
BACnet is a registered trademark of ASHRAE. ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed products to the requirements of ASHRAE

Standard 135 is the responsibility of BACnet International. BTL is a registered trademark of BACnet International.

BACnet TESTING LABORATORIES

ADDENDA

Addendum ca to

BTL Test Package 23.3

Revision final

Revised 10/3/2024

Approved by the BTL Working Group on September 5, 2024;

Approved by the BTL Working Group Voting Members on October 2, 2024;

Published on October 7, 2024.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 1

[This foreword and the “Overview” on the following pages are not part of this Test Package. They are

merely informative and do not contain requirements necessary for conformance to the Test Package.]

FOREWORD

The purpose of this addendum is to present current changes being made to the BTL Test Package. These modifications are the

result of change proposals made pursuant to the continuous maintenance procedures and of deliberations within the BTL-WG

Committee. The changes are summarized below.

BTL-23.3 ca-1: Add New Checklist Entries for Addenda ca [BTLWG-1451] ... 2
BTL-23.3 ca-2: Add New Color Object Type [BTLWG-1260] .. 3
BTL-23.3 ca-3: Add Color-Reference Properties [BTLWG-1262] ... 12
BTL-23.3 ca-4: Add New Color Temperature Object [BTLWG-1261] .. 15
BTL-23.3 ca-5: Add High_End_Trim and Low_End_Trim Testing [BTLWG-1263] .. 27
BTL-23.3 ca-6: Add Trim_Fade_Time Property Testing [BTLWG-1570] ... 30

In the following document, language to be added to existing clauses within the BTL Test Package 23.3 is indicated through the

use of italics, while deletions are indicated by strikethrough. Where entirely new subclauses are proposed to be added, plain

type is used throughout.

In contrast, changes to BTL Specified Tests also contain a yellow highlight to indicate the changes made by this addendum.

When this addendum is applied, all highlighting will be removed. Change markings on tests will remain to indicate the

difference between the new test and an existing 135.1 test. If a test being modified has never existed in 135.1, the applied result

should not contain any change markings. When this is the case, square brackets will be used to describe the changes required

for this test.

Each addendum can stand independently unless specifically noted via dependency within the addendum. If multiple addenda

change the same test or section, each future released addendum that changes the same test or section will note in square brackets

whether or not those changes are reflected.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 2

BTL-23.3 ca-1: Add New Checklist Entries for Addenda ca [BTLWG-1451]

Overview:

Add new checklist items per 135.1-2020 Addenda ca

Changes:

Checklist Changes

Lighting Output Object

 R Base Requirements

 R Supports command prioritization

 R Supports all BACnetLightingOperations

 S Supports configurable Out_Of_Service property

 O Supports blink-warn

 O Supports Transition property

 O Supports Feedback_Value property

 O Supports Min_Actual_Value and Max_Actual_Value properties

 O Supports the value source mechanism.

 O1,2 Supports Color_Reference property

 O1,2 Supports Color_Override property

 O1,2 Supports the Trim_Fade_Time property

 O32 Supports intrinsic reporting
1 Protocol_Revision 24 or higher must be claimed.
2 Contact BTL for interim tests for this functionality.
32 Protocol_Revision 21 or higher must be claimed.

Binary Lighting Output Object

 R Base Requirements

 R Supports command prioritization

 S Supports configurable Out_Of_Service property

 O Supports blink-warn

 O Supports writable Polarity property

 O Supports strike count tracking

 O Supports elapsed active time tracking

 O Supports the value source mechanism.

 O1,2 Supports Color_Reference property

 O1,2 Supports Color_Override property
1 Protocol_Revision 24 or higher must be claimed
2 Contact BTL for interim tests for this functionality

Test Plan Changes

None

Specified Test Changes

None

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 3

BTL-23.3 ca-2: Add New Color Object Type [BTLWG-1260]

Overview:

This WI adds testing for the Color object type

Changes:

Checklist Changes

[Replace the Color Object section]

Color Object

 R Base Requirements

 O Supports Transition property

 O Supports a configurable Default_Fade_Time

 O Supports the value source mechanism

[Add color objects to Data Management - Object Creation and Deletion A and B sections]

Device Management - Object Creation and Deletion - A

 … …

 C2,8 Can create and delete Color objects

…
8 Protocol_Revision 24 or higher must be claimed.

Device Management - Object Creation and Deletion - B

 … …

 C1,6 Supports object creation and deletion of the Color object

…
6 Protocol_Revision 24 or higher must be claimed.

Test Plan Changes

[Replace the Color Object section with the below]

3.65 Color Object

3.65.1 Base Requirements
Base requirements must be met by any IUT that can contain Color objects.

Verify Checklist

 Test Conditionality Must be executed.

 Test Directives Verify the IUT claims support for DS-WP-B

 Testing Hints

BTL - 7.3.2.X67.1 - Color Object Present_Value Startup Test

 Test Conditionality Must be executed.

 Test Directives If the IUT supports configuring the startup color between any specific color

and the 'previous color that was in effect prior to restart' then this test shall

be run twice, once in each configuration.

 Testing Hints

BTL - 7.3.2.X67.2 - Transition NONE Test

 Test Conditionality This test shall be skipped if the Transition property is supported and cannot

be set to NONE.

 Test Directives

 Testing Hints

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 4

BTL - 7.3.2.X67.3 - Color Object Present_Value Out Of Range Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X67.4 - Color Object Color_Command Out Of Range Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X67.5 - Invalid Color_Command Operations Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X67.6 - FADE_TO_COLOR Color Command Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X67.8 - Interrupting a Fade In Progress

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X67.11 - Color_Command Fade-time Out Of Range Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

3.65.2 Supports Transition Property
The IUT supports the Transition property in Color objects.

BTL - 7.3.2.X67.22 - Color Commands Ignore Transition When Fade-Time is Specified

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

3.65.3 Supports a Configurable Default_Fade_Time
The IUT supports a configurable Default_Fade_Time.

BTL - 7.3.2.X67.31 - Configuring Default_Fade_Time Within Allowable Range

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X67.32 - Writing Default_Fade_Time Positive Test

 Test Conditionality Must be executed if the Default_Fade_Time is writable.

 Test Directives

 Testing Hints

BTL - 9.22.2.4 - Writing with a Property Value that is Out of Range

 Test Conditionality Must be executed if the Default_Fade_Time is writable.

 Test Directives Execute this test against Default_Fade_Time twice; once using 99 and

again using 86400001.

 Testing Hints

3.65.1 Supports the Value Source Mechanism
The IUT supports the Value Source Mechanism in color objects.

BTL - 7.3.1.X42.Y2 - Non-commandable Value_Source Property Test

 Test Conditionality Must be executed.

 Test Directives

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 5

 Testing Hints

[Add section for DM-OCD-A and DM-OCD-B]

8.21.68 Can Create and Delete Color Objects
The IUT can create and delete Color objects. The IUT shall not restrict the instance number which can be used to create the

Color object.

135.1-2023 - 8.16.1 - Creating Objects by Specifying the Object Identifier with no Initial Values

 Test Conditionality Must be tested on the Color Object

 Test Directives

 Testing Hints

135.1-2023 - 8.17 - Delete Object Service

 Test Conditionality Must be tested on the Color Object

 Test Directives

 Testing Hints

8.22.68 Supports Object Creation and Deletion of the Color Object
The Color object can be created and deleted within the IUT. The Color object that is created must be the object that can be

deleted using the delete service.

135.1-2023 - 9.16.1.1 - Creating Objects by Specifying the Object Type with No Initial Values

 Test Conditionality Must be executed.

 Test Directives Execute using the Color Object.
 Testing Hints

BTL - 9.16.1.2 - Creating Objects by Specifying the Object Identifier with No Initial Values

 Test Conditionality Must be executed.

 Test Directives Execute using the Color Object.
 Testing Hints

135.1-2023 - 9.17.1.1 - Successful Deletion of an Object

 Test Conditionality Must be executed.

 Test Directives Execute using the Color Object.
 Testing Hints

Specified Test Changes

[Add a new test section into BTL Specified Tests]

7.3.2.X67 Color Object Tests

7.3.2.X67.1 Color Object Present_Value Startup Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the Color object’s Present_Value goes to either the last Tracking_Value or a default color on

startup, depending on the color in the Default_Color property.

Test Concept: The IUT is restarted and Present_Value is verified to go either to Default_Color or the previous color in effect

prior to restart if Default_Color is (0,0). The color output in Tracking_Value is verified to go to either Present_Value or the

previous color before the restart.

Configuration Requirements: The IUT is not performing any color commands or fades at the beginning of this test. The

starting Present_Value, PV1, shall be set to something other than the Default_Color, DC.

