CHANGE_OF_STATUS_FLAGS Test (ConfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 13.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_STATUS_FLAGS event algorithm. This test applies to
objects that support an Event_Type of CHANGE_OF _STATUS_FLAGS.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed such that a logical
AND of pMonitoredValue and pSelectedFlags results in at least one bits set. After pTimeDelay expires the object shall
enter the OFFNORMAL state and transmit an event notification message. The pMonitoredValue is then changed such that
a logical AND of pMonitoredValue and pSelectedFlags results in no bits set. After pTimeDelayNormal expires the object
shall enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The 'Issue Confirmed Notifications' parameter in the Recipient_List of
the configured Notification Class Issue_Confirmed_Notifications property shall have a value of TRUE. The Recipient_List
of the configured Notification Class shall contain recipients. The event-generating object shall be in a NORMAL state at
the start of the test.

Test Steps:
1. VERIFY Event_State = NORMAL
2. MAKE (pMonitoredValue AND pSelectedFlags <> {FALSE, FALSE, FALSE, FALSE})
3. WAIT (pTimeDelay)
4. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNoatification-Request,
'Process Identifier' = (any valid process ID),
'Initiating Device Identifier' = [UT,
'Event Object Identifier' = 01,
‘Time Stamp' = (the current local datetime or time or sequence number),
'Notification Class' = (the notification class configured for O1),
‘Priority' = (the value configured for the transition),
'Event Type' = CHANGE_OF STATUS_FLAGS,
'Notify Type' = EVENT | ALARM,
'‘Message Text' = (any valid message text),
'AckRequired' = TRUE | FALSE,
'From State' = NORMAL,
"To State' = OFFNORMAL,
‘Event Values' = pPresentValue, pMonitoredValue

5. TRANSMIT BACnet-SimpleACK-PDU
6. VERIFY Status_Flags = {TRUE, FALSE,?,?

106

BACnet Testing Laboratories - Specified Tests

7. VERIFY Event_State = OFFNORMAL
8. MAKE (pMonitoredValue AND pSelectedFlags = {FALSE, FALSE, FALSE, FALSE})
9. WAIT (pTimeDelayNormal)
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,
'Process Identifier' = (any valid process ID),
‘Initiating Device ldentifier' = [UT,
‘Event Object Identifier' = 01
‘Time Stamp' = (the current local datetime or time or sequence number),
‘Notification Class' = (the notification class configured for O1),
‘Priority’ = (the value configured for the transition),
'Event Type' = CHANGE_OF_STATUS_FLAGS,
'Notify Type' = EVENT | ALARM,
'‘Message Text' = (any valid message text),
'‘AckRequired' = TRUE | FALSE,
'From State' = OFFNORMAL,
"To State' = NORMAL,
'‘Event Values' = pPresentValue, pMonitoredValue

11. TRANSMIT BACnet-SimpleACK-PDU
12. VERIFY Status_Flags = {FALSE, FALSE, ?, ?
13. VERIFY Event_State = NORMAL

8.5 UnconfirmedEventNotification Service Initiation Tests

8.5.X1 DOUBLE_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.
Purpose: To verify the correct operation of the DOUBLE_OUT_OF RANGE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of DOUBLE_OUT_OF_RANGE and to object types that generate this event type

intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event Type is DOUBLE_OUT_OF RANGE instead of
OUT_OF_RANGE.

8.5.X2 SIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.
Purpose: To verify the correct operation of the SIGNED_OUT_OF _RANGE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of SIGNED_OUT_OF_RANGE and to object types that generate this event type

intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event Type is SIGNED_OUT_OF_RANGE instead of
OUT_OF RANGE.

107

BACnet Testing Laboratories - Specified Tests

8.5.X3 UNSIGNED_OUT_OF_RANGE Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: 12.2, 12.3, 12.4, 12.12, 12.23, 13.2, 13.3.6, and 13.9.

Purpose: To verify the correct operation of the UNSIGNED_OUT_OF_ RANGE event algorithm. This test applies to Event
Enrollment objects with an Event Type of UNSIGNED_OUT_OF RANGE and to object types that generate this event
type intrinsically.

Test Concept: This test is the same as 8.5.6 except that the Event Type is UNSIGNED_OUT_OF _RANGE instead of
OUT_OF_RANGE.

8.5.X4 CHANGE_OF_CHARACTERSTRING Tests (UnconfirmedEventNotification)

Reason for Change: New algorithm for Protocol_Revision 10.
Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.

BACnet Reference Clauses: <update these as appropriate>.

Purpose: To verify the correct operation of the CHANGE_OF CHARACTERSTRING event algorithm. This test applies to
Event Enrollment objects with an Event_Type of CHANGE_OF_CHARACTERSTRING and to intrinsic event reporting
for CharacterString Value objects.

Test Concept: The object begins the test in a NORMAL state. The Present_Value (referenced property) is changed to a
value that is one of the values designated in List Of Values. After the time delay expires the object should enter the
OFFNORMAL state and transmit an event notification message. The Present_Value (referenced property) is then changed
to a different value in the List_Of Values. After the time delay expires the object should enter the OFFNORMAL state and
transmit an event notification message. The Present_Value (referenced property) is then changed to a value corresponding
to a NORMAL state. After the time delay the object should enter the NORMAL state and transmit an event notification
message. The transition to and from FAULT is also tested.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL, TO-FAULT and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a
value of TRUE. The event-generating objects shall be in a NORMAL state at the start of the test.

The object shall be configured with a non-empty Alarm_Values property and a non-empty Fault_Values property if
possible.

In the test description below Present_Value is used as the referenced property. If an Event Enrollment object is being tested
Present_Value should be replaced by the appropriate property reference.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X4 except that the event notification requests
are UnconfirmedEventNotification requests and the TD does not acknowledge receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X4 except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request.

8.5.X5 Proprietary Algorithm Tests (UnconfirmedEventNotifications)
This test has not be developed and shall be skipped.

8.5.X6 Extended Algorithm Tests (UnconfirmedEventNotifications)
This test has not be developed and shall be skipped.

108

BACnet Testing Laboratories - Specified Tests

8.5.X7 UNSIGNED_RANGE UnconfirmedEventNotification Test

Reason for Change: New algorithm test.

Purpose: To verify the correct operation of the UNSIGNED_RANGE event algorithm. This test applies to Event
Enrollment objects with an Event_Type of UNSIGNED_RANGE and to object types that generate this event type
intrinsically.

Configuration Requirements: The IUT shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions, if possible. pLimitEnable shall have a value of TRUE for both
HighLimit and LowLimit events, if possible. 'Issue Confirmed Notifications' parameter in the Recipient_List of the
configured Notification Class shall have a value of FALSE. The Recipient_List of the configured Notification Class shall
contain recipients, thus ensuring that notifications are emitted. The event-generating objects shall be in a NORMAL state at
the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X7 except that the
ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge
receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X7 except that the event notifications
shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall
be either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.5.X8 CHANGE_OF_STATUS_FLAGS Test (UnconfirmedEventNotification)
Reason for Change: New algorithm for Protocol_Revision 13.

Dependencies: ReadProperty Service Execution Tests, 9.18; WriteProperty Service Execution Tests, 9.22.
BACnet Reference Clauses: <update these as appropriate>

Purpose: To verify the correct operation of the CHANGE_OF_STATUS_FLAGS event algorithm. This test applies to
objects that support an Event_Type of CHANGE_OF _STATUS_FLAGS.

Test Concept: The object O1 begins the test in a NORMAL state. The pMonitoredValue is changed such that a logical
AND of pMonitoredValue and pSelectedFlags results in at least one bits set. After pTimeDelay expires the object shall
enter the OFFNORMAL state and transmit an event notification message. The pMonitoredValue is then changed such that
a logical AND of pMonitoredValue and pSelectedFlags results in no bits set. After pTimeDelayNormal expires the object
shall enter the NORMAL state and transmit an event notification message.

Configuration Requirements: The O1 shall be configured such that the Event_Enable property has a value of TRUE for the
TO-OFFNORMAL and TO-NORMAL transitions. The Issue_Confirmed_Notifications property shall have a value of
FALSE. The event-generating object shall be in a NORMAL state at the start of the test.

Test Steps: The test steps for this test case are identical to the test steps in 8.4.X8 except that the
ConfirmedEventNotification requests are UnconfirmedEventNotification requests and the TD does not acknowledge
receiving the notifications.

Notes to Tester: The passing results for this test case are identical to the ones in 8.4.X8 except that the event notifications

shall be conveyed using an UnconfirmedEventNotification service request. The MAC address used for these messages shall
be either a broadcast that reaches the local network of the TD or the MAC address of the TD.

8.11 SubscribeCOVProperty Service Initiation Tests

8.11.1 Confirmed Notifications Subscription
Reason for Change: Added test concept and variables to simplify test.

109

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for confirmed notifications to any
valid object, X.

Test Concept: A subscription for COV natifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
‘Subscriber Process Identifier' = (any valid process identifier),

'‘Monitored Object Identifier' = {any-valid-objectidentifier)X

'Issue Confirmed Notifications'= TRUE,

'Lifetime' = {any-non-zero-value)l,
'Monitored Property Identifier' = {any-valid-property-identifier)(the property Y to be monitored),
'‘COV Increment' = (any-valid-valueany REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

8.11.2 Unconfirmed Notifications Subscription
Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request for unconfirmed notifications to any
valid object, X.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
‘Subscriber Process Identifier' = (any valid process identifier),

'‘Monitored Object Identifier' = {any-valid-objectidentifier)X
‘Issue Confirmed Notifications'= FALSE,

‘Lifetime' = (any-nen-zero-value)L,
'‘Monitored Property Identifier' = (any valid property identifier)(the property Y to be monitored),
'‘COV Increment' = (any-valid-valudAany REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

8.11.3 Canceling a Subscription
Reason for Change: Added test concept and variables to simplify test.

Purpose: To verify that the IUT can initiate a SubscribeCOVProperty service request to cancel a subscription to any valid
object, X.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request,
'Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = {any-valid-objectidentifier)X

'‘Monitored Property Identifier' = {any-valid-property-identifier)(the property Y to be monitored),
'‘COV Increment' = (any-valid-valueany REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

110

BACnet Testing Laboratories - Specified Tests

8.11.X1 Change of Value Notification Tests

8.11.X1.1 Change of Value Notification

Reason for Change: Added new test to support DS-COVP-A testing.
Purpose: To verify that the IUT can execute COVNotification requests from object types that provides a Property and
Status_Flags properties in COV notifications.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request

‘Subscriber Process Identifier' = (any valid process identifier),
‘Monitored Object Identifier' = X

‘Issue Confirmed Notifications'= TRUE | FALSE,

‘Lifetime' = L,

'‘Monitored Property Identifier' = (the property Y to be monitored),
'‘COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU
4. BEFORE Notification Fail Time
IF (the subscription was for confirmed notifications) THEN
TRANSMIT ConfirmedCOV Notification-Request,
‘Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier'= TD,

'‘Monitored Object Identifier'= X

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (values appropriate to the property Y subscribed to, and any other

properties the IUT provides with it, such as Status_Flags)
RECEIVE BACnet-SimpleACK-PDU
ELSE
TRANSMIT UnconfirmedCOV Notification-Request,
'Subscriber Process Identifier' = (the process identifier used in step 1),

'Initiating Device Identifier'= TD,

'Monitored Object Identifier' = X

"Time Remaining' = (any value appropriate for the Lifetime selected),

"List of Values' = (values appropriate to the property Y subscribed to, and any other

properties the IUT provides with it, such as Status_Flags)
5. CHECK (to ensure that any appropriate functions defined by the manufacturer, such as displaying
information on a workstation screen are carried out)

8.11.X1.2 Change of VValue Notifications with Invalid Process Identifier
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that
does not match any current subscriptions.

111

BACnet Testing Laboratories - Specified Tests

Test Concept: A subscription for COV natifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:
1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request
‘Subscriber Process Identifier' = (any valid process identifier),

'‘Monitored Object Identifier' = X
‘Issue Confirmed Notifications'= TRUE,
'‘Lifetime' = L

(the property Y to be monitored),
(Any REAL value -- optional)

‘Monitored Property Identifier' =
'‘COV Increment' =
TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,

w

‘Subscriber Process Identifier' =
‘Initiating Device Identifier' =
‘Monitored Object Identifier' =

(a process identifier different from the one used in step 1),
TD,
X

‘Time Remaining' =
‘List of Values' =

(any value appropriate for the Lifetime selected),
(values appropriate to the property Y subscribed to, and any other
properties the IUT provides with it, such as Status_Flags)

5. IF (Protocol_Revision is present and Protocol_Revision > 10) THEN
RECEIVE
BACnet-Error-PDU,
Error Class =
Error Code =
(BACnet-SimpleACK-PDU)

SERVICES,
(UNKNOWN_SUBSCRIPTION) |

ELSE
RECEIVE
BACnet-Error-PDU,
Error Class =
Error Code =
(BACnet-SimpleACK-PDU)

SERVICES,
(any valid error code for class SERVICES) |

8.11.X1.3 Change of Value Notification Arrives after Subscription has Expired

Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has
expired.

Test Concept: A subscription for COV natifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:
1. MAKE (the IUT send a SubscribeCOVProperty-Request),

2. RECEIVE SubscribeCOVProperty-Request
'Subscriber Process Identifier' = (any valid process identifier),

'‘Monitored Object Identifier' = X
'Issue Confirmed Notifications'= TRUE,
‘Lifetime' = L

‘Monitored Property Identifier' = (the property Y to be monitored),

112

BACnet Testing Laboratories - Specified Tests

'COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU
4. BEFORE Notification Fail Time
TRANSMIT ConfirmedCOV Notification-Request,
‘Subscriber Process Identifier' = (the process identifier used in step 1),

‘Initiating Device Identifier'= TD,

‘Monitored Object Identifier'= X

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (values appropriate to the property Y subscribed to, and any other

properties the IUT provides with it, such as Status_Flags)
RECEIVE BACnet-SimpleACK-PDU

5. WAIT (a value two times Lifetime)
6. TRANSMIT ConfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = (the process identifier used in step 1),

‘Initiating Device Identifier' = TD,

'‘Monitored Object Identifier' = X

‘Time Remaining' = (any value appropriate for the Lifetime selected),

‘List of Values' = (values appropriate to the property Y subscribed to, and any other

properties the IUT provides with it, such as Status_Flags)
7. IF (Protocol_Revision is present and Protocol_Revision > 10) THEN

RECEIVE
BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (UNKNOWN_SUBSCRIPTION) |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

113

BACnet Testing Laboratories - Specified Tests

8.11.X1.4 Change of Value Notifications with Invalid Monitored Object Identifier
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object
identifier that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request

‘Subscriber Process Identifier' = (any valid process identifier),
‘Monitored Object Identifier' = X

‘Issue Confirmed Notifications'= TRUE,

‘Lifetime’ = L,

‘Monitored Property Identifier' = (the property Y to be monitored),
'‘COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOV Notification-Request,
‘Subscriber Process Identifier' = (the process identifier used in step 1),
‘Initiating Device Identifier' = TD,
‘Monitored Object Identifier' = (any object Y supporting COV notification except X),
‘Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (any value)
5. IF (Protocol_Revision is present and Protocol_Revision > 10) THEN
RECEIVE
BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (UNKNOWN_SUBSCRIPTION) |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE
BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (any valid error code for class SERVICES) |
(BACnet-SimpleACK-PDU)
8.11.X1.5 Change of Value Notifications with Invalid Monitored property

Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object
identifier that does not match any current subscriptions.

Test Concept: A subscription for COV notifications is established, using a Lifetime of L. L shall be set to a value less than
24 hours and large enough to complete the test.

Test Steps:

114

BACnet Testing Laboratories - Specified Tests

=

MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request

'Subscriber Process Identifier' = (any valid process identifier),
'‘Monitored Object Identifier' = X
‘Issue Confirmed Notifications'= TRUE,
‘Lifetime' = L,
‘Monitored Property Identifier' = (the property Y to be monitored),
'‘COV Increment' = (Any REAL value -- optional)
3. TRANSMIT BACnet-SimpleACK-PDU
4. TRANSMIT ConfirmedCOVNotification-Request,
‘Subscriber Process Identifier' = (the process identifier used in step 1),
‘Initiating Device Identifier' = TD,
‘Monitored Object Identifier' = X
Time Remaining' = (any value appropriate for the Lifetime selected),
‘List of Values' = (any property supporting COV notification except Y),
5. IF (Protocol_Revision is present and Protocol_Revision > 10) THEN
RECEIVE
BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (UNKNOWN_SUBSCRIPTION) |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE
BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

8.11.X4 Requests 8 Hour Lifetimes
Reason for Change: Added new test to support DS-COVP-A testing.

Purpose: To verify that the IUT correctly generates subscription requests with lifetimes less than or equal to 8 hours. Either
confirmed or unconfirmed notifications may be used, but at least one of these options shall be supported by the IUT.

Test Steps:

1. MAKE (the IUT send a SubscribeCOVProperty-Request),
2. RECEIVE SubscribeCOVProperty-Request,

'Subscriber Process Identifier' = (any valid process identifier),

'Monitored Object Identifier' = X

'Issue Confirmed Notifications'= TRUE | FALSE,

‘Lifetime' = (any valid lifetime between 1 and 28800)
'‘Monitored Property Identifier' = (the property Y to be monitored),

'‘COV Increment' = (Any REAL value -- optional)

3. TRANSMIT BACnet-SimpleACK-PDU

115

BACnet Testing Laboratories - Specified Tests

8.20 ReadPropertyMultiple Service Initiation Tests

8.20.5 Cases In Which ReadProperty Shall Be Used After ReadPropertyMultiple Fails

The tests defined in this clause are used to verify that an IUT which intiates ReadPropertyMultiple is able to obtain external
property values via the ReadProperty service when interoperating with a device that does not support the
ReadPropertyMultiple service.

8.20.5.1 The IUT Determines the TD does not Support the ReadPropertyMultiple Service
Reason for Change: Modified test to allow multiple objects in addition to single objects.

Purpose: Verifies the IUT's ability to automatically change its service choice from ReadPropertyMultiple to ReadProperty
when the IUT determines the TD does not support the ReadPropertyMultiple service.

Test Concept: The IUT is configured in a manner that would normally cause it to access one or more properties in the TD
via the ReadPropertyMultiple service. Prior to sending a ReadPropertyMultiple request, however, the IUT determines that
the TD does not support the ReadPropertyMultiple service. The IUT instead attempts to access the TD's property values via
the ReadProperty service (it is assumed that the IUT will make this determination by reading the TD's
Protocol_Services_Supported property, but this test specifically does not attempt to verify this behavior).

Configuration Requirements: The TD is configured so that it does not support the ReadPropertyMultiple service. The IUT
is configured such that it is eapable-of-accessing one or more properties of a single or multiple objects in the TD via the

ReadProperty and ReadPropertyMultiple services.—H-thetJT—cannot-be-configured-in-this—way,—then-this-test shall-be
ornitted-

Test Steps:

1. MAKE (a condition in the IUT that would normally cause it to send a ReadPropertyMultiple request to the TD to
access one or more propertyies values-efa-single-object)
2. WAIT (atime interval specified by the vendor as sufficient for the IUT to determine that the TD does not support the
ReadPropertyMultiple service)
3. REPEAT X = (the properties that the IUT is to read) DO {
RECEIVE ReadProperty-Request,

‘Object Identifier' = (object identifier referenced by X),

'Property Identifier' = (property identifier referenced by X)
TRANSMIT ReadProperty-Ack,

'Object Identifier' = (object identifier referenced by X),

'Property Identifier' = (property identifier referenced by X),

'Property Value' = (any valid value)

8.21 ReadRange Service Initiation Tests
8.21.1 Reading Values with no Specified Range
Reason for change: 135-2008u-3.

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that does not specify any range of values
to be returned.

Test Steps:
1. RECEIVE ReadRange-Request,

'Object Identifier' = (O, any Frend-Log object),

'Property Identifier' = Log—Buffer(P, any list property the IUT can read)
2. TRANSMIT ReadRange-ACK

'Object Identifier' = o,

116

BACnet Testing Laboratories - Specified Tests

'Property Identifier' = P,

‘Result Flags’ = (TRUE, (bLast), (NOT bLast)),

‘Item Count’” = (C: any valid value)

‘Item Data’ = (C valid records for the requested property)

3. CHECK(that the IUT performs the vendor specified action)

8.21.3 Reading a Range of Values by Position
Reason for change: 135-2008u-3.

Purpose: To verify that the IUT can correctly initiate a ReadRange service request that specifies the range of values to be
returned by position.

Test Steps:

1. RECEIVE ReadRange-Request,
‘Object Identifier' = (O, any Frend-Log object),
'Property Identifier' = Log—Buffer(P, any list property),
'Reference Index' = (any Unsigned value),
'‘Count' = (C1, any INTEGER value)

2. TRANSMIT ReadRange-ACK
'Object Identifier' = o,
'Property Identifier' = P,
‘Result Flags’ = ((TRUE if the first was requested, FALSE otherwise), ?, ?),
‘Item Count’ = (C2: any valid value <= |C|)
‘Item Data’ = (C2 valid records for the requested property)

3. CHECK(that the IUT performs the vendor specified action)

8.21.9 Presents Log Records Centaining-a-Specific-Datatype

Reason for Change: Modified the name of the test and improved the wording of the Purpose.
Purpose: To verify that the IUT can initiate one or more ReadRange requests that access and present a tester-specified
portion of log records-having-a-specific-datatypeusing-any-vaklid-range. It is a generic test used to test data presentation

requirements.

Test Concept: Run test in-Clatse-135.1-2013 - 8.21.8X3 and verify that the data presentation meets the criteria specified by
the BIBB being tested.

Note to Tester: The values presented by the IUT may differ from the values transmitted on the wire due to rounding,
truncation, formatting, language, conversion, etc.

Note to Tester: The IUT is not required to display records containing log-status values.

8.22 WriteProperty Service Initiation Tests

8.22.X4 Writing Array Properties as a Whole Array
Reason for Change: No test exists for this functionality. This test is not included in any SSPC proposal.

Purpose: This test verifies that the IUT is writing the entire array to the TD without the use of the array index.

Configuration Requirements: For this test, the tester shall choose a property, P;, from an object, O;. The TD shall be
configured to not support execution of WritePropertyMultiple.

