
BTL-CRR-0290_datatype_error-code-only.doc December 12, 2012

1 of 5

Clarification Request

References: BTL Specified Tests 12.0.final tests 9.22.2.3, 9.23.2.6, 9.14.2.2, 9.16.2.5

Date of BTL-WG Response: Dec 12, 2012

Background:

Each of these tests involves a TRANSMIT which would never be observed from an
implementation coded by someone competent in their understanding of BACnet. The Result(-)
outcome can entirely be foreseen. It is difficult to justify requiring each IUT to detect and
differentiate an unacceptable datatype from an unacceptable value. Especially since the Initating
implementation already cannot be simply looking for a single error code, as it must also expect
BACnet-Reject-PDU with either of two possible Reject-Reason codes. Requiring each IUT to add
code for something that would never be observed from a correct implementation is at-odds with
over-arching philosophy of the BTL Test Plan in that regard.

From BTL Specified Tests 12.0

9.14.2.2 Adding a List Element With an Invalid Datatype

Reason for change: Success criteria should specify 'First Failed Element' = 1 and the additional error

conditions are now accepted.

Purpose: To verify the ability of the IUT to correctly respond to an AddListElement service request to add

an element with an invalid datatype to a list.

Test Steps:

1. TRANSMIT AddListElement-Request,

 'Object Identifier' = L,

 'Property Identifier' = ListProp,

 'List of Elements' = (a single element with a datatype inappropriate for this property)

2. RECEIVE AddListElement-Error,

 Error Class = PROPERTY,

 Error Code = INVALID_DATATYPE,

 'First Failed Element' = 01 |

(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason = INVALID_TAG)

Notes to Tester: value selected for step 1 is 'inappropriate', not a value which is 'allowed' but not supported

by this instance of the property. I.e. it is not one of the datatypes that would ever be supported by an

instance of this property in this object type. DATATYPE_NOT_SUPPPORTED is only correct when the

BTL-CRR-0290_datatype_error-code-only.doc December 12, 2012

2 of 5

datatype requested is supported, for example in a CHOICE, by this property in this object type, but not

supported by this instance of the property.

9.16.2.5 Attempting to Create an Object with an Object Identifier Object Specifier and an Error in

the Initial Values

Reason for Change: INTERPRETATION IC 135-2004-28

Purpose: To verify the correct execution of the CreateObject service request when an object identifier is

used as the object specifier and a list of initial property values containing an invalid value is provided.

Test Steps:

1. TRANSMIT CreateObject-Request,

'Object Specifier' = (any unique object identifier of a type that is creatable and an

instance number that is creatable)

'List Of Initial Values' = (a list of twoone or more properties and their initial values, that the IUT

will accept initial values for, with one of the values being out of

range)

2. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

RECEIVE CreateObject-Error PDU,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE

'First Failed Element Number' = (the position in the 'List Of Initial Values' with the

invalid value)

ELSE

RECEIVE CreateObject-Error,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE |

INVALID_DATATYPEOTHER

'First Failed Element Number' = (the position in the 'List Of Initial Values' with the

invalid value)

3. CHECK(Verify that the new object was not created)

4. TRANSMIT CreateObject-Request,

'Object Specifier' = (any uniqueobject identifier from step 1of a type that is creatable),

'List Of Initial Values' = (a list of twoone or more properties and their initial values,

that the IUT will accept initial values for, with one

of the values being an inappropriate

datatype)

5. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

RECEIVE

CreateObject-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE

'First Failed Element Number' = (the position in the 'List Of Initial Values' with the

invalid value) |

(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason = INVALID_TAG)

ELSE

RECEIVE

CreateObject-Error,

Error Class = PROPERTY,

Error Code = VALUE_OUT_OF_RANGE |

INVALID_DATATYPE | OTHER

BTL-CRR-0290_datatype_error-code-only.doc December 12, 2012

3 of 5

'First Failed Element Number' = (the position in the 'List Of Initial Values' with the

invalid value) |

(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE |

INVALID_TAG)

6. TRANSMIT ReadProperty-Request,

'Object Identifier' = (the 'Object Identifier' used in step 1),

'Property Identifier' = (any required property of the specified object)Object_Name

7. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

RECEIVE BACnet-Error-PDU,

Error Class = OBJECT,

Error Code = UNKNOWN_OBJECT

ELSE

RECEIVE BACnet-Error-PDU

Error Class = OBJECT,

Error Code = UNKNOWN_OBJECT | NO_OBJECTS_OF_SPECIFIED_TYPE | OTHER

9.22.2.3 Writing with a Property Value Having the Wrong Datatype

Reason for Change: Relax Tests of INVALID_DATATYPE per INTERPRETATION IC 135-2004-28.

Modified Test to remove dependency on EPICS values.

Purpose: To verify that the IUT correctly responds to an attempt to write a property value that has an

invalid datatype.