Test Steps:

1. VERIFY In_Progress = IDLE

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 6

2. READ PV1 = Present_Value

3. READ DC = Default_Color

4. CHECK (PV1 does not equal DC)

5. MAKE (the IUT restart)

6. WAIT (for the IUT to restart)

7. IF (DC = (0,0)) THEN

 VERIFY Present_Value = PV1

 VERIFY In_Progress = IDLE

 ELSE

 VERIFY Present_Value = DC

8. IF (the IUT’s color output is updated on startup) THEN

 VERIFY Tracking_Value = (the Present_Value read in the previous step)

 VERIFY In_Progress = IDLE

 ELSE

 VERIFY In_Progress = NOT_CONTROLLED

7.3.2.X67.2 Transition NONE Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that when Transition is NONE or not supported, writing to the Present_Value is set to the target

color immediately.

Test Concept: Transition is verified as NONE or not supported. Tracking_Value is read. A different value is written to

Present_Value and Tracking_Value is read back as equal to Present_Value.

Configuration Requirements: The IUT is not performing any color commands or fades at the start of this test.

Test Steps:

1. IF (Transition property is supported) THEN

 VERIFY Transition = NONE

2. READ TV = Tracking_Value

3. WRITE Present_Value = (C1: any valid color supported by the IUT, other than TV)

4. VERIFY Tracking_Value = C1

5. VERIFY In_Progress = IDLE

7.3.2.X67.3 Color Object Present_Value Out Of Range Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct behavior when a color which is out of range is written to its

Present_Value, depending on the color value written.

Test Concept: Present_Value is read, then written to with a value outside the allowed range of (0,0) to (1,1). An error is

received with Error Class = PROPERTY, and Error Code = VALUE_OUT_OF_RANGE. Then a value which is within the

allowed range, but outside of the range supported by the IUT, is written to Present_Value. Either an error is returned and

Present_Value unchanged, or the value is accepted but the Present_Value is changed to the closest color supported. This is

repeated if the IUT does not support the entire CIE chromaticity curve using a value within the curve, but outside of the range

supported by the IUT.

Configuration Requirements: There are no configuration requirements for this test.

Test Steps:

1. READ PV1 = Present_Value

2. TRANSMIT WriteProperty-Request,

 'Property Identifier' = Present_Value,

 'Property Value' = (any value outside of the range (0,0) to (1,1))

3. RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

4. VERIFY Present_Value = PV1

5. TRANSMIT WriteProperty-Request,

 'Property Identifier' = Present_Value,

 'Property Value' = (any value outside of the curved space of the CIE chromaticity diagram and within the range (0,0)

to (1,1))

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 7

6. IF (the IUT clamps color values outside the CIE chromaticity curve but within the range (0,0) to (1,1)) THEN

 RECEIVE BACnet-SimpleACK-PDU

 READ PV1 = Present_Value

 IF (Transition is present and set to FADE) THEN

 WAIT (Default_Fade_Time milliseconds)

 CHECK (that PV1 and Tracking_Value are the closest supported color to what was written)

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

 VERIFY Present_Value = PV1

7. IF (the IUT does not support all color values within the CIE chromaticity curve) THEN

 TRANSMIT WriteProperty-Request,

 'Property Identifier' = Present_Value,

 'Property Value' = (any value unsupported by the IUT and within the curved space of the CIE chromaticity

curve)

 IF (the IUT clamps unsupported color values) THEN

 RECEIVE BACnet-SimpleACK-PDU

 READ PV1 = Present_Value

 IF (Transition is present and set to FADE) THEN

 WAIT (Default_Fade_Time milliseconds)

 CHECK (that PV1 and Tracking_Value are the closest supported color to what was written)

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

 VERIFY Present_Value = PV1

7.3.2.X67.4 Color Object Color_Command Out Of Range Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct behavior when a target color which is out of range is written

to its Color_Command, depending on the color written.

Test Concept: Present_Value is read, then Color_Command is written to with a target value outside the allowed range of

(0,0) to (1,1). An error is received with Error Class = PROPERTY, and Error Code = VALUE_OUT_OF_RANGE. Then a

Color_Command with a target value which is within the allowed range, but outside of the range supported by the IUT, is

written to the IUT. Either an error is returned and Present_Value unchanged, or the value is accepted but the Present_Value is

changed to the closest color supported. This is repeated if the IUT does not support the entire CIE chromaticity curve.

Configuration Requirements: The IUT is not performing any color commands or fades.

Test Steps:

1. READ PV1 = Present_Value

2. TRANSMIT WriteProperty-Request,

 'Property Identifier' = Color_Command,

 'Property Value' = (FADE_TO_COLOR, any value outside of the range (0,0) to (1,1))

3. RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

4. VERIFY Present_Value = PV1

5. TRANSMIT WriteProperty-Request,

 'Property Identifier' = Color_Command,

 'Property Value' = (FADE_TO_COLOR, any value outside of the curved space of the CIE chromaticity diagram and

within the range (0,0) to (1,1), 100)

6. IF (the IUT clamps color values outside the CIE chromaticity curve but within the range (0,0) to (1,1)) THEN

 RECEIVE BACnet-SimpleACK-PDU

 WAIT (100 milliseconds)

 CHECK (Present_Value and Tracking_Value are equal to each other and within the range of colors supported by the

IUT)

 ELSE

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 8

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

 VERIFY Present_Value = PV1

7. IF (the IUT does not support all color values within the CIE chromaticity curve) THEN

 READ PV2 = Present_Value

 TRANSMIT WriteProperty-Request,

 'Property Identifier' = Color_Command,

 'Property Value' = (FADE_TO_COLOR, any value unsupported by the IUT and within the curved space of the

CIE chromaticity diagram, 100)

 IF (the IUT clamps unsupported color values) THEN

 RECEIVE BACnet-SimpleACK-PDU

 WAIT (100 milliseconds)

 CHECK (Present_Value and Tracking_Value are equal to each other and within the range of colors supported

by the IUT)

 ELSE

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

 VERIFY Present_Value = PV2

7.3.2.X67.5 Invalid Color_Command Operations Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct error when invalid color commands are written to the

Color_Command property of the Color object.

Test Concept: Present_Value and Color_Command are read, then Color_Command is written to with each unsupported CCT

color command. An error is received each time, with Error Class = PROPERTY and Error Code =

VALUE_OUT_OF_RANGE. When the error is received, TD verifies the Present_Value has not changed.

Configuration Requirements: There are no configuration requirements for this test.

Test Steps:

1 READ CC = Color_Command

2. READ PV = Present_Value

3. REPEAT X = (each invalid Color_Command operation, including NONE and a value not defined) DO {

 TRANSMIT WriteProperty-Request,

 'Property Identifier' = Color_Command,

 'Property Value' = (X)

 RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

 VERIFY Present_Value = PV

 VERIFY Color_Command = CC

 }

7.3.2.X67.6 FADE_TO_COLOR Color Command Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT will accept a FADE_TO_COLOR color command when sent with minimum and

maximum fade-times and without a specified fade-time.

Test Concept: Color_Command is written to with Operation = FADE_TO_COLOR and a valid target color, and the

minimum fade-time allowed by the standard. Then another Color Command is written with the maximum fade-time allowed

by the standard. TD verifies the color fade has started. A final color command is written without a fade-time parameter. TD

verifies Present_Value and if Default_Fade_Time is large enough, also verifies In_Progress and Tracking_Value during the

fade. After Default_Fade_Time has elapsed, TD verifies the fade is completed.

Configuration Requirements: There are no configuration requirements for this test.

Test Steps:

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 9

1. WRITE Color_Command = (FADE_TO_COLOR, (C1: any valid color supported by the IUT), 100)

2. WAIT (100 milliseconds)

3. VERIFY In_Progress = IDLE

4. VERIFY Present_Value = C1

5. WRITE Color_Command = (FADE_TO_COLOR, (C2: any valid color supported by the IUT other than C1), 86400000)

6. VERIFY In_Progress = FADE_ACTIVE

7. VERIFY Present_Value = C2

-- Send a color command without a fade-time, overwriting the previous one, to verify usage of Default_Fade_Time

8. READ FT = Default_Fade_Time

9. WRITE Color_Command = (FADE_TO_COLOR, C1)

10. IF (FT is large enough for TD to read properties before elapsing) THEN

 BEFORE (Default_Fade_Time milliseconds)

 VERIFY In_Progress = FADE_ACTIVE

 VERIFY Tracking_Value <> C1

11. VERIFY Present_Value = C1

12. WAIT (Default_Fade_Time milliseconds)

13. VERIFY Tracking_Value = C1

14. VERIFY In_Progress = IDLE

7.3.2.X67.8 Interrupting a Fade In Progress

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT will stop a fade in progress when Present_Value is written to, when a new color

command is written, or when STOP is written to the Color_Command property.

Test Concept: TD writes a color command to begin a fade to color with a specified fade-time, then it interrupts the fade by

writing to the Present_Value property. The fade should immediately stop and go to the color written in Present_Value,

depending on the presence, and value of, the Transition property. Then TD writes the same color command to begin another

fade to color. Before this fade elapses, TD interrupts the fade with a color command to go to a different color. TD then

interrupts this final color command by writing STOP to the Color_Command property. TD verifies that the final state of

Present_Value, In_Progress, and Color_Command.