117

BACnet Testing Laboratories - Specified Tests
The WriteProperty request initiated by IUT shall contain array of elements in P,, which shall fit in the APDU and segment
limitations of the IUT.
Test Steps:

1. MAKE (the IUT accept a new value for P, including all elements of the array from the user)
2. RECEIVE WriteProperty-Request,

'Object Identifier' = 04,
'Property Identifier' = Py,
'Property Value' = (the value provided to the IUT for P;)

3. TRANSMIT BACnet-SimpleACK-PDU

Notes to Tester: The value accepted by the IUT may differ from the value transmitted on the wire due to rounding,
truncation, formatting, language conversion etc.

Notes to Tester: If the IUT has not already determined that the TD does not support execution of WritePropertyMultiple,
the IUT may initiate a WritePropertyMultiple. If this occurs, the IUT shall pass the test only if it automatically falls back to
using WriteProperty upon receipt of the correct BACnetReject-PDU from the TD, indicating that WritePropertyMultiple is
not supported.

Note to Tester: Any WriteProperty request generated by the IUT may have a Priority parameter. If included, it shall be in
the range 1-16, excluding 6.

8.24 DeviceCommunicationControl Service Initiation Tests

8.24.1 Indefinite Duration, Disable, No Password
Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for an indefinite time duration and do not convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
‘Enable/Disable’ = DISABLE,
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.2 Indefinite Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for an indefinite time duration and convey a password.
Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
'Enable/Disable’ = DISABLE,

'Password' = {a-password-of atleast 5-characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

118

BACnet Testing Laboratories - Specified Tests

8.24.3 Time Duration, Disable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for a specific time duration and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
‘Time Duration' = (any unsigned value > 0),
'Enable/Disable’ = DISABLE,

'Password' = {a-password-of atleast 5-characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.4 Enable, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should resume and convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
‘Enable/Disable’ = ENABLE,

'Password' = {a-password-of atleast 5-characters)-(a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.5 Enable, No Password
Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should resume and do not convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
‘Enable/Disable’ = ENABLE,
2. TRANSMIT BACnet-SimpleACK-PDU

8.24.6 Time Duration, Disable, No Password
Reason For Change: This test was modified to include the responding ACK.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for a specific time duration and do not convey a password. If the IUT does not support the “no password”
option, this test shall not be performed.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
‘Time Duration' = (any unsigned value > 0),
'Enable/Disable’'= DISABLE

119

BACnet Testing Laboratories - Specified Tests

2. TRANSMIT BACnet-SimpleACK-PDU

8.24.7 Time Duration, Disable-Initiation, Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate DeviceCommunicationControl service requests that indicate communication
should cease for a specific time duration and that convey a password.

Test Steps:

1. RECEIVE DeviceCommunicationControl-Request,
‘Time Duration' = (any unsigned value in the range from 1 to 65535),
‘Enable/Disable’ = DISABLE
'Password' = (a password of up to 20 characters)

2. TRANSMIT BACnet-SimpleACK-PDU

8.27 ReinitializeDevice Service Initiation Tests

8.27.2 COLDSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a COLDSTART should be
performed and convey a password.

Test Steps:

1. RECEIVE ReinitializeDevice-Request,
'Reinitialized State of Device' = COLDSTART,

'Password' =(a-password-of-atleast 5-characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

8.27.4 WARMSTART with a Password

Reason For Change: This test was modified to remove the requirement of a minimum password length of 5 but include the
requirement of up to 20 characters.

Purpose: To verify that the IUT can initiate ReinitializeDevice service requests that indicate a WARMSTART should be
performed and convey a password.

Test Steps:

1. RECEIVE ReinitializeDevice-Request,
‘Reinitialized State of Device' = WARMSTART,

'Password' =(a-password-of-atleast 5-characters) (a password of up to 20 characters)
2. TRANSMIT BACnet-SimpleACK-PDU

120

BACnet Testing Laboratories - Specified Tests

8.32 Who-Has Service Initiation Tests

8.32.3 Object Identifier Selection with a Device Instance Range
Reason for Change: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and
16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object identifier form with a device
instance range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
SOURCE = IUT,

Who-Has-Request,

'Device Instance Range Low Limit' = (any integer X: 20 <= X <= 'Device Instance Range High Limit’),
'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <=Y <= 4,194,303),
'Object Identifier' = (any object identifier)

8.32.4 Object Name Selection with a Device Instance Range
Reason for Change: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and
16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1.

Purpose: To verify that the IUT can initiate Who-Has service requests using the object name form with a device instance
range. If the IUT cannot be caused to issue a Who-Has request of this form, then this test shall be omitted.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
SOURCE = IUT,

Who-Has-Request,

'Device Instance Range Low Limit' = (any integer X: 20 <= X <= 'Device Instance Range High Limit"),
'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <=Y <= 4,194,303),
'Object Name' = (any CharacterString)

8.34 Who-Is Service Initiation Tests

8.34.2 Who-Is Request with a Device Instance Range
Reason for Change: The allowed device instance range is from 0 - 4194303 and is specified in sections 16.9.1.1.1 and
16.10.1.1.1. The corresponding tests incorrectly set the low limit to 1.

Purpose: To verify that the IUT can initiate Who-Is service requests with a device instance range. If the IUT cannot be
caused to issue a Who-Is request of this form, then this test shall be omitted.

Test Steps:

1. RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST,
SOURCE = IUT,

Who-Is-Request,
'Device Instance Range Low Limit' = (any integer X: 20 <= X <= 'Device Instance Range High Limit’),
'Device Instance Range High Limit' = (any integer Y: 'Device Instance Range Low Limit' <='Y <=4,194,303)

121

BACnet Testing Laboratories - Specified Tests

9 Application Service Execution Tests

The test cases defined in this clause shall be used to verify that a BACnet device correctly implements the service
procedure for the specified application service. BACnet devices shall be tested for the proper execution of each application
service for which the PICS indicates execution is supported.

For each application service included in this clause several test cases are defined that collectively test the various options
and features defined for the service in the BACnet standard. A test case is a sequence of one or more messages that are
exchanged between the implementation under test (IUT) and the testing device (TD) in order to determine if a particular
option or feature is correctly implemented. Multiple test cases that have a similar or related purpose are collected into test
groups.

Under some circumstances an IUT may be unable to demonstrate conformance to a particular test case because the test
applies to a feature that requires a particular BACnet object or optional property that is not supported in the IUT. For
example, a device may support the File Access services but restrict files to stream access only. Such a device would have
no way to demonstrate that it could implement the record access features of the File Access services. When this type of
situation occurs the IUT shall be considered to be in conformance with BACnet provided the PICS documentation clearly
indicates the restriction. Failure to document the restriction shall constitute nonconformance to the BACnet standard. All
features and optional parameters for BACnet application services shall be supported unless a conflict arises because of
unsupported objects or unsupported optional properties.

For each application service the tests are divided into two types, positive tests and negative tests. The positive tests verify
that the IUT can correctly handle cases where the service is expected to be successfully completed. The negative tests
verify correct handling for various error cases that may occur. Negative tests include inappropriate service parameters but
they do not include cases with encoding errors or otherwise malformed PDUs. Tests to ensure that the IUT can handle
malformed PDUs are defined in 13.4.

Many test cases allow flexibility in the value to be used in a service parameter. The tester is free to choose any value within
the constraints defined in the test case. The IUT shall be able to respond correctly to any valid selection the tester might
make. The EPICS is considered to be a definitive reference indicating the BACnet functionality supported and the
conflguratlon of the object database Any dlscrepanues between the BACnet functlonallty er—the#alueef—p#epe.tﬂe&mthe

the—valee—prewded—m—the—EP-LGS—Deflned in the EPICS and the functlonallty demonstrated by the dewce durlng testlng
shall constitute a failure. For example, it is considered a failure if a test step involves writing to a property and the EPICS
indicates the property is writable but the device returns an error indicating 'write access denied'.

9.1 AcknowledgeAlarm Service Execution Tests
9.1.1 Positive AcknowledgeAlarm Service Execution Tests

9.1.1.1 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Time Form of the "Time of
Acknowledgment' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.
Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including

notification of other workstations and updating of the Acked_Transitions status. The Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least-one-other-device all other recipients in
the Recipient_List. The TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT.
The IUT notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at-least one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have

122

BACnet Testing Laboratories - Specified Tests

been acknowledged. The TD and at-least one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the 1UT)
2. WAIT (Time_Delay)
3. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the object detecting the alarm),
Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
‘Priority’ = (the priority configured for this event),
‘Event Type' = (any valid event type),
‘Notify Type' = (the notify type configured for this event),
'‘AckRequired' = TRUE,
'From State' = NORMAL,
"To State' = (any appropriate non-normal event state),
‘Event Values' = (the values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process ldentifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
‘Time Stamp' = (the timestamp or sequence number received in step 3),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),
‘Event Type' = (any valid event type),
‘Notify Type' = (the notify type configured for this event),
'‘AckRequired' = TRUE,
'From State' = NORMAL,
"To State' = (any appropriate non-normal event state),
'Event Values' = (the values appropriate to the event type)
6. TRANSMIT BACnet-SimpleACK-PDU
7. VERIFY (the 'Event Object Identifier' from the event notification), Acked Transitions = (FALSE, TRUE, TRUE)
8. TRANSMIT AcknowledgeAlarm-Request,
‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event
notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
"Time Stamp' = (the time stamp conveyed in the notification),
‘Time of Acknowledgment' = (the TD’s current time using a Time format)

9. RECEIVE BACnet-Simple-ACK-PDU
10. IF (Protocol_Revision is present and Protocol_Revision > 1) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device ldentifier'= 1UT,

‘Event Object Identifier' = (the object detecting the alarm),

‘Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),

123

BACnet Testing Laboratories - Specified Tests

"Priority' =
'‘Event Type' =
'Notify Type' =
"To State' =
ELSE
BEFORE Notification Fail Time

(the priority configured for this event),
(the event type included in step 3),
ACK_NOTIFICATION,

(the 'To State' used in step 3)

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
‘Initiating Device Identifier' =
‘Event Object Identifier' =
Time Stamp' =
‘Notification Class' =
‘Priority' =
'‘Event Type' =
‘Notify Type' =
"To State' =

11. TRANSMIT BACnet-SimpleACK-PDU

(the process identifier configured for this event),
IUT,

(the object detecting the alarm),

(the current time or sequence number),

(the notification class configured for this event),
(the priority configured for this event),

(the event type included in step 3),
ACK_NOTIFICATION,

(the 'To State' used in step 3)

12. IF (Protocol_Revision is present and Protocol_Revision > 1) THEN

BEFORE Notification Fail Time
RECEIVE
DESTINATION =
SOURCE =

(at least one device other than the TD),
1UT,

ConfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device Identifier' =
‘Event Object Identifier' =
"Time Stamp' =
'Notification Class' =
"Priority' =
‘Event Type' =
'‘Notify Type' =
"To State' =
ELSE
BEFORE Notification Fail Time
RECEIVE
DESTINATION =
SOURCE =

(the process identifier configured for this event),

IUT,

(the object detecting the alarm),

(the timestamp or sequence number received in step 10),
(the notification class configured for this event),

(the priority configured for this event),

(the event type included in step 3),
ACK_NOTIFICATION,

(the 'To State' used in step 3)

(at least one device other than the TD),
IUT,

ConfirmedEventNotification-Request,

'Process Identifier' =
‘Initiating Device Identifier' =
'Event Object Identifier' =
‘Time Stamp' =
'Notification Class' =
‘Priority’ =
‘Event Type' =
‘Notify Type' =

13. TRANSMIT BACnet-SimpleACK-PDU

14. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE,TRUE,TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 12 shall be the same address used
in step 5. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol
revision 1. Implementations that precede this version will not include this parameter. When multiple event notifications are
expected for a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with
one recipient in the Recipient_List property of the issuing Notification_class object, skip all steps related to receipt of the

second notification.

(the process identifier configured for this event),

IUT,

(the object detecting the alarm),

(the timestamp or sequence number received in step 10),
(the notification class configured for this event),

(the priority configured for this event),

(the event type included in step 3),
ACK_NOTIFICATION

124

BACnet Testing Laboratories - Specified Tests

9.1.1.2 Successful Alarm Acknowledgment of Confirmed Event Notifications using the Sequence Number Form of
the "Time of Acknowledgment' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status. The Sequence Number form of the Time
of Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least-ene-other-device one other device. The
TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other
recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have
been acknowledged. The TD and at-least-one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.1 shall be followed except that the Time of Acknowledgment' parameter of the
AcknowledgeAlarm service request shall be a sequence number.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.1. If the IUT can
only be configured with one recipient in the Recipient_List property of the issuing Notification_Class object, skip all steps
related to receipt of the second notification.

9.1.1.3 Successful Alarm Acknowledgment of Confirmed Event Notifications Using the Date Time Form of the "Time
of Acknowledgment’ Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked Transitions status. The Date Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and atleast-one-other-device one other device. The
TD acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other
recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and at-least one other BACnet if the IUT supports multiple recipients device shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.1 shall be followed except that the Time of Acknowledgment' parameter of the
AcknowledgeAlarm service request shall convey the current time using a BACnetDateTime format.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.1. If the IUT can

only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, skip all steps
related to receipt of the second natification.

125

BACnet Testing Laboratories - Specified Tests

9.1.1.4 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Time Form of the "Time of
Acknowledgment' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status. The Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-Jleast one other device. The TD
acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other
recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and at-least one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps:
1. MAKE (a change that triggers the detection of an alarm event in the IUT)
2. WAIT (Time_Delay)
3. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device ldentifier' = IUT,
‘Event Object Identifier' = (the object detecting the alarm),
Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
‘Priority’ = (the priority configured for this event type),
‘Event Type' = (any valid event type),
‘Notify Type' = (the notify type configured for this event),
'‘AckRequired’ = TRUE,
'From State' = NORMAL,
"To State' = (any appropriate non-normal event state),
‘Event Values' = (the values appropriate to the event type)

4. IF (the notification in step 3 was not a broadcast) THEN

RECEIVE

DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the object detecting the alarm),
Time Stamp' = (the timestamp or sequence number received in step 3),
'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event type),
'‘Event Type' = (any valid event type),
'‘Notify Type' = (the notify type configured for this event),
'AckRequired' = TRUE,
'From State' = NORMAL,
"To State' = (any appropriate non-normal event state),
'Event Values' = (the values appropriate to the event type)

5. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE, TRUE, TRUE)

6. TRANSMIT AcknowledgeAlarm-Request,
'‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
‘Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

126

BACnet Testing Laboratories - Specified Tests

'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
"Time Stamp' = (the time stamp conveyed in the notification),
"Time of Acknowledgment' = (the TD’s current time using a Time format)

7. RECEIVE BACnet-Simple-ACK-PDU
8. IF (Protocol_Revision is present and Protocol_Revision > 1) THEN
BEFORE Notification Fail Time

RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device Identifier'= 1UT,
‘Event Object Identifier' = (the object detecting the alarm),
Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
‘Priority’ = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
"To State' = (the 'To State' used in step 3 or 4)
ELSE
BEFORE Notification Fail Time
RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier'= 1UT,
‘Event Object Identifier' = (the object detecting the alarm),
"Time Stamp' = (the current time or sequence number),
'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION

9. IF (the natification in step 8 was not broadcast) THEN
IF (Protocol_Revision is present and Protocol_Revision > 1) THEN

RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
‘Time Stamp' = (the timestamp or sequence number from the notification in step 8),
‘Notification Class' = (the notification class configured for this event),
'Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
'To State' = (the 'To State' used in step 3 or 4)

ELSE

RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device ldentifier'= 1UT,
'Event Object Identifier' = (the object detecting the alarm),

127

BACnet Testing Laboratories - Specified Tests

Time Stamp' = (the timestamp or sequence number from the notification in step 8),
'Notification Class' = (the notification class configured for this event),

"Priority' = (the priority configured for this event type),

‘Event Type' = (any valid event type),

'Notify Type' = ACK_NOTIFICATION,

10. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE,TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 8 shall be the same address used
in step 3. The destination address used for the acknowledgment notification in step 9 shall be the same address used in step
4. Inclusion of the 'To State' parameter in acknowledgement notifications was added in protocol version 1, protocol revision
1. Implementations that precede this version will not include this parameter. When multiple event notifications are expected
for a specific event, the order that the IUT transmits them in is irrelevant. If the IUT can only be configured with one
recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4 and 9.

9.1.1.5 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Sequence Number Form of
the "Time of Acknowledgment' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status. The Sequence Number form of the "Time
of Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-Jleast-one other device. The TD
acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other
recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and at-least-one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.4 shall be followed except that the Time of Acknowledgment' parameter of the
AcknowledgeAlarm service request shall be a sequence number.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.4. If the IUT can
only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4
and 9.

9.1.1.6 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using the Date Time Form of the
"Time of Acknowledgment' Parameter

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status. The Date Time form of the 'Time of
Acknowledgment' parameter is used.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and atleast-one other device. The TD

acknowledges the alarm and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other
recipients that the alarm has been acknowledged.

128

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and at-least-one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.4 shall be followed except that the Time of Acknowledgment' parameter of the
AcknowledgeAlarm service request shall convey the current time using a BACnetDateTime format.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.4. If the IUT can
only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4
and 9.

9.1.1.8 Successful Alarm Acknowledgment of Confirmed Event Notifications Using an Unknown *Acknowledging
Process Identifier’ Parameter

Reason for Change: Added 'Notes to Tester' to clarify what to do if the TD only supports one recipient. Modified
‘Configuration Requirements' to allow for only one recipient.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, when the
acknowledgement contains a mismatched or unmatched 'Acknowledging Process Identifier' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD
acknowledges the alarm with a mismatched 'Acknowledging Process lIdentifier' (the Process Identifier associated with
another recipient), or an unknown 'Acknowledging Process ldentifier' (a Process ldentifier not associated with any
recipient), and verifies that the acknowledgment is properly noted by the IUT. This test should be performed twice, once
with a mismatched Process Identifier and once with an unknown Process Identifier.

Configuration Requirements: The IUT shall be configured with at least one object, Objectl, that can detect alarm conditions
and send confirmed notifications. The Acked_Transitions property shall have the value (TRUE,TRUE, TRUE), indicating
that all transitions have been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple
recipients shall be recipients of the alarm notification, and shall use different Process Identifiers.

This test is recommended for all BACnet devices that execute AcknowledgeAlarm but is required only for those that claim
conformance to Protocol_Revision 5 or greater.

Test Steps:
1. VERIFY (Objectl), Acked_Transitions = (TRUE, TRUE, TRUE)
2. MAKE (a change that triggers the detection of an alarm event in the IUT)
3. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any Process ID),

'Initiating Device Identifier' = IUT,

‘Event Object Identifier' = Obijectl,

‘Time Stamp' = (the current time or sequence number),

‘Notification Class' = (the Notification Class configured for this event),

‘Priority' = (the priority configured for this event),

'Event Type' = (any valid event type),

‘Notify Type' = ALARM or EVENT,

'‘AckRequired' = TRUE,

'From State' = (any appropriate event state),

"To State' = (any appropriate event state),

'Event Values' = (values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE

DESTINATION = (at least one device other than the TD),

129

BACnet Testing Laboratories - Specified Tests

SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process Identifier' = (any Process ID),
‘Initiating Device ldentifier' = IUT,
‘Event Object Identifier' = Objectl,
‘Time Stamp' = (the current time or sequence humber),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),
‘Event Type' = (any valid event type),
‘Notify Type' = ALARM | EVENT,
'‘AckRequired' = TRUE,
'From State' = (any appropriate event state),
'To State' = (any appropriate event state),
‘Event Values' = (values appropriate to the event type)
6. TRANSMIT
DESTINATION = IUT,
SOURCE = (DESTINATION in step 5),
BACnet-SimpleACK-PDU
7. VERIFY (Objectl), Acked_Transitions = (one bit FALSE, the others TRUE)
8. TRANSMIT AcknowledgeAlarm-Request,
'Acknowledging Process Identifier' = (Any mismatched or unknown value),
'‘Event Object Identifier' = Objectl,
‘Event State Acknowledged' = (the state specified in the "To State' parameter of the notification),
‘Time Stamp' = (the timestamp conveyed in the notification),
‘Time of Acknowledgment' = (the current timestamp)

9. RECEIVE BACnet-SimpleACK-PDU
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (any Process 1D),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Obijectl,
"Time Stamp' = (the current time or sequence number),
'Notification Class' = (the Notification Class configured for this event),
"Priority' = (the priority configured for this event),
'Event Type' = (any valid event type),
‘Notify Type' = ACK_NOTIFICATION,
"To State' = (any appropriate event state)
11. TRANSMIT BACnet-SimpleACK-PDU
12. RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process Identifier' = (any Process ID),
‘Initiating Device Identifier' = IUT,
‘Event Object Identifier' = Objectl,
Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
‘Priority’ = (the priority configured for this event),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
To State' = (any appropriate event state)
13. TRANSMIT
DESTINATION = 1UT,
SOURCE = (DESTINATION in step 5),

BACnet-SimpleACK-PDU
14. VERIFY (Objectl), Acked_Transitions = (TRUE,TRUE, TRUE)

130

BACnet Testing Laboratories - Specified Tests

Notes to Tester: The ConfirmedEventNotification-Request messages can be received in either order. If the IUT can only be
configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit steps 5 and 6.

9.1.1.9 Successful Alarm Acknowledgment of Unconfirmed Event Notifications Using an Unknown 'Acknowledging
Process Identifier' Parameter

Reason for Change: Added 'Notes to Tester' to handle cases with only one recipient. Updated Test Concept' to handle
cases with only one recipient.

Purpose: To verify the successful acknowledgment of an alarm signaled by an UnconfirmedEventNotification, when the
acknowledgement contains a mismatched or unmatched ‘Acknowledging Process Identifier' parameter.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at least one other device. The TD
acknowledges the alarm with a mismatched 'Acknowledging Process Identifier' (the Process Identifier associated with
another recipient), or unknown (a Process ldentifier not associated with any recipient), and verifies that the
acknowledgment is properly noted by the IUT. This test should be performed twice, once with a mismatched Process
Identifier and once with an unknown Process ldentifier.

Configuration Requirements: The IUT shall be configured with at least one object, Objectl, that can detect alarm conditions
and send unconfirmed notifications. The Acked_Transitions property shall have the value (TRUE, TRUE, TRUE), indicating
that all transitions have been acknowledged. The TD and at least one other BACnet device if the IUT supports multiple
recipients shall be recipients of the alarm notification, configured to receive different Process Identifiers.