Test Concept: The TD shall select an object in the IUT that contains a writable property designated P1. An

attempt will be made to write to this property using an invalid datatype. If no object supports writable

properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value with an invalid datatype)

3. IF (Protocol_Revision is present and Protocol_Revision 4) THEN

RECEIVE BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE

ELSE

RECEIVE

(BACnet-Error PDU,

Error Class = PROPERTY,

Error Code = INVALID_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason = INVALID_PARAMETER_DATATYPE) |

(BACnet-Reject-PDU

Reject Reason = INVALID_TAG)

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

9.23.2.6 Writing with a Property Value Having the Wrong Datatype

Reason for Change: Modified test to remove dependency on EPICS values.

BTL-CRR-0290_datatype_error-code-only.doc December 12, 2012

4 of 5

Purpose: This test case verifies that the IUT correctly responds to an attempt to write a property value that

has an invalid datatype. This test shall only be performed if Protocol_Revision is present and has a value

greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, in the IUT that contains a writable

property designated P1.

An attempt will be made to write to this property using an invalid datatype. If no object supports writable

properties, then this test shall be omitted.

Test Steps:

1. READ X = (Object1), P1

1. VERIFY (Object1), P1 = (the value defined for this property in the EPICS)

2. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value with an invalid datatype)

3. RECEIVE WritePropertyMultiple-Error,

‘Error Class’ = PROPERTY,

‘Error Code’ = INVALID_DATATYPE,

‘Object Identifier’ = Object1,

‘Property Identifier’ = P1

4. VERIFY (Object1), P1 = X(the value defined for this property in the EPICS)

Note also that 135.1-2011 gives indication to its readers, in two tests 9.22.2.5 and 9.23.2.8 which
are similar to these, but which the BTL Test Plan does not reference, though they nevertheless
influence implementers who read 135.1-2011, that show ambivalence about which particular error
code is observed.

From 135.1-2011

9.22.2.5 Writing To Non-Existent Objects

Purpose: This test case verifies that the IUT can execute WriteProperty service requests when the object

specified in the service request does not exist. This test shall only be performed if Protocol_Revision is

present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, that does not exist in the IUT. Object1

shall be of a type supported by the IUT. An attempt will be made to write to a property, designated P1, in

this non-existent object. P1 shall refer to a standard property that is supported by this object type in the

IUT.

Test Steps:

1. TRANSMIT WriteProperty-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value of the correct datatype for this property)

2. RECEIVE BACnet-Error PDU,

Error Class = OBJECT,

Error Code = UNKNOWN_OBJECT

Passing Result: While OBJECT::UNKNOWN_OBJECT is the desired error for this condition, in some

implementations other error conditions may be checked before the existence of the object itself. The other

errors that are acceptable are:

PROPERTY::UNKNOWN_PROPERTY,

PROPERTY::WRITE_ACCESS_DENIED,

PROPERTY::INVALID_DATATYPE,

BTL-CRR-0290_datatype_error-code-only.doc December 12, 2012

5 of 5

PROPERTY::VALUE_OUT_OF_RANGE and

RESOURCES::NO_SPACE_TO_WRITE_PROPERTY.

9.23.2.8 Writing To Non-Existent Objects

Purpose: This test case verifies that the IUT can execute WritePropertyMultiple service requests when the

object specified in the service request does not exist. This test shall only be performed if Protocol_Revision

is present and has a value greater than or equal to 4.

Test Concept: The TD shall select an object, designated Object1, that does not exist in the IUT. Object1

shall be of a object type supported by IUT. An attempt will be made to write to a property, designated P1,

in this non-existent object. P1 shall refer to a standard property that is supported by this object type in the

IUT.

Test Steps:

1. TRANSMIT WritePropertyMultiple-Request,

'Object Identifier' = Object1,

'Property Identifier' = P1,

'Property Value' = (any value of the correct datatype for this property)

2. RECEIVE WritePropertyMultiple-Error,

Error Class = OBJECT,

Error Code = UNKNOWN_OBJECT,

objectIdentifier = Object1,

propertyIdentifier = P1

Passing Result: While OBJECT::UNKNOWN_OBJECT is the desired error for this condition, in some

implementations, other error conditions may be checked before the existence of the object itself. The other

errors that are acceptable are:

PROPERTY::UNKNOWN_PROPERTY,

PROPERTY::WRITE_ACCESS_DENIED,

PROPERTY::INVALID_DATATYPE,

PROPERTY::VALUE_OUT_OF_RANGE and

RESOURCES::NO_SPACE_TO_WRITE_PROPERTY.

Question:

Should the VALUE_OUT_OF_RANGE error code response also be acceptable if the IUT
receives any of these requests?

Response:
No. It makes a user visible difference because INVALID_DATATYPE points out an error in
implementation, while VALUE_OUT_OF_RANGE points out an error in user choice. They are
useful to differentiate.