Configuration Requirements: The IUT should not have a fade in progress at the beginning of this test. If Transition is

configurable, it shall be configured to FADE.

Notes to Tester: This test can be made easier by selecting three distinct colors that the IUT supports.

Test Steps:

1. READ C1 = Present_Value

2. VERIFY In_Progress = IDLE

3. WRITE Color_Command = (FADE_TO_COLOR, (C2: any valid color supported by the IUT other than C1), 86400000)

4. VERIFY In_Progress = FADE_ACTIVE

5. VERIFY Tracking_Value <> C2

6. VERIFY Present_Value = C2

-- Interrupt the color command fade by writing to Present_Value

7. WRITE Present_Value = (C3: any valid color supported by the IUT other than C1 and C2)

8. IF (Transition property is not present, or set to NONE) THEN

 VERIFY Tracking_Value = C3

 VERIFY In_Progress = IDLE

 ELSE

 VERIFY In_Progress = FADE_ACTIVE

-- Interrupt the fade or start a new one depending on Transition's value

9. WRITE Color_Command = (FADE_TO_COLOR, C1, 86400000)

10. VERIFY Present_Value = C1

11. VERIFY In_Progress = FADE_ACTIVE

12. VERIFY Tracking_Value <> C1

-- Send a different color command, to interrupt the previous one

13. WRITE Color_Command = (FADE_TO_COLOR, C2, 86400000)

-- Interrupt the fade with the STOP command

14. READ TV = Tracking_Value

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 10

15. WRITE Color_Command = STOP

16. VERIFY Present_Value = (a value approximately equal to, or equal to, TV)

17. VERIFY In_Progress = IDLE

18. VERIFY Color_Command = STOP

7.3.2.X67.11 Color_Command Fade-time Out Of Range Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct behavior when a fade-time which is out of range is written

to its Color_Command.

Test Concept: Present_Value is read, then a color command is written with a fade-time smaller than the minimum allowed.

An error is received with Error Class = PROPERTY, and Error Code = VALUE_OUT_OF_RANGE. Then another color

command is written with a target value which is larger than the maximum allowed. An error is received with Error Class =

PROPERTY, and Error Code = VALUE_OUT_OF_RANGE. After each write, TD verifies the Present_Value is unchanged.

Configuration Requirements: The IUT is not performing any color commands or fades.

Test Steps:

1. READ PV1 = Present_Value

2. TRANSMIT WriteProperty-Request,

 'Property Identifier' = Color_Command,

 'Property Value' = (FADE_TO_COLOR, C1: any valid color, 99)

3. RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

4. VERIFY Present_Value = PV1

5. TRANSMIT WriteProperty-Request,

 'Property Identifier' = Color_Command,

 'Property Value' = (FADE_TO_COLOR, , C1, 86400001)

6. RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY

 Error Code = VALUE_OUT_OF_RANGE

7. VERIFY Present_Value = PV1

7.3.2.X67.22 Color Commands Ignore Transition When Fade-Time is Specified

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that when the IUT supports the Transition property, writes to Color_Command with a specified

fade-time will use that fade time instead of the fade time that is specified by Transition.

Test Concept: TD writes a Color_Command with a fade-time, that is different from Default_Fade_Time and verifies the color

fade did not end after Default_Fade_Time milliseconds.

Configuration Requirements: Default_Fade_Time must not be set to 86400000.

Test Steps:

1. VERIFY Transition = FADE | NONE

2. READ C1 = Present_Value

3. WRITE Color_Command = (FADE_TO_COLOR, (C2: any valid color supported by the IUT other than C1), 86400000)

4. WAIT (Default_Fade_Time milliseconds)

5. VERIFY In_Progress = FADE_ACTIVE

6. VERIFY Tracking_Value <> C1

7. VERIFY Tracking_Value <> C2

8. WRITE Color_Command = STOP

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 11

7.3.2.X67.31 Configuring Default_Fade_Time Within Allowable Range

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT supports a configurable Default_Fade_Time.

Test Concept: The IUT is configured with a different Default_Fade_Time, FT1. If Transition is supported and set to FADE,

TD writes to Present_Value and the Tracking_Value is verified to only be equal to the written color after FT1 milliseconds

have passed. Otherwise, a color command with fade-time = FT2 is written and Tracking_Value is verified to only be equal to

the written color after FT2 milliseconds have passed.

Configuration Requirements: There are no configuration requirements for this test.

Notes to Tester: Sufficiently large fade times should be used when selecting FT1 or FT2, in order to allow TD to read the

Tracking_Value after FT0 but before FT1 or FT2 has passed.

Test Steps:

1. READ FT0 = Default_Fade_Time

2. MAKE (configure the IUT such that Default_Fade_Time = FT1: a different fade time longer than FT0)

3. VERIFY FT1 = Default_Fade_Time

4. READ C1 = Present_Value

-- Write to Present_Value to verify Default_Fade_Time gets applied

5. IF (Transition is present and equal to FADE) THEN

 WRITE Present_Value = (C2, a different color than C1)

 VERIFY In_Progress = FADE_ACTIVE

 WAIT (FT0 milliseconds)

 VERIFY Tracking_Value <> C2

 WAIT (FT1 - FT0 milliseconds)

 VERIFY Tracking_Value = C2

 VERIFY In_Progress = IDLE

 ELSE

 WRITE Color_Command = (FADE_TO_COLOR, (C2: any valid color supported by the IUT other than C1), (FT2:

a different fade time longer than FT1))

 VERIFY In_Progress = FADE_ACTIVE

 WAIT (FT1 milliseconds)

 VERIFY Tracking_Value <> C2

 WAIT (FT2 - FT1 milliseconds)

 VERIFY Tracking_Value = C2

 VERIFY In_Progress = IDLE

7.3.2.X67.32 Writing Default_Fade_Time Positive Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT can be configured with a Default_Fade_Time at the bounds of the allowable value

range using BACnet services.

Test Concept: Default_Fade_Time is written with a value equal to 100 milliseconds. Then Default_Fade_Time is written

with a value equal to 86400000 milliseconds.

Configuration Requirements: There are no configuration requirements for this test.

Test Steps:

1. WRITE Default_Fade_Time = 100

2. VERIFY Default_Fade_Time = 100

3. WRITE Default_Fade_Time = 86400000

4. VERIFY Default_Fade_Time = 86400000

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 12

BTL-23.3 ca-3: Add Color-Reference Properties [BTLWG-1262]

Overview:

This WI adds testing for the color-reference properties of LO and BLO objects.

Changes:

Checklist Changes

[Modify the Lighting Output and Binary Lighting Output Object sections]

Lighting Output Object

 R Base Requirements

 R Supports command prioritization

 R Supports all BACnetLightingOperations

 S Supports configurable Out_Of_Service property

 O Supports blink-warn

 O Supports Transition property

 O Supports Feedback_Value property

 O Supports Min_Actual_Value and Max_Actual_Value properties

 O Supports the value source mechanism.

 O1,2 1,4 Supports Color_Reference property

 O1,2 Supports Color_Override property Supports color override

 O1,2 Supports the Trim_Fade_Time property

 O3 Supports intrinsic reporting
1 Protocol_Revision 24 or higher must be claimed
2 Contact BTL for interim tests for this functionality
3 Protocol_Revision 21 or higher must be claimed
4 Must be claimed if the IUT supports color override

Binary Lighting Output Object

 R Base Requirements

 R Supports command prioritization

 S Supports configurable Out_Of_Service property

 O Supports blink-warn

 O Supports writable Polarity property

 O Supports strike count tracking

 O Supports elapsed active time tracking

 O Supports the value source mechanism.

 O1,2 Supports Color_Reference property

 O1 Supports Color_Override property Supports color override
1 Protocol_Revision 24 or higher must be claimed
2 Must be claimed if the IUT supports color override

Test Plan Changes

[Replace sections Lighting Output Objects sections 3.54.10, 3.54.11 and Binary Lighting Output Objects sections 3.55.9,

3.55.10 with the below]

3.54.10 Supports Color_Reference Property
The IUT supports the Color_Reference property.

Verify Checklist

 Test Conditionality Must be executed.

 Test Directives Verify the IUT claims support for either the Color or Color Temperature

object.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 13

 Testing Hints

3.54.11 Supports Color Override
The IUT supports overriding the companion color.

BTL - 7.3.1.X54.1 - Color Override Test

 Test Conditionality Must be executed.

 Test Directives Execute this test using the Lighting Output object as O1.

 Testing Hints

3.55.9 Supports Color_Reference Property
The IUT supports the Color_Reference property.

Verify Checklist

 Test Conditionality Must be executed.

 Test Directives Verify the IUT claims support for either the Color or Color Temperature

object.

 Testing Hints

3.55.10 Supports Color Override
The IUT supports overriding the companion color.

BTL - 7.3.1.X54.1 - Color Override Test

 Test Conditionality Must be executed.

 Test Directives Execute this test using the Binary Lighting Output object as O1.