This test is recommended for all BACnet devices that execute AcknowledgeAlarm but is required only for those that claim
conformance to Protocol_Revision 5 or greater.

Test Steps:

1. VERIFY (Objectl), Acked_Transitions = (TRUE, TRUE, TRUE)
2. MAKE (a change that triggers the detection of an alarm event in the IUT)
3. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,

'Process ldentifier' = (any Process ID),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = Object1,
‘Time Stamp' = (the current time or sequence number),
'Notification Class' = (the Notification Class configured for this event),
‘Priority' = (the priority configured for this event),
‘Event Type' = (any valid event type),
‘Notify Type' = ALARM or EVENT,
'‘AckRequired' = TRUE,
'From State' = (any appropriate event state),
‘To State' = (any appropriate event state),
‘Event Values' = (values appropriate to the event type)
4. RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (any Process 1D),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the object detecting the alarm),
‘Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event),
'Event Type' = (any valid event type),
‘Notify Type' = ALARM | EVENT,

131

BACnet Testing Laboratories - Specified Tests

'AckRequired' = TRUE,

'From State' = (any appropriate event state),

"To State' = (any appropriate event state),

‘Event Values' = (values appropriate to the event type)

5. VERIFY (Objectl), Acked_Transitions = (one bit FALSE, the others TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,

'‘Acknowledging Process Identifier' = (Any mismatched or unknown value),

'Event Object Identifier' = Objectl,

'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
Time Stamp' = (the timestamp conveyed in the notification),

"Time of Acknowledgment' = (the current timestamp)

~

RECEIVE BACnet-SimpleACK-PDU
8. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,

'Process ldentifier' = (any Process ID),
'Initiating Device ldentifier' = IUT,
'Event Object Identifier' = Objectl,
Time Stamp' = (the current time or sequence number),
'‘Notification Class' = (the Notification Class configured for this event),
"Priority' = (the priority configured for this event),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
"To State' = (any appropriate event state)

9. RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (any Process ID),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = Obijectl,
‘Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event),
'Event Type' = (any valid event type),
‘Notify Type' = ACK_NOTIFICATION,
"To State' = (any appropriate event state)

10. VERIFY (Objectl), Acked_Transitions = (TRUE, TRUE,TRUE)

Note to Tester: The UnconfirmedEventNotification-Request messages can be received in either order. If the IUT can only
be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit step 4.

9.1.1.10 Successful Alarm Re-Acknowledgment of Confirmed Event Notifications

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful re-acknowledgment of an event signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status.

Test Concept: An event is triggered and, after the specified Time_Delay of the event-generating object, the IUT notifies the
TD and atJeast-one other device. The TD acknowledges the event and verifies that the acknowledgment is properly noted
by the IUT. The IUT notifies all recipients that the event has been acknowledged. The TD then acknowledges the event
again, and the IUT again notifies all recipients. This behavior was not defined before Protocol_Revision 7 and so this test
shall only be performed if Protocol_Revision is present (i.e., Protocol_Revision > 7).

132

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal
transitions and sends confirmed notifications. The Acked_Transitions property shall have the value B'111', indicating that
all transitions have been acknowledged. The TD and at-least-one other BACnet device if the IUT supports multiple
recipients shall be recipients of the event notification.

Test Steps:

1. MAKE (a change that triggers the detection of an event in the IUT)
2. WAIT (Time_Delay)
3. BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the event-initiating object),
Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),
‘Event Type' = (any valid event type),
‘Notify Type' = (the notify type configured for this event),
'‘AckRequired' = TRUE,
'From State' = NORMAL,
'To State' = (any appropriate offnormal event state),
‘Event Values' = (the values appropriate to the event type)
4. TRANSMIT BACnet-SimpleACK-PDU
5. RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process ldentifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the event-initiating object),
‘Time Stamp' = (the timestamp or sequence number received in step 3),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),
'Event Type' = (any valid event type),
‘Notify Type' = (the notify type configured for this event),
'‘AckRequired' = TRUE,
'From State' = NORMAL,
"To State' = (any appropriate offnormal event state),
‘Event Values' = (the values appropriate to the event type)

6. TRANSMIT BACnet-SimpleACK-PDU

7. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B‘'043(FALSE, TRUE, TRUE)
8. TRANSMIT AcknowledgeAlarm-Request,

'‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),

'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

'Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),

Time Stamp' = (the time stamp conveyed in the notification),

'‘Acknowledgment Source' = (a character string)

‘Time of Acknowledgment' = (any of the forms specified for this parameter)

9. RECEIVE BACnet-Simple-ACK-PDU
10. BEFORE Notification Fail Time
RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,

‘Event Object Identifier' = (the event-initiating object),

Time Stamp' = (the current time or sequence number),

133

'Notification Class' =
"Priority' =

'‘Event Type' =
‘Notify Type' =

"To State' =

BACnet Testing Laboratories - Specified Tests

(the notification class configured for this event),
(the priority configured for this event),

(the event type included in step 3),
ACK_NOTIFICATION,

(the "To State' used in step 3)

11. TRANSMIT BACnet-SimpleACK-PDU

12.

13.
14,
15.

16.
17.

19.

RECEIVE
DESTINATION =
SOURCE =

ConfirmedEventNotification-

'Process ldentifier' =

(at least one device other than the TD),
IUT,
Request,
(the process identifier configured for this event),

‘Initiating Device Identifier' = IUT,

‘Event Object Identifier' = (the event-initiating object),

Time Stamp' = (the timestamp or sequence number received in step 10),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),

‘Event Type' = (the event type included in step 3),

'Notify Type' = ACK_NOTIFICATION,

‘To State' = (the "To State' used in step 3)

TRANSMIT BACnet-SimpleACK-PDU

VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B433(TRUE, TRUE, TRUE)

TRANSMIT AcknowledgeAlarm-Request,

'‘Acknowledging Process Identifier' =

'Event Object Identifier' =

'Event State Acknowledged' =

‘Time Stamp' =
'‘Acknowledgment Source' =
‘Time of Acknowledgment' =

(the 'Event Object Identifier' from the event notification),

(the state specified in the 'To State' parameter of the notification),
(the time stamp conveyed in the notification),

(a character string)

(any of the forms specified for this parameter)

RECEIVE BACnet-SimpleACK-PDU

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process ldentifier' =

(the process identifier configured for this event),

‘Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the event-initiating object),
Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
‘Priority’' = (the priority configured for this event),
‘Event Type' = (the event type included in step 3),
‘Notify Type' = ACK_NOTIFICATION,
To State' = (the 'To State' used in step 3)
18. TRANSMIT BACnet-SimpleACK-PDU
RECEIVE

DESTINATION = (at least one device other than the TD),

SOURCE = IUT,

ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the event-initiating object),
‘Time Stamp' = (the timestamp or sequence number received in step 17),
'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event),
'Event Type' = (the event type included in step 3),
'Notify Type' = ACK_NOTIFICATION,
‘To State' = (the 'To State' used in step 3)

20. TRANSMIT BACnet-SimpleACK-PDU

21. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B4311(TRUE, TRUE, TRUE)

134

(the value of the 'Process Identifier' parameter in the event notification),

BACnet Testing Laboratories - Specified Tests

Notes to Tester: The destination address used for the acknowledgment notification in steps 12 and 19 shall be the same
address used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits
them in is irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing
Notification_class object, omit steps 5, 6, 12, 13, 19, and 20.

9.1.1.11 Successful Alarm Re-Acknowledgment of Unconfirmed Event Notifications

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful re-acknowledgment of an event signaled by an UnconfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status.

Test Concept: An event is triggered and, after the specified Time_Delay of the event-generating object, the IUT notifies the
TD and atdeast-one other device. The TD acknowledges the event and verifies that the acknowledgment is properly noted
by the IUT. The IUT notifies all recipients that the event has been acknowledged. The TD then acknowledges the event
again, and the IUT again notifies all recipients. This behavior was not defined before Protocol_Revision 7 and so this test
shall only be performed if Protocol_Revision is present (i.e., Protocol_Revision > 7).

Configuration Requirements: The IUT shall be configured with at least one event-initiating object that generates offnormal
transitions and sends unconfirmed notifications. The Acked_Transitions property shall have the value B'111', indicating
that all transitions have been acknowledged. The TD and at-least one other BACnet device if the IUT supports multiple
recipients shall be recipients of the event notification.

Test Steps:

1. MAKE (a change that triggers the detection of an offnormal event in the IUT)
2. WAIT (Time_Delay)
3. BEFORE Notification Fail Time

RECEIVE UnconfirmedEventNotification-Request,

'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the event-initiating object),
‘Time Stamp' = (the current time or sequence humber),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),
‘Event Type' = (any valid event type),
‘Notify Type' = (the notify type configured for this event),
'‘AckRequired' = TRUE,
'From State' = NORMAL,
'To State' = (any appropriate offnormal event state),
‘Event Values' = (the values appropriate to the event type)
4. RECEIVE

DESTINATION = (at least one device other than the TD),

SOURCE = IUT,

UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device ldentifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
Time Stamp' = (the timestamp or sequence number received in step 3),
'Notification Class' = (the notification class configured for this event),
‘Priority’ = (the priority configured for this event),
‘Event Type' = (any valid event type),
'‘Notify Type' = (the notify type configured for this event),
'‘AckRequired' = TRUE,

135

BACnet Testing Laboratories - Specified Tests

'From State’ = NORMAL,
"To State' = (any appropriate offnormal event state),
'Event Values' = (the values appropriate to the event type)

5. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B‘'043(FALSE, TRUE, TRUE)
6. TRANSMIT AcknowledgeAlarm-Request,

‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
‘Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

‘Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),

‘Time Stamp' = (the time stamp conveyed in the notification),

'‘Acknowledgment Source' = (a character string)

‘Time of Acknowledgment' = (any of the forms specified for this parameter)

~

RECEIVE BACnet-SimpleACK-PDU
8. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,

'Process ldentifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
‘Time Stamp' = (the current time or sequence number),
'‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),
'‘Event Type' = (the event type included in step 3),
'Notify Type' = ACK_NOTIFICATION,
"To State' = (the 'To State' used in step 3)
9. RECEIVE

DESTINATION = (at least one device other than the TD),

SOURCE = IUT,

UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device ldentifier' = IUT,
'Event Object Identifier' = (the event-initiating object),
"Time Stamp' = (the timestamp or sequence number received in step 8),
'Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),
'Event Type' = (the event type included in step 3),
'Notify Type' = ACK_NOTIFICATION,
"To State' = (the 'To State' used in step 3)

10. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B 433(TRUE, TRUE, TRUE)
11. TRANSMIT AcknowledgeAlarm-Request,

‘Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
‘Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

‘Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),

‘Time Stamp' = (the time stamp conveyed in the notification),

‘Acknowledgment Source' = (a character string)

‘Time of Acknowledgment' = (any of the forms specified for this parameter)

12. RECEIVE BACnet-SimpleACK-PDU
13. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,

'Process ldentifier' = (the process identifier configured for this event),
‘Initiating Device Identifier' = IUT,

‘Event Object Identifier' = (the event-initiating object),

‘Time Stamp' = (the current time or sequence humber),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event),

'Event Type' = (the event type included in step 3),

'Notify Type' = ACK_NOTIFICATION,

'To State' = (the 'To State' used in step 3)

136

BACnet Testing Laboratories - Specified Tests

14. RECEIVE

DESTINATION = (at least one device other than the TD),

SOURCE = IUT,

UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device Identifier' = IUT,
‘Event Object Identifier' = (the event-initiating object),
‘Time Stamp' = (the timestamp or sequence number received in step 13),
‘Notification Class' = (the notification class configured for this event),
‘Priority’ = (the priority configured for this event),
‘Event Type' = (the event type included in step 3),
‘Notify Type' = ACK_NOTIFICATION,
‘To State' = (the 'To State' used in step 3)

15. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = B 431 (TRUE, TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in steps 9 and 14 shall be the same
address used in step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits
them in is irrelevant. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing
Notification_class object, omit steps 4, 9, and 14.

9.1.1.X3 Successful Alarm Acknowledgment of Confirmed Event Notifications when 'To State' is either High-Limit
or Low-Limit, Revision 5 and higher only

Reason for Change: No test exists for this functionality. There is no new SSPC proposal. The differences shown are from
135.1-2011 for clarity. Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify the successful acknowledgment of an alarm signaled by a ConfirmedEventNotification, including
notification of other workstations and updating of the Acked_Transitions status when the "To State' parameter is either
High-Limit or Low-Limit and the 'Event State Acknowledged' parameter is Off-Normal.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least-one other device with an 'To State'
event of either High-Limit or Low-Limit. The TD acknowledges the alarm using all of the correct parameters and using an
'Event State Acknowledged' parameter of 'Off-Normal' and verifies that the acknowledgment is properly noted by the IUT.
The IUT notifies all other recipients that the alarm has been acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and atleast-one other BACnet device if the IUT supports multiple recipeients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.1.1 shall be followed except that the 'To State' parameter shall be either High-Limit
or Low-Limit. When acknowledging the alarm the TD shall use an 'Event State Acknowledged' parameter of Off-Normal.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.1.1. If the IUT can
only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, skip all steps
related to receipt of the second notification.

9.1.2 Negative AcknowledgeAlarm Service Execution Tests

137

9.1.2.1 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the "Time Stamp’ is Too
Old

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the
most recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least-one other device. The TD
acknowledges the alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that
the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the
proper time stamp and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients

BACnet Testing Laboratories - Specified Tests

that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked Transitions property shall have the value B'111' indicating that all transitions have
been acknowledged. The TD and at-least-one other BACnet device if the IUT supports multiple recipients shall be

recipients of the alarm notification.

Test Steps:

1.
2.
3.

4,
5.

6.
7.

MAKE (a change that triggers the detection of an alarm event in the 1UT)

WAIT (Time_Delay)

BEFORE Notification Fail Time

RECEIVE ConfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device Identifier' =
‘Event Object Identifier' =
Time Stamp' =
‘Notification Class' =
‘Priority' =
'‘Event Type' =
‘Notify Type' =
'‘AckRequired' =
'From State' =
To State' =
'‘Event Values' =
TRANSMIT BACnet-SimpleACK-PDU
RECEIVE
DESTINATION =
SOURCE =
ConfirmedEventNotification-Request,
'Process Identifier' =
'Initiating Device ldentifier' = IUT,
'Event Object Identifier' =
Time Stamp' =
'Notification Class' =
"Priority' =
'‘Event Type' =
'‘Notify Type' =
'‘AckRequired' =
'From State' =
To State' =
'‘Event Values' =
TRANSMIT BACnet-SimpleACK-PDU

VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE, TRUE, TRUE)

(the process identifier configured for this event),
IUT,

(the object detecting the alarm),

(the current time or sequence number),

(the notification class configured for this event),
(the priority configured for this event type),
(any valid event type),

(the notify type configured for the event),
TRUE,

NORMAL,

(any appropriate non-normal event state),

(the values appropriate to the event type)

(at least one device other than the TD),
IUT,

(the process identifier configured for this event),

(the object detecting the alarm),

(the timestamp or sequence number received in step 3),

(the notification class configured for this event),
(the priority configured for this event type),
(any valid event type),

(the notify type configured for the event),
TRUE,

NORMAL,

(any appropriate non-normal event state),

(the values appropriate to the event type)

138

BACnet Testing Laboratories - Specified Tests

8. TRANSMIT AcknowledgeAlarm-Request,

'Acknowledging Process Identifier' = (the value of the 'Process Identifier' parameter in the event notification),
'Event Object Identifier' = (the 'Event Object Identifier' from the event notification),
‘Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
‘Time Stamp' = (a time stamp older than the one conveyed in the notification),
‘Time of Acknowledgment' = (the current time using a Time format)
9. RECEIVE BACnet-Error-PDU
Error Class = SERVICES,
Error Code = INVALID_TIME_STAMP

10. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE, TRUE,TRUE)
11. TRANSMIT AcknowledgeAlarm-Request,

'‘Acknowledging Process Identifier' = (the process identifier configured for this event),

‘Event Object Identifier' = (the 'Event Object Identifier' from the event notification),

‘Event State Acknowledged' = (the state specified in the 'To State' parameter of the notification),
Time Stamp' = (the time stamp conveyed in the notification),

‘Time of Acknowledgment' = (the current time using a Time format)

12. RECEIVE BACnet-Simple-ACK-PDU
13. IF (Protocol_Revision is present and Protocol_Revision > 1) THEN
BEFORE Notification Fail Time

RECEIVE

ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = [UT,
‘Event Object Identifier' = (the object detecting the alarm),
‘Time Stamp' = (the current time or sequence number),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
"To State' = (the 'To State' used in step 3 or 5)

ELSE
BEFORE Notification Fail Time

RECEIVE
ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device Identifier' = [UT,
‘Event Object Identifier' = (the object detecting the alarm),
‘Time Stamp' = (the current time or sequence number),
'Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION

14. TRANSMIT BACnet-SimpleACK-PDU
15. IF (Protocol_Revision is present and Protocol_Revision > 1) THEN

RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier' = IUT,
'‘Event Object Identifier' = (the object detecting the alarm),
Time Stamp' = (the timestamp or sequence number from the notification in step 13),
'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,

139

BACnet Testing Laboratories - Specified Tests

"To State' = (the 'To State' used in step 3 or 5)

ELSE

RECEIVE

DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
ConfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device ldentifier' = IUT,
‘Event Object Identifier' = (the object detecting the alarm),
Time Stamp' = (the timestamp or sequence number from the notification in step 13),
‘Notification Class' = (the notification class configured for this event),
‘Priority’ = (the priority configured for this event type),
‘Event Type' = (any valid event type),
‘Notify Type' = ACK_NOTIFICATION

16. TRANSMIT BACnet-SimpleACK-PDU
17. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE,TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used
in step 3. If the IUT can only be configured with one recipient in the Recipient_List property of the issuing
Notification_class object, omit steps 5, 6, 15, and 16.

9.1.2.3 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the ‘Event Object
Identifier" is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal.

Purpose: To verify that an alarm remains unacknowledged if the 'Event Object Identifier' represents an object that does not
exist or is not consistent with the other parameters that define the alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least one other device. The TD
acknowledges the alarm using an improper 'Event Object Identifier' and verifies that the acknowledgment is not accepted
by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the
alarm using the proper 'Event Object Identifier' and verifies that the acknowledgment is properly noted by the IUT. The
IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111' indicating that all transitions have
been acknowledged. The TD and at-least one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.1 shall be followed except that in the first AcknowledgeAlarm request the "Time
Stamp' shall have the same value as the 'Time Stamp' from the event notification and the 'Event Object Identifier' shall
specify an object that does not support or is not configured for alarming, or which does not exist..

Notes to Tester: A passing result is the same message sequence described in 9.1.2.1 except that the Error Class and Error
Code in step 7 shall be OBJECT and UNKNOWN_OBJECT if the object referenced by ‘Event Object Identifier’ does not
exist or OBJECT and NO_ALARM_CONFIGURED if the object exists but does not support or is not configured for
alarming. For devices claiming a Protocol Revision less than 5, an Error Class and Error Code of SERVICES and
INCONSISTENT_PARAMETERS or Error Class of OBJECT and Error Code of OTHER shall also be allowed. If the
IUT can only be configured with one recipient in the Recipient_List property of the issuing Notification_class object, omit
steps 5, 6, 15, and 16.

140

BACnet Testing Laboratories - Specified Tests

9.1.2.4 Unsuccessful Alarm Acknowledgment of Confirmed Event Notifications Because the 'Event State
Acknowledged' is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal.

Purpose: To verify that an alarm remains unacknowledged if the 'Event State Acknowledged' is inconsistent with the ether
parameters Event_State that define was provided in the natification which isthe-alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least one other device. The TD
acknowledges the alarm using an invalid event state and verifies that the acknowledgment is not accepted by the IUT and
that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the
proper event state and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients
that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
confirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and atleast one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.1 shall be followed except that in the first AcknowledgeAlarm request the Time
Stamp' shall have the same value as the "Time Stamp' from the event notification, the ‘To State’ in the natification shall be
any offnormal transition and the 'Event State Acknowledged' shall have an offnormal value that is different from the 'To
State' in the event notification and shall not be OFFNORMAL (2).

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.1 except that the
Error Code in-step7 shall be INVALID_EVENT_STATE. For devices claiming a Protocol Revision less than 5, an Error
Code of INCONSISTENT_PARAMETERS shall also be allowed. If the IUT can only be configured with one recipient in
the Recipient_List property of the issuing Notification_class object, omit steps 5, 6, 15, and 16.

9.1.2.5 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the "Time Stamp' is Too
Old

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if the time stamp in the acknowledgment does not match the
most recent transition to the current alarm state.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least-one other device. The TD
acknowledges the alarm using an old time stamp and verifies that the acknowledgment is not accepted by the IUT and that
the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm using the
proper time stamp and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies all other recipients
that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and at-least one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps:

1. MAKE (a change that triggers the detection of an alarm event in the 1UT)
2. WAIT Time_Delay
3. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),

141

4,

o

10.
11.