 Testing Hints

Specified Test Changes

[Add new tests into BTL Specified Tests]

7.3.1.X54.1 Color Override Test

Reason for Change: No test exists for this functionality.

Purpose: This test ensures that a color override will follow the existing transition or no transition, but to the new commanded

color or color temperature.

Test Concept: A companion Color or Color Temperature object (COLOR1) is referenced by the Color_Reference property of

the lighting output object (O1). A different Color or Color Temperature object (COLOR2) is referenced by the

Override_Color_Reference property of O1. No transitions or fades are in progress. Color override is enabled and the output of

O1 is verified to match the color referenced by COLOR2. Color override is disabled and the output of O1 is verified to match

the color referenced by COLOR1. A Color_Command is written to COLOR1 which would cause a transition to begin. During

the transition period, color override is enabled and the output is verified to go to the color referenced by COLOR2 immediately.

The override is again disabled and TD verifies that the color returns to the color that would have been in effect had the override

not occurred. One more override is enabled and a Color_Command is written to COLOR2 which would cause another transition

to begin. During this transition color override is disabled and the TD verifies that the output matches COLOR1's Present_Value.

Configuration Requirements: COLOR1 is referenced by O1's Color_Reference property. COLOR2 is referenced by O1's

Override_Color_Reference property. Color_Override is False. No fades or transitions are taking place at the start of the test.

COLOR1 and COLOR 2 exist in the IUT, are of the same object type, and have different Present_Values at the start of the test.

Notes to tester: Select Present_Values for COLOR1 and COLOR2 which are measurably different from each other, and color

commands which result in measurable changes, to facilitate a successful test run. The CHECK steps will need to be defined by

the vendor if a physical output device is not provided.

Test Steps:

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 14

1. READ C1 = (COLOR1), Present_Value

2. READ C2 = (COLOR2), Present_Value

3. WRITE (O1), Color_Override = TRUE

4. CHECK (that the color output of O1 is represented by C2)

5. WRITE (O1), Color_Override = FALSE

6. CHECK (that the color output of O1 is represented by C1)

7. WRITE (COLOR1), Color_Command = (any valid operation for the color object with a specified fade time T1 which

will still be in effect after step 10)

8. WRITE (O1), Color_Override = TRUE

9. CHECK (that the color output of O1 is represented by C2 and is not doing any fading)

10. WRITE (O1), Color_Override = FALSE

11. CHECK (that the color output of O1 is now fading in the direction of the last color command written to COLOR1)

12. WAIT (T1 seconds) -- Wait for the transition to finish

13. CHECK (the color output from O1 is represented by the last color command written to COLOR1)

14. WRITE (O1), Color_Override = TRUE

15. WRITE (COLOR2), Color_Command = (any valid operation for the color object with a specified fade time T2 which

will still be in effect after step xyz)

16. CHECK (that the color output of O1 is fading to a color that represents the last color command written to COLOR2)

17. BEFORE (T2 has elapsed)

 WRITE (O1), Color_Override = FALSE

18. CHECK (that the color output of O1 is represented by the last color command written to COLOR1 and is not doing any

fading)

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 15

BTL-23.3 ca-4: Add New Color Temperature Object [BTLWG-1261]

Overview:

Add new Color Temperature Object Type.

Changes:

Checklist Changes

[Replace the Color Temperature Object section]

Color Temperature Object

 R Base Requirements

 O Supports Transition property

 O Supports the value source mechanism

[Add color temperature objects to Data Management - Object Creation and Deletion A and B sections]

Device Management - Object Creation and Deletion - A

 … …

 C2 Can create and delete Color Temperature objects

…

Device Management - Object Creation and Deletion - B

 … …

 C1,6 Supports object creation and deletion of the Color Temperature object

…
6 Protocol_Revision 24 or higher must be claimed.

Test Plan Changes

[Replace contents of 3.66 Color Temperature Object with the below]

3.66.1 Base Requirements
Base requirements must be met by any IUT that can contain Color Temperature objects.

Verify Checklist

 Test Conditionality Must be executed.

 Test Directives Verify the IUT claims support for DS-WP-B

 Testing Hints

BTL - 7.2.X1 - Numeric Bounds Test

 Test Conditionality Must be executed if the IUT does not support Min_Pres_Value and

Max_Pres_Value.

 Test Directives Execute this test on Present_Value, with an upper bound of 30000 and

lower bound of 1000.

 Testing Hints

BTL - 7.3.2.X68.1 - Color Temperature Object Present_Value Startup Test

 Test Conditionality Must be executed.

 Test Directives If Default_Color_Temperature is configurable, repeat this test with

Default_Color_Temperature = 0 and a valid non-zero value.

 Testing Hints

BTL - 7.3.2.X68.2 - Transition NONE Test

 Test Conditionality This test shall be skipped if the Transition property is supported and cannot

be set to NONE.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 16

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.3 - Color Temperature Object Present_Value Clamping Test

 Test Conditionality Must be executed if the IUT supports Min_Pres_Value and

Max_Pres_Value.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.4 - Color Temperature Object Color_Command Out Of Range Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.5 - Invalid Color_Command Operations Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.6 - Valid Color Command Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.8 - Interrupting a Fade In Progress

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.9 - Interrupting a Ramp In Progress

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.11 - Color_Command Optional Parameter Out Of Range Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.22 - Default_Fade_Time Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.23 - Default_Ramp_Rate Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.24 - Default_Step_Size Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.35 - Configuring Default_Step_Increment Within Allowable Range

 Test Conditionality Must be executed if Default_Step_Increment is configurable.

 Test Directives

 Testing Hints

 3.66.2 Supports Transition Property
The IUT supports the Transition property in Color Temperature objects.

BTL - 7.3.2.X68.25 - Transition FADE Test

 Test Conditionality This test shall be skipped if the Transition property is supported and cannot

be set to FADE.

 Test Directives

 Testing Hints

BTL - 7.3.2.X68.26 - Transition RAMP Test

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 17

 Test Conditionality This test shall be skipped if the Transition property is supported and cannot

be set to RAMP.

 Test Directives

 Testing Hints

3.66.3 Supports the Value Source Mechanism
The IUT supports the Value Source Mechanism in color temperature objects.

135.1-2023 - 7.3.1.28.2 - Non-commandable Value_Source Property Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

[Add section for DM-OCD-A and DM-OCD-B]

8.21.68 Can Create and Delete Color Temperature Objects
The IUT can create and delete Color Temperature objects. The IUT shall not restrict the instance number which can be used

to create the Color object.

135.1-2023 - 8.16.1 - Creating Objects by Specifying the Object Identifier with no Initial Values

 Test Conditionality Must be tested on the Color Temperature Object

 Test Directives

 Testing Hints

135.1-2023 - 8.17 - DeleteObject Service Initiation Tests

 Test Conditionality Must be tested on the Color Temperature Object

 Test Directives

 Testing Hints

8.22.68 Supports Object Creation and Deletion of the Color Temperature Object
The Color Temperature object can be created and deleted within the IUT. The Color Temperature object that is created must

be the object that can be deleted using the delete service.

135.1-2023 - 9.16.1.1 - Creating Objects by Specifying the Object Type with No Initial Values

 Test Conditionality Must be executed.

 Test Directives Execute using the Color Temperature Object.

 Testing Hints

135.1-2023 - 9.16.1.2 - Creating Objects by Specifying the Object Identifier with No Initial Values

 Test Conditionality Must be executed.

 Test Directives Execute using the Color Temperature Object.

 Testing Hints

135.1-2023 - 9.17.1.1 - Successful Deletion of an Object

 Test Conditionality Must be executed.

 Test Directives Execute using the Color Temperature Object.

 Testing Hints

Specified Test Changes

[Add a new test section into BTL Specified Tests]

7.3.2.X68 Color Temperature Object Tests

7.3.2.X68.1 Color Temperature Object Present_Value Startup Test

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 18

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the Color Temperature object’s Present_Value goes to either the last Present_Value or a default

color temperature on startup, depending on the color in the Default_Color_Temperature property.

Test Concept: The IUT is restarted and Present_Value is verified to go either to Default_Color_Temperature or the previous

color temperature in effect prior to restart if Default_Color_Temperature is 0. The color temperature output in Tracking_Value

is verified to go to either Present_Value or the previous color temperature before the restart.

Configuration Requirements: The IUT is not performing any color temperature commands or fades at the beginning of this test.

The starting Present_Value, PV1, shall be set to something other than the Default_Color_Temperature,.

Test Steps:

1. VERIFY In_Progress = IDLE

2. READ PV1 = Present_Value

3. READ DCT = Default_Color_Temperature

4. CHECK (PV1 <> DCT)

5. MAKE (the IUT restart)

6. WAIT (for the IUT to restart)

7. IF (DCT = 0) THEN {

8. IF (Present_Value is preserved over a power cycle) THEN {

9. VERIFY Present_Value = PV1

10. VERIFY In_Progress = IDLE

 }

11. ELSE {

12. VERIFY In_Progress = NOT_CONTROLLED

 }

 }

13. ELSE {

14. VERIFY Present_Value = DCT

15. VERIFY Tracking_Value = DCT

16. VERIFY In_Progress = IDLE

 }

7.3.2.X68.2 Transition NONE Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that when Transition is NONE or not supported, writing to the Present_Value is set to the target

color temperature immediately.