BACnet Testing Laboratories - Specified Tests

'Initiating Device Identifier' =
'Event Object Identifier' =
"Time Stamp' =
'Notification Class' =
‘Priority' =

‘Event Type' =

‘Notify Type' =
‘AckRequired' =

'From State' =

"To State' =

‘Event Values' =

IUT,

(the object detecting the alarm),

(the current time or sequence number),

(the notification class configured for this event),
(the priority configured for this event type),
(any valid event type),

(the notify type configured for the event),
TRUE,

NORMAL,

(any appropriate non-normal event state),
(the values appropriate to the event type)

IF (the notification in step 3 was not a broadcast) THEN

RECEIVE
DESTINATION =
SOURCE =

(at least one device other than the TD),
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
'Initiating Device ldentifier' =
'‘Event Object Identifier' =
Time Stamp' =
'Notification Class' =
'Priority' =

'‘Event Type' =

'‘Notify Type' =
'‘AckRequired' =

'From State' =

"To State' =

‘Event Values' =

(the process identifier configured for this event),
IUT,

(the object detecting the alarm),

(the timestamp or sequence number from step 3),
(the notification class configured for this event),
(the priority configured for this event type),
(any valid event type),

(the notify type configured for the event),
TRUE,

NORMAL,

(any appropriate non-normal event state),

(the values appropriate to the event type)

VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE, TRUE, TRUE)

TRANSMIT AcknowledgeAlarm-Request,
'‘Acknowledging Process Identifier' =
'Event Object Identifier' =
'Event State Acknowledged' =
"Time Stamp' =
"Time of Acknowledgment' =

RECEIVE BACnet-Error-PDU
Error Class =
Error Code =

(the value of the 'Process Identifier' parameter in the event notification),
(the 'Event Object Identifier' from the event notification),

(the state specified in the 'To State' parameter of the notification),

(a time stamp older than the one conveyed in the notification),

(the TD’s current time using a Time format)

SERVICES,
INVALID_TIME_STAMP

VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (FALSE, TRUE,TRUE)

TRANSMIT AcknowledgeAlarm-Request,
‘Acknowledging Process Identifier' =
‘Event Object Identifier' =
‘Event State Acknowledged' =
Time Stamp' =
Time of Acknowledgment' =

RECEIVE BACnet-Simple-ACK-PDU

(the process identifier configured for this event),

(the 'Event Object Identifier' from the event notification),

(the state specified in the 'To State' parameter of the notification),
(the time stamp conveyed in the notification),

(the TD’s current time using a Time format)

IF (Protocol_Revision is present and Protocol_Revision > 1) THEN

BEFORE Notification Fail Time
RECEIVE
DESTINATION =
SOURCE =

LOCAL BROADCAST | GLOBAL BROADCAST | TD,
IUT,

UnconfirmedEventNotification-Request,

'Process Identifier' =
‘Initiating Device Identifier' =
'Event Object Identifier' =
‘Time Stamp' =

(the process identifier configured for this event),
IUT,

(the object detecting the alarm),

(the current time or sequence number),

142

BACnet Testing Laboratories - Specified Tests

'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
‘To State' = (the 'To State' used in step 3 or 4)
ELSE
BEFORE Notification Fail Time
RECEIVE
DESTINATION = LOCAL BROADCAST | GLOBAL BROADCAST | TD,
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process ldentifier' = (the process identifier configured for this event),
‘Initiating Device Identifier'= 1UT,
‘Event Object Identifier' = (the object detecting the alarm),
Time Stamp' = (the current time or sequence number),
'‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event type),
'‘Event Type' = (any valid event type),
‘Notify Type' = ACK_NOTIFICATION

12. IF (the notification in step 11 was not broadcast) THEN
IF (Protocol_Revision is present and Protocol_Revision > 1) THEN

RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
'Initiating Device Identifier'= 1UT,
'Event Object Identifier' = (the object detecting the alarm),
"Time Stamp' = (the timestamp or sequence number from the notification in step 11),
'Notification Class' = (the notification class configured for this event),
"Priority' = (the priority configured for this event type),
'Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION,
"To State' = (the 'To State' used in step 3 or 4)

ELSE

RECEIVE
DESTINATION = (at least one device other than the TD),
SOURCE = IUT,
UnconfirmedEventNotification-Request,
'Process Identifier' = (the process identifier configured for this event),
‘Initiating Device Identifier'= 1UT,
'Event Object Identifier' = (the object detecting the alarm),
‘Time Stamp' = (the timestamp or sequence number from the notification in step 11),
‘Notification Class' = (the notification class configured for this event),
‘Priority' = (the priority configured for this event type),
‘Event Type' = (any valid event type),
'Notify Type' = ACK_NOTIFICATION

13. VERIFY (the 'Event Object Identifier' from the event notification), Acked_Transitions = (TRUE, TRUE, TRUE)

Notes to Tester: The destination address used for the acknowledgment notification in step 11 shall be the same address used
in step 3. The destination address used for the acknowledgment notification in step 12 shall be the same address used in
step 4. When multiple event notifications are expected for a specific event, the order that the IUT transmits them in is
irrelevant. If the IUT can only be configured with one recipient in the Recipient List property of the issuing

Notification_class object, omit steps 4 and 12.

143

BACnet Testing Laboratories - Specified Tests

9.1.2.6 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the Referenced Object
Does Not Exist

Reason For Change: Made changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if the 'Event Object Identifier' represents an object that does not
exist.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-Jleast one other device. The TD
acknowledges the alarm using an invalid event object identifier and verifies that the acknowledgment is not accepted by the
IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the alarm
using the proper event object identifier and verifies that the acknowledgment is properly noted by the IUT. The IUT notifies
all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and at-least one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.5 shall be followed except that in the first AcknowledgeAlarm request the Time
Stamp' shall have the same value as the "Time Stamp' from the event notification and the 'Event Object Identifier' shall have
a value that is different from the 'Event Object Identifier' in the event notification and for which no object exists in the IUT.

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.5 except that the
Error Class in step 7 shall be OBJECT and the Error Code in step 7 shall be UNKNOWN_OBJECT. For devices that claim
a Protocol_Revision of 5 or prior, an Error Class of SERVICES with an Error Code of INCONSISTENT_PARAMETERS
or Error Class of OBJECT and Error Code of OTHER shall also be accepted. If the IUT can only be configured with one
recipient in the Recipient_List property of the issuing Notification_class object, omit steps 4 and 12.

9.1.2.7 Unsuccessful Alarm Acknowledgment of Unconfirmed Event Notifications Because the ‘Event State
Acknowledged" is Invalid

Reason for Change: This test was updated to account for revision 5 specifications. There is no new SSPC proposal. Made
changes to allow cases where only one Recipient_List entry is supported.

Purpose: To verify that an alarm remains unacknowledged if the 'Event State Acknowledged' is inconsistent with the ether
parametersEvent _State that define-was provided in the notification which is the-alarm being acknowledged.

Test Concept: An alarm is triggered that causes the IUT to notify the TD and at-least one other device. The TD
acknowledges the alarm using an invalid 'Event State Acknowledged' and verifies that the acknowledgment is not accepted
by the IUT and that the IUT does not notify other devices that the alarm was acknowledged. The TD then acknowledges the
alarm using the proper 'Event State Acknowledged' and verifies that the acknowledgment is properly noted by the IUT. The
IUT notifies all other recipients that the alarm was acknowledged.

Configuration Requirements: The IUT shall be configured with at least one object that can detect alarm conditions and send
unconfirmed notifications. The Acked_Transitions property shall have the value B'111" indicating that all transitions have
been acknowledged. The TD and atleast-one other BACnet device if the IUT supports multiple recipients shall be
recipients of the alarm notification.

Test Steps: The test steps defined in 9.1.2.5 shall be followed except that in the first AcknowledgeAlarm request the ‘Time
Stamp' shall have the same value as the 'Time Stamp' from the event, the ‘To State’ in the notification shall be any
offnormal transition and the 'Event State Acknowledged' shall have an offnormal value that is different from the 'To State'
in the event notification and shall not be OFFNORMAL (2).

144

BACnet Testing Laboratories - Specified Tests

Notes to Tester: A passing result is the same message sequence described as the passing result in 9.1.2.5 except that the
Error Code in-step-7 shall be INVALID_EVENT_STATE. For devices claiming a Protocol Revision less than 5, an Error
Code of INCONSISTENT_PARAMETERS shall also be allowed. If the IUT can only be configured with one recipient in
the Recipient_List property of the issuing Notification_class object, omit steps 4 and 12.

9.1.X1 Unsupported Message Text Character Set AcknowledgeAlarm Test

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported
character sets.

Reference: 13.5.2

Purpose: To verify that the IUT does not fail to process an AcknowledgeAlarm request because the Acknowledgment
Source parameter is of a character set that the IUT does not support.

Test Concept: Cause an event-initiating object, O1, in the IUT to transition to Event_State ES1. Acknowledge the transition
and, in the AcknowledgeAlarm service, provide an ‘Acknowledgment Source’ parameter, AS1, which has a character set
that the IUT does not support. Verify that the IUT processes the request even if the ‘Acknowledgment Source’ uses a
character set that the IUT does not support, and that the IUT accepts and applies that Acknowledgment request, irrespective
of the ‘Acknowledgment Source’.

Configuration Requirements: Configure an event-initiating object, O1 which references a Notification Class object N1.
Configure O1 such that it needs an acknowledgment when it transitions out of its current state. DELAY shall represent the
time delay appropriate to the transition being tested (i.e. Time_Delay for to-offnormal, 0 for to-fault, and either
Time_Delay or To_Normal_Time_Delay for to-normal). AS1 shall be a character string short enough for the IUT to receive
and encoded in a character set that the IUT does not support. If the IUT supports all character sets, this test shall be skipped.

Test Steps:
1. MAKE(a condition exist which will cause O1 to transition)
2. WAIT DELAY
3. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request
'Process Identifier' = (any valid process identifier),
‘Initiating Device Identifier' = IUT,
'Event Object Identifier' = 01,
‘Time Stamp' = (TS1: any valid timestamp),
Notification Class' = (N1: the Notification_Class configured in O1),
"Priority' = (any valid priority),
'Event Type' = (any standard event type),
'‘Message Text' = (any valid text),
'Notify Type' = ALARM | EVENT,
'‘AckRequired’ = TRUE,
'From State' = (any valid event state),
"To State' = (ES1: any valid event state),
'Event Values' = (any values appropriate to the event type)

4. IF (ES1 = NORMAL) THEN
VERIFY Acked Transitions = (?,2,F)
ELSE IF (ES1 = FAULT) THEN
VERIFY Acked_Transitions = (?,F,?)
ELSE
VERIFY Acked_Transitions = (F,?,?
5. TRANSMIT AcknowledgeAlarm-Request

'‘Acknowledging Process Identifier' = (any valid value),
‘Event Object Identifier' = O1,

‘Event State Acknowledged' = ES1,

Time Stamp' = TS1,

145

BACnet Testing Laboratories - Specified Tests

'‘Acknowledgment Source' = AS1,
"Time of Acknowledgment' = (any valid timestamp)
6. RECEIVE BACnet-SimpleACK-PDU
7. BEFORE Notification Fail Time
RECEIVE UnconfirmedEventNotification-Request

'Process Identifier' = (any valid process identifier),

‘Initiating Device Identifier' = IUT,

'Event Object Identifier' = 01,

‘Time Stamp' = TS1

Notification Class' = (N1: the Notification_Class configured in O1),
‘Priority' = (any valid priority),

‘Event Type' = (any standard event type),

'Message Text' = (any valid text),

‘Notify Type' = ACK_NOTIFICATION,

To State' = ES1

8. IF (ES1 = NORMAL) THEN
VERIFY Acked_Transitions = (?,?,T)
ELSE IF (ES1 = FAULT) THEN
VERIFY Acked_Transitions = (?,T,?)
ELSE
VERIFY Acked_Transitions = (T,?,?

Notes to Tester: The use of UnconfirmedEventNotification is specified in this test, solely to simplify the expression of the
test. The behavior being tested applies to the ConfirmedEventNotification service as well.

9.2 ConfirmedCOVNotification Service Execution Tests
9.2.1 Positive ConfirmedCOVNotification Service Execution Tests

9.2.1.X4 Change of Value Notification from Proprietary Objects
This test has not been developed and shall be skipped.

9.2.2 Negative ConfirmedCOVNotification Service Execution Tests

9.2.2.1 Change of Value Notification Arrives after Subscription has Expired

Reason for Change: Corrected tests per BTL-CR-0299 and added Configuration Requirements section.

Purpose: To verify that an appropriate error is returned if a COV notification arrives after the subscription time period has
expired.

Test Steps:

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with ‘Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

1. RECEIVE SubscribeCOV-Request,

'Subscriber Process Identifier' = (any valid process identifier),

'Monitored Object Identifier' = (any object X of a type that supports COV notification),
'Issue Confirmed Notifications ' = TRUE,

"Lifetime' = (a-value-no-greaterthan-one-minuteany valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the process identifier used in step 1),
'Initiating Device ldentifier' = D,
'Monitored Object Identifier' = X,

146

BACnet Testing Laboratories - Specified Tests

"Time Remaining' = (any amount of time greater than 0),

"List of Values' = (a list of values appropriate to object X)
4. MAKE (the IUT stop resubscribing, if it resubscribes automatically)
53. WAIT (a-value-two-times at least Lifetime, but sufficient to ensure the subscription has expired)
64. TRANSMIT ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = (the process identifier used in step 21),
'Initiating Device Identifier' = TD,

'‘Monitored Object Identifier' = X,

‘Time Remaining' = (any amount of time greater than 0),
"List of Values' = (a list of values appropriate to object X)

75. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,
Error Code = UNKNOWN_SUBSCRIPTION |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

9.2.2.2 Change of Value Notifications with Invalid Process Identifier
Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a process identifier that
does not match any current subscriptions.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with ‘Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Test Steps:
1. RECEIVE SubscribeCOV-Request,
‘Subscriber Process Identifier' = (any valid process identifier),
'‘Monitored Object Identifier' = (any object X of a type that supports COV notification),
‘Issue Confirmed Notifications ' = TRUE,
‘Lifetime' = (a-valueno-greaterthan-one-minuteany valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (a process identifier different from the one used in step 21),
'Initiating Device Identifier' = TD,

'‘Monitored Object Identifier' = X,

"Time Remaining' = (any amount of time greater than 0),

"List of Values' = (a list of values appropriate to object X)

4. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,
Error Code = UNKNOWN_SUBSCRIPTION |
(BACnet-SimpleACK-PDU)
ELSE
RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

147

BACnet Testing Laboratories - Specified Tests

9.2.2.4 Change of Value Notifications with Invalid Monitored Object Identifier
Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that an appropriate error is returned if a COV notification arrives that contains a monitored object
identifier that does not match any current subscriptions.

Configuration Requirements: If the IUT does not support initiation of SubscribeCOV-Request with ‘Issue Confirmed
Notifications' equal to TRUE, then this test shall be skipped.

Test Steps:
1. RECEIVE SubscribeCOV-Request,
‘Subscriber Process Identifier' = (any valid process identifier),
‘Monitored Object Identifier' = (any object X of a type that supports COV notification),
‘Issue Confirmed Notifications ' = TRUE,
"Lifetime' = (a-value-no-greaterthan-one-minuteany valid Lifetime)

2. TRANSMIT BACnet-SimpleACK-PDU
3. TRANSMIT ConfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the process identifier used in step 21),
'Initiating Device Identifier' = TD,
'Monitored Object Identifier' = (any object Y in the IUT supperting-COV-netification-except X,
and for which IUT does not already have an active subscription),
‘Time Remaining' = (any amount of time greater than 0),
‘List of Values' = (a list of values appropriate to object Y)
4. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
RECEIVE BACnet-Error-PDU,
Error Class
Error Code

SERVICES,
UNKNOWN_SUBSCRIPTION |

(BACnet-SimpleACK-PDU)

ELSE
RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = (any valid error code for class SERVICES) |

(BACnet-SimpleACK-PDU)

Notes to Tester: If possible, select an object Y for which IUT supports COV Subscription.

9.3 UnconfirmedCOV Notification Service Execution Tests

9.3.X9 Change of Value Notification from Proprietary Objects
This test has not been developed and shall be skipped.

9.4 ConfirmedEventNotification Service Execution Tests

9.4.5 ConfirmedEventNotification Simple Presentation

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported
character sets.

Purpose: This test case verifies that the IUT is capable of minimally displaying ConfirmedEventNotifications.
Configuration: For this test, the tester shall choose one event-generating object, O1.

Test Steps:

148

BACnet Testing Laboratories - Specified Tests

1. TRANSMIT ConfirmedEventNotification-Request,

'Process Identifier' = (a valid process identifier specified by the IUT vendor),
'Initiating Device Identifier' = TD,

‘Event Object Identifier' = 01,

‘Time Stamp' = (current time in any format),

‘Notification Class' = (any valid notification class),

‘Priority' = (any valid priority),

‘Event Type' = (any standard event type),

'Message Text' = (any character string),

‘Notify Type' = ALARM | EVENT,

'‘AckRequired' = TRUE | FALSE,

'From State' = (state S1, any valid state for this event type),

"To State' = (state S2, any valid state for this event type that can follow S1),
‘Event Values' = (any values appropriate to the event type)

2. RECEIVE BACnet-SimpleACK-PDU

3. CHECK (that the IUT indicates the notification to the operator and that the indication includes identification of the
event generating object or the monitored object, the event timestamp, and the event Message Text)

4. CHECK (that all information indicated to the user is consistent with the information provided in step 1)

Passing Result: The IUT shall truncate the message text if it is longer than the maximum length displayable by the IUT.
The IUT is allowed to include characters in the displayed text that indicate the message has been truncated, even if the
truncated message is then shorter than 32 characters. The IUT shall not truncate Message Text that is less than or equal to
32 characters in length. A device shall not fail to process an EventNotification service request containing a ‘Message Text’
parameter in an unsupported character set. It is a local matter whether the parameter is used as provided or whether a
character string, in a supported character set, of length 0 is used in its place.

9.4.6 ConfirmedEventNotification Full Presentation

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported
character sets.

Purpose: This test case verifies that the IUT is capable of displaying ConfirmedEventNotifications.

Configuration: For this test, the tester shall choose one event generating object, O1.

Test Steps:
1. TRANSMIT ConfirmedEventNotification-Request,
'Process Identifier' = (a valid process identifier specified by the IUT vendor),
'Initiating Device Identifier' = TD,
'Event Object Identifier' = 01,
‘Time Stamp' = (current time in any format),
‘Notification Class' = (any valid notification class),
‘Priority’ = (any valid priority),
‘Event Type' = (any standard event type),
'‘Message Text' = (any character string),
‘Notify Type' = ALARM | EVENT,
'‘AckRequired' = TRUE | FALSE,
'From State' = (state S1, any valid state for this event type),
‘To State' = (state S2, any valid state for this event type that can follow S2),
'Event Values' = (any values appropriate to the event type)

2. RECEIVE BACnet-SimpleACK-PDU

3. CHECK (that the IUT indicates the notification to the operator and that the indication includes identification of the
event generating object or the monitored object, the event timestamp, the event Message Text, Notification Class, Priority,
Notify Type, Ack Required, To State and Event Values)

4. CHECK (that all information indicated to the user is consistent with the information provided in step 1)

149

BACnet Testing Laboratories - Specified Tests

Passing Result: The IUT shall truncate the message text if it is longer than the maximum length displayable by the 1UT.
The IUT is allowed to include characters in the displayed text that indicate the message has been truncated, even if the
truncated message is then shorter than 255 characters. The IUT shall not truncate Message Text that is less than or equal to
255 characters in length. A device shall not fail to process an EventNotification service request containing a ‘Message Text’
parameter in an unsupported character set. It is a local matter whether the parameter is used as provided or whether a
character string, in a supported character set, of length 0 is used in its place.

9.4.X1 Unsupported Message Text Character Set ConfirmedEventNotificationTest

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported
character sets.

Reference: 13.8.2

Purpose: To verify that the IUT correctly receives and processes ConfirmedEventNotifications when the Message Text
parameter is of a character set that the IUT does not support.

Test Concept: Send a notification to the IUT, from an event-initiating object, O1, which contains a Message Text parameter
value, T1, which uses a character set that the IUT does not support. Verify that the IUT processes the request even if the
‘Message Text’ uses a character set that the IUT does not support, and that the IUT returns a Result(+) and performs the
vendor specified actions.

Configuration Requirements: Configure the TD as though it has an event-initiating object, O1 which references a
Notification Class object N1. Configure N1 to direct notifications to the IUT using a vendor specified Process Id, PID1. If
the IUT supports all character sets, this test shall be skipped.

Test Steps:
1. TRANSMIT ConfirmedEventNotification-Request,
'Process Identifier' = PID1,
'Initiating Device Identifier' = TD,
‘Event Object Identifier' = 01,
‘Time Stamp' = (any valid timestamp),
Notification Class' = (N1: the Notification_Class configured in O1),
'Priority' = (any valid priority),
'‘Event Type' = (the standard event type associated with O1),
‘Notify Type' = ALARM | EVENT,
'Message Text' = T1,
'AckRequired' = FALSE,
'From State' = (any valid event state),
"To State' = (any valid event state),
‘Event Values' = (any values appropriate to the event type)
2. RECEIVE BACnet-SimpleACK-PDU
3. CHECK (for any vendor-defined observable actions)

9.5 UnconfirmedEventNotification Service Execution Tests

9.5.X1 Unsupported Message Text Character Set UnconfirmedEventNotificationTest

Reason for Change: Addendum 135-2010af added language to ensure that notifications are not ignored due to unsupported
character sets.

Reference: 13.9.2

Purpose: To verify that the IUT correctly receives and processes UnconfirmedEventNotifications when the Message Text
parameter is of a character set that the IUT does not support.

150

BACnet Testing Laboratories - Specified Tests

Test Concept: Send a notification to the IUT, from an event-initiating object, O1, which contains a Message Text parameter
value, T1, which uses a character set that the IUT does not support. Verify that the IUT processes the request even if the
‘Message Text” uses a character set that the IUT does not support, and that the IUT performs the vendor specified actions.

Configuration Requirements: Configure TD to direct notifications to the IUT using a vendor specified Process Identifier,
PID1. If the IUT supports all character sets, this test shall be skipped.

Test Steps: The test steps for this test case are identical to the test steps in 9.4.X1 except that the
UnconfirmedEventNotification requests are used instead of ConfirmedEventNotification requests and the IUT does not
acknowledge receiving the notifications.

9.7 GetEnrollmentSummary Service Execution Tests
9.7.1 Required GetEnrollmentSummary Filters

9.7.1.1 Enrollment Summary with Zero Summaries

Reason for change: BTL-CRR-0089_9.7.1.1.doc clarified that it is not important what filter parameter or parameter is used
to engender the return of a summary with zero summaries.

Purpose: To verify that the IUT can execute the GetEnrollmentSummary request when there are no enrollments to report.

Configuration Requirements: The IUT shall be configured with no enrollments to report.

Test Steps:

1. TRANSMIT GetEnrollmentSummary-Request,
'Acknowledgment Filter' = ALL NOT_ACKED

2. RECEIVE GetEnrollmentSummary-ACK,

‘List of Enrollment Summaries' = (an empty list)

Notes to Tester: If the IUT cannot be configured with no enrollments to report, then the GetEnrollmentSummary-Request
shall be transmitted with a further constrained argument so that the resulting filtered enrollment summary yields zero
summaries.

9.7.2 User Selectable GetEnrollmentSummary Filters

9.7.2.3 Event Type Filter
Reason for Change: Revise test for new Event Types.

Purpose: To verify that the IUT can execute the GetEnrollmentSummary request when the 'Event Type Filter' is used.

151

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: If possible, the IUT shall be configured so that it has one or more event-generating objects
for each of its supported event types. If the IUT cannot be configured in such a way all at once,

then the test shall be repeated so that each of its supported event types is tested. If only a subset of these event types are
supported as many of them as possible shall be configured.

Test Steps:

REPEAT Y = (All the configurations that will be tested) DO {
REPEAT X = (All the Event Types currently configured) DO {
TRANSMIT GetEnrollmentSummary-Request,
'Acknowledgment Filter' = ALL,
‘Event Type Filter' = X
RECEIVE GetEnrollmentSummary-ACK,
'List of Enrollment Summaries' = (all configured event-generating objects with
Event_Type = X)

9.8 GetEventInformation Service Execution Tests

9.8.6 Chaining Test
Reason for Change: Corrects the 'max=APDU-length-accepted' value to represent 128 bytes instead of 50 bytes.

Purpose: This test case exercises the chaining capabilities using multiple GetEventinformation messages.

Configuration Requirements: The IUT shall be configured so that there are more event states than can be conveyed in a
single APDU of 128 bytes. The IUT shall be configured to contain enough events to trigger the chaining effect. 1f the IUT
can not be configured to contain enough active events to trigger chaining, this test may be skipped.

Test Concept: In steps 1-4, the test first tests proper chaining by requesting two lists from the IUT and verifying that the
second list is properly distinct from the first. In steps 5-9, to test the “fixed object processing order” as defined in BACnet
13.12.1.1.1, it requests the first list again, and then, before requesting the second list, the tester makes the last object in the
first list no longer have any active event states. When the TD requests the second list using the object identifier of the now-
normal device, the IUT should respond with the same second list as it did before.

Test Steps:
1. TRANSMIT GetEventinformation-Request,
'max-APDU-length-accepted' = B‘99800'B'0001',

152

BACnet Testing Laboratories - Specified Tests

'segmented-response-accepted’ = FALSE
2. RECEIVE GetEventinformation-ACK,
'List of Event Summaries' = (an arbitrary list),

'‘More Events' = TRUE
3. TRANSMIT GetEventInformation-Request,

‘Last Received Object Identifier' = the last object identifier of the list received in step 2)
4. RECEIVE GetEventinformation-ACK,

‘List of Event Summaries' = (a list of object identifiers not including any received in step 2)
5. TRANSMIT GetEventinformation-Request,

'max-APDU-length-accepted' = B‘99800'B'0001',

'segmented-response-accepted’ = FALSE

6. RECEIVE GetEventinformation-ACK,
‘List of Event Summaries' = (an arbitrary list),
‘More Events' = TRUE

~

MAKE (the object identified by the last object identifier in the list received in step 6 have no active event states)
8. TRANSMIT GetEventinformation-Request,
‘Last Received Object Identifier' = (the last object identifier of the list received in step 6)
9. RECEIVE GetEventIinformation-ACK,
‘List of Event Summaries' = (the same list received in step 4)

9.10 SubscribeCOV Service Execution Tests

9.10.1 Positive SubscribeCOV Service Execution Tests

The purpose of this test group is to verify the correct execution of the SubscribeCOV service request under circumstances
where the service is expected to be successfully completed.

9.10.1.7 Finite Lifetime Subscriptions

Reason for change: Updates description of 'Time Remaining' and adds validation that this value counts down as expected.
Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription with a temporary
lifetime. Either confirmed or unconfirmed notifications may be used but at least one of these options must be supported by
the IUT.

1. TRANSMIT SubscribeCOV-Request,

‘Subscriber Process Identifier' = (any valid process identifier),

‘Monitored Object Identifier' = (any object supporting COV natifications),
‘Issue Confirmed Notifications'= TRUE | FALSE,

‘Lifetime' = (a value between 60 seconds and 300 seconds)

N

RECEIVE BACnet-SimpleACK-PDU
3. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time

RECEIVE ConfirmedCOV Notification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = (the same object used in the subscription),

"Time Remaining' = (A value approximately equal to, but not greater than, the requested
subscription lifetime) ‘List of Values'

= (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU
ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,
'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,

153

BACnet Testing Laboratories - Specified Tests

'Monitored Object Identifier' = (the same object used in the subscription),

"Time Remaining' = (A value approximately equal to, but not greater than, the requested
subscription lifetime),

‘List of Values' = (values appropriate to the object type of the monitored object)

4. MAKE (a change to the monitored object that should causes a COV notification)
5. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
'‘Monitored Object Identifier' = (the same object used in the subscription),
‘Time Remaining' = (TR: a value greater than 0 and less than or equal to the requested
subscription
lifetime),
‘List of Values' = (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU

ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),
'Initiating Device Identifier' = IUT,
‘Monitored Object Identifier' = (the same object used in the subscription),
‘Time Remaining' = (TR: a value greater than 0 and less than or equal to the requested
subscription
lifetime),
‘List of Values' = (values appropriate to the object type of the monitored object

including the changed value of that triggered the notification)
6. WAIT (a time that should change the “Time Remaining’ and which is less than the lifetime of the subscription)
MAKE (a change to the monitored object that causes a COV natification)
8. IF (the subscription was for confirmed notifications) THEN
BEFORE Notification Fail Time
RECEIVE ConfirmedCOVNotification-Request,

™~

‘Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device ldentifier' = IUT,

'Monitored Object Identifier' = (the same object used in the subscription),

'Time Remaining' = (a value greater than 0 and less than the TR),

‘List of Values' = (values appropriate to the object type of the monitored object)
TRANSMIT BACnet-SimpleACK-PDU

ELSE
BEFORE Notification Fail Time
RECEIVE UnconfirmedCOVNotification-Request,

'Subscriber Process Identifier' = (the same identifier used in the subscription),

'Initiating Device Identifier' = IUT,

'Monitored Object Identifier' = (the same object used in the subscription),

'Time Remaining' = (a value greater than 0 and less than TR),

"List of Values' = (values appropriate to the object type of the monitored object

including the changed value that triggered the notification)
9. WAIT (the lifetime of the subscription)
810.MAKE (a change to the monitored object that would cause a COV natification if there were an active subscription)
911.CHECK (verify that the IUT did not transmit a COV notification message)

9.10.1.X1 Ensuring 5 Concurrent COV Subscribers
Reason For Change: No test exists for this functionality. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can support 5 concurrent subscriptions.

154

BACnet Testing Laboratories - Specified Tests

Test Concept: Have the TD subscribe with 5 different process identifiers, V; through Vs, and then check to ensure that 5
notifications are sent when the monitored object changes.

Test Steps

1. REPEAT (X=V;to V;s) DO {
TRANSMIT SubscribeCOV-Request,

‘Subscriber Process Identifier' = X,

'‘Monitored Object Identifier' = (any object supporting COV natifications),
‘Issue Confirmed Notifications'= FALSE,

‘Lifetime' = (any valid value that will allow the subscription to outlast the test)

RECEIVE BACnet-SimpleACK-PDU
WAIT Notification Fail Time
IF (if confirmed notifications were requested) THEN
RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier'= X,

‘Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = (the same object used in the subscription),
‘Time Remaining' = (any valid value),

‘List of Values' = (the initial Present_Value and initial Status_Flags)
TRANSMIT BACnet-SimpleACK-PDU

ELSE
RECEIVE UnconfirmedCOVNotification-Request,
‘Subscriber Process Identifier'= X,
'Initiating Device Identifier' = IUT,
'Monitored Obiject Identifier' = (the same object used in the subscription),
Time Remaining' = (any valid value),
‘List of Values' = (the initial Present_Value and initial Status_Flags)
}
2. MAKE (Present_Value = any value that differs from "initial Present_Value" such that a COV notification would be
generated)

3. REPEAT (X=V;to V;5) DO {
IF (if confirmed notifications were requested) THEN
RECEIVE ConfirmedCOVNotification-Request,

‘Subscriber Process Identifier' = X,

'Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = (the same object used in the subscription),
‘Time Remaining' = (any valid value),

‘List of Values' = (the new Present_Value and Status_Flags)
TRANSMIT BACnet-SimpleACK-PDU

ELSE

RECEIVE UnconfirmedCOV Notification-Request,

‘Subscriber Process Identifier' = X,

'Initiating Device Identifier' = IUT,

'‘Monitored Object Identifier' = (the same object used in the subscription),
"Time Remaining' = (any valid value),

"List of Values' = (the new Present_Value and Status_Flags)

}

Passing Result: The notification in step 3 can be received in any order by the TD.

155

BACnet Testing Laboratories - Specified Tests

9.10.2 Negative SubscribeCQOV Service Execution Tests

9.10.2.1 The Monitored Object Does Not Support COV Notification

Reason For Change: Added configuration requirements.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the
monitored object does not support COV notifications.

Configuration Requirements: This test shall only be executed if IUT contains objects which will not accept a COV
subscription. If every object in IUT will accept a COV subscription, then this test shall be skipped.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
'Subscriber Process Identifier' = (any valid process identifier),
‘Monitored Object Identifier' = (any object that does not support COV notifications),
‘Issue Confirmed Notifications'= TRUE,
‘Lifetime' = 60

2. IF (Protocol_Revision is present and Protocol_Revision > 10) THEN
RECEIVE BACnet-Error PDU,

‘Error Class' = OBJECT,
'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
ELSE
RECEIVE
(BACnet-Error PDU,
‘Error Class' = OBJECT,
'Error Code' = OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED) |
(BACnet-Error PDU,
Error Class = SERVICES,
Error Code = SERVICE_REQUEST_DENIED | OTHER) |
(BACnet-Error PDU,
'Error Class' = PROPERTY,
‘Error Code' = NOT_COV_PROPERTY)
9.10.2.X1 The Monitored Object Does Not Exist

Reason for Change: 135-2008h allows for a SimpleAck or a specific error code to return if a subscription does not exist.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the
monitored object does not exist.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (any valid process identifier),
'Monitored Object Identifier' = (any object of a type that supports COV and an instance which does not exist
in the 1UT),
'Issue Confirmed Notifications'= TRUE,
'Lifetime’ = 60

2. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN
RECEIVE BACnet-Error PDU,

Error Class = OBJECT,
Error Code = UNKNOWN_OBJECT
ELSE
RECEIVE BACnet-Error PDU,
Error Class = SERVICES,
Error Code = SERVICE_REQUEST_DENIED | OTHER

156

BACnet Testing Laboratories - Specified Tests

| (BACnet-Error PDU,
Error Class = OBJECT,
Error Code = UNKNOWN_OBJECT)

Note to tester: If the IUT is able to support objects other than those that currently exist, and none of those objects that
currently do not exist would support COV notification if they did, then the IUT may return an error code of
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED instead of UNKNOWN_OBJECT.

9.10.2.X2 There Is No Space For A Subscription
Reason for Change: 135-2008h.5.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when there is no
space for a subscription.

Test Concept: Repeatedly subscribe to the same object each time with a different Process Identifier until the device runs out
of resources and returns the appropriate error. This test only applies to IUTs that claim a Protocol_Revision of 10 or higher.

Test Conditionality: If the device cannot be configured such that the maximum number of subscriptions the IUT can accept
is less than 10000, then this test may be skipped.

Test Steps:

REPEAT PID = (1 through the maximum number of subscriptions the IUT can accept plus 1, or until the IUT returns an
Error-PDU) {

1. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = PID,
'‘Monitored Object Identifier' = (any object of that supports COV),
‘Issue Confirmed Notifications' = TRUE,
‘Lifetime' = 6000
2. RECEIVE BACnet-SimpleACK-PDU |

(BACnet-Error-PDU,
Error Class = RESOURCES,

Error Code = NO_SPACE_TO_ADD_LIST_ELEMENT)

3. READ ACS = (Active_COV_Subscriptions)
4, IF (a BACnet-Simple-Ack was received in step 2) THEN

CHECK (that the subscription is in ACS)

ELSE

CHECK (that the subscription is not in ACS)
}
9.10.2.X3 The Lifetime Parameter is Out of Range

Reason for Change: 135-2008h.5. Modified to relax allowed rejection response.

Purpose: To verify that the IUT correctly responds to a SubscribeCOV request to establish a subscription when the Lifetime
parameter is out of range.

Test Steps:
1. TRANSMIT SubscribeCOV-Request,
‘Subscriber Process Identifier' = (any valid process identifier),
'‘Monitored Object Identifier' = (any object in the IUT that supports COV),
‘Issue Confirmed Notifications'= TRUE,
‘Lifetime' = (a value larger than that supported by the IUT)

2. IF (Protocol_Revision is present and Protocol_Revision >= 10) THEN

157

BACnet Testing Laboratories - Specified Tests

RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,
Error Code = VALUE_OUT_OF_RANGE
ELSE

RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = VALUE_OUT_OF_RANGE | SERVICE_REQUEST_DENIED | OTHER

| (RECEIVE BACnet-Reject-PDU,
Reject Reason = PARAMETER_OUT_OF RANGE)

9.10.3 ...

9.10.3.X1 Unsubscribed COVNotification Execution Test
Reason for Change: This test is not specified in any SSPC proposal.

Purpose: To verify that the IUT executes UnconfirmedCOV Notification service requests, with 'Process Identifier' equal to
0.

Test Concept: Using any received and supported unsubscribed UnconfirmedCOV Notification, observe the effect of its
execution.

Test Steps:
1. TRANSMIT UnconfirmedCOVNotification-Request,
‘Subscriber Process Identifier'= 0,
‘Initiating Device Identifier' = TD,
'‘Monitored Object Identifier' = (any object present in TD),
‘Time Remaining' = 0,
‘List of Values' = (any valid set of values)
2. CHECK (for any vendor-defined observable actions)

158

BACnet Testing Laboratories - Specified Tests

9.14 AddListElement Service Execution Tests

9.14.2 Negative AddListElement Service Execution Tests

9.14.2.2 Adding a List Element With an Invalid Datatype

Reason for change: Added the additional error conditions that are now accepted. Added 'Note to Tester' that was missing in
135.1-2013.

Purpose: To verify the ability of the IUT to correctly respond to an AddListElement service request to add an element with
an invalid datatype to a list.

Test Steps:
1. TRANSMIT AddListElement-Request,

'Object Identifier' = L,

‘Property Identifier' = ListProp,

‘List of Elements' = (a single element with a datatype inappropriate for this property)
2. RECEIVE AddListElement-Error,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE,

'First Failed Element' = 1]
(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE) |
(BACnet-Reject-PDU
Reject Reason = INVALID_TAG)

Notes to Tester: value selected for step 1 is 'inappropriate’, not a value which is 'allowed' but not supported by this instance
of the property. l.e. it is not one of the datatypes that would ever be supported by an instance of this property in this object
type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example in a
CHOICE, by this property in this object type, but not supported by this instance of the property.

9.14.2.3 An AddL.istElement Failure Part Way Through a List
Reason For Change: Updated test to include additional error codes. Added 'Notes to Tester' which was missing in 135.1-
2013.

Purpose: To verify the ability of the IUT to respond to an AddListElement service request to add multiple elements to a list
where one of the elements cannot be added. Upon failure, the AddListElement service should leave the list unchanged.

Test Steps:

1. READ InitialList = (L), ListProp2
2. TRANSMIT AddListElement-Request,

'Object Identifier' = L,
'Property Identifier' = ListProp
‘List of Elements' = (two or more elements to be added to the list with the second element

having an inappropriate datatype)
3. IF (Protocol_Revision is present and Protocol_Revision >=7) THEN
RECEIVE AddListElement-Error,

Error Class = PROPERTY,
Error Code = INVALID_DATATYPE,
'First Failed Element' = 2

| (RECEIVE BACnet-Reject-PDU,
Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)

159

BACnet Testing Laboratories - Specified Tests

ELSE
RECEIVE AddListElement-Error,
Error Class = SERVICES,
Error Code = INVALID PARAMETER_DATATYPE

'First Failed Element'= 2

| (AddListElement-Error,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE)

'First Failed Element' = 2

| (BACnet-Reject-PDU,

Reject Reason = INVALID_TAG | INVALID_PARAMETER_DATA_TYPE)
4. VERIFY (L), ListProp = InitialList

Notes to Tester: value selected for step 3 is 'inappropriate’, not a value which is ‘allowed’ but not supported by this instance
of the property. l.e. it is not one of the datatypes that would ever be supported by an instance of this property in this object
type. DATATYPE_NOT_SUPPPORTED is only correct when the datatype requested is supported, for example in a
CHOICE, by this property in this object type, but not supported by this instance of the property.

9.15 RemoveL istElement Service Execution Tests

9.15.2 Negative RemoveL.istElement Service Execution Tests

9.15.2.2 A RemoveL.istElement Failure Part Way Through a List
Reason For Change: The test specified an incorrect error code. .

Purpose: To verify the ability of the IUT to respond to a RemoveListElement service request to remove multiple elements
from a list where one of the elements cannot be removed. Upon failure, the RemoveListElement service should leave the
list unchanged.

Test Steps:

1. READ InitialList = (L), ListProp

2. TRANSMIT RemoveListElement-Request,

'‘Object Identifier' = L,

'Property Identifier' = ListProp

‘List of Elements' = (one element from InitialList, followed by an element of the correct
datatype that is not in InitialList, followed by one or more elements from
InitialList)

4. If (Protocol_Revision is present and Protocol_Revision >= 7) THEN
RECEIVE RemoveL.istElement-Error,

Error Class = PROPERTY SERVICES,
Error Code = INVALID DATA+TYPELIST ELEMENT_NOT_FOUND
'First Failed Element' = 2

ELSE
RECEIVE RemoveListElement-Error

5. VERIFY (L), ListProp = InitialList

160

BACnet Testing Laboratories - Specified Tests

9.16 CreateObject Service Execution Tests
9.16.1 Positive CreateObject Service Execution Tests

9.16.1.2 Creating Objects by Specifying the Object Identifier with No Initial Values

Reason For Change: Added clarification that the IUT can place a restriction on the instance used. This correction is not in
any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object
specifier.

Test Steps:

1. TRANSMIT CreateObject-Request,

'Object Specifier' = (any unique object identifier of a type that is creatable and an

instance number that is creatable)

2. RECEIVE CreateObject-ACK,

‘Object Identifier' = (the object identifier specified in step 1)
3. VERIFY (the object identifier of the newly created object),

(any required property of the specified object) = (any value of the correct datatype for the specified

property)

4. VERIFY (the IUT's Device object), Object_List = (any object list containing the newly created object)

9.16.1.4 Creating Objects by Specifying the Object Identifier and Providing Initial Values

Reason For Change: Added clarification that the IUT can place restrictions on the instance and initial values allowed for
creation. This change is not in any SSPC proposal.

Purpose: To verify the correct execution of the CreateObject service request when an Object Identifier is used as the object
specifier and a list of initial property values is provided.

Test Steps:

1. TRANSMIT CreateObject-Request,
'Object Specifier' = (any unique object identifier of a type that is creatable and an
instance number that is creatable)
‘List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
accept)

2. RECEIVE CreateObject-ACK,
'Object Identifier' = (the object identifier specified in step 1)
3. REPEAT X = (properties initialized in the CreateObject-Request) DO {
VERIFY (the object identifier for the newly created object),
X = (the value specified in the ‘List Of Initial Values' parameter of the CreateObject-Request)

}
4. VERIFY (the IUT's Device object), Object_List = (any object list containing the newly created object)

9.16.2 Negative CreateObject Service Execution Tests

The purpose of this test group is to verify correct execution of the CreateObject service requests under circumstances where
the service is expected to fail.

9.16.2.1 Attempting to Create an Object That Does Not Have a Unique Object Identifier
Reason For Change: Corrected the parameter used in the service request. This is not in any SSPC proposal.

161

BACnet Testing Laboratories - Specified Tests

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys
an object identifier that already exists in the IUT.

Test Steps:
1. TRANSMIT CreateObject-Request,

'Object Specifier' = (any object identifier representing an object that already exists
having an object type for which dynamic creation is
supported)

2. RECEIVE CreateObject-Error,

Error Class = OBJECT,

Error Code = OBJECT_IDENTIFIER_ALREADY_EXISTS

'First Failed Element Number'= 0

9.16.2.4 Attempting to Create an Object with an Object Type Specifier and an Error in the Initial Values
Reason for Change: Added Test Concept and Configuration Requirements.

Purpose: To verify the correct execution of the CreateObject service request when an object type is used as the object
specifier and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and the ‘List Of Initial Values'
parameter containing a value which is out of range. The TD then attempts to create an object with a value of an
inappropriate datatype in the 'List Of Initial Values' parameter. The selected datatype is not compliant with the property
definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property
definition, but which is not supported for P1 by the IUT. For instance, Schedule_Default which is defined to be of Any
primitive datatype, would not be used in this test along with BitString datatype, even where the IUT's Schedule object
cannot be configured for scheduling BitString values.

Test Steps:

1. READ X1 = Object_List
2. TRANSMIT CreateObject-Request,
'‘Object FypeSpecifier' = (any creatable object type),
‘List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
accept initial values for, with one of the values being out of range)
3. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN
RECEIVE CreateObject-Error-PBY,

Error Class = PROPERTY,
Error Code = VALUE_OUT_OF_RANGE
'First Failed Element Number' = (the position in the ‘List Of Initial Values' with the offending value)
ELSE
RECEIVE CreateObject-Error,
Error Class = PROPERTY,
Error Code = VALUE_OUT_OF_RANGE |
OTHER
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)

>

CHECK(Verify that the new object was not created)
5. TRANSMIT CreateObject-Request,
'Object FypeSpecifier' = (object type of step 2),
‘List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
accept initial values for, with one of the values being an inappropriate datatype)
6. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN

162

BACnet Testing Laboratories - Specified Tests

RECEIVE
CreateObject-Error,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE

'First Failed Element Number' = (the position in the ‘List Of Initial Values' with the offending value) |
(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)

ELSE

RECEIVE CreateObject-Error,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE | INVALID_DATATYPE |

OTHER

'First Failed Element Number' = (the position in the ‘List Of Initial Values' with the offending value) |
(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAGQG)

7. READ X2 = Object_List
8. CHECK (X1=X2)

9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in the Initial
Values

Reason for Change: Added Test Concept and Configuration Requirements to clarify usage.