Test Concept: Transition is verified as NONE or not supported. Tracking_Value is read. A different value is written to

Present_Value and Tracking_Value is read back as equal to Present_Value.

Configuration Requirements: The IUT is not performing any color temperature commands or fades at the start of this test.

Test Steps:

1. IF (Transition property is supported) THEN

2. VERIFY Transition = NONE

3. READ TV = Tracking_Value

4. WRITE Present_Value = (C1: any valid color temperature supported by the IUT, other than TV)

5. VERIFY Tracking_Value = C1

6. VERIFY In_Progress = IDLE

7.3.2.X68.3 Color Temperature Object Present_Value Clamping Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct behavior when a color temperature which is within the standard

range for Present_Value but out of range of Min_Pres_Value and Max_Pres_Value is written.

Test Concept: A Color Temperature object's (O1) Present_Value is read, then written to using values T1 and T2, where T1 is

a value between 1000 Kelvin and Min_Pres_Value and T2 is a value between Max_Pres_Value and 30000 Kelvin.

Configuration Requirements: The color temperature object should not be executing any fades.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 19

Notes to Tester: Configuring Transition to NONE, or minimizing Default_Fade_Time and maximizing Default_Ramp_Rate

will assist in reducing the time it takes to execute this test.

Test Steps:

1. READ PV1 = Present_Value

2. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = Present_Value,

 'Property Value' = 999

3. RECEIVE BACnet-Error-PDU,

 'Error Class' = PROPERTY,

 'Error Code' = VALUE_OUT_OF_RANGE

4. VERIFY Present_Value = PV1

5. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = Present_Value,

 'Property Value' = 30001

6. RECEIVE BACnet-Error-PDU,

 'Error Class' = PROPERTY,

 'Error Code' = VALUE_OUT_OF_RANGE

7. VERIFY Present_Value = PV1

8. IF (the IUT supports Min_Pres_Value and Max_Pres_Value) THEN {

9. IF (Min_Pres_Value > 1000) THEN {

10. WRITE Present_Value = T1

11. VERIFY Present_Value = Min_Pres_Value

12. IF (Transition is present and set to FADE) THEN {

13. WAIT (Default_Fade_Time milliseconds)

 }

14. IF (Transition is present and set to RAMP) THEN {

15. WAIT (((PV1 - Min_Pres_Value) / Default_Ramp_Rate) seconds)

 }

16. VERIFY Tracking_Value = Min_Pres_Value

 }

17. IF (Max_Pres_Value < 30000) THEN {

18. READ PV1 = Present_Value

19. WRITE Present_Value = T2

20. VERIFY Present_Value = Max_Pres_Value

21. IF (Transition is present and set to FADE) THEN {

22. WAIT (Default_Fade_Time milliseconds)

 }

23. IF (Transition is present and set to RAMP) THEN {

24. WAIT (((Max_Pres_Value - PV1) / Default_Ramp_Rate) seconds)

 }

25. VERIFY Tracking_Value = Max_Pres_Value

 }

 }

7.3.2.X68.4 Color Temperature Object Color_Command Out Of Range Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct behavior when a target color temperature which is out of

range is written to its Color_Command, depending on the color temperature written.

Test Concept: A Color Temperature object's (O1) Present_Value is read, then Color_Command is written to with a target value

outside the allowed range of 1000 to 30000. An error is received with Error Class = PROPERTY, and Error Code =

VALUE_OUT_OF_RANGE. Then, if the IUT supports Min_Pres_Value and Max_Pres_Value, a Color_Command with a

target value which is within the allowed range but outside of the range supported by the IUT, is written to the IUT. An error is

returned and Present_Value is clamped to the Min_Pres_Value or Max_Pres_Value.

Configuration Requirements: The IUT is not performing any color commands or fades.

Test Steps:

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 20

1. REPEAT X = (each valid Color_Command operation) DO {

2. READ PV1 = Present_Value

3. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = Color_Command,

 'Property Value' = (X, additional parameters which would result in a color temperature below 1000K)

4. RECEIVE BACnet-Error-PDU,

 'Error Class' = PROPERTY,

 'Error Code' = VALUE_OUT_OF_RANGE

5. READ PV1 = Present_Value

6. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = Color_Command,

 'Property Value' = (X, additional parameters which would result in a color temperature above 30000K)

7. RECEIVE BACnet-Error-PDU,

 'Error Class' = PROPERTY,

 'Error Code' = VALUE_OUT_OF_RANGE

8. VERIFY Present_Value = PV1

9. IF (the IUT supports Min_Pres_Value and Max_Pres_Value) THEN {

10. IF (Min_Pres_Value > 1000) THEN {

11. WRITE Color_Command = (X, additional parameters which would result in a color temperature between

1000 and Min_Pres_Value)

12. VERIFY Present_Value = Min_Pres_Value

13. WHILE (In_Progress <> IDLE) { } -- Do nothing

14. VERIFY Tracking_Value = Min_Pres_Value

 }

15. IF (Max_Pres_Value < 30000) THEN {

16. WRITE Color_Command = (X, additional parameters which would result in a color temperature between

Max_Pres_Value and 30000)

17. VERIFY Present_Value = Max_Pres_Value

18. WHILE (In_Progress <> IDLE) { -- Do nothing }

19. VERIFY Tracking_Value = Max_Pres_Value

 }

 }

 }

7.3.2.X68.5 Invalid Color_Command Operations Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct error when invalid color commands are written to the

Color_Command property of the Color Temperature object.

Test Concept: A Color Temperature object's (O1) Present_Value and Color_Command are read, then Color_Command is

written to with each unsupported CCT color command. An error is received each time, with Error Class = PROPERTY and

Error Code = VALUE_OUT_OF_RANGE. When the error is received, TD verifies the Present_Value has not changed.

Configuration Requirements: There are no configuration requirements for this test.

Test Steps:

1 READ CC = Color_Command

2. READ PV = Present_Value

3. REPEAT X = (each invalid Color_Command operation, including NONE and a value not defined) DO {

4. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = Color_Command,

 'Property Value' = (X)

5. RECEIVE BACnet-Error-PDU,

 'Error Class' = PROPERTY,

 'Error Code' = VALUE_OUT_OF_RANGE

6. VERIFY Present_Value = PV

7. VERIFY Color_Command = CC

 }

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 21

7.3.2.X68.6 Valid Color Command Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT will accept all valid color commands when sent with minimum and maximum

parameters and without optional parameters present.

Test Concept: Each valid Color Command Operation is written with valid target color temperatures, exercising the optional

fields of each operation. TD also verifies that when writing a Color Command without the optional field, that the default

parameter is used. TD verifies the fade is completed once enough time has elapsed. This process is repeated for all remaining

valid Color Commands.

Configuration Requirements: There are no configuration requirements for this test.

Test Steps:

1. REPEAT X = (each valid Color_Command operation) DO {

2. WRITE Color_Command = (X, (C1: any valid target color temperature supported by the IUT, or absent if X does

not support it), MIN: the minimum allowable value for this parameter for X)

3. WAIT (until the color command has finished)

4. VERIFY In_Progress = IDLE

5. VERIFY Present_Value = (the color output determined by X and C1's presence)

6. WRITE Color_Command = (X, (C2: any valid target color temperature supported by the IUT other than C1, or

absent if X does not support it), MAX: the maximum allowable value for this parameter for X)

7. VERIFY In_Progress = (an appropriate state for X)

8. VERIFY Present_Value = (the color output determined by X and C2's presence)

-- Write Color Command without the optional parameter, interrupting the last one to verify use of the default property

corresponding to the optional parameter in the Color Command

9. READ T1 = (the 'default' value corresponding to the optional parameter in X)

10. WRITE Color_Command = (X, (C1, or absent if X does not support it))

11. VERIFY Present_Value = (the color output determined by X and C1's presence)

12. IF (the color command will finish within a reasonable timeframe based on X and T1) THEN {

13. WAIT (for the fade to finish based on T1)

14. VERIFY Tracking_Value = (the color output determined by X and C1's presence)

15. VERIFY In_Progress = IDLE

 }

16. ELSE {

17. WRITE Color_Command = STOP

 }

 }

7.3.2.X68.8 Interrupting a Fade In Progress

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT will stop a fade in progress when Present_Value is written to, when a new color

command is written, or when STOP is written to the Color_Command property.

Test Concept: TD writes a color command to a Color Temperature object's (O1) which starts a fade to a color temperature (C2)

with a specified fade-time, then it interrupts the fade by writing to the Present_Value property. The fade should immediately

stop and go to the color temperature written in Present_Value, depending on the presence, and value of, the Transition property.

Then for each valid color command, TD writes a color command to begin a fade to color temperature. Before the operation

completes, TD interrupts the fade with a different color command. TD verifies that Color_Command matches the command

that was written and that Present_Value and In_Progress have appropriate values.