Purpose: To verify the correct execution of the CreateObject service request when an object identifier is used as the object
specifier and a list of initial property values containing an invalid value is provided.

Test Concept: The TD shall attempt to create an object with an object type specifier and the 'List Of Initial Values'
parameter containing a value which is out of range. The TD then attempts to create an object with a value of an
inappropriate datatype in the 'List Of Initial Values' parameter. The selected datatype is not compliant with the property
definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property
definition, but which is not supported for P1 by the IUT. For instance, Schedule_Default which is defined to be of Any
primitive datatype, would not be used in this test along with BitString datatype, even where the IUT's Schedule object
cannot be configured for scheduling BitString values.

Test Steps:

1. TRANSMIT CreateObject-Request,
'Object tdentifierSpecifier' = (any unique object identifier of a type that is creatable and an
instance number that is creatable),
‘List Of Initial Values' = (a list of one or more properties and their initial values, that the IUT will
accept initial values for, with one of the values being out of range)
2. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN
RECEIVE CreateObject-Error-PBY,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE

'First Failed Element Number' = (the position in the ‘List Of Initial Values' with the offending value)
ELSE

RECEIVE CreateObject-Error,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE | OTHER

'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offending value)

3. CHECK(Verify that the new object was not created)
4. TRANSMIT CreateObject-Request,
'‘Object Specifier'= (object identifier from step 1),

163

BACnet Testing Laboratories - Specified Tests

'List Of Initial Values' = (a list of twoone or more properties and their initial values, that the
IUT will accept initial values for, with one of the values being an
inappropriate datatype)
5. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN
RECEIVE
CreateObject-Error,
Error Class = PROPERTY,
Error Code = INVALID_DATATYPE
'First Failed Element Number' = (the position in the ‘List Of Initial Values' with the offending value) |
(BACnet-Reject-PDU
Reject Reason = INVALID_PARAMETER_DATATYPE) |
(BACnet-Reject-PDU
Reject Reason = INVALID_TAG)
ELSE
RECEIVE
CreateObject-Error,
Error Class = PROPERTY,
Error Code = VALUE_OUT_OF RANGE | INVALID_DATATYPE | OTHER
'First Failed Element Number' = (the position in the 'List Of Initial Values' with the offendingvalue) |
(BACnet-Reject-PDU
Reject Reason = INVALID_PARAMETER_DATATYPE | INVALID_TAG)

6. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the 'Object Identifier' used in step 1),
'Property Identifier' = Object_Name
7. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN
RECEIVE BACnet-Error-PDU,
Error Class = OBJECT,

Error Code = UNKNOWN_OBJECT
ELSE
RECEIVE BACnet-Error-PDU
Error Class = OBJECT,
Error Code = UNKNOWN_OBJECT | NO_OBJECTS_OF SPECIFIED_TYPE | OTHER

9.16.2.6 Attempting to Create an Object with an instance of 4194303
Reason For Change: Corrected parameter for service request. This change is not in any SSPC proposal.

Purpose: This test case verifies the correct execution of the CreateObject service request when the 'Object Specifier'
parameter conveys an object identifier with an instance of 4194303. This test shall be performed only if the
Protocol_Revision property is present in the Device object and has a value greater than or equal to 4.

Test Steps:

1. TRANSMIT CreateObject-Request,
'Object Specifier' = (any object identifier representing a creatable object-type with
an instance of 4194303)
2. RECEIVE BACnhet-Reject-PDU,
'Reject Reason' = PARAMETER_OUT_OF_RANGE

9.16.2.X1 Attempting to Create a non-Supported Object Type (by Object Type)
Reason for Change: Addendum 135-2008u-2

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys
an object type that is not supported in the IUT.

164

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. TRANSMIT CreateObject-Request,
‘Object Specifier' = (any unsupported object type)
2. IF (Protocol_Revision >= 10)
RECEIVE CreateObject-Error,
Error Class = OBJECT,
Error Code = UNSUPPORTED_OBJECT_TYPE
'First Failed Element Number' = 0.

ELSE
RECEIVE CreateObject-Error,
Error Class = (any valid error class),
Error Code = (any valid error code)

‘First Failed Element Number’ =0
3. VERIFY (the IUT's Device object),
Object_List = (any object list that does not contain the object specified in step 1)

9.16.2.X2 Attempting to Create a non-Supported Object Type (by Object Identifier)
Reason for Change: Addendum 135-2008u-2

Purpose: To verify the correct execution of the CreateObject service request when the 'Object Specifier' parameter conveys
an object identifier for an object type that is not supported in the IUT.

Test Steps:

1. TRANSMIT CreateObject-Request,

'Object Specifier' = (any object identifier having an unsupported object type)
1. IF (Protocol_Revision >= 10)

RECEIVE CreateObject-Error,

Error Class = OBJECT,
Error Code = UNSUPPORTED_OBJECT_TYPE
'First Failed Element Number'= 0
ELSE
RECEIVE CreateObject-Error,
Error Class = (any valid error class),
Error Code = (any valid error code)

‘First Failed Element Number’ =0
2. VERIFY (the IUT's Device object),
Object_List = (any object list that does not contain the object specified in step 1)

Notes to tester: If the IUT limits the instances that can be created, this shall be taken into account when selecting an object
identifier in step 1.
9.17 DeleteObject Service Execution Tests

9.17.2 Negative DeleteObject Service Execution Tests

9.17.2.1 Attempting to Delete an Object That is Not Deletable
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct response to an attempt to delete an object that is not deletable.

165

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: The IUT shall be configured with an object X that cannot be deleted.

Test Steps:
1. READ V1 = Object_Name
2. TRANSMIT DeleteObject-Request,
‘Object Identifier' = X
3. RECEIVE BACnet-Error-PDU,
Error Class = OBJECT,
Error Code = OBJECT_DELETION_NOT_PERMITTED

4. VERIFY (X), Object_Name = V1 {the-Object—Name-specified-in-the ERPICS)
5. VERIFY (X), Object_List = (any object list that contains X)

9.18 ReadProperty Service Execution Tests
9.18.1 Positive ReadProperty Service Execution Tests

9.18.1.2 Reading a Single Element of an Array
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute ReadProperty service requests when the requested property is an array and a
single element of the array is requested.

Test Steps:
1. READV = (Device, X), Object_List ARRAY_INDEX=1
2. CHECK (V is of type object-identifier)

9.18.1.X1 Reading Properties Based on Data Type

Reason for Change: A general ReadProperty test is not supplied by 135.1 that can be used in a variety of situations. The
BTL-WG has kept this test to ensure that all data types are tested. Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute ReadProperty service requests for requested properties of each of
the supported base data types.

Test Concept: This test is repeated once for each base data type that the IUT supports. For each execution of the test a
property, P1, shall be selected that is of the data type being tested and the object containing P1 is designated Objectl in the
test description.

Test Steps:

1. READV = (Objectl), P1
2. CHECK (V returns any valid value of the correct data type for property P1)

9.18.1.X3 Respects max-segments-accepted bit pattern
Reason for Change: There is no SSPC proposal for this change.

Purpose: To verify that the IUT abides by the 'max-segments-accepted' parameter, when the size of the response does
require segmentation.

166

BACnet Testing Laboratories - Specified Tests

Configuration Requirements: Use a very small 50 octet 'max-APDU-length-accepted' size in the request. The BACnet-
Confirmed-Request-PDU shall be one where the response size will exceed 2 times 'max-APDU-length-accepted’ and so
require at least three segments. If the largest response that the IUT can return is 100 or fewer octets, then this test shall be
skipped.

Test Steps:

1. TRANSMIT BACnet-Confirmed-Request-PDU,
'segmented-response-accepted’ = TRUE
'max-segments-accepted’ = 2

2. RECEIVE BACnet-Abort-PDU,

‘Abort Reason” = BUFFER_OVERFLOW

Hints to Tester: An attempt to read the whole Object_List might suffice. Or a ReadRange or ReadPropertyMultiple or
AtomicReadFile request, if any of those services are executed.

9.20 ReadPropertyMultiple Service Execution Tests
9.20.1 Positive ReadPropertyMultiple Service Execution Tests

9.20.1.1 Reading a Single Property from a Single Object
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read a single property from a single object.

Test Concept: A single supported property is read from the Device object. The property is selected by the TD and is
designated as P1 in the test description.

Test Steps:
1. TRANSMIT ReadPropertyMultiple-Request,
‘Object Identifier' = Objectl | Object2,
‘Property Identifier' = P1
2. RECEIVE ReadPropertyMultiple-ACK,
'‘Object Identifier' = (the object selected in step 1),
'Property Identifier' = P1,
'Property Value' = (any valid valuethe-value-of P1specified-in-the ERICS)

9.20.1.2 Reading Multiple properties from a Single Object
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read multiple properties from a single object.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
‘Object Identifier' = Objectl | Object 2,
'Property Identifier' = P1,
'Property Identifier' = P2
-- ... (Two properties are required but more may be selected.)
2. RECEIVE ReadPropertyMultiple-ACK,
'Object Identifier' = (the object selected in step 1),
'Property Identifier' = P1,
'Property Value' = (any valid value for P1the-value-of Pl specified-in-the EPICS),
'Property Identifier' = P2,
'Property Value' = (any valid value for P2the-value-of P2 specified-in-the EPICS)

167

BACnet Testing Laboratories - Specified Tests

-- ... (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.3 Reading a Single Property from Multiple Objects
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read a single property from multiple objects.
Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
‘Object Identifier' = Objectl,
'Property Identifier' = P1,
'Object Identifier' = Object2,
'Property Identifier' = P2
-- ... (Two properties are required but more may be selected.)
2. RECEIVE ReadPropertyMultiple-ACK,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value for P1the-value-of Pl specified-in-the EPICS),
'Object Identifier' = Object2,
'Property Identifier' = P2,
'Property Value' = (any valid value for P2the-value-of P2 specified-in-the EPICS)

-- ... (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.4 Reading Multiple Properties from Multiple Objects
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to read multiple properties from multiple objects.
Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Identifier' = P2,
'Property Identifier' = P3,
'Object Identifier' = Object2,
'Property Identifier' = P4,
'Property Identifier' = P5,
'Property Identifier' = P6
-- ... (Two objects must be included but but more may be selected.)
2. RECEIVE ReadPropertyMultiple-ACK,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value for P1the-value-of Pl specified-in-the EPICS),
'Property Identifier' = P2,
'Property Value' = (any valid value for P2the-value-of P2 specified-in-the EPICS),
'Property Identifier' = P3,
'Property Value' = (any valid value for P3the-value-of P3-specified-in-the EPICS),
'Object Identifier' = Object2,
'Property Identifier' = P4,
'Property Value' = (any valid value for P4the-value-ofP4-specified-in-the EPICS)
'Property Identifier' = P5,
'Property Value' = (any valid value for P5the-value-ofP5-specified-in-the EPICS),

168

BACnet Testing Laboratories - Specified Tests

'Property Identifier' = P6
'Property Value' = (any valid value for P6the-value-of P6-specified-in-the EPICS)

-- ... (An appropriate value must be returned for each property included in the ReadPropertyMultiple-Request.)

9.20.1.5 Reading Multiple Properties with a Single Embedded Access Error
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read
Access Specifications' contains a specification for an unsupported property.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Identifier' = P2,
'Property Identifier' = (any property, P3, not supported in this object),
'Property Identifier' = P4
2. RECEIVE ReadPropertyMultiple-ACK,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value for P1the-value-of Pl specified-in-the EPICS),
'Property Identifier' = P2,
'Property Value' = (any valid value for P2the-value-of P2 specified-in-the EPICS),
'Property Identifier' = P3,
'Error Class' = PROPERTY,
'Error Code' = UNKNOWN_PROPERTY,
'Property Identifier' = P4,
'Property Value' = (any valid value for P4the-value-of P4-specified-in-the EPICS)

9.20.1.6 Reading Multiple Properties with Multiple Embedded Access Errors
Reason For Change: Modified Test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request for which the 'List of Read
Access Specifications' contains specifications for multiple unsupported properties.

Test Steps:

1. TRANSMIT ReadPropertyMultiple-Request,
'Object Identifier' = Obijectl,
'Property Identifier' = P1,
'Property Identifier' = P2,
'Property Identifier' = (any property, P3, not supported in this object),
'Property Identifier' = (any property, P4, not supported in this object),
‘Object Identifier' = (any non-existent object, Object2, which is of a type supported by the IUT),
'Property Identifier' = P5,
'Property Identifier' = P6

2. RECEIVE ReadPropertyMultiple-ACK,
'‘Object Identifier' = Objectl,
‘Property Identifier' = P1,
'Property Value' = (any valid value for P1the-value-of P1specified-in-the ERPICS),
'Property Identifier' = P2,
'Property Value' = (any valid value for P2the-value-of P2 specified-in-the ERPICS),
'Property Identifier' = P3,
‘Error Class' = PROPERTY,

169

BACnet Testing Laboratories - Specified Tests

‘Error Code' = UNKNOWN_PROPERTY,
'Property Identifier' = P4,

‘Error Class' = PROPERTY,

'Error Code' = UNKNOWN_PROPERTY,
‘Object Identifier' = Object2,

'Property Identifier' = P5,

‘Error Class' = OBJECT,

‘Error Code' = (UNKNOWN_OBJECT),
'Property Identifier' = PG,

‘Error Class' = OBJECT,

'Error Code' = (UNKNOWN_OBJECT)

9.20.1.7 Reading ALL Properties

Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x. Addendum 135-
2010a0-5.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property
identifier ALL. One instance of each object-type supported is tested.

Test Steps:
1. REPEAT ObjectX = (one instance of each supported object type) DO {
TRANSMIT ReadPropertyMultiple-Request,
'‘Object Identifier' = ObjectX,
'Property Identifier' = ALL
RECEIVE ReadPropertyMultiple-ACK,
'‘Object Identifier' = ObjectX,
REPEAT P = (each property supported by ©bjeettObjectX) DO {
'Property Identifier' = P,
'Property Value' = (any valid value for Pthe-value-of P-specified-inthe ERICS)
}
}
Notes to Tester: Any proprietary properties that are supported for the object-type shall also be returned (see BACnet
15.7.3.1.2). If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and
Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the
entry shall contain 'Error Class': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
Property_List(371) shall not appear in the List of Results.

9.20.1.8 Reading OPTIONAL Properties
Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x.

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property
identifier OPTIONAL. One instance of each object-type supported is tested. The property identifier OPTIONAL means that
only those standard properties present in the object that have a conformance code "O" shall be returned.

Test Steps:
1. REPEAT ObjectX = (one instance of each supported object type) DO {
TRANSMIT ReadPropertyMultiple-Request,
'Object Identifier' = ObjectlObjectX,
'Property Identifier' = OPTIONAL
RECEIVE ReadPropertyMultiple-ACK,
'Object Identifier' = ObjectlObjectX,
REPEAT P = (each optional property supported by ObjecttObjectX) DO {
'Property Identifier' = P,
'Property Value' = (any valid value for Pthe-value-ofP-specified-in-the ERICS)

170

BACnet Testing Laboratories - Specified Tests

}

Notes to Tester: If no optional properties are supported then an empty 'List of Results' shall be returned for the specified
property. If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and
Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the
entry shall contain Error Class: PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.

9.20.1.9 Reading REQUIRED Properties
Reason for Change: Modified test to remove dependency on EPICS values. Addendum 135-2008x. Addendum 135-
2010a0-5

Purpose: To verify the ability to correctly execute a ReadPropertyMultiple service request that uses the special property
identifier REQUIRED. One instance of each object-type supported is tested. The property identifier REQUIRED means
that only those standard properties having a conformance code of "R" or "W" shall be returned.

Test Steps:

1. REPEAT ObjectX = (one instance of each supported object type) DO {

TRANSMIT ReadPropertyMultiple-Request,
'Object Identifier' = ObjectX,
'Property Identifier' = REQUIRED

RECEIVE ReadPropertyMultiple-ACK,
‘Object Identifier' = ObjectX,
REPEAT P = (each required property defined for ObjecttObjectX) DO {
'Property Identifier' = P,
'Property Value' = (any valid value for Pthe-value-ofP-specified-in-the ERICS)

}

Notes to Tester: If a property which is not readable using the ReadPropertyMultiple service is in the specified object, and
Protocol_Revision < 7, then either no entry is returned, or an error code is returned. If Protocol_Revision >= 7, then the
entry shall contain 'Error Class': PROPERTY and ‘Error-Code’: READ_ACCESS_DENIED for that property.
Property_List (371) shall not appear in the List of Results.

9.20.1.X1 Reading Properties Based on Data Type

Reason For Change: A general ReadPropertyMultiple test is not supplied by 135.1 that can be used in a variety of
situations. This test is not in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute ReadPropertyMultiple service requests for requested properties of
each of the supported base data types.

Test Concept: The test 9.18.1.X1 Reading Properties Based on Data Type is repeated using ReadPropertyMultiple instead
of ReadProperty.

9.21 ReadRange Service Execution Tests
9.21.1 Positive ReadRange Service Execution Tests

9.21.1.X1 ReadRange Support for All List Properties
Reason for change: Need a ReadRange test for non-Log_Buffer list properties.

Purpose: To verify that all list properties of all objects can be read using the 3 by position forms of the ReadRange service.

171

BACnet Testing Laboratories - Specified Tests

Test Steps:

1. REPEAT X = (all objects in the IUT's database) DO {
REPEAT Y = (all list properties in object X) DO {
TRANSMIT ReadRange-Request
'Object Identifier' = X,
'Property Identifier' =,
RECEIVE ReadRange-ACK
'Object Identifier'= X,
'Property Identifier' =Y,

‘Result Flags’ = ,2,?),
‘Item Count’ = (C: up to number of itemsinY)
‘Item Data’ = (the first C elements of Y)

TRANSMIT ReadRange-Request

'‘Object Identifier' = X,

'Property Identifier' =,

‘Reference Index’ = 1,

‘Count’ = (C: any valid positive value)
RECEIVE ReadRange-ACK

'‘Object Identifier'= X,

'Property Identifier' = Y,

‘Result Flags’ = (TRUE, ?,?),
‘Item Count’ = (C2:upto C)
‘Item Data’ = (the first C2 elements of Y)

TRANSMIT ReadRange-Request

'Object Identifier'= X,

'Property Identifier' = Y,

‘Reference Index’ = (the number of elements in Y),

‘Count’ = (C: any valid negative value)
RECEIVE ReadRange-ACK

'Object Identifier'= X,

'Property Identifier' =Y,

‘Result Flags’ = (?, TRUE, ?),
‘Item Count’ = (C2: up to abs(C))
‘Item Data’ = (the last C2 elements of Y)

9.21.2 Negative ReadRange Service Execution Tests

9.21.2.1 Attempting to Read a Property That Does not Exist
Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property does not exist. This
test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1. TRANSMIT ReadRange-Request,

‘Object Identifier' = (any object that exists in the IUT),

'Property Identifier' = (any list property not supported by the IUT),
2. RECEIVE BACnet-Error-PDU,

‘Error Class' = PROPERTY,

‘Error Code’ = UNKNOWN_PROPERTY

172

BACnet Testing Laboratories - Specified Tests

9.21.2.2 Attempting to Read a Property That is not a List
Reason For Change: 135-2008u-3. Corrected the error class returned from test

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not a list. This
test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:

1. TRANSMIT ReadRange-Request,

'Object Identifier' = (any object that exists in the IUT),

'Property Identifier' = (any non-list property supported by and present in the 1UT),
2. RECEIVE BACnet-Error-PDU,

‘Error Class' = PRORERTY, SERVICES,

'Error Code’ = PROPERTY_IS_NOT_A_LIST

9.21.2.3 Attempting to Read a non-Array Property with an Array Index
Reason For Change: 135-2008u-3.

Purpose: To verify the correct execution of the ReadRange service request when the requested property is not an array of
lists. This test is only applied to devices with a Protocol_Revision of 10 or higher.

Test Steps:
1. TRANSMIT ReadRange-Request,

‘Object Identifier' = (any object that exists in the IUT),
'Property Identifier' = (any non-array list property supported by and present in the IUT),

‘Array Index’ = (any valid value)
2. RECEIVE BACnet-Error-PDU,
‘Error Class' = PROPERTY,
'Error Code’ = PROPERTY_IS_NOT_AN_ARRAY

9.22 WriteProperty Service Execution Tests
9.22.1 Positive WriteProperty Service Execution Tests

9.22.1.1 Writing a Single Element of an Array

Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify that the IUT can execute WriteProperty service requests when the property is an array and a single array
element is written.

Test Concept: The TD shall select an object in the IUT that contains a writable array property. This property is designated
P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writing array values it shall be configured with at least one writable
property that can be used for this test.

Test Steps:
1. READ X = (Objectl), P1 ARRAY INDEX = (any value N: 1 <N <the size of the array)

2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Objectl,
'Property Identifier' = P1,

173

BACnet Testing Laboratories - Specified Tests

'Property Array Index' = N{any-value-N+1-<-N-<-thesize-of the-array)

'Property Value' = (any valid value of the correct datatype subject to the restrictions specified
in the EPICS as defined in 4.4.2 for this array, except the value X read
for this element in step 1)
3. RECEIVE Simple-ACK-PDU
4. VERIFY (Objectl), P1 = (the value used in step 2), ARRAY INDEX = N

9.22.1.2 Writing a Commandable Property Without a Priority

Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify that the IUT can execute WriteProperty service requests when the property is commandable but a
priority is not specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is commandable and has no
internal algorithm writing to it at priority 16. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports commandable properties that have no internal algorithm writing at
priority 16, it shall be configured with at least one such property that can be used for this test.

Test Steps:
1. READ X= (Objectl) Prlorlty Array, ARRAY INDEX =16

2 TRANSMIT erteProperty Request
'Object Identifier' = Objectl,
'Property Identifier' = Present_Value,
'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X read in step 1)
3. RECEIVE Simple-ACK-PDU
4. VERIFY (Objectl), Priority_Array = (the value used in step 2), ARRAY INDEX = 16

9.22.1.3 Writing a Non-Commandable Property with a Priority

Reason for Change: Modified test to remove dependency on EPICS values.
Purpose: To verify that the IUT can execute WriteProperty service requests when the property is not commandable but a
priority is specified.

Test Concept: The TD shall select an object in the IUT that contains a writable property that is not commandable and has
no internal algorithm writing to it. If no suitable property can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports non-commandable properties that have no internal algorithm writing to
them, it shall be configured with at least one such property that can be used for this test.

Test Steps:
1. READ X = (Objectl), P1

2. TRANSMIT WriteProperty-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Priority' = (any valid priority)
'Property Value' = (any valid value defined for this property subject to the restrictions specified in the EPICS
as defined in 4.4.2, except the value X read in step 1)
3. RECEIVE BACnet-BACnet-SimpleACK-PDU
4. VERIFY (Objectl), P1 = (the value used in step 2)

174

BACnet Testing Laboratories - Specified Tests

9.22.1.X1 Writing an Array Size

Reason For Change: No test exists for this functionality. This test was covered by CN-039 but the SSPC rejected the test in
favour of the tests outlined in WS-030. The BTL-WG has chosen to keep this specific test in order to allow the tester to
test individual properties. Modified this test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute WriteProperty service requests to the array size of a writable, non-
fixed size array property.

Test Concept: The TD shall select an object in the IUT that contains a writable array property of a non-fixed size. This
property is designated P1. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports writable non-fixed size array properties it shall be configured with at least
one writable non-fixed size array property that can be used for this test.

Test Steps:
1. READ X = (Objectl), P1 ARRAY INDEX =0

2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Obijectl,

'Property Identifier' = P1,

‘Array Index’ =0

'Property Value' = (any valid array size defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,
except the value verified in step 1)

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Objectl), P1[0] = (the value used in step 2)

9.22.1.X2 Writing to Properties Based on Data Type

Reason for Change: A general WriteProperty test is not supplied by 135.1 that can be used in a variety of situations. The
BTL-WG has kept this test to ensure that all data types are tested.

Purpose: This test case verifies that the IUT can execute WriteProperty service requests to specific data types supported by
the IUT.

Test Concept: For the specified base data type, the TD shall select an object in the IUT that contains a writable property of
that data type. This property is designated P1.

Configuration Requirements: The IUT shall be configured with at least one writable property of the specified data type to
be used for this test.

Test Steps:
1. X =READ (Objectl), P1
2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value defined for this property subject to the

restrictions specified in the EPICS as defined in 4.4.2,
except the value X determined in step 1)

3. RECEIVE Simple-ACK-PDU

4. VERIFY (Objectl), P1 = (the value used in step 2)

175

BACnet Testing Laboratories - Specified Tests

9.22.2 Negative WriteProperty Service Execution Tests

9.22.2.1 Writing Non-Array Properties with an Array Index
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when the property value is not an array but an
array index is included in the service request.

Test Concept: The TD shall select an object in the IUT that contains a writable scalar property designated P1. An attempt
will be made to write to this property using an array index. If no suitable object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least
one such property that can be used for this test.

Test Steps:
1. READ X = (Object1), P1
. Objectl) P1 = (4 | i for thi . s

2. TRANSMIT WriteProperty-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions

specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

'Property Array Index' = (any positive integer)

3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN

RECEIVE BACnet-Error PDU,
Error Class = PROPERTY,
Error Code = PROPERTY_IS NOT_AN_ARRAY
ELSE
RECEIVE BACnet-Error PDU,
Error Class = SERVICES,
Error Code = INCONSISTENT_PARAMETERS

4. VERIFY (Objectl), P1 = X{the-value-defined-for this-property-in-the ERICS)

9.22.2.2 Writing Array Properties with an Array Index that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values. Fixed array index descrption per BTL-CR-
0373.

Purpose: To verify that the IUT can execute WriteProperty service requests when the requested property value is an array
but the array index is out of range.

Test Concept: The TD shall select an object in the IUT that contains a writable array property designated P1. An attempt
will be made to write to this property using an array index that is out of range. If no suitable object can be found, then this
test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least
one such property that can be used for this test.

Test Steps:
1. READ X = (Objectl), P1

2. TRANSMIT WriteProperty-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any value of the correct datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X read in step 1),

176

BACnet Testing Laboratories - Specified Tests

'Property Array Index' = (any value positive-integer that is larger thanthat the currentsupperted size ofif the array)
3. RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_ARRAY_INDEX

4. VERIFY (Objectl), P1 = X{the-value-defined-for this-property-in-the ERICS)

9.22.2.3 Writing with a Property Value Having the Wrong Datatype
Reason for Change: Updated Test Concept and Added Configuration Requirements.

Purpose: To verify that the IUT correctly responds to an attempt to write a property value that has an invalid datatype.
Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An attempt will be
made to write to this property using a datatype that the IUT supports but which-is-invalid-for-theproperty-which is not
compliant with the property definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property
definition. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Objectl), P1
2. TRANSMIT WriteProperty-Request,

‘Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any value with an invalid datatype)
3.
RECEIVE

(BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE) |
(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE) |
(BACnet-Reject-PDU

Reject Reason = INVALID_TAG)

4. VERIFY (Objectl), P1 =V

9.22.2.4 Writing with a Property Value that is Out of Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can execute WriteProperty service requests when an attempt is made to write a value that is
outside of the supported range.

Test Concept: The TD attempts to write to a property using a value that is outside of the supported range. If the IUT does
not contain any writable properties that have restricted ranges, then this test shall be skipped.

Test Steps:

1. READ X = (Objectl), P1
. Object1) P1= lue defined for_thi i th)
2. TRANSMIT WriteProperty-Request,
'Object Identifier' = (Objectl, any object with writable properties),
'Property Identifier' = (P1, any writable property with a restricted range of values),
'Property Value' = (any value, of the correct datatype, that is outside the supported range)

3. IF (Protocol_Revision is present and Protocol_Revision >= 4) THEN
RECEIVE BACnet-Error PDU,

177

BACnet Testing Laboratories - Specified Tests

Error Class = PROPERTY,
Error Code = VALUE_OUT_OF RANGE
ELSE
RECEIVE (BACnet-Error-PDU,
Error Class = PROPERTY,
Error Code = VALUE_OUT_OF_RANGE) |
(BACnet-Reject-PDU,
Reject Reason = PARAMETER_OUT_OF_RANGE)

4. VERIFY (Objectl), P1 = X{the-value-defined-forthisproperty-inthe ERICS)

Notes to tester: The value used in step 2 shall be of the correct datatype. For bit string types, the bit count shall be correct,
for Date and Time values, the value shall be within the range defined by the standard for the datatype, for constructed
values, the constructed value shall match the structure defined by the ASN.1 and all field values shall be within the ranges
defined by the standard for those field values.

9.22.2.X1 Writing Non-Array Read-only Property with an Array Index

Reason for Change: Existing test 9.22.2.1 forbids the testing of a read-only property, to observe the response when an array
index is included in the service request.

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value when the property
value is not an array but an array index is included in the service request, and the property specified in the service request is
not writable.

Test Concept: Select an object, designated Objectl, in the IUT that contains a non-writable scalar property designated P1.
An attempt will be made to write to this property with an array index included. If no object supports non-writable scalar
properties, then this test shall be omitted.

Test Steps:

1. TRANSMIT WriteProperty-Request,
‘Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any value of the correct datatype for this property)
'Property Array Index' = (any positive integer)
2. IF (Protocol_Revision is present and Protocol_Revision > 4) THEN
RECEIVE BACnet-Error PDU,
Error Class = PROPERTY,
Error Code = WRITE_ACCESS_DENIED | PROPERTY_IS NOT_AN_ARRAY
ELSE
RECEIVE (BACnet-Error PDU,
Error Class = SERVICES,
Error Code = INCONSISTENT_PARAMETERS) |
(BACnet-Error PDU,
Error Class = PROPERTY,
Error Code = WRITE_ACCESS DENIED | PROPERTY_IS NOT_AN_ARRAY)

9.23 WritePropertyMultiple Service Execution Tests
9.23.1 Positive WritePropertyMultiple Service Execution Tests

9.23.1.1 Writing a Single Property to a Single Object
Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write a single property to a single object.

178

BACnet Testing Laboratories - Specified Tests

Test Concept: This test case attempts to write to a single scalar property, P1, that is not commandable. If no such writable
property exists the test can be modified to write to an array property or to a commandable property with a write priority
high enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be
configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array
or commandable property and the test steps modified to account for this variation.

Test Steps:
1. READ X = (Objectl), P1

2. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X-execept-for-the-one read in
step 1)
3. RECEIVE BACnet-Simple-ACK-PDU
4. VERIFY (Objectl), P1 = (the value specified in step 2)

9.23.1.2 Writing Multiple properties to a Single Object

Reason for Change: Modified test to remove dependency on EPICS values
Purpose: To verify the ability to write multiple properties to a single object.

Test Concept: This test case attempts to write to multiple scalar properties, P1 and P2, that are not commandable. If two
such writable properties don't exist the test can be modified to write to an array property or to a commandable property with
a write priority high enough to ensure that the commandable property's value will change.

Configuration Requirements: If the IUT supports any object that has two writable scalar properties that are not
commandable it shall be configured with one for use in this test. If no such properties are supported the IUT shall be
configured, if possible, with writable array or commandable properties and the test steps modified to account for this
variation. If no object type is supported that has two or more writable properties this test may be omitted. The IUT must
support either the configuration required for this test or a configuration required for test 9.23.1.3

Test Steps:

1. READ X = (Object1), P1
2. READ Y = (Objectl), P2
. Object1) P1 = (i | iFiod for_thi it
3. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X execept-for-the-one read in
step 1),
'Property Identifier' = P2,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value Y-exceptfor-the-one read in
step 2)
4. RECEIVE BACnet-Simple-ACK-PDU
5. VERIFY (Objectl), P1 = (the value specified for P1 in step 23)
6. VERIFY (Objectl), P2 = (the value specified for P2 in step 23)

179

BACnet Testing Laboratories - Specified Tests

9.23.1.3 Writing a Single Property to Multiple Objects
Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write a single property from multiple objects.

Test Concept: This test case attempts to write to single scalar properties, P1 and P2, that reside in different objects but are
not commandable. If two such writable properties don't exist the test can be modified to write to an array property or to a
commandable property with a write priority high enough to ensure that the commandable property's value will change.

Test Steps:
1. READ X = (Object1), P1
2. READ Y = (Object2), P2
l. VERIFY (EGbg_eetl?’ : _ (EHI € uallue SBEG_IIEIedl Iﬁg' this-property-H t: S-ERICS)
3. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X except-forthe-one read in
step 1),
'Object Identifier' = Object2,
'Property Identifier' = P2,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value Y execeptfor-the-one read in
step 2)
4. RECEIVE BACnet-Simple-ACK-PDU
5. VERIFY (Objectl), P1 = (the value specified for P1 in step 3)
6. VERIFY (Object2), P2 = (the value specified for P2 in step 3)

9.23.1.4 Writing Multiple Properties to Multiple Objects
Reason for Change: Modified test to remove dependency on EPICS values

Purpose: To verify the ability to write multiple properties to multiple objects.

Test Concept: This test case attempts to write properties, P1 and P2, that reside in Objectl, and properties P3 and P4 that
reside in Object2. P1, P2, P3 and P4 are not commandable properties. If four such writable properties do not exist the test
can be modified to write to an array property or to a commandable property with a write priority high enough to ensure that
the commandable property's value will change.

Test Steps:
1. READ X = (Objectl), P1
2. READ Y = (Objectl), P2
3. READ Z = (Object2), P3
4. READ A = (Object2), P4

. octd) | :

5. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X execept-for-the-one read in
step 1),
'Property Identifier' = P2,

180

BACnet Testing Laboratories - Specified Tests

'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value Y exceptfor-the-one read in
step 2),
'‘Object Identifier' = Object2,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value Z exeeptfor-the-one read in
step 3),
'‘Object Identifier' = Object2,
'Property Identifier' = P4,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value A exceptforthe-one read in
step 4)
6. RECEIVE BACnet-BACnet-SimpleACK-PDU
7. VERIFY (Objectl), P1 = (the value specified for P1 in step 5)
8. VERIFY (Objectl), P2 = (the value specified for P2 in step 5)
9. VERIFY (Object2), P3 = (the value specified for P3 in step 5)
10. VERIFY (Object2), P4 = (the value specified for P4 in step 5)

9.23.1.X4 Writing an Array Size
Reason For Change: No test exists for this functionality. This test is not contained in any SSPC proposal.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests to the array size of a
writable, non-fixed size array property.

Test Concept: Repeat test 9.22.1.X1 Writing an Array Size using WritePropertyMultiple instead of WriteProperty.
9.23.2 Negative WritePropertyMultiple Service Execution Tests

9.23.2.1 Writing Multiple Properties with a Property Access Error
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write
Access Specifications' contains a specification for an unsupported property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable.
The second property is not supported for this object. The objective is to verify that an appropriate error response is returned
and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be
configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array
or commandable property and the test steps modified to account for this variation. In the test description Objectl will be
used to designate the object, P1 the writable property, and P2 the unsupported property used for this test.

Test Steps:
1. READ X = (Object1), P1
. Object) P1 = (i | iFiod for_thi it
2. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X except-for-the-one read in
step 1),
'Property Identifier' = P2,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2)

181

BACnet Testing Laboratories - Specified Tests

3. RECEIVE WritePropertyMultiple-Error,
‘Error Class’ = PROPERTY,
‘Error Code’ = UNKNOWN_PROPERTY,
‘Object Identifier’ = Objectl,
‘Property Identifier’ = P2
4. VERIFY (Objectl), P1 = (the value specified for P1 in step 2)

9.23.2.2 Writing Multiple Properties with an Object Access Error
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write
Access Specifications' contains a specification for an unsupported object.

Test Concept: An attempt is made to write to a single property in two different objects. The first object is supported and the
property is writable. The second object is not supported. The objective is to verify that an appropriate error response is
returned and that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be
configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array
or commandable property and the test steps modified to account for this variation. In the test description Objectl and P1
will be used to designate the writable object and property used for this test. The designation BadObject will be used to
indicate an object that is not supported.

Test Steps:
1. READ X = (Objectl), P1
. Object) P1 = (i | iFiod for_thi it
2. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X except-for-the-one read in step 1),
'Object Identifier' = BadObject,
'Property Identifier' = P2,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2)
3. RECEIVE WritePropertyMultiple-Error,
‘Error Class’ = OBJECT,
‘Error Code’ = UNKNOWN_OBJECT,
‘Object Identifier’ = BadObject,
‘Property Identifier’ = P2
4. VERIFY (Objectl), P1 = (the value specified for P1 in step 2)

9.23.2.3 Writing Multiple Properties with a Write Access Error
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the ability to correctly execute a WritePropertyMultiple service request for which the 'List of Write
Access Specifications' contains a specification for a read only property.

Test Concept: An attempt is made to write to two properties in a single object. The first property is supported and writable.
The second property is supported but read only. The objective is to verify that an appropriate error response is returned and
that all writes up to the first failed write attempt take place.

Configuration Requirements: If the IUT supports any writable scalar properties that are not commandable it shall be
configured with one for use in this test. If no such properties are supported the IUT shall be configured with a writable array

182

BACnet Testing Laboratories - Specified Tests

or commandable property and the test steps modified to account for this variation. In the test description Objectl will be
used to designate the object, P1 the writable property, and P2 the read only property used for this test.

Test Steps:
1. READ X = (Objectl), P1
2. READ Y = (Objectl), P2
l. VERIFY (Egbj_eetl?’ : _ (Et: ¢ uallue SBEE.'IE.'EG: |E9| this-property-H the ERICS)
3. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X except-for-the-one read in step 1),
'Property Identifier' = P2,
'Property Value' = (any valid value of the appropriate datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value Y execeptfor-the-one read in step 1)
4. RECEIVE WritePropertyMultiple-Error,
‘Error Class’ = PROPERTY,
‘Error Code’ = WRITE_ACCESS_DENIED,
‘Object Identifier’ = Objectl,
‘Property Identifier’ = P2
5. VERIFY (Objectl), P1 = (the value specified for P1 in step 3)
6. VERIFY (Objectl), P2 = Y{the-value-specified-for this-property-inthe ERICS)

9.23.2.4 Writing Non-Array Properties with an Array Index
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the property value is
not an array but an array index is included in the service request. This test shall only be performed if Protocol_Revision is
present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Objectl, in the IUT that contains a writable scalar property
designated P1. An attempt will be made to write to this property using an array index. If no suitable object can be found,
then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are scalars, it shall be configured with at least
one such property that can be used for this test.

Test Steps:
1. READ X = (Objectl), P1

2. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X read in step 1),
“Property Array Index' = (any positive integer)
3. RECEIVE WritePropertyMultiple-Error,
‘Error Class’ = PROPERTY,
‘Error Code’ = PROPERTY_IS_NOT_AN_ARRAY,
‘Object Identifier’ = Objectl,
‘Property Identifier’ = P1
4. VERIFY (Objectl), P1 = X{the-value-defined-for- this-property-in-the ERICS)

183

BACnet Testing Laboratories - Specified Tests

9.23.2.5 Writing Array Properties with an Array Index that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values. Fixed array index descrption per BTL-CR-
0373.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the requested
property value is an array but the array index is out of range. This test shall only be performed if Protocol_Revision is
present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Objectl, in the IUT that contains a writable array property
designated P1. An attempt will be made to write to this property using an array index that is out of range. If no suitable
object can be found, then this test shall be omitted.

Configuration Requirements: If the IUT supports any writable properties that are arrays, it shall be configured with at least
one such property that can be used for this test.

Test Steps:
1. READ X = (Objectl), P1

2. TRANSMIT WritePropertyMultiple-Request,
'Object Identifier' = Objectl,
'Property Identifier' = P1,
'Property Value' = (any valid value of the correct datatype for this property subject to the restrictions
specified in the EPICS as defined in 4.4.2, except the value X read in step 1),
“Property Array Index' = (any valuepesitive-integer that is larger thanthat the currentsupperted size of the array)
3. RECEIVE WritePropertyMultiple-Error,
‘Error Class’ = PROPERTY,
‘Error Code’ = INVALID_ARRAY_INDEX,
‘Obiject Identifier’ = Objectl,
‘Property Identifier’ = P1
4. VERIFY (Objectl), P1 = X{the-value-defined-for this-property-in-the ERICS)

9.23.2.6 Writing with a Property Value Having the Wrong Datatype
Reason for Change: Added configuration requirements to clarify usage.

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that has an invalid
datatype.

Test Concept: The TD shall select an object, designated Objectl, in the IUT that contains a writable property designated P1.
An attempt will be made to write to this property using a datatype that the IUT supports but which-is-invalid-forthe
property which is not compliant with the property definition given by the BACnet standard.

Configuration Requirements: The value to be written shall not be of a datatype which is compliant with the property
definition. If no object supports writable properties, then this test shall be omitted.

Test Steps:

1. READ X = (Objectl), P1
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Objectl,

'Property Identifier' = P1,

'Property Value' = (any value with an invalid datatype)
3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = INVALID_DATATYPE,

‘Object Identifier’ = Objectl,

‘Property Identifier’ = P1

184

BACnet Testing Laboratories - Specified Tests

| (BACnet-Reject-PDU

‘Reject Reason' = INVALID_PARAMETER_DATATYPE)
| (BACnet-Reject-PDU
'‘Reject Reason' = INVALID_TAGQG)

4. VERIFY (Objectl), P1 = X{the-value-defined-for this-property-in-the ERICS)

9.23.2.7 Writing with a Property Value that is Out of Range

Reason for Change: Modified test to remove dependency on EPICS values. Modified to allow this test to be used on all
protocol revisions.

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when an attempt is made

to write a value that is outside of the supported range—TFhis-testshal-only-be-performed-if ProtocolRevision-is-present-and
has-a-value-greater-than-orequal-to-4-

Test Concept: The TD shall select an object, designated Objectl, in the IUT that contains a writable property designated P1.
The TD attempts to write to a property using a value that is outside of the supported range.

Test Steps:

1. READ X = (Objectl), P1
. Object1) P1= lue defined for thi it)
2. TRANSMIT WritePropertyMultiple-Request,
'‘Object Identifier' = (Objectl, any object with writable properties),
'Property Identifier' = (P1, any property with a restricted range of values),

‘Property Value' = (any value that is outside the supported range)
3. IF (Protocol_Revision < 4)
RECEIVE
(WritePropertyMultiple-Error,

‘Error Class' = PROPERTY,
‘Error Code' = VALUE_OUT_OF_RANGE,
‘Object Identifier' = Objectl,
'Property Identifier' = P1) |

(BACnet-Reject-PDU,
'Reject Reason' = PARAMETER_OUT_OF_RANGE)

ELSE
RECEIVE
WritePropertyMultiple-Error,
‘Error Class' = PROPERTY,
‘Error Code' = VALUE_OUT_OF_RANGE,
'‘Object Identifier' = Objectl,
'Property ldentifier' = P1

9.23.2.X1 WritePropertyMultiple Reject Test

Reason for Change: Addendum 135-2008u section 1.

Purpose: This test case verifies that the IUT does not send a Reject-PDU after applying part of a WritePropertyMultiple.
Test Concept: Two writable properties, P1 and P2 are written to the IUT but the portion of the WritePropertyMultiple
specifying P2 is made invalid by omitting the ‘Property Value’ parameter. If the IUT returns a Reject, then the value of the

first property is checked to ensure it has not changed.

Test Steps:

185

BACnet Testing Laboratories - Specified Tests

1. READ OldValue =01, P1
2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = 01,

'Property Identifier' = P1,

'Property Value' = (NewValue: any value other than OldValue that would be accepted by
the IUT for P1)

‘Object Identifier' = 02,

'Property Identifier' = P2

3. RECEIVEWTritePropertyMultiple-Error,

‘Error Class' = SERVICES,

‘Error Code' = INVALID_TAG

'Object Identifier' = O2

‘Property Identifier' = P2) |

(RECEIVE BACnet-Reject-PDU,

'Reject Reason' = INVALID_TAG | MISSING_REQUIRED_PARAMETER |
INCONSISTENT_PARAMETERS | INVALID_PARAMETER_DATA_TYPE | TOO_MANY_ARGUMENTS)
4. IF (an Error-PDU was received in step 3) THEN

VERIFY (01), P1 = NewValue
ELSE -- a Reject-PDU was received
VERIFY (01), P1 = OldValue

9.24 DeviceCommunicationControl Service Execution Test
9.24.1 Positive DeviceCommunicationControl Service Execution Tests

9.24.1.5 Finite Time Duration Restored by ReinitializeDevice
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify the correct execution of the DeviceCommunicationControl request service procedure when a finite time
duration is specified and communication is restored using the ReinitializeDevice service.