Configuration Requirements: The IUT should not have a fade or ramp in progress at the beginning of this test. If Transition is

configurable, it shall not be configured to NONE at the start of this test.

Test Steps:

1. READ C1 = Present_Value

2. VERIFY In_Progress = IDLE

3. WRITE Color_Command = (FADE_TO_CCT, (C2: any valid color temperature supported by the IUT other than C1),

86400000)

4. VERIFY In_Progress = FADE_ACTIVE

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 22

5. VERIFY Present_Value = C2

-- Interrupt the color command by writing to Present_Value

6. WRITE Present_Value = C1

7. REPEAT X = (each valid Color_Command operation including FADE_TO_CCT and STOP) DO {

8. WRITE Color_Command = (FADE_TO_CCT, C2, 86400000)

9. WRITE Color_Command = (X, (C1, or absent if X does not support a target color temperature), (the maximum

value for this parameter, or absent if X does not support a fade-time or ramp-rate))

10. VERIFY Present_Value = (a value appropriate to X)

11. VERIFY In_Progress = (a value appropriate to X)

12. VERIFY Color_Command = (X)

 }

7.3.2.X68.9 Interrupting a Ramp In Progress

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT will stop a ramp in progress when Present_Value is written to, when a new color

command is written, or when STOP is written to the Color_Command property.

Test Concept: TD writes a color command to a Color Temperature object's (O1) which starts a ramp to a color temperature C2

with a specified ramp-time, then it interrupts the ramp by writing to the Present_Value property. The ramp should immediately

stop and go to the color temperature written in Present_Value, depending on the presence, and value of, the Transition property.

Then for each valid color command, TD writes a color command operation to begin a ramp to color temperature. Before the

operation completes, TD interrupts the ramp with a different color command. TD verifies that Color_Command matches the

command that was written and that Present_Value and In_Progress have appropriate values.

Configuration Requirements: The IUT should not have a ramp in progress at the beginning of this test. If Transition is

configurable, it shall not be configured to NONE at the start of this test.

Test Steps:

1. READ C1 = Present_Value

2. VERIFY In_Progress = IDLE

3. WRITE Color_Command = (RAMP_TO_CCT, (C2: any valid color temperature supported by the IUT other than C1),

1)

4. VERIFY In_Progress = RAMP_ACTIVE

5. VERIFY Present_Value = C2

-- Interrupt the color command by writing to Present_Value

6. WRITE Present_Value = C1

7. REPEAT X = (each valid Color_Command operation including RAMP_TO_CCT and STOP) DO {

8. WRITE Color_Command = (RAMP_TO_CCT, C2, 1)

9. WRITE Color_Command = (X, (C2, or absent if X does not support a target color temperature), (the maximum

value for this parameter, or absent if X does not support a fade-time or ramp-rate)

10. VERIFY Present_Value = (a value appropriate to X)

11. VERIFY In_Progress = (a value appropriate to X)

12. VERIFY Color_Command = (X)

 }

7.3.2.X68.11 Color_Command Optional Parameter Out Of Range Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT responds with the correct behavior when Color Command is written which contains an

optional parameter whose value is outside the allowed range.

Test Concept: Present_Value of a Color Temperature object (O1) is read, then for each valid color command operation, a color

command is written with the optional parameter smaller than the minimum allowed. An error is received with Error Class =

PROPERTY, and Error Code = VALUE_OUT_OF_RANGE. Then another color command is written with the optional

parameter larger than the maximum allowed. An error is received with Error Class = PROPERTY, and Error Code =

VALUE_OUT_OF_RANGE. After each write, TD verifies the Present_Value is unchanged.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 23

Configuration Requirements: The IUT is not performing any color commands. If Transition is present and configurable, it shall

be configured to NONE. If Min_Pres_Value and Max_Pres_Value are configurable, they shall not be configured to 1000 and

30000 respectively.

Test Steps:

1. READ Cx = Present_Value

2. REPEAT X = (each valid Color Command operation other than STOP) DO {

3. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = Color_Command,

 'Property Value' = (X, (C1: any valid target color temperature other than Cx or absent), (a value smaller than the

minimum allowed for this parameter))

4. RECEIVE BACnet-Error-PDU,

 'Error Class' = PROPERTY,

 'Error Code' = VALUE_OUT_OF_RANGE

5. VERIFY Present_Value = Cx

6. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = Color_Command,

 'Property Value' = (X, (C1 or absent), (a value larger than the maximum allowed for this parameter))

7. RECEIVE BACnet-Error-PDU,

 'Error Class' = PROPERTY,

 'Error Code' = VALUE_OUT_OF_RANGE

8. VERIFY Present_Value = Cx

 }

9. IF (the IUT supports the Min_Pres_Value and Max_Pres_Value properties) THEN {

10. IF (Min_Pres_Value > 1000) THEN {

11. WRITE Color_Command = (STEP_DOWN_CCT, (S1: a value such that 1000 <= Cx - S1 < Min_Pres_Value))

12. VERIFY Present_Value = Min_Pres_Value

 }

13. IF (Max_Pres_Value < 30000) THEN {

14. WRITE Color_Command = (STEP_UP_CCT, (S2: a value such that Max_Pres_Value < Present_Value + S2

<= 30000))

15. VERIFY Present_Value = Max_Pres_Value

 }

 }

7.3.2.X68.22 Default_Fade_Time Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that writes to Color_Command with a specified fade-time will use that fade-time instead of the

Default_Fade_Time and when fade-time is not specified, Default_Fade_Time is used

Test Concept: TD writes a Color_Command with a fade-time, that is different from Default_Fade_Time and verifies the color

temperature fade did not end after Default_Fade_Time milliseconds. A second color command is written without the fade-time

parameter and TD verifies that the fade ends after Default_Fade_Time milliseconds, if Default_Fade_Time is a reasonable

value.

Configuration Requirements: There are no configuration requirements for this test.

Test Steps:

1. READ C1 = Present_Value

2. WRITE Color_Command = (FADE_TO_CCT, (C2: any valid color temperature supported by the IUT other than C1),

(Ft: a valid fade-time that is different than Default_Fade_Time and long enough for the next step to be executed))

3. IF (Ft > Default_Fade_Time) THEN {

4. WAIT (Default_Fade_Time milliseconds)

5. VERIFY In_Progress = FADE_ACTIVE

6. WAIT (Ft milliseconds - Default_Fade_Time)

7. VERIFY In_Progress = IDLE

 }

8. ELSE { -- (Ft < Default_Fade_Time)

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 24

9. WAIT (Ft milliseconds)

10 VERIFY In_Progress = IDLE

 }

11. WRITE Color_Command = (FADE_TO_CCT, C1)

12. IF (Default_Fade_Time is not excessively long) THEN {

13. WAIT (Default_Fade_Time milliseconds)

14. VERIFY Tracking_Value = C2

15. VERIFY In_Progress = IDLE

 }

7.3.2.X68.23 Default_Ramp_Rate Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that writes to Color_Command with a specified ramp-rate will use that ramp rate instead of the

Default_Ramp_Rate and when ramp-rate is not specified, Default_Ramp_Rate is used.

Test Concept: TD writes a Color_Command with a ramp-rate, that is different from Default_Ramp_Rate and verifies the color

temperature ramp did not end after Default_Ramp_Rate. A second color command is written without the ramp-rate parameter

and TD verifies that the ramp ends at the appropriate time.

Configuration Requirements: Default_Ramp_Time must not be set to 1. Rr shall be a valid ramp-rate that is different than

Default_Ramp_Rate and large enough to allow the test to be executed. T1 shall be the ((absolute value of C1-

C2/Default_Ramp_Rate). T2 shall be the ((absolute value of C1-C2/Rr).

Test Steps:

1. READ C1 = Present_Value

2. WRITE Color_Command = (RAMP_TO_CCT, (C2: any valid color temperature supported by the IUT other than C1),

Rr)

3. IF (Rr > Default_Ramp_Rate) THEN {

4. WAIT (T1 seconds)

5. VERIFY In_Progress = RAMP_ACTIVE

6. WAIT (T1 - T2 seconds)

7. VERIFY In_Progress = IDLE

 }

8. ELSE { -- (Rr < Default_Ramp_Rate)

9. WAIT (T2 seconds)

10. VERIFY In_Progress = IDLE\

 }

11. WRITE Color_Command = (RAMP_TO_CCT, C1)

12. IF (T1 is not excessively long) THEN {

13 WAIT (T1)

14 VERIFY Tracking_Value = C1

15 VERIFY In_Progress = IDLE

 }

7.3.2.X68.24 Default_Step_Size Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that writes to Color_Command with a specified step-size will use that step size instead of the

Default_Step_Size.

Test Concept: TD writes a Color_Command with a step-size, that is different from Default_Step_Size and verifies the color

temperature did not change by Default_Step_Size.

Configuration Requirements: Present_Value must not be at the maximum allowable value for the Color Temperature object at

the start of the test.