Test Steps:
1. READY = (Device, X), Object_Name
2. TRANSMIT DeviceCommunicationControl-Request,
‘Time Duration' = (a value T > 1, in minutes, selected by the tester)
‘Enable/Disable’' = DISABLE,
'Password' = (any appropriate password as described in the Test Concept)
3. RECEIVE BACnet-SimpleACK-PDU
4. WAIT Internal Processing Fail Time
5. TRANSMIT ReadProperty-Request,
'Object Identifier' = (Device, X),
'Property Identifier' = (any required non-array property of the Device object)
6. WAIT (an arbitrary time > Internal Processing Fail Time selected by the tester, and < T as specified in the
DeviceCommunicationControl-Request)
7. CHECK (Verify that the IUT has not transmitted any messages since the acknowledgment in step 2.)
8. TRANSMIT ReinitializeDevice-Request,
‘Reinitialize State of Device' = WARMSTART,
'Password' = (any appropriate password as described in the Configuration Requirements)
9. RECEIVE BACnet-Simple-ACK-PDU
10. CHECK (Did the IUT perform a WARMSTART reboot?)
11. VERIFY (Device, X), Object_Name = Y{any-required-nen
the EPICS)

186

BACnet Testing Laboratories - Specified Tests

9.24.2 Negative DeviceCommunicationControl Service Execution Tests

9.24.2.3 Restore by ReinitializeDevice with Invalid 'Reinitialized State of Device'
Reason for Change: Added support for additional error codes per Addendum 12.0c-7.

Purpose: To verify the communications are not restored when a ReinitializeDevice request is received that contains one of
the backup or restore related values for service parameter 'Reinitialized State of Device'.

Test Concept: Disable the IUT’s communications for a period time, T, longer than it will take to complete the test. Verify
that, while communications are disabled, the IUT correctly responds with a Result(-) when it receives a ReinitializeDevice
request containing a backup or restore related values.

Test Steps:
1. TRANSMIT DeviceCommunicationControl-Request,
‘Enable/Disable’ = DISABLE
'Password' = (any appropriate password),
‘Time Duration' = (avalue T >=1, in minutes) | (no value)
2. RECEIVE BACnet-Simple-ACK-PDU
3. WAIT Internal Processing Fail Time
4. TRANSMIT ReinitializeDevice-Request,
‘Reinitialized State of Device' = STARTBACKUP | ENDBACKUP |
STARTRESTORE | ENDRESTORE | ABORTRESTORE,
‘Password' = (any appropriate password)
5. IF (Protocol_Revision is present and Protocol_Revision >=7) THEN

IF (Device supports DM-BR-B) THEN
RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = COMMUNICATION_DISABLED

ELSE
RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = COMMUNICATION_DISABLED |
OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED
ELSE

CHECK(that the IUT responded with BACnet-Error-PDU with an Error Class of SERVICES and any
appropriate Error Code-e£FCOMMUNICATION-DISABLE, or that the IUT did not respond at all)

6. TRANSMIT DeviceCommunicationControl-Request,
'Enable/Disable’ = ENABLE
'Password' = (any appropriate password),
7. RECEIVE BACnet-Simple-ACK-PDU

9.27 ReinitializeDevice Service Execution Tests
9.27.2 Negative ReinitializeDevice Service Execution Tests

9.27.2.3 COLDSTART with Missing or Invalid Password
Reason for Change: Updated test to also test invalid password usage per Addendum 12.0g-5.

Purpose: To verify that the correct BACnet Error PDU is returned when a COLDSTART is attempted andthe password is
invalid or a password is required but no password is provided.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,

187

BACnet Testing Laboratories - Specified Tests

‘Reinitialized State of Device' = COLDSTART;
2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,
Error Code = PASSWORD_FAILURE
ELSE

(RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,

Error Code = PASSWORD_FAILURE) |
(RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,

Error Code = SERVICE_REQUEST_DENIED) |
(BACnet-Error-PDU,

Error Class = SERVIMCES,

Error Code = MISSING_REQUIRED_PARAMETER)

3. CHECK (The IUT did NOT perform a COLDSTART reboot)

4. TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device' = COLDSTART,
‘Password’ = (any invalid password)

5. IF (Protocol_Revision is present and Protocol_Revision >=7) THEN
RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,
Error Code = PASSWORD_FAILURE
ELSE

(RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,

Error Code = PASSWORD_FAILURE) |
(RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,

Error Code = SERVICE_REQUEST DENIED) |
(BACnet-Error-PDU,

Error Class = SERVINMCES,

Error Code = MISSING_REQUIRED_PARAMETER)

6. CHECK (The IUT did NOT perform a COLDSTART reboot)

9.27.2.4 WARMSTART with Missing or Invalid Password
Reason for Change: Updated test to also test invalid password usage per Addendum 12.0g-5.

Purpose: To verify that the correct BACnet Error PDU is returned when a WARMSTART is attempted and the password is
invalid or a password is required but no password is provided.

Test Steps:

1. TRANSMIT ReinitializeDevice-Request,
'Reinitialized State of Device' = WARMSTART;

2. IF (Protocol_Revision is present and Protocol_Revision >= 7) THEN
RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,
Error Code = PASSWORD_FAILURE
ELSE
RECEIVE BACnet-Error-PDU,
Error Class = SECURITY,
Error Code = PASSWORD_FAILURE |
(RECEIVE BACnet-Error-PDU,
Error Class = SERVICES,

188

BACnet Testing Laboratories - Specified Tests

Error Code = SERVICE_REQUEST_DENIED) |
(BACnet-Error-PDU,
Error Class = SERVICES,
Error Code = MISSING_REQUIRED_PARAMETER)
3. CHECK (The IUT did NOT perform a WARMSTART reboot)

4. TRANSMIT ReinitializeDevice-Request,
‘Reinitialized State of Device' = WARMSTART,
‘Password’ = (any invalid password)
5. IF (Protocol_Revision is present and Protocol_Revision >=7) THEN
RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,
Error Code = PASSWORD_FAILURE
ELSE

(RECEIVE BACnet-Error-PDU,

Error Class = SECURITY,

Error Code = PASSWORD_FAILURE) |
(RECEIVE BACnet-Error-PDU,

Error Class = SERVICES,

Error Code = SERVICE_REQUEST_DENIED) |
(BACnet-Error-PDU,

Error Class = SERVINMCES,

Error Code = MISSING_REQUIRED_PARAMETER)

6. CHECK (The IUT did NOT perform a WARMSTART reboot)

Notes to Tester: External indications that the IUT has reinitialized, such as LEDs or startup message traffic, shall be used to
confirm reinitialization whenever possible.

9.29 UnconfirmedTextMessage Service Execution Tests

9.29.1 UnconfirmedTextMessage With No Message Class

Reason for Change: Add test support for the text message services.
Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when no ‘Message Class' is
provided.

Test Steps:

1. TRANSMIT UnconfirmedTextMessage-Request,
"Text Message Source Device'= TD,
‘Message Priority' = NORMAL,
'‘Message' = (any CharacterString)

2. CHECK (Did any vendor specified action for these circumstances occur?)

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is
appropriate.

9.29.2 UnconfirmedTextMessage With an Unsigned Message Class

Reason for Change: Add test support for the text message services.
Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when the Unsigned form of the
'‘Message Class' is used.

Configuration Requirements: The vendor shall provide a list of supported Unsigned message classes.

189

BACnet Testing Laboratories - Specified Tests

Test Steps:
1. TRANSMIT UnconfirmedTextMessage-Request,
‘Text Message Source Device'= TD,
'‘Message Class' = (any Unsigned value from the list provided by the vendor),
‘Message Priority' = NORMAL,
'Message' = (any CharacterString)

2. CHECK (Did any vendor specified action for these circumstances occur?)

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is
appropriate.

9.29.3 UnconfirmedTextMessage With a CharacterString Message Class

Reason for Change: Add test support for the text message services.
Purpose: To verify the correct execution of the UnconfirmedTextMessage service request when the CharacterString form of
the 'Message Class' is used.

Configuration Requirements: The vendor shall provide a list of supported CharacterString message classes.

Test Steps:
1. TRANSMIT UnconfirmedTextMessage-Request,
"Text Message Source Device'= TD,
'‘Message Class' = (any CharacterString value from the list provided by the vendor),
'‘Message Priority' = NORMAL,
'Message' = (any CharacterString)

2. CHECK(Did any vendor specified action for these circumstances occur?)

Notes to Tester: The IUT shall respond with the indicated message and perform any vendor-specified action that is

9.30 TimeSynchronization Service Execution Tests
Dependencies: ReadProperty Service Execution tests, 9.18.

BACnet Reference Clause: 16.7.

9.30.1 Positive TimeSynchronization Service Execution Tests

The purpose of this test group is to verify correct execution of TimeSynchronization service requests under circumstances
where the service is expected to be successfully completed.

9.30.1.1 TimeSynchronization Local Broadcast

Reason for change: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the
UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a local broadcast TimeSynchronization service
request.

Test Steps:

1. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Date

2. RECEIVE ReadProperty-ACK,

190

BACnet Testing Laboratories - Specified Tests

'Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Date,
'Property Value' = (any valid date referred to as "InitialDate" below)
3. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Time
4. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Time,
'Property Value' = (any valid time referred to as "InitialTime" below)
5 TRANSMIT ReadProperty-Reguest;
6.—RECEINE ReadProperty-ACK,
+—TFRANSMIT ReadProperty-Reguest;
8 RECENE ReadProperty-ACK;
5. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
BACnet-Unconfirmed-Request-PDU,
‘Service Choice' = TimeSynchronization-Request,
date = (any date other than InitialDate),
time = (any time that does not correspond to Initial Time)
6. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the IUT's Device object),
‘Property Identifier' = Local_Date
7. RECEIVE ReadProperty-ACK,
‘Object Identifier' = (the 1IUT's Device object),
‘Property Identifier' = Local_Date,
'Property Value' = (the date specified in step 5)
8. TRANSMIT ReadProperty-Request,
‘Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Time
9. RECEIVE ReadProperty-ACK,
'‘Object Identifier' = (the IUT's Device object),
‘Property Identifier' = Local_Time,
'Property Value' = (the time specified in step 5)

Notes to Tester: The time value returned by the IUT in step 9 shall agree with the time specified in step 5 within the
resolution for time specified in the EPICS. If the time returned by the IUT indicates that a small amount of time has passed
(< 1 second) since the TimeSynchronization request was received the result shall be considered to be a pass. If the time
indicates that the day of week is unspecified but all other fields are correct the result shall be considered to be a pass.

9.30.1.2 TimeSynchronization Directed to the IUT

Reason for change: UTC_Offset and Daylight_Savings_Status are optional properties that are only required for the

UTCTimeSynchronization service.

191

BACnet Testing Laboratories - Specified Tests

Purpose: To verify that the IUT resets its local time and date in response to a TimeSynchronization service request directed
to the IUT's MAC address.

Test Steps: This test is identical to 9.30.1.1 except that the TimeSynchronization-Request in step 95 shall be transmitted
using the IUT's MAC address as the destination.

Notes to Tester: The passing results are identical to 9.30.1.1.

9.31 UTCTimeSynchronization Service Execution Tests

BACnet Reference Clause: 16.8.

9.31.1 Positive UTCTimeSynchronization Service Execution Tests
The purpose of this test group is to verify correct execution of UTCTimeSynchronization service request.

9.31.1.1 UTCTimeSynchronization Local Broadcast

Reason for change: UTC_Offset and Daylight_Savings_Status are needed here, as these optional properties are required for
the UTCTimeSynchronization service.

Purpose: To verify that the IUT resets its local time and date in response to a local broadcast UTCTimeSynchronization
service request.

Test Steps:
1. TRANSMIT ReadProperty-Request,

'Object Identifier' = (the IUT's Device object),

'Property Identifier' = Local_Date
2. RECEIVE ReadProperty-ACK,

'Object Identifier' = (the IUT's Device object),

'Property Identifier' = Local_Date,

'Property Value' = (any valid date referred to as "InitialDate™ below)
3. TRANSMIT ReadProperty-Request,

'Object Identifier' = (the 1UT's Device object),

'Property ldentifier' = Local_Time
4. RECEIVE ReadProperty-ACK,

'Object Identifier' = (the IUT's Device object),

'Property ldentifier' = Local_Time,

'Property Value' = (any valid time referred to as "Initial Time" below)
5. TRANSMIT ReadProperty-Request,

'Object Identifier' = (the IUT's Device object),

'Property Identifier' = UTC_Offset
6. RECEIVE ReadProperty-ACK,

'Object Identifier' = (the IUT's Device object),

'Property Identifier' = UTC_Offset,

'Property Value' = (any valid offset referred to as "Initial_UTC_Offset™)
7. TRANSMIT

DA = LOCAL BROADCAST,

SA=TD,

BACnet-Unconfirmed-Request-PDU,

'Service Choice' = UTCTimeSynchronization-Request,

date = (any date other than InitialDate),

time = (any time that does not correspond to InitialTime)
8. TRANSMIT ReadProperty-Request,

'‘Object Identifier' = (the IUT's Device object),

'Property Identifier' = Daylight_Savings_Status

192

BACnet Testing Laboratories - Specified Tests

9. RECEIVE ReadProperty-ACK,

'Object Identifier' = (the IUT's Device object),
'Property Identifier' = Daylight_Savings_Status,
'Property Value' = (any valid status)
10. TRANSMIT ReadProperty-Request,
'Object Identifier' = (the IUT's Device object),
'Property ldentifier' = Local_Date
11. RECEIVE ReadProperty-ACK,
'Object Identifier' = (the IUT's Device object),
'Property ldentifier' = Local_Date,
'Property Value' = (the date specified in step 9, corrected for Initial UTC_Offset and

Daylight_Savings_Status)
12. TRANSMIT ReadProperty-Request,

'Object Identifier' = (the 1UT's Device object),
'Property ldentifier’ = Local_Time
13. RECEIVE ReadProperty-ACK,
'Object Identifier' = (the IUT's Device object),
'Property Identifier' = Local_Time,
'Property Value' = (the time specified in step 9, corrected for Initial UTC_ Offset and

Daylight_Savings_Status)

Passing Results: The time value returned by the IUT in steps 11 and 13 shall agree, within the resolution for time specified
in the EPICS, with the date and time specified in step 7, corrected for both Initial UTC_ Offset and
Daylight_Savings_Status. It is the Daylight_Savings_Status from step 9 which should be used in the determination in steps
11 and 13. The IUT may update the Daylight_Savings_Status during the execution of the UTCTimeSynchronization request.
If the time returned by the IUT indicates that a small amount of time has passed (< 1 second) since the
UTCTimeSynchronization request was received, then the result shall be considered a pass.

9.31.1.2 UTCTimeSynchronization Directed to the IUT

Reason for change: UTC_Offset and Daylight_Savings_Status are needed here, as these optional properties are required for
the UTCTimeSynchronization service.

Test Steps: This test is identical to 9.3031.1.1 except that in step 9 the UTCTimeSynchronization request is used and the
date and time conveyed represent UTC and the UTCTimeSynchronization-Request shall be transmitted using the 1UT's
MAC address as the destination.

Notes to Tester: The passing results are identical to 9.31.1.1.

9.32 Who-Has Service Execution Tests
The purpose of this test group is to verify the correct execution of the Who-Has service request.

Dependencies: None.
BACnet Reference Clause: 16.9.

9.32.1 Execution of Who-Has Service Requests Originating from the Local Network

The purpose of this test group is to verify the correct execution of the Who-Has request service procedure for messages
originating from the local network.

9.32.1.1 Object ID Version with No Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
identifier form and does not restrict device ranges.

Configuration Requirements: Choose any object (Objectl) that exists within the IUT.

193

BACnet Testing Laboratories - Specified Tests

Test Steps:
1. READ V1 = (Objectl), Object Name
2. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
Who-Has-Request,

‘Object Identifier' = Objectl(any-objest identifier specified-in-the ERICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,
SA =IUT,

I-Have-Request,

'Device ldentifier' = (the IUT's Device object),

'Object Identifier' = Objectl{the-object-identifierspecified-in-step-1);
'‘Object Name' = V1{the-objectname-specified-in-the EPICSfor-this-ebject)

9.32.1.2 Object Name Version with no Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
name form and does not restrict device ranges.

Configuration Requirements: Choose any object (Objectl) that exists within the 1UT.

Test Steps:
1. READ V1 =(Objectl), Object_Name
2. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
Who-Has-Request,

'Object Name' = V1{any-object-name-specified-inthe ERPICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,
SA = IUT,

I-Have-Request,

‘Device ldentifier' = (the IUT's Device object),

'Object Identifier' = Object1{the-object-identifierspecified-in-the EPICS forthis-ebject),
'Object Name' = V1{the-object-name-specified-in-step-1}

9.32.1.3 Object ID Version with IUT Inside of the Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
identifier form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Objectl) that exists within the IUT.

Test Steps:
1. READ V1 =(Objectl), Object_Name
2. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
Who-Has-Request,

194

BACnet Testing Laboratories - Specified Tests

‘Device Instance Low Limit' = (any value L: 0 < L < the Device object instance number of the IUT),
'Device Instance High Limit' = (any value H,: H > the Device object instance number of the IUT),

'Object Identifier' = Objectl{any-object-identifier specified-inthe-ERICS),
3. WAIT Internal Processing Fail Time

4. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,
SA = IUT,

|1-Have-Request,
'Device ldentifier' = (the IUT's Device object),

'Object Identifier' = Object1{the-object-identifierspecified-in-step-1},
'‘Object Name' = V1{the-objectname-specified-in-the EPICSfor-this-ebject)

9.32.1.4 Object ID Version with IUT Outside of the Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT ignores a local broadcast Who-Has service request that utilizes the object identifier form
and specifies a device range restriction that does not include the IUT.

Configuration Requirements: Choose any object (Objectl) that exists within the IUT.

Test Steps:
1. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
Who-Has-Request,
‘Device Instance Low Limit' = (any value > 0: the Device object instance number does not fall
in the range between Device Instance Low Limit and Device Instance
High Limit),
‘Device Instance High Limit' = (any value > Device Instance Low Limit: the Device object
instance number does not fall in the range between Device Instance Low
Limit and Device Instance High Limit),
'Object Identifier' = Objectl{any-objectidentifier specified-inthe ERICS)
2. WAIT Internal Processing Fail Time
3. CHECK (verify that the IUT does not respond)

9.32.1.5 Object Name Version with IUT Inside of the Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT can correctly respond to a local broadcast Who-Has service request that utilizes the object
name form and specifies a device range restriction that includes the IUT.

Configuration Requirements: Choose any object (Objectl) that exists within the 1UT.

Test Steps:
1. READ V1 =(Objectl), Object_Name
2. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
Who-Has-Request,
‘Device Instance Low Limit' = (any value L: 0 < L < the Device object instance number of the IUT),
'‘Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),
'Object Name = V1{any-object-name-specified-inthe ERICS)
3. WAIT Internal Processing Fail Time
4. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,

195

BACnet Testing Laboratories - Specified Tests

SA = IUT,

I-Have-Request,

'Device ldentifier' = (the IUT's Device object),

'Object Identifier' = Object1{the-object-identifierspecified-in-the EPICSfor this-ebject),
'Object Name' = V1{the-object-name-specified-in-step-1}

9.32.1.7 Object ID Version with IUT Device Instance Equal to the High Limit of the Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service
requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Objectl) that exists within the 1UT.

Test Steps:
1. READ V1 =(Objectl), Object_Name
2. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
Who-Has-Request,
‘Device Instance Low Limit' = (any value L: 0 < L < the Device object instance number of the IUT),
'‘Device Instance High Limit' = (The Device object instance number of the IUT),

'Object Identifier' = Objectl{any-objectidentifier specified-inthe ERICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,
SA =IUT,

I-Have-Request,

‘Device ldentifier' = (the IUT's Device object),

'Object Identifier' = Objectl{the-object-identifierspecified-in-step-1},
'Object Name' = V1{the-object-name-specified-in-the EPICS for this-object)

9.32.1.8 Object ID Version with IUT Device Instance Equal to the Low Limit of the Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service
requests that utilize the object identifier form.

Configuration Requirements: Choose any object (Objectl) that exists within the IUT.

Test Steps:
1. READ V1 =(Objectl), Object_Name
2. TRANSMIT
DA = LOCAL BROADCAST,
SA=TD,
Who-Has-Request,
'Device Instance Low Limit' = (The Device object instance number of the IUT),
'‘Device Instance High Limit' = (any value H: H > the Device object instance number of the IUT),

'Object Identifier' = Objectl{any-objectidentifier specified-inthe ERICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,
SA =IUT,

I-Have-Request,
‘Device ldentifier' = (the IUT's Device object),

196

BACnet Testing Laboratories - Specified Tests

'Object Identifier' = Objectl{the-object-identifierspecified-in-step-1},
'Object Name' = V1{the-object-name-specified-in-the EPICS for this-object)

9.32.1.9 Object Name Version with IUT Device Instance Equal to the High Limit of the Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the high limit of the specified device range for Who-Has service
requests that utilize the object name form.

Configuration Requirements: Choose any object (Objectl) that exists within the IUT.

Test Steps:

1. READ V1 =(Objectl), Object_Name

2. TRANSMIT
Who-Has-Request,
'‘Device Instance Low Limit' = (any value L: 0 < L < the Device object instance number of the IUT),
'Device Instance High Limit' = (The Device object instance number of the IUT),

'Object Name = V1{any-object-name-specified-inthe ERICS)
3. WAIT Internal Processing Fail Time

4. RECEIVE
DA = LOCAL BROADCAST | GLOBAL BROADCAST,
SA =|UT,

I-Have-Request,

'Device ldentifier' = (the IUT's Device object),

'Object Identifier' = Object1{the-object-identifierspecified-in-the EPICSfor this-ebject),
'Object Name' = V1{the-object-name-specified-in-step-1}

9.32.1.10 Object Name Version with IUT Device Instance Equal to the Low Limit of the Device Range
Reason for Change: Modified test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly recognizes the low limit of the specified device range for Who-Has service
requests that utilize the object name form.

Configuration Requirements: Choose any object (Objectl) that exists within the 1UT.

Test Steps:
1. READ V1 =(Objectl), Object_Name
2. TRA