Test Steps:

1. READ C1 = Present_Value

2 WRITE Color_Command = (STEP_UP_CCT, (S1: any valid step size supported by the IUT other than

Default_Step_Size, and will not cause clamping of Present_Value))

3. VERIFY In_Progress = IDLE

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 25

4. VERIFY Tracking_Value = C1 + S1

5. VERIFY Present_Value = C1 + S1

6 WRITE Color_Command = (STEP_DOWN_CCT, S1)

7. VERIFY In_Progress = IDLE

8. VERIFY Tracking_Value = C1

9. VERIFY Present_Value = C1

7.3.2.X68.25 Transition FADE Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that when the IUT supports the Transition property set to FADE, writes to Present_Value will use

the Default_Fade_Time.

Test Concept: TD writes a Present_Value, verifies the color temperature fade is not continuing after Default_Fade_Time

milliseconds.

Configuration Requirements: Transition shall be configured to FADE at the beginning of this test.

Test Steps:

1. VERIFY Transition = FADE

2. READ C1 = Present_Value

3. WRITE Present_Value = (C2: any valid color temperature supported by the IUT other than C1)

4. IF (TD can read In_Progress before Default_Fade_Time elapses) THEN {

5. VERIFY In_Progress = FADE_ACTIVE

 }

6. WAIT (Default_Fade_Time milliseconds)

7. VERIFY In_Progress = IDLE

8. VERIFY Tracking_Value = C2

7.3.2.X68.26 Transition RAMP Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that when the IUT supports the Transition property set to RAMP, writes to Present_Value will use

the Default_Ramp_Rate.

Test Concept: TD writes a Present_Value, verifies the color temperature ramp is not continuing after Default_Ramp_Rate

milliseconds.

Configuration Requirements: Transition shall be configured to RAMP at the beginning of this test.

Test Steps:

1. VERIFY Transition = RAMP

2. READ C1 = Present_Value

3. WRITE Present_Value = (C2: any valid color temperature supported by the IUT other than C1)

4. IF(TD can read In_Progress before the transition completes) THEN {

5. VERIFY In_Progress = RAMP_ACTIVE

 }

6. WAIT ((absolute value of C1-C2)/Rr seconds)

7. VERIFY In_Progress = IDLE

8. VERIFY Tracking_Value = C2

7.3.2.X68.35 Configuring Default_Step_Increment Within Allowable Range

Reason for Change: No test exists for this functionality.

Purpose: This test verifies that the IUT supports a configurable Default_Step_Increment.

Test Concept: The IUT is configured with a different Default_Step_Increment, S1. A color command with step-increment S2

is written and Present_Value is verified to only be equal to the written color temperature after that ramp is completed.

Configuration Requirements: Present_Value should not be set to the minimum or maximum color temperature supported by

the IUT at the start of the test.

Test Steps:

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 26

1. READ S0 = Default_Step_Increment

2. MAKE (configure the IUT such that Default_Step_Increment = S1: a different step increment than S0)

3. VERIFY S1 = Default_Step_Increment

4. READ C1 = Present_Value

5. WRITE Color_Command = STEP_UP_CCT

6. VERIFY Present_Value = (C1 + S1)

7. WRITE Color_Command = STEP_DOWN_CCT

8. VERIFY Present_Value = C1

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 27

BTL-23.3 ca-5: Add High_End_Trim and Low_End_Trim Testing [BTLWG-1263]

Overview:

The High_End_Trim and Low_End_Trim properties for Lighting Output were added in 135-2020, Addendum ca-5. Changes

need to be made and tests added to support these new properties.

Changes:

Checklist Changes

[Modify the Lighting Output Object section. Note The Color_Reference, Color_Override, Trim_Fade_Time, and

High_End_Trim or Low_End_Trim properties required PR24. The Intrinsic Reporting requires PR21.]

Lighting Output Object

 R Base Requirements

 R Supports command prioritization

 R Supports all BACnetLightingOperations

 S Supports writable Out_Of_Service property

 O Supports blink-warn

 O Supports Transition property

 O Supports Feedback_Value property

 O Supports Min_Actual_Value and Max_Actual_Value properties

 O Supports the value source mechanism.

 O1,2 Supports Color_Reference property

 O1,2 Supports Color_Override property

 O1,2 Supports the Trim_Fade_Time property

 O32 Supports intrinsic reporting

 O1,2 Supports High_End_Trim or Low_End_Trim properties
1 Protocol_Revision 24 or higher must be claimed
2 Contact BTL for interim tests for this functionality
23 Protocol_Revision 21 or higher must be claimed

Test Plan Changes

3.54 Lighting Output Object

[Add new section to Lighting Output Object]

3.54.14 Supports High_End_Trim or Low_End_Trim Properties
IUT supports the High_End_Trim or Low_End_Trim properties.

BTL - 7.3.2.39.X1 - Tracking_Value Clamping Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.3.2.39.X2 - Priority 1 and 2 Clamping Test

 Test Conditionality Must be executed.

 Test Directives

 Testing Hints

BTL - 7.2.X1 - Numeric Bounds Test

 Test Conditionality Must be executed if the High_End_Trim is present and writable and/or the

Low_End_Trim is present and writable, otherwise this test shall be skipped.

 Test Directives Execute this test on High_End_Trim, if present and writable, with an upper

bound of 100 and an appropriate lower bound.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 28

Execute this test on Low_End_Trim, if present and writable, with a lower bound

of 1 and an appropriate upper bound.

 Testing Hints

Specified Test Changes

[Add 3 new tests to BTL Specified Tests]

7.3.2.39.X1 Tracking_Value Clamping Test

Reason for Change: No test exists for this functionality.

Purpose: To ensure that Tracking_Value is properly clamped when Present_Value is written to a value above High_End_Trim

or below Low_End_Trim and In_Progress is equal TRIM_ACTIVE.

Test Concept: Throughout this test, the Present_Value shall be written at a priority between 3 and 16 and is the active priority.

If High_End_Trim is present, write the Present_Value to a value greater than High_End_Trim. Verify In_Progress is equal to

TRIM_ACTIVE, Track_Value is equal to the High_End_Trim, and Present_Value is equal to the value written. If

Low_End_Trim is present, write the Present_Value to a value less than Low_End_Trim. Verify In_Progress is equal to

TRIM_ACTIVE, Track_Value is equal to the Low_End_Trim, and Present_Value is equal to the value written.

Test Configuration: The Lighting Output object, O1, shall be configured such that In_Progress is IDLE and no processes are

writing to the Present_Value. The High_End_Trim, if present, shall be less than 99. The Low_End_Trim, if present, shall be

greater than 2.

Test Steps:

1. VERIFY In_Progress = IDLE

2. IF (High_End_Trim is present) THEN {

3. READ HET = High_End_Trim

4. WRITE Present_Value = (PV, a valid value > HET)

5. WHILE (In_Progress <> TRIM_ACTIVE) {}

6. VERIFY Tracking_Value = HET

7. VERIFY Present_Value = PV

 }

8. IF (Low_End_Trim is present) THEN {

9. READ LET = Low_End_Trim

10. IF (In_Progress = TRIM_ACTIVE) THEN {

11. WRITE Present_Value = (PV, a valid value < HET and > LET)

12. WHILE (In_Progress <> IDLE) {}

 }

13. WRITE Present_Value = (PV, a valid value < LET)

14. WHILE (In_Progress <> TRIM_ACTIVE) {}

15. VERIFY Tracking_Value = LET

16. VERIFY Present_Value = PV

 }

7.3.2.39.X2 Priority 1 and 2 Clamping Test

Reason for Change: No test exists for this functionality.

Purpose: To verify that Tracking_Value is not clamped to High_End_Trim or Low_End_Trim when Present_Value is written

at priorities 1 and 2.

Test Concept: Throughout this test, the Present_Value shall be written at a priority 1 and 2 and is the active priority. If

High_End_Trim is present, write the Present_Value to a value greater than High_End_Trim. Verify In_Progress is equal to

IDLE and Track_Value and Present_Value are equal to the value written. If Low_End_Trim is present, write the Present_Value

to a value less than Low_End_Trim. Verify In_Progress is equal to IDLE and Track_Value and Present_Value are equal to the

value written.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 29

Test Configuration: The Lighting Output object, O1, shall be configured such that In_Progress is IDLE and no processes are

writing to the Present_Value. The High_End_Trim, if present, shall be less than 99. The Low_End_Trim, if present, shall be

greater than 2.

Test Steps:

1. VERIFY In_Progress = IDLE

2. IF (High_End_Trim is present) THEN {

3. READ HET = High_End_Trim

4. WRITE Present_Value, = (PV, a valid value > HET), PRIORITY = 1

5. WHILE (In_Progress <> IDLE) {}

6. VERIFY Tracking_Value = PV

7. VERIFY Present_Value = PV

 }

8. IF (Low_End_Trim is present) THEN {

9. READ LET = Low_End_Trim

10. WRITE Present_Value, = (NULL), PRIORITY = 1

11. WHILE (In_Progress <> IDLE) {}

12. WRITE Present_Value = (PV, a valid value < LET), PRIORITY = 2

13. WHILE (In_Progress <> IDLE) {}

14. VERIFY Tracking_Value = PV

15. VERIFY Present_Value = PV

 }

7.2.X1 Numeric Bounds Test

Reason for Change: No test exists for this functionality.

Purpose: This test validates that the upper and lower bounds of a numeric property can be written, and values outside of the

range return the correct error class and code.

Test Concept: Property (P1) in object (O1) is successfully written using the upper bound value (UB). P1 is written with a value

greater than UB and an error response is verified. P1 is successfully written using the lower bound value (LB). P1 is written

with a value less than LB and an error response is verified.

Configuration Requirements: If conditionally writable, Property P1, shall be made writable.

Test Steps:

1. IF (UB supported) THEN {

2. WRITE (O1), P1 = UB,

3. VERIFY (O1), P1 = UB

4. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = P1,

 'Property Value' = (UB + 1)

5. RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE

6. VERIFY (O1), P1 = UB

 }

7. IF (LB supported) THEN {

8. WRITE (O1), P1 = LB,

9. VERIFY (O1), P1 = LB

10. TRANSMIT WriteProperty-Request,

 'Object Identifier' = O1,

 'Property Identifier' = P1,

 'Property Value' = (LB - 1)

11. RECEIVE BACnet-Error-PDU,

 Error Class = PROPERTY,

 Error Code = VALUE_OUT_OF_RANGE

12. VERIFY (O1), P1 = LB

 }

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 30

BTL-23.3 ca-6: Add Trim_Fade_Time Property Testing [BTLWG-1570]

Overview:

Testing for the Trim_Fade_Time property, added in 135-2020-ca, is needed.

Changes:

Checklist Changes

[Modify the Lighting Output Object section]

Lighting Output Object

 … …

 O1,2 Supports Color_Reference property

 O1,2 Supports Color_Override property

 O1,2 Supports the Trim_Fade_Time property

 O3 Supports intrinsic reporting

 O1,2 Supports High_End_Trim or Low_End_Trim properties
1 Protocol_Revision 24 or higher must be claimed
2 Contact BTL for interim tests for this functionality
3 Protocol_Revision 21 or higher must be claimed

Test Plan Changes

[Remove section 3.54.12 Supports Trim_Fade_Time property entirely and renumber remaining test sections]

3.54.12 Supports Trim_Fade_Time Property

[Add a test to section 3.54.13 Supports High_End_Trim or Low_End_Trim Properties]

BTL - 7.3.2.39.X3 - Trim_Fade_Time Test

 Test Conditionality Must be executed if the High_End_Trim is present and writable and/or the

Low_End_Trim is present and writable, otherwise this test shall be skipped.

 Test Directives

 Testing Hints

Specified Test Changes

[Add a new test into BTL Specified Tests]

7.3.2.39.X3 Trim_Fade_Time Test

Reason for Change: No test exists for this functionality.

Purpose: This test verifies the IUT's Lighting Output object will fade using Trim_Fade_Time when the High_End_Trim or

Low_End_Trim are changed such that the current value of Present_Value is outside of the Operating Range.

Test Concept: The Present_Value is made to be within the Operating Range. If the High_End_Trim property is present, it is

changed to be a lower value such that Present_Value is now outside the Operating range and it is verified that it takes

Trim_Fade_Time milliseconds for the Tracking_Value to fade to the new High_End_Trim value. The same steps are repeated

using Low_End_Trim, if present.

Configuration Requirements: The IUT shall not be performing any fades at the start of this test and Present_Value shall be

within the Operating Range. Default_Fade_Time and Trim_Fade_Time shall be configured to different values, if possible.

Addendum ca to BTL Test Package 23.3

© 2024 by BACnet International. All rights reserved. 31

Test Steps:

1. VERIFY In_Progress = IDLE

2. READ DFT = Default_Fade_Time

3. READ TFT = Trim_Fade_Time

4. IF (High_End_Trim is present) THEN {

5. READ HET1 = High_End_Trim

6. WRITE Present_Value = HET1

7. WRITE High_End_Trim = (a new value HET2, such that HET2 < PV)

8. IF (TFT <= DFT) THEN {

9. WAIT (TFT milliseconds)

10. VERIFY Tracking_Value = HET2

11. VERIFY In_Progress = TRIM_ACTIVE

12. VERIFY Present_Value = HET1

 }

13. IF (TFT > DFT) THEN {

14. WAIT (DFT milliseconds)

15. VERIFY Tracking_Value <> HET2

16. WAIT (TFT - DFT milliseconds)

17. VERIFY Tracking_Value = HET2

18. VERIFY In_Progress = TRIM_ACTIVE

19. VERIFY Present_Value = HET1

 }

 -- Reset test setup in case of Low_End_Trim being present

20. WRITE Present_Value = HET2

21. VERIFY In_Progress = IDLE

 }

22. IF (Low_End_Trim is present) THEN {

23. READ LET1 = Low_End_Trim

24. WRITE Present_Value = LET1

25. WRITE Low_End_Trim = (a new value LET2, such that LET2 > PV)

26. IF (TFT <= DFT) THEN {

27. WAIT (TFT milliseconds)

28. VERIFY Tracking_Value = HET2

29. VERIFY In_Progress = TRIM_ACTIVE

30. VERIFY Present_Value = HET1

 }

31. IF (TFT > DFT) THEN {

32. WAIT (DFT milliseconds)

33. VERIFY Tracking_Value <> HET2

34. WAIT (TFT - DFT milliseconds)

35. VERIFY Tracking_Value = HET2

36. VERIFY In_Progress = TRIM_ACTIVE

37. VERIFY Present_Value = HET1

 }

 }

	BTL-23.3 ca-1: Add New Checklist Entries for Addenda ca [BTLWG-1451]
	Checklist Changes
	Test Plan Changes
	Specified Test Changes

	BTL-23.3 ca-2: Add New Color Object Type [BTLWG-1260]
	Checklist Changes
	Test Plan Changes
	3.65 Color Object
	3.65.1 Base Requirements
	3.65.2 Supports Transition Property
	3.65.3 Supports a Configurable Default_Fade_Time
	3.65.1 Supports the Value Source Mechanism
	8.21.68 Can Create and Delete Color Objects
	8.22.68 Supports Object Creation and Deletion of the Color Object

	Specified Test Changes

	BTL-23.3 ca-3: Add Color-Reference Properties [BTLWG-1262]
	Checklist Changes
	Test Plan Changes
	3.54.10 Supports Color_Reference Property
	3.54.11 Supports Color Override
	3.55.9 Supports Color_Reference Property
	3.55.10 Supports Color Override

	Specified Test Changes

	BTL-23.3 ca-4: Add New Color Temperature Object [BTLWG-1261]
	Checklist Changes
	Test Plan Changes
	3.66.1 Base Requirements
	3.66.2 Supports Transition Property
	3.66.3 Supports the Value Source Mechanism
	8.21.68 Can Create and Delete Color Temperature Objects
	8.22.68 Supports Object Creation and Deletion of the Color Temperature Object

	Specified Test Changes
	7.3.2.X68 Color Temperature Object Tests
	7.3.2.X68.1 Color Temperature Object Present_Value Startup Test
	7.3.2.X68.2 Transition NONE Test
	7.3.2.X68.3 Color Temperature Object Present_Value Clamping Test
	7.3.2.X68.4 Color Temperature Object Color_Command Out Of Range Test
	7.3.2.X68.5 Invalid Color_Command Operations Test
	7.3.2.X68.6 Valid Color Command Test
	7.3.2.X68.8 Interrupting a Fade In Progress
	7.3.2.X68.9 Interrupting a Ramp In Progress
	7.3.2.X68.11 Color_Command Optional Parameter Out Of Range Test
	7.3.2.X68.22 Default_Fade_Time Test
	7.3.2.X68.23 Default_Ramp_Rate Test
	7.3.2.X68.24 Default_Step_Size Test
	7.3.2.X68.25 Transition FADE Test
	7.3.2.X68.26 Transition RAMP Test
	7.3.2.X68.35 Configuring Default_Step_Increment Within Allowable Range

	BTL-23.3 ca-5: Add High_End_Trim and Low_End_Trim Testing [BTLWG-1263]
	Checklist Changes
	Test Plan Changes
	3.54 Lighting Output Object
	3.54.14 Supports High_End_Trim or Low_End_Trim Properties

	Specified Test Changes
	7.3.2.39.X1 Tracking_Value Clamping Test
	7.3.2.39.X2 Priority 1 and 2 Clamping Test
	7.2.X1 Numeric Bounds Test

	BTL-23.3 ca-6: Add Trim_Fade_Time Property Testing [BTLWG-1570]
	Checklist Changes
	Test Plan Changes
	3.54.12 Supports Trim_Fade_Time Property

	Specified Test Changes
	7.3.2.39.X3 Trim_Fade_Time Test